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Abstract
We show how continuous-depth neural ODE models can be framed as single-layer, infinite-

width nets using the Chen–Fliess series expansion for nonlinear ODEs. In this net, the output
“weights” are taken from the signature of the control input — a tool used to represent infinite-
dimensional paths as a sequence of tensors — which comprises iterated integrals of the control
input over a simplex. The “features” are taken to be iterated Lie derivatives of the output function
with respect to the vector fields in the controlled ODE model. The main result of this work applies
this framework to derive compact expressions for the Rademacher complexity of ODE models
that map an initial condition to a scalar output at some terminal time. The result leverages the
straightforward analysis afforded by single-layer architectures. We conclude with some examples
instantiating the bound for some specific systems and discuss potential follow-up work.
Keywords: Neural ODE, Chen–Fliess series, Rademacher complexity, generalization bound

1. Introduction

Several recent works have examined continuous-depth idealizations of deep neural nets, viewing
them as continuous-time ordinary differential equation (ODE) models with either fixed or time-
varying parameters. Traditional discrete-layer nets can be recovered by applying an appropriate
temporal discretization scheme, e.g., the Euler or Runge-Kutta methods. In applications, this per-
spective has resulted in advantages concerning regularization (Kelly et al., 2020; Pal et al., 2021;
Kobyzev et al., 2021), efficient parameterization (Queiruga et al., 2020), convergence speed (Chen
et al., 2023), applicability to non-uniform data (Sahin and Kozat, 2019), among others. As a theo-
retical tool, continuous-depth idealizations have lead to better understanding of the contribution of
depth to model expressiveness and generalizability (Massaroli et al., 2020; Marion, 2023), new or
improved training strategies via framing as an optimal control problem (Corbett and Kangin, 2022),
and novel model variations (Jia and Benson, 2019; Peluchetti and Favaro, 2020).

Considered as generic control systems, continuous-depth nets can admit a number of distinct
input-output configurations depending on how the control system “anatomy” is delegated. Con-
trolled neural ODEs (Kidger et al., 2020) and continuous-time recurrent neural nets (Fermanian
et al., 2021) treat the (time-varying) control signal as the input to the model; the initial condition is
either fixed or treated as a trainable parameter; the (time-varying) output signal is the model output;
and any free parameters of the vector fields (weights) are held constant in time. One may instead
consider the initial condition to be the input; the output signal at a fixed terminal time as the model
output; and the (fixed or time-varying) control signal as a representative for (depth-varying) model
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parameters, which yields a typical neural ODE (Chen et al., 2018). Here the input is a static finite-
dimensional vector rather than a sequence or function of time, and this is the setting we consider in
this work. Recent work of Marion (2023), discussed below, also considers this setting.

New results and insight have emerged from studying neural nets in the infinite-width or “mean-
field” limit (Lu et al., 2020; Jacot et al., 2018). We can apply similar methods to neural ODEs
by representing them using an infinite series expansion. One such example is the Chen–Fliess
series (Chen, 1957; Fliess, 1981), which represents the output of a system as a sum of iterated
Lie derivatives of the output function multiplied by corresponding iterated integrals of the control
input, eliminating any recursive dependence on the state. This sequence of iterated integrals of
the control is called the signature, which has been used in rough path theory for approximating and
reconstructing stochastic signals using finite-dimensional data (Fermanian et al., 2023), and has also
appeared in the control literature as a tool for studying small-time asymptotic behavior of control
trajectories (Sussmann, 1983). Expressed as an infinite series using this formalism, the small-time
initial-condition-to-output map is linear in the iterated integrals of the control input (i.e., elements
of the input signature), and the remaining terms depend only on the initial condition.

The Chen–Fliess series can be interpreted as an infinitely wide, single-layer neural net where
each node uses a different activation function computing the appropriate iterated Lie derivative in
the series. In this net, the input weights are set to unity and the output weights are the corresponding
signature elements. Applying series expansions for nonlinear ODEs in this way allows us to analyze
continuous-depth nets using well-established techniques for single-layer, infinite-width nets, which
are often comparatively simpler. Our goal in this work is to demonstrate a compact generalization
bound for neural ODEs using these techniques. Marion (2023) also gives bounds on the generaliza-
tion error of neural ODEs using covering number estimates for parameterized ODE model classes.
By contrast, the generalization bounds in this work made use of Rademacher complexities and can
complement those of Marion (2023).

The remainder of the paper is organized as follows. In Section 2, we describe the Chen–Fliess
series and how it is used to generate a tractable model architecture. Section 3 defines the learning
problem, then states the main Rademacher complexity bound and proof. In Section 4 we give some
concrete examples to instantiate the bound, with conclusions and discussion provided in Section 5.

2. Chen–Fliess series

We are interested in maps φ : X ⊂ Rn → Y ⊂ R that can be described by sending an initial
condition x0 ∈ X to the resulting output y(T ) ∈ Y at time T of a fixed control system

ẋ(t) = f(x(t), u(t)), x(0) = x0

y(t) = h(x(t), u(t))
(1)

with a fixed control input u : [0, T ]→ U, where U is an arbitrary subset of some finite-dimensional
vector space.

2.1. Control-affine systems

Consider the generic nonlinear control system (1). For the purposes of this work, we can restrict our
attention to control-affine systems with linear outputs, which we will justify below. Assume that
f(·, u) : Rn → Rn is continuous for every u ∈ U. Then we can always find continuous vector fields
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g1, . . . , gm : Rn → Rn such that {f(x, u) : u ∈ U} ⊆ span{g1(x), . . . , gm(x)} for every x ∈ X
(Sussmann, 2008). Now for each x ∈ Rn define

G :=
[
g1(x) . . . gm(x)

]
∈ Rn×m, P :=

[
I 0

]
∈ Rr×m,

where r ≤ m is the rank of G. Assume without loss of generality that gr+1(x) = · · · = gm(x) = 0,
so then GPT ∈ Rn×r has rank r. By construction, f(x, u) is in the column space of G, thus for
each u ∈ U there exists v ∈ Rm such that Gv = f(x, u). In this case, we can take

v = PT(PGTGPT)−1PGTf(x, u).

Then the trajectory of the control-affine system

ẋ(t) =
m∑
i=1

vi(t)gi(x(t)), x(0) = x0 (2)

is that same as the trajectory of (1). Considered as an open-loop control system, the set of admissible
solutions of (2) subsumes the set of admissible solutions of (1). The map (x, u) 7→ v may be
discontinuous, but this is without consequence. From another angle that avoids state feedback, we
could have instead considered appending the dynamics with an input integrator to yield

ẋ(t) = f(x(t), u(t)), x(0) = x0

u̇(t) = v(t),
(3)

which is another control-affine system with the same trajectory as (1), provided that u is at least
weakly differentiable. Furthermore, differentiating the output yields the equation

ẏ(t) =
∂h

∂x
(x(t), u(t))f(x(t), u(t)) +

∂h

∂u
(x(t), u(t))v(t),

which can be appended to the state dynamics (preceding the construction of (2) or (3) above) so that
the output map becomes linear in the (augmented) state. Thus for the purposes of characterizing
complexity, we restrict our attention to control-affine systems with linear output maps of the form

ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t)), x(0) = x0

y(t) = cTx(t),

(4)

where f, g1, . . . , gm : Rn → Rn and c ∈ Rn. Lastly, we can disguise the drift if necessary by
setting g0 ≡ f/M and u0 ≡ M for some constant M ̸= 0, so without loss of generality we will
only consider the driftless case (i.e., f ≡ 0) which will be convenient for certain calculations later.

2.2. Chen–Fliess series

To keep the paper self-contained, we give here a formal derivation of the Chen–Fliess series; see
Sussmann (1983); Isidori (1995); Beauchard et al. (2023) for rigorous expositions, including the
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analysis of convergence and truncation errors. By the fundamental theorem of calculus, the output
at time t ≥ 0 can be written

y(t) = cTx0 +

∫ t

0
cTẋ(s) ds

= cTx0 +

∫ t

0
cT

 m∑
i=1

ui(s)gi(x(s))

 ds

= cTx0 +

m∑
i=1

∫ t

0
ui(s)Lgic

Tx(s) ds.

(5)

where Lgic
Tx(s) = cTgi(x(s)) is the Lie derivative of the output function with respect to the vector

field gi : Rn → Rn at time s ≥ 0. Using a similar trick, we can rewrite this Lie derivative as

Lgic
Tx(s) = Lgic

Tx0 +

∫ s

0
cT
∂gi
∂x

(x(r))ẋ(r) dr

= Lgic
Tx0 +

∫ s

0
cT
∂gi
∂x

(x(r))

 m∑
j=1

uj(r)gj(x(r))

 dr

= Lgic
Tx0 +

m∑
j=1

∫ s

0
uj(r)Lgj ◦ Lgic

Tx(r) dr,

where ∂gi
∂x (x(r)) ∈ Rn×n is the Jacobian of gi evaluated at x(r). Substituting this into (5) gives

y(t) = cTx0 +

m∑
i=1

∫ t

0
ui(s)

Lgic
Tx0 +

m∑
j=1

∫ s

0
uj(r)Lgj ◦ Lgic

Tx(r) dr

 ds (6)

= cTx0 +
m∑
i=1

(∫ t

0
ui(s) ds

)
Lgic

Tx0 +
∑

1≤i,j≤m

∫ t

0

∫ s

0
ui(s)uj(r)Lgj ◦ Lgic

Tx(r) dr ds.

Repeating this process for Lgj ◦ Lgic
Tx(r) in (6) and for the resulting higher order Lie derivatives

generates the so-called Chen–Fliess series

y(t) =
∑

1≤i1,...,ik≤m
k≥0

(∫ t

0

∫ τk

0
· · ·
∫ τ2

0
uik(τk) · · ·ui1(τ1) dτ1 · · · dτk−1 dτk

)(
Lgi1
◦ · · · ◦ Lgik

cTx0

)
.

It will be convenient later to have a more compact expression for this series. Denote the set of
multi-indices by W := {w = (i1, . . . , ik) : 1 ≤ i1, . . . , ik ≤ m, k ≥ 0}. For a multi-index
w = (i1, . . . , ik), let Lw := Lgi1

◦ · · · ◦ Lgik
and uw(τ) := ui1(τ1) · · ·uik(τk). The region of

integration is a k-simplex, which we denote by ∆k(t) := {(τ1, . . . , τk) : 0 ≤ τ1 ≤ · · · ≤ τk ≤ t}.
Now we can write

y(t) =
∑
w∈W

(∫
∆|w|(t)

uw(τ) dτ

)
Lwc

Tx0 (7)

where |w| is the length of the multi-index w. The term corresponding to the empty multi-index is
simply the constant cTx0.
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2.3. Sequence-space embeddings

Consider a space of bounded, measurable inputs U ⊂ {u : [0, T ] → Rm : ui(t) ∈ [−M,M ]}. We
can embed this space of functions U into the space of real-valued sequences RW via the so-called
signature S : U→ RW. For each w ∈W, define

Sw(u) :=

∫
∆|w|(T )

uw(τ) dτ.

Observe that |Sw(u)| ≤ (MT )|w|

|w|! , since the integrand is bounded by |uw(τ)| ≤M |w| and the volume

of the |w|-simplex ∆|w|(T ) is T |w|

|w|! .
Now consider a compact set of initial conditions X ⊂ Rn. In the same manner that U is embed-

ded into a sequence space, we can also embed X into a sequence space via a map Φ : X→ RW that
computes iterated Lie derivatives of the output map. For each w ∈W, define

Φw(x) := Lwc
Tx.

The embeddings S and Φ pair naturally to recover the Chen–Fliess series (7) concisely as

y(T ) =
〈
S(u),Φ(x0)

〉
=
∑
w∈W

Sw(u)Φw(x0). (8)

This representation of the output y(T ) admits a natural interpretation as a linear combination of non-
linear “features” Φw(x0), where the “weights” are precisely the signature elements Sw(u), which
is a well-understood model architecture in learning theory. It is important to recognize that this
(formal) series may fail to converge unless the time horizon T is sufficiently short, the control mag-
nitude M is sufficiently small, and/or certain regularity assumptions on the vector fields g1, . . . , gm
are satisfied. Such conditions are needed so that the map x0 7→ y(T ) is well-defined. In a later
section we will consider sufficient assumptions to guarantee convergence.

3. Main result

Suppose we have a sample of i.i.d. random vectors (X1, Y1), . . . , (XN , YN ) drawn according to a
probability measure µ with compact support supp(µ) = X × Y ⊂ Rn × R. We seek to identify a
function φ : X→ Y that approximately reproduces this sample and generalizes to other identically
distributed samples. Consider a class of such functions F given by

F =
{
x 7→ φ(x) =

〈
S(u),Φ(x)

〉
: u ∈ U

}
.

The vector fields g1, . . . , gm implicit in the definition of Φ are considered to be fixed, and the
learnable parameters are represented by the control input u (or equivalently, the elements of the
signature S(u)). Given a loss function ℓ : Y × Y → R, define the expected risk

Lµ(φ) := Eµ

[
ℓ(Y, φ(X))

]
=

∫
X×Y

ℓ(y, φ(x))µ(dx, dy),
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the minimum risk L∗
µ(F) := infφ∈F Lµ(φ), and the empirical risk 1

N

∑N
i=1 ℓ(Yi, φ(Xi)). The

empirical risk minimization (ERM) algorithm can be stated succinctly as

φ̂ ∈ argmin
φ∈F

1

N

N∑
i=1

ℓ(Yi, φ(Xi)),

and this minimization problem is usually solved numerically using e.g., gradient descent or its
variations. Assuming that 0 ≤ ℓ(y, φ(x)) ≤ B for all (x, y) ∈ X × Y, φ ∈ F, then the following
excess risk guarantee holds with probably at least 1− δ (see e.g., Hajek and Raginsky (2021)):

Lµ(φ̂)− L∗
µ(F) ≤ 4ERN (ℓ ◦ F) +B

√
2 log

(
1
δ

)
N

, (9)

where the quantity RN (ℓ◦F) is the empirical Rademacher complexity conditioned on the data. This
is given by

RN (ℓ ◦ F) := Eϵ

sup
φ∈F

1

N

∣∣∣∣∣∣
N∑
i=1

ϵiℓ(Yi, φ(Xi))

∣∣∣∣∣∣
 , (10)

where the expectation is taken with respect to the sequence ϵ1, . . . , ϵN of i.i.d. Rademacher random
variables that are independent of the data. We can see that if the right-hand side of (9) is small, then
the expected risk of the ERM map φ̂ is close to the minimum risk, in which case we would say that
φ̂ generalizes well. Hence to study generalizability of F, we seek to bound RN (ℓ ◦ F).

If the loss function ℓ is well-behaved, we can often bound RN (ℓ ◦ F) directly in terms of
RN (F). For instance, let ℓ(y, φ(x)) = (y − φ(x))2 and assume that supy∈Y |y| ≤ M1 and
supx∈X supφ∈F |φ(x)| ≤ M2. Then by observing that

(
y − φ(x)

)
7→ ℓ(y, φ(x)) is 2(M1 +M2)-

Lipschitz and using the contraction principle (Ledoux and Talagrand, 1991), we have

RN (ℓ ◦ F) ≤ 4 (M1 +M2)

(
M1√
N

+ RN (F)

)
.

If instead the loss is given by ℓ(y, φ(x)) = |y − φ(x)|, which is 1-Lipschitz as a function of(
y − φ(x)

)
, then using the contraction principle gives

RN (ℓ ◦ F) ≤ 2M1√
N

+ 2RN (F).

With this in mind, for the remainder of this section we will focus on bounding RN (F).

Theorem 1 The empirical Rademacher complexity of F is bounded by

RN (F) ≤ 1√
N

∑
k≥0

(mMT )k

k!
Λk, (11)

where Λk := sup
{∣∣∣Lwc

Tx
∣∣∣ : x ∈ X, w ∈W, |w| = k

}
.

Proof We will use the following lemma (we omit the proof, which is an elementary application of
Jensen’s inequality):
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Lemma 2 Let ψ : X→ R be an arbitrary function. Then

Eϵ

∣∣∣∣∣∣
N∑
i=1

ϵiψ(Xi)

∣∣∣∣∣∣
 ≤ √N sup

x∈X
|ψ(x)|. (12)

The Rademacher complexity of F is defined by

RN (F) =
1

N
Eϵ

sup
φ∈F

∣∣∣∣∣∣
N∑
i=1

ϵiφ(Xi)

∣∣∣∣∣∣
 =

1

N
Eϵ

sup
u∈U

∣∣∣∣∣∣
N∑
i=1

ϵi
∑
w∈W

Sw(u)Φw(Xi)

∣∣∣∣∣∣
 .

We can bound the expression inside the expectation using the triangle inequality:

sup
u∈U

∣∣∣∣∣∣
N∑
i=1

ϵi
∑
w∈W

Sw(u)Φw(Xi)

∣∣∣∣∣∣ ≤ sup
u∈U

∑
w∈W

∣∣Sw(u)
∣∣ ∣∣∣∣∣∣

N∑
i=1

ϵiΦ
w(Xi)

∣∣∣∣∣∣
≤
∑
w∈W

(MT )|w|

|w|!

∣∣∣∣∣∣
N∑
i=1

ϵiLwc
TXi

∣∣∣∣∣∣ .
Applying Lemma 2 with ψ ← Lwc

T gives

Eϵ

∣∣∣∣∣∣
N∑
i=1

ϵiLwc
TXi

∣∣∣∣∣∣
 ≤ √N sup

x∈X
|Lwc

Tx|.

Putting everything together, we have

RN (F) ≤ 1

N
Eϵ

sup
u∈U

∣∣∣∣∣∣
N∑
i=1

ϵi
∑
w∈W

Sw(u)Φw(Xi)⟩

∣∣∣∣∣∣


≤ 1

N
Eϵ

∑
w∈W

(MT )|w|

|w|!

∣∣∣∣∣∣
N∑
i=1

ϵiLwc
TXi

∣∣∣∣∣∣


≤ 1

N

∑
w∈W

(MT )|w|

|w|!
Eϵ

∣∣∣∣∣∣
N∑
i=1

ϵiLwc
TXi

∣∣∣∣∣∣


≤ 1√
N

∑
w∈W

(MT )|w|

|w|!
sup
x∈X

∣∣∣Lwc
Tx
∣∣∣

≤ 1√
N

∑
k≥0

(mMT )k

k!
Λk.

We are able to exchange the order of the infinite sum and the expectation above using Tonelli’s
theorem, because the summand/integrand are uniformly non-negative and measurable, and the rest
follows from definitions.

Now instantiating the Rademacher complexity bound comes down to bounding the norm of
iterated Lie derivatives Λk, which we explore in some examples in the following section.
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4. Examples

In the following examples, let r := supx∈X |x| and assume |cT| = 1. The output is always given
by y(t) = cTx(t). We continue to use M,T as they are as defined in Section 2.3. Recall that some
conditions are needed on M,T and/or the vector fields g1, . . . , gm so that the series (8) converges
and the map x0 7→ y(T ) is well-defined. Looking at error estimates for the Chen–Fliess expansion
(Beauchard et al., 2023), it appears natural to suggest a condition like Λk ≤ Ckk! for some constant
C > 0 depending onM,T, g1, . . . , gm, which yields a geometric series. However for some systems,
this condition is overly restrictive and we can in fact achieve convergence for any M,T even if this
condition is violated. On the other hand, this condition excludes certain systems of interest that still
admit convergent series expansions for some M,T which we will see in the following examples.

Example 1 Consider the class of bilinear systems

ẋ(t) =

 m∑
i=1

Aiui(t)

x(t), x(0) = x0

where A1, . . . , Am ∈ Rn×n. Let a := maxi=1,...,m σmax(Ai) be the maximum spectral norm of the
matrices A1, . . . , Am. The Lie derivative of a linear function with respect to a linear vector field is
simple to compute, leading to the following bound:

Λk = sup
{∣∣∣Lwc

Tx
∣∣∣ : x ∈ X, w ∈W, |w| = k

}
= sup

{∣∣∣cTAi1 · · ·Aikx
∣∣∣ : x ∈ X, w = (i1, . . . , ik)

}
≤ r max

i1,...,ik
∥Ai1∥ · · · ∥Aik∥ ≤ ra

k.

Substituting this into Theorem 1 yields

RN (F) ≤ 1√
N

∑
k≥0

(mMT )k

k!
rak =

r√
N

exp (mMTa) ,

which is defined for all M , T .

Example 2 Consider the class of control-affine systems

ẋ(t) =
m∑
i=1

ui(t)gi(x(t)), x(0) = x0

where g1, . . . , gm : Rn → Rn are analytic vector fields. Let g̃1, . . . , g̃m : Cn → Cn represent
analytic continuations of g1, . . . , gm and let L̃w := Lg̃i1

◦ · · · ◦ Lg̃ik
. Denote a closed polydisc by

P (ξ, ρ) := {(z1, . . . , zn) ∈ Cn : |zi − ξi| ≤ ρ, 1 ≤ i ≤ n}.

It is evident that ι(X) ⊂ P (ι(x), 2r) for any x ∈ X, where ι : Rn ↪−→ Cn is the inclusion map.
Define the component-wise maximum modulus of the complex vector fields g̃1, . . . , g̃m by

a(r) := max
i=1,...,m

max
j=1,...,n

sup
x∈X

sup
z∈P (ι(x),2r)

|g̃ji (z)|,
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where g̃ji : Cn → C is the jth component of g̃i : Cn → Cn. We can apply Lemma 3.8 in Lesiak and
Krener (1978), which is based on Cauchy estimates from complex analysis, to bound Λk as follows:

Λk = sup
{∣∣∣Lwc

Tx
∣∣∣ : x ∈ X, w ∈W, |w| = k

}
≤ sup

{∣∣∣L̃wc
Tι(x)

∣∣∣ : x ∈ X, z ∈ P (ι(x), 2r), w ∈W, |w| = k
}

= sup


∣∣∣∣∣∣∣
 n∑

j=1

g̃jik(z)
∂

∂zj

 · · ·
 n∑

j=1

g̃ji1(z)
∂

∂zj

 cTι(x)

∣∣∣∣∣∣∣ : x ∈ X, z ∈ P (ι(x), 2r), 1 ≤ i1, . . . , ik ≤ m


≤ k!

(
2nna(r)

r

)k (
1 + 2

√
n
)
r

where we have used that
∣∣∣cTz∣∣∣ ≤ |c|(∣∣ι(x)∣∣+√(2r)2n

)
≤
(
1 + 2

√
n
)
r for z ∈ P (ι(x), 2r).

Assuming that 2nnmMTa(r) < r, substituting this into Theorem 1 yields

RN (F) ≤
(
1 + 2

√
n
)
r

√
N

∑
k≥0

(mMT )k

k!
k!

(
2nna(r)

r

)k

=

(
1 + 2

√
n
)
r

√
N

∑
k≥0

(
2nnmMTa(r)

r

)k

=

(
1 + 2

√
n
)
r

√
N

r

r − 2nnmMTa(r)
.

Example 3 Consider a class of Hopfield nets

ẋ(t) = u(t)σ(x(t)) =
∑

1≤i,j≤n

uij(t)σ(xj(t))ei,

where ei ∈ Rn is the ith unit vector, u : [0, T ] → Rn×n is a matrix-valued control input,
and σ : R → R is a sigmoidal nonlinearity. Suppose the derivatives of σ satisfy the bound
supx∈R |σ(k)(x)| ≤ bakk! for some a, b > 0, which holds for many common sigmoidal activa-
tion functions. If k = 0, then Λk ≤ r, so suppose k ≥ 1. Then

Λk = sup
{∣∣∣Lwc

Tx
∣∣∣ : x ∈ X, w ∈W, |w| = k

}
= sup

{∣∣∣∣∣
(
σ(xj1)e

T
i1

∂

∂x

)
· · ·
(
σ(xjk)e

T
ik

∂

∂x

)
cTx

∣∣∣∣∣ : x ∈ X, 1 ≤ i1, j1, . . . , ik, jk ≤ n

}

= sup


∣∣∣∣∣∣
(
σ(xj1)

∂

∂xi1

)
· · ·

(
σ(xjk)

∂

∂xik

)
cTx

∣∣∣∣∣∣ : x ∈ X, 1 ≤ i1, j1, . . . , ik, jk ≤ n


≤ sup

{(
k

n1, . . . , nk

) ∣∣∣σ(n1)(x) · · ·σ(nk)(x)
∣∣∣ : x ∈ [−r, r], n1 + · · ·+ nk = k − 1

}

≤ sup

{(
k

n1, . . . , nk

)
(ban1n1!) · · · (banknk!) : n1 + · · ·+ nk = k − 1

}
≤ γ(k)bkak−1,
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where γ(k) = k!
2

(
2k
k

)
, which comes from a counting argument; see Appendix B.5 in Fermanian

et al. (2021). Assuming that 4n2MTba < 1, substituting this into Theorem 1 yields

RN (F) ≤ 1√
N

r +∑
k≥1

(
n2MT

)k
k!

k!

2

(
2k

k

)
bkak−1


=

1√
N

r + 1

2a

∑
k≥1

(
2k

k

)(
n2MTba

)k
=

1√
N

(
r − 1

2a
+

1

2a
√
1− 4n2MTba

)
.

The final expression above comes from the generating function for the central binomial coefficients

1√
1− 4x

=
∑
k≥0

(
2k

k

)
xk,

which can be derived by applying the generalized binomial theorem with n = −1
2 .

5. Conclusion

Using the Chen–Fliess series for nonlinear ODEs, we have shown how continuous-depth nets (a.k.a.
neural ODEs) can be viewed as a kind of single-layer, infinite-width net, where the “weights” are
the iterated integrals (signature elements) of the control input, and the “features” are the iterated
Lie derivatives of the output function. This approach facilitates compact expressions for the gener-
alization performance of ODE models based on the comparatively simpler analysis of single-layer
architectures. These bounds are also straightforward to instantiate given various assumptions about
the structure of the ODE model, which we have demonstrated through some examples.

One barrier to applying this technique in more generality is that the Chen–Fliess series converges
only for sufficiently small time horizons and/or small control magnitudes. One could attempt to
circumvent this issue by dividing the time horizon into slices and considering the composition of
several convergent series expansions of the flow map, possibly later taking the limit as the number of
slices increases to infinity. However, this sacrifices the convenience of working with a single-layer
architecture, as bounding the Rademacher complexity of composite function classes is typically
either challenging or yields conservative results. An alternative approach to generalize the main
result is to interpret the control input as a perturbation of some nominal control trajectory, and
instead focus on obtaining margin bounds, which is an interesting direction for follow-up work.

Incorporating any special structure known about the system of interest would also likely give
sharper results in cases where it applies. For example, the result here is agnostic to any information
concerning system stability or dissipativity. Instead of bounding the Lie derivatives of the vector
fields directly, one could likely obtain tighter bounds in the stable case by using the logarithmic
norm of the iterated Jacobians of the vector fields instead of the operator norm, for instance, or
otherwise specializing the analysis to incorporate any behavioral or structural knowledge of the
ODE model under consideration.
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uous normalizing flows for faster convergence to target distribution via ascent regularizations. In
The Eleventh International Conference on Learning Representations, 2023.

Andrew Corbett and Dmitry Kangin. Imbedding deep neural networks. In International Conference
on Learning Representations, 2022.

Adeline Fermanian, Pierre Marion, Jean-Philippe Vert, and Gérard Biau. Framing RNN as a kernel
method: A neural ODE approach. In Advances in Neural Information Processing Systems, 2021.

Adeline Fermanian, Terry Lyons, James Morrill, and Cristopher Salvi. New directions in the appli-
cations of rough path theory. IEEE BITS The Information Theory Magazine, pages 1–18, 2023.
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