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Abstract
We study vehicle dispatching in autonomous mobility on demand (AMoD) systems, where a cen-
tral operator assigns vehicles to customer requests or rejects these with the aim of maximizing
its total profit. Recent approaches use multi-agent deep reinforcement learning (MADRL) to re-
alize scalable yet performant algorithms, but train agents based on local rewards, which distorts
the reward signal with respect to the system-wide profit, leading to lower performance. We there-
fore propose a novel global-rewards-based MADRL algorithm for vehicle dispatching in AMoD
systems, which resolves so far existing goal conflicts between the trained agents and the oper-
ator by assigning rewards to agents leveraging a counterfactual baseline. Our algorithm shows
statistically significant improvements across various settings on real-world data compared to state-
of-the-art MADRL algorithms with local rewards. We further provide a structural analysis which
shows that the utilization of global rewards can improve implicit vehicle balancing and demand
forecasting abilities. An extended version of our paper, including an appendix, can be found at
https://arxiv.org/abs/2312.08884. Our code is available at https://github.
com/tumBAIS/GR-MADRL-AMoD.
Keywords: multi-agent learning, credit assignment, deep reinforcement learning, autonomous mo-
bility on demand

1. Introduction

Within the coming years, autonomous mobility on demand (AMoD) promises to significantly im-
prove urban passenger transportation. An AMoD system enables its operator to exercise full control
over the vehicle fleet, thus improving vehicle dispatching performance, provided that the opera-
tor uses an effective control algorithm. This ultimately yields increased vehicle utilization while
preserving the comfort of individual mobility. By deciding which requests to accept and assign-
ing vehicles to these requests, the operator faces a contextual multi-stage stochastic control prob-
lem. Various approaches to solve this problem exist, ranging from model predictive control (e.g.,
Alonso-Mora et al., 2017) to deep reinforcement learning (DRL) (e.g., Xu et al., 2018; Wang et al.,
2018; Enders et al., 2023). The latter shows better performance due to its model-free nature. In this
context, multi-agent approaches allow to achieve scalability to large instances. To train the agents’
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policy, existing work uses local, egoistic, per-agent rewards, which can lead to sub-optimal behavior
from the perspective of the central operator interested in maximizing the system-wide profit.

In this work, we improve upon the state-of-the-art local-rewards algorithm (LRA) of Enders
et al. (2023) by proposing a novel way to train agents with global rewards. The core of our method-
ology is a new advantage function, which estimates the individual agents’ contribution to the global
reward, as such aligning their goal with the central operator, ultimately following a system-optimal
policy. Our algorithm outperforms LRA by up to 2% on average across test dates and up to 6%
on individual dates, which is a substantial performance improvement in AMoD. Additionally, our
algorithm is as scalable as LRA, accordingly setting a new state-of-the-art for vehicle dispatching
in AMoD systems.

1.1. Related work

Our work relates to two research streams: from an application perspective to AMoD fleet control,
and methodologically to multi-agent deep reinforcement learning (MADRL). We review related
literature from both streams in the following.

Algorithms for (A)MoD fleet control range from greedy heuristics (e.g., Liao, 2003; Lee et al.,
2004), to (stochastic) model predictive control (e.g., Alonso-Mora et al., 2017; Tsao et al., 2018),
combinations of optimization and supervised learning (e.g., Zhang et al., 2017; Jungel et al., 2023),
and DRL. Existing DRL-based algorithms differ from our approach, as they often use value-based
learning (e.g., Xu et al., 2018; Wang et al., 2018; Sadeghi Eshkevari et al., 2022; Meneses-Cime
et al., 2022), which handles large discrete action spaces less efficiently (cf. Akkerman et al., 2024).
Others focus on explicit rebalancing instead of request assignment (e.g., Jiao et al., 2021; Liang
et al., 2022; He et al., 2022). Furthermore, most previous work considers non-autonomous MoD,
aiming to maximize revenues (e.g., Wang et al., 2018; Xu et al., 2018; Tang et al., 2019), while
operators of AMoD systems commonly focus on maximizing operational profit (cf. Enders et al.,
2023). Finally, the work of Enders et al. (2023) uses policy-based hybrid MADRL for a profit-
maximizing AMoD operator, but trains agents on local rewards, possibly leading to sub-optimal
agent behavior. To the best of our knowledge, no work exists that addresses the problem of profit-
maximizing vehicle dispatching in AMoD without the aforementioned shortcomings. We address
this research gap by extending the work of Enders et al. (2023) to incorporate global rewards, thus
creating goal congruence between the agents and the system operator.

A crucial challenge in our setting is deriving per-agent contributions to global success from
a shared reward signal, i.e., a credit assignment problem (Weiß, 1995; Wolpert and Tumer, 1999;
Chang et al., 2003). Solution approaches like inverse reinforcement learning (e.g., Ng and Rus-
sell, 2000; Hadfield-Menell et al., 2017; Lin et al., 2018) or value decomposition (e.g., Kok and
Vlassis, 2006; Sunehag et al., 2018; Son et al., 2019; Rashid et al., 2020) are not applicable to our
setting, because we cannot observe the behavior of an optimal agent and do not use Q-learning. An
alternative approach is reward marginalization, based on difference rewards (Wolpert and Tumer,
2001), which uses functions (e.g., advantage functions) to estimate the contribution of individual
agents to global rewards (e.g., Nguyen et al., 2018; Wu et al., 2018; Foerster et al., 2018). Reward
marginalization approaches often use actor-critic algorithms. However, reward marginalization ap-
proaches often suffer from high learning variance and poor sample efficiency, as they are typically
built on top of basic DRL algorithms. To the best of our knowledge, no work exists that combines
reward marginalization approaches with low-variance actor-critic algorithms so far. We address this
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Figure 1: Exemplary vehicle dispatching process.

research gap by embedding reward marginalization into a Soft Actor-Critic (SAC) framework for
discrete actions.

1.2. Contribution

To close the research gap outlined above, we develop the first scalable MADRL-based algorithm
for vehicle dispatching in profit-maximizing AMoD that trains agents via global rewards. In this
context, we combine SAC for discrete actions with credit assignment based on a counterfactual
baseline to resolve goal conflicts between the trained agents and the operator’s global objective.
Our algorithm combines the benefits of low learning variance and sample efficiency of SAC with
the benefits of credit assignment via a counterfactual baseline. Since this algorithm based on purely
global rewards scales only to medium-sized problem instances, we additionally develop a sched-
uled algorithm that combines local rewards and global rewards with our counterfactual baseline.
Thus, we obtain a powerful new MADRL algorithm with possible applications beyond AMoD. We
evaluate our algorithm on real-world taxi data and show that it outperforms LRA of Enders et al.
(2023) by up to 2% on average across test dates and up to 6% on individual dates. This constitutes
a substantial performance improvement in an AMoD context, where a single percent improvement
yields significant daily monetary gains. We further provide a structural analysis which shows that
the utilization of global rewards can improve implicit vehicle balancing and demand forecasting
abilities.

2. Problem setting

We focus on the contextual multi-stage stochastic control problem from Enders et al. (2023), illus-
trated in Figure 1, to ensure comparability. In this problem setting, a central operator controls an
AMoD fleet and dispatches vehicles to serve requests. We consider a discrete time horizon. During
each time step, customers submit a variable number of new requests for point-to-point transporta-
tion, of which the operator has no prior knowledge. At the beginning of each time step, the operator
makes a decision for the batch of requests that were placed during the previous time step. For each
request, this decision is either to reject the request or to assign it to a vehicle. The operator can base
its decision on fully observable state information, including the requests’ origins and destinations
as well as the vehicles’ positions and already assigned but not yet completed requests. Each request
has to be decided upon immediately and customers have a fixed maximum waiting time until they
must be picked up. Based on the operator’s decision, the system transitions to the next state: vehi-
cles move towards their next destination and potentially pick up or drop off customers. Customers
place new requests, while rejected requests leave the system. We simulate the requests by replaying
historical data. Finally, the operator receives the system-wide profit as a reward. The profit is calcu-
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Figure 2: Outline of base algorithm. Black parts are used during training and testing, gray parts

only during training.

lated as the sum of all revenues from accepted requests minus the costs for all vehicle movements.
Revenues and costs are linear functions of the distance travelled. Since fixed costs do not depend
on the dispatching problem, we only include operational costs (e.g., for fuel and maintenance). For
further details, including a formal Markov decision process, we refer to Appendix A.

3. Methodology

In the following, we first motivate our baseline algorithm (cf. Enders et al., 2023) and extend it
with a naive global reward allocation scheme. We then focus on reward marginalization and show
how to modify the existing Counterfactual Multi-Agent Policy Gradient (COMA) paradigm to SAC
architectures. We finally discuss enhancements to scale our algorithm to large-scale instances.

3.1. Base algorithm

Our problem setting has two peculiarities influencing the construction of an effective vehicle dis-
patching algorithm: the global action space is too large to use single-agent DRL and the number of
requests varies between time steps. When addressing the first peculiarity with multi-agent learning,
the need for agent coordination arises. The algorithm of Enders et al. (2023) therefore uses a two-
stage architecture, see Figure 2. The first stage consists of DRL-trained agents, the second one of an
optimization-based central matching. In the first stage, each agent is the combination of a vehicle
and a request. Therefore, there exists an agent for every possible vehicle-request combination. An
agent can either accept the assignment of the respective request to the respective vehicle or reject
this assignment, resulting in a per-agent action space of size two. As the number of requests varies,
so does the number of agents. Each agent observes the global state, using an encoding and an at-
tention mechanism to cope with the varying number of requests. Using an actor neural network
with a softmax function, the agent obtains probabilities for acceptance and rejection. The per-agent
post-processing selects the action by sampling during training or taking the action with the highest
probability during testing. It then sets the agent’s score to the acceptance probability in case of an
acceptance and to zero in case of a rejection. The scores of all agents are submitted to the global
matching, which coordinates the agents. This bipartite matching selects the global action by max-
imizing the submitted scores under the constraints that every request can be assigned at most once
and that every vehicle can take at most one new request.

We train the agents using SAC for discrete actions (Haarnoja et al., 2018; Christodoulou, 2019).
As the use of multiple agents only serves to handle the large action space, we train a single actor and
a single critic network and use them for all agents. The rewards we use for training are the profits
obtained by the algorithm: when a request is assigned to a vehicle and served within the maximum
waiting time, the respective agent immediately receives the profit as a reward.

To transition from this algorithm to our contribution, we first follow a naive approach to include
global rewards in training by replacing the per-agent rewards with global rewards when training the
critic, resulting in a basic global-rewards algorithm (GRA). We obtain global rewards by summing
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the profits of all agents at one time step. As this number can be substantially larger than per-agent
rewards, we divide it by the average number of non-zero rewards per observation in the replay buffer
to stabilize learning. Straightforwardly using this approach leads to a credit assignment problem, as
the reward given to agents now depends on the actions of all agents, which generally complicates an
agent’s learning task. To mitigate this, we explore a credit assignment paradigm in the following.

3.2. Naive COMA

A suitable credit assignment paradigm for our setting is COMA, proposed by Foerster et al. (2018).
COMA fits our setting best, because it has a similar structure as SAC and is especially suitable
for small per-agent action spaces. Following the main rationale of COMA, agents should maxi-
mize their contribution to the global reward instead of maximizing the global reward directly. As
obtaining global rewards for several actions is computationally infeasible, COMA trains the critic
on global rewards to approximate global state-action-values. The contribution of an agent to this
global value is defined as the value of taking an action in contrast to the value of taking a default
action. This default action is calculated as the policy-weighted average value of all possible actions
the agent can take (counterfactual baseline). The advantage function of COMA therefore is

Aipai|s, iq “ Qθpai|s, ā´iq ´
ÿ

a1
i

πϕpa1
i|s, iq Qθpa1

i|s, ā´iq. (1)

In this and all following equations, s denotes the global state, a1
i an action agent i can take as a

reject/accept decision before the global matching, ai the action the agent actually takes, and ā´i

the actions of all agents except agent i after the global matching. Let πϕpai|s, iq P r0, 1s be the
probability that agent i takes action ai in state s, following policy πϕ parameterized by network ϕ.
Qθpai|s, ā´iq P R2 is the global state-action-value (Q-value) of action ai taken by agent i in state s
estimated using network θ, given other agents’ actions ā´i.

Foerster et al. (2018) use a sampling-based approach to estimate the actor’s loss function and
base its computation only on the action taken by the agent. The loss function thus reads Jπpϕq “

Es„D

“
ř

iAipai|s, iq
‰

, with D denoting the replay buffer. In contrast to that, Enders et al. (2023)
use SAC with discrete actions, which considers all possible actions of an agent in the loss function

Jπpϕq “ Es„D

«

ÿ

i

ÿ

ai

πϕpai|s, iq

ˆ

α log πϕpai|s, iq ´ min
jPt1,2u

!

Qj
θpai|s, ā´iq

)

˙

ff

, (2)

with α P R being the entropy coefficient. To use credit assignment via COMA in combina-
tion with the proven reliability and low variance of SAC, we need to integrate the baseline of
COMA into the loss function of SAC. In the following, we use πpaiq :“ πϕpai|s, iq and Qpaiq :“

minjPt1,2u

!

Qj
θpai|s, ā´iq

)

for conciseness. Then, considering one instance of a batch and one
agent, the loss function of SAC extended by the advantage of COMA reads

Jπpϕ|s, iq “
ÿ

ai

πpaiq

¨

˝α log πpaiq ´ Qpaiq `
ÿ

a1
i

πpa1
iq Qpa1

iq

˛

‚. (3)

Proposition 1 The loss function Jπpϕ|s, iq as defined in Equation (3) is equivalent to the entropy
Jπpϕ|s, iq “

ř

ai
πpaiq α log πpaiq of a plain SAC architecture.
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For a proof of Proposition 1, we refer to Appendix B. Accordingly, using the loss function as derived
in Equation (3) does not allow to learn a meaningful policy such that we cannot simply apply the
COMA paradigm to our SAC framework. This observation motivates us to study a novel approach
to combine SAC for discrete actions with COMA to learn a good policy with global rewards.

3.3. Adjusted COMA for SAC architectures

To solve the convergence problem outlined above, we have to adjust the loss function in Equation
(3). Using only the action taken by the agent for the loss function as in Foerster et al. (2018) does not
lead to convergence even in small experimental instances, as it increases the loss function’s variance.
We therefore adjust πpa1

iq, changing the weighting of the default action in the baseline. This is
possible from a theoretical perspective, as the exact specification of a default action is not derived
from the idea of difference rewards (Wolpert and Tumer, 2001), but left to the user’s discretion.

Straightforwardly, we can define the default action by using an equally-weighted average instead
of a policy-weighted average, resulting in the advantage function A

equ
i paiq “ Qpaiq´

ř

a1
i

1
na1

i

Qpa1
iq,

with nai being the number of actions per agent. We call this algorithm COMAequ, which re-
solves the convergence problem, but has a disadvantage: when the actor network estimates dif-
ferent probabilities for single actions, weighting all actions equally is not a reasonable default
action. This problem is especially pronounced during late training, when the actor network is
better at estimating action probabilities. We solve this issue by defining a second default action
with the use of a target actor network ϕ̄. This network has the same structure and initialization as
the actor network ϕ and is updated using exponential averages of the actor network’s parameters,
similar to target networks in Q-learning. The advantage function of this algorithm (COMAtgt) is
A

tgt
i paiq “ Qpaiq ´

ř

a1
i
πϕ̄pa1

iq Qpa1
iq. Since ϕ̄ differs from ϕ, this algorithm solves the conver-

gence problem as well. During early training, COMAtgt is not as suitable as COMAequ, since the
sub-optimal action probabilities of an untrained target actor network are a disadvantage compared
to equally-weighted actions. Later in training, ϕ̄ can estimate better action probabilities, making
COMAtgt superior to COMAequ.

Since we now have one algorithm especially suitable for early learning and one especially suit-
able for later learning, we combine these two and obtain COMAadj, based on a dynamic combination
of the two newly introduced advantage functions. The advantage function of COMAadj thus reads

A
adj
i paiq “ p1 ´ βqA

equ
i paiq ` βA

tgt
i paiq

“ Qpaiq ´ p1 ´ βq
ÿ

a1
i

1

nai

Qpa1
iq ´ β

ÿ

a1
i

πϕ̄pa1
iq Qpa1

iq.
(4)

Here, the hyperparameter β P r0, 1s is the weight of the COMAtgt baseline and follows a schedule
depending on the training iteration, starting at zero and ending at one. Using a simple linear schedule
usually works best, see Appendix C.4. Then, the loss function of COMAadj reads

Jadj
π pϕ|s, iq “

ÿ

ai

πpaiq
´

α log πpaiq ´ A
adj
i paiq

¯

. (5)

With this loss function, COMAadj solves the credit assignment problem. In our experiments,
COMAadj performs better than LRA, but has a scalability problem: when the number of agents
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increases beyond medium-sized problem instances, COMAadj fails to converge. Reasons for this are
the diminishing influence of a single agent on global rewards and the overlap of many agents’ actions
when the number of agents increases, making learning per-agent Q-values difficult (cf. Rashid et al.,
2020). We therefore investigate how to scale COMAadj.

3.4. Reward scheduling

Usually, one could resolve the scalability problem of COMAadj straightforwardly by adjusting the
critic to accommodate value factorization (e.g., Su et al., 2021), but this approach is infeasible in
our setting as the number of agents is variable. Similarly, learning the critic on a static mix of
local and global rewards in a local-global-rewards algorithm (LGRA) does not solve the scalability
problem, since any non-negligible share of global rewards distorts learning when increasing the
number of agents. In addition, reward marginalization with a counterfactual baseline is problematic
for partially local rewards.

Instead, we can train a single actor network using a weighted average policy loss function,
consisting of the loss function for LRA, J loc

π pϕ|s, iq, by Enders et al. (2023) and COMAadj. The
loss function thus reads

J scd
π pϕ|s, iq “ p1 ´ κq J loc

π pϕ|s, iq ` κ Jadj
π pϕ|s, iq, (6)

with κ P r0, 1s being the weight of the loss function of COMAadj. Again, κ follows a schedule
depending on the training iteration, increasing linearly, following a power function or jumping from
zero to one at a specified point. Power functions with exponents between 0.01 and 0.5 generally
work best, with larger exponents being more suitable for large instance sizes, see Appendix C.4.
This leads to a new algorithm, we call it COMAscd. COMAscd solves the scalability problem, as
it enables the learning of global Q-values when increasing the number of agents. The reason this
works is the utilization of experience collected following a mixed policy: this way, more diverse
experience is available than if using solely own experience, thus improving learning without the
destabilizing influence of increasing the entropy. We can therefore train four critic networks from
the beginning on, two for local and two for global rewards. Two networks each are necessary for
SAC, where we always use the minimum of the two state-action-values to avoid value overestima-
tion. Due to the influence of both local and global rewards, COMAscd can sometimes have a lower
performance than algorithms purely based on global rewards, but makes up for this by being as
scalable as LRA, thus sacrificing a portion of its performance for scalability.

4. Numerical studies

We benchmark our algorithms using the experimental design of Enders et al. (2023), which bases on
New York Taxi data (NYC TLC, 2015) in a hexagonal grid of Manhattan, with 38 large, 11 small, or
5 small zones. In this realm, we study five instances: two edge cases with high (5 zones, 15 vehicles)
and low (11 zones, 6 vehicles) acceptance rates, two typical test cases (11 zones, 18 and 24 vehicles),
and a comparatively large instance (38 zones, 100 vehicles). For details on the experimental design,
we refer to Appendix C.1 and report hyperparameters for all models in Appendix C.2.

Firstly, we test COMAscd on all five instances and benchmark it against LRA of Enders et al.
(2023) and a greedy algorithm, which considers requests in their order of submission, accepting
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Figure 3: Relative test performance ∆ r%s of COMAscd vs. greedy and LRA for multiple test dates.

5 zones, 15 veh. 11 zones, 6 veh. 11 zones, 18 veh. 11 zones, 24 veh. 38 zones, 100 veh.
vs. LRA 0.5% -0.2% 0.2% 1.9% 0.6%
p-value 0.05 0.52 0.22 0.00 0.00

vs. greedy 2.5% 2.8% 2.8% 3.5% 2.4%
p-value 0.00 0.00 0.01 0.00 0.00

Table 1: Mean test performance improvement of COMAscd vs. LRA and greedy, including the
respective Wilcoxon p-values.

profitable ones and rejecting all others. Secondly, we present an ablation study to show the superi-
ority of COMAscd over our alternative algorithms that use global rewards. Thirdly, we discuss why
COMAscd outperforms LRA. For details on the performance metrics, we refer to Appendix C.3.

4.1. Performance of COMAscd

We present results of our tests of COMAscd in Figure 3 and Table 1. In all instances except the one
with 11 zones and 6 vehicles, COMAscd outperforms LRA and the greedy algorithm on average, the
former by up to 1.9% and the latter by up to 3.5%. On single test dates, COMAscd can outperform
LRA by up to 6%. This improvement is significant, as the Wilcoxon p-values are at most 5% for the
respective instances. While these relative improvements appear to be small, they are substantial in
AMoD and of a similar magnitude as the improvements of previous state-of-the-art algorithms over
their respective benchmarks (cf. Sadeghi Eshkevari et al., 2022; Enders et al., 2023).

In the instance with a high acceptance rate (5 zones, 15 vehicles), the significant performance
improvement of COMAscd compared to LRA is an especially positive result, as a vehicle is usu-
ally available for each request in this instance, limiting the improvement potential for DRL. In the
instance with a low acceptance rate (11 zones, 6 vehicles), the improvement potential is similarly
limited, as vehicles are rarely idle. Consequently, the performance of COMAscd is most similar to
LRA in this instance. In contrast, the instance of 11 zones and 24 vehicles has a balanced ratio be-
tween the number of vehicles and requests. Here, the performance improvement of COMAscd is the
largest of all instances, outperforming LRA by on average 1.9% and greedy by on average 3.5%. In
the large instance (38 zones, 100 vehicles), COMAscd significantly improves performance by on av-
erage 0.6% compared to LRA, proving that the algorithm is applicable to large-scale environments.
The lower performance improvement can be explained by the weight of COMAadj being required to
increase more slowly in the loss function of COMAscd when the number of agents increases.

4.2. Ablation study

In the following, we discuss the performance of all proposed algorithms with respect to numeri-
cal stability and scalability across random seeds (Table 2) as well as computational performance
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Figure 4: Relative test performance ∆ r%s of all algorithms vs. COMAscd.

5 zones 11 zones 11 zones 11 zones 38 zones
15 veh. 6 veh. 18 veh. 24 veh. 100 veh.

GRA ✓ ✓ l l –
COMAequ ✓ ✓ l l –
COMAtgt ✓ ✓ l l –
COMAadj ✓ ✓ l l –

LGRA ✓ ✓ ✓ ✓ –
LRA ✓ ✓ ✓ ✓ ✓

COMAscd ✓ ✓ ✓ ✓ ✓

Table 2: Convergence of algorithms. ✓ denotes stable
convergence, l unstable convergence (across
random seeds), – no convergence.

11 zones
18 vehicles 24 vehicles

GRA 1.2% (0.02) -2.7% (0.01)
COMAequ 0.7% (0.03) -3.5% (0.04)
COMAtgt 2.3% (0.00) -1.5% (0.23)
COMAadj 0.3% (0.42) -1.2% (0.41)

LGRA 2.3% (0.00) -1.3% (0.55)

Table 3: Test performance of al-
gorithms vs. COMAscd

(Wilcoxon p-value).

(Table 3 & Figure 4). As can be seen in Table 2, all algorithms show stable convergence for
the small instances, while all but LRA, LGRA, and COMAscd exhibit stability issues already for
medium-sized instances, failing to converge for one-third of the seeds and requiring about ten times
as many training steps to converge compared to LRA for the remaining seeds. In contrast, LGRA
and COMAscd converge on all seeds and require comparable to at maximum twice as many training
steps compared to LRA. For the large instance, only COMAscd and the LRA baseline converge, with
COMAscd requiring similar to twice as many training steps. Figure 4 and Table 3 show the relative
performance of all algorithms compared to COMAscd for the medium-sized instances over seeds for
which all algorithms converged. As can be seen, results are mixed: while pure global-rewards-based
algorithms outperform COMAscd on average on the 18 vehicles instance, COMAscd outperforms all
other algorithms on the 24 vehicles instance. To understand this ambiguous effect, we detail the al-
gorithms’ convergence behavior: increasing the instance from 18 to 24 vehicles technically requires
to train 570 instead of 430 agents, which significantly challenges all purely global-rewards-based
algorithms. In fact, looking at the validation reward variance of each algorithm (see Appendix
C.5), we observe converging but less stable learning behavior for all purely global-rewards-based
algorithms, which explains the respective performance drop. While this observation manifests the
robustness of COMAscd at a performance that improves upon local-rewards-based algorithms, it
also points at a promising direction for future research: if one manages to stabilize and scale the
purely global-rewards-based algorithms, one will most likely obtain even better performance.

4.3. Structural analysis

Finally, we aim to understand the performance difference between the studied algorithms by analyz-
ing the respective policy characteristics in Table 4, which details request rejection rates of profitable
requests for our LRA baseline, the pure global-rewards-based algorithm COMAadj, and COMAscd.
Both COMA-based algorithms have a lower rejection rate compared to LRA, which explains their
improved performance. This finding, as well as the relation between COMAscd and COMAadj, are
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measure LRA COMAadj COMAscd

rejection rate (of profitable requests) 17.6% 16.6% 15.5%
Ñ rejection rate for destination zones without vehicles 16.4% 12.9% 13.6%
Ñ rejection rate for destination zones with ą2 vehicles 20.2% 19.3% 18.5%

overperformance ratio (rejections / acceptances) 1.75 1.87 1.27

Table 4: Rejection rates of generally profitable requests on the instance with 24 vehicles.

in line with the performance shown for the 24 vehicles instance in Figure 4. To understand oper-
ational intricacies, we analyze the difference between average rejection rates of empty destination
zones and zones that contain more than two vehicles upon a request’s arrival, which is 3.8% for
LRA, 6.4% for COMAadj and 4.9% for COMAscd. This indicates a stronger focus of COMAscd and
COMAadj on implicit vehicle balancing, as these algorithms are more reluctant to send vehicles to
already crowded zones. Such a focus on vehicle balancing stems from global reward structures and
partially explains performance improvements: if vehicles are unbalanced, less overall requests can
be served; individual vehicles might still obtain high local rewards, but the global reward decreases.

Beyond implicit balancing, we analyze the algorithms’ anticipative performance, i.e., their ca-
pability to foresee future demand and consider it during decision-making. To do so, we analyze an
algorithm’s overperformance ratio (see Table 4), which compares the summed theoretical profits of
future requests in the same zone following acceptance or rejection of an initially profitable request.
We calculate this ratio by dividing the total theoretical profit after rejections by that after accep-
tances (see Appendix C.6 for details). As can be seen, COMAadj has the highest overperformance
ratio, followed by LRA and COMAscd. From the higher ratio, we conclude that COMAadj has better
forecasting abilities, as requests after rejections are more profitable than requests after acceptances
under its policy. In contrast, COMAscd appears to suffer from the mixture of local and global re-
wards, which can explain some of the performance gaps compared to algorithms with purely global
rewards. A possible reason for the better forecasting abilities of COMAadj is that global Q-values
incorporate more implicit information about future demand and thus more prescriptive informa-
tion, making them more representative: since global rewards are less dependent on the actions of
individual agents, it is easier to infer information about demand from them.

5. Conclusion

We study vehicle dispatching for AMoD systems, where a profit-maximizing central operator as-
signs vehicles to requests or rejects these. We propose a novel MADRL algorithm with global
rewards and credit assignment based on a counterfactual baseline. Our algorithm combines the ben-
efits of low learning variance and sample efficiency of SAC with the benefits of credit assignment
of COMA. We show that a naive combination of SAC and COMA does not converge, and develop
a stable and scalable algorithm that uses reward scheduling with a new advantage function based
on an equally-weighted baseline and a target actor network baseline. We show that our algorithm
improves upon the current state-of-the-art by up to 2% on average across test dates and up to 6%
on individual dates from real-world data sets. This constitutes a substantial performance improve-
ment for the AMoD application case where a single percent improvement yields significant daily
monetary gains. We further provide a structural analysis which shows that the use of global rewards
can improve implicit vehicle balancing and demand forecasting abilities. Our proposed algorithm is
applicable beyond the area of AMoD, as it can be useful in any application where stable multi-agent
deep reinforcement learning with credit assignment is required. An interesting avenue for future
research would be the comparison of our algorithm to decentralized learning algorithms with local
actors and critics. Future work may furthermore apply our algorithm to other areas or focus on
stabilizing purely global-rewards-based algorithms.
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