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Abstract
Recent works in Learning-Based Model Predictive Control of dynamical systems show impressive
sample complexity performances using criteria from Information Theory to accelerate the learning
procedure. However, the sequential exploration opportunities are limited by the system local state,
restraining the amount of information of the observations from the current exploration trajectory.
This article resolves this limitation by introducing temporal abstraction through the framework of
Semi-Markov Decision Processes. The framework increases the total information of the gathered
data for a fixed sampling budget, thus reducing the sample complexity.
Keywords: Expected Information Gain; Temporal Abstraction; Sample Complexity

1. Introduction

Machine Learning Control (MLC) is an interdisciplinary area of statistical learning and control the-
ory which solves model-free optimal control problems (Duriez et al., 2016). Among the multiple
approaches of the vast field of data-driven control, two classes have received notable attention by
the machine learning community: Learning-Based Model Predictive Control (LB-MPC) (Hewing
et al., 2020) and Model-Based Reinforcement Learning (MB-RL) (Abbeel et al., 2006; Recht, 2018;
Moerland et al., 2022). The former refers to the combination of Model Predictive Control (MPC), an
optimisation method based on a sufficiently descriptive model of the system dynamics (Grüne and
Pannek, 2011), and learning methods which enable the improvement of the prediction model from
recorded data while possibly modeling uncertainty (Aswani et al., 2013; Koller et al., 2019). The lat-
ter combines general function approximators such as linear models (Tsitsiklis and Van Roy, 1997),
or more generally neural networks (Sutton et al., 1999a), with Dynamic Programming (DP) (Bell-
man, 1957) principles to solve the underlying optimisation problem.

Despite the recent impressive results in learning complex dynamical models (Ha and Schmid-
huber, 2018), the sample complexity of the learning process remains a major issue in the field of
data-driven control (Kakade, 2003; Li et al., 2021, and see the references therein), in which the
sample complexity is defined as the sample size required to learn a good approximation of the target
concept (Mohri et al., 2018). For this reason, recent works (Mehta et al., 2022b,a) in LB-MPC have
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focused on the design of exploration strategies based on the Information Theory concept of Ex-
pected Information Gain (EIG) or negative Conditional Mutual Information (CMI) (Lindley, 1956).
The resulting criterion allows for quantifying the gain of information given by a new state-control
observation on the estimated optimal system trajectory. Hence, this tool can be used as an acquisi-
tion function to guide the exploration of the state-control space. The concept of acquisition function
is borrowed from the field of Bayesian Optimisation (BO). In particular, the work of Mehta et al.
(2022b) relies on the broader black-box BO framework of Neiswanger et al. (2021).

In a setting where the data is collected along the trajectory of the dynamical system of interest,
the diversity of the resulting dataset (which may be characterised by the quantity of information) is
conditioned on the subsequent states of the system. Informally, the setting in which the sampling
procedure is constrained by the current system state may introduce information redundancy if the
system exhibits high auto-correlation or if the current state is in a slowly evolving region of the state
space. Indeed, as shown in Figure 1 (auto-correlation from a perturbated fixed point of a controlled
Lorenz 63’ system), the auto-correlation from an initial state can be high in average for a long period
of time while the control intensity allows to reduce the correlation of the sequence of states.

Figure 1: (Cov(X0, Xk))k∈N for the
controlled Lorenz system x3 component
under multiple control intensities.

However, for dynamical systems characterised by a
broad range of time scales, the notion of temporal ab-
straction, described in the below paragraphs, (Precup,
2000; Machado et al., 2023) may play a key role in over-
coming the issue mentioned here.

Abstraction in Artificial Intelligence refers to a broad
range of techniques in order to provide a more com-
pact representation of the problem at hand (Boutilier and
Dearden, 1994; Banse et al., 2023). In the framework
of Markov Decision Process (MDP), the work of Sutton
et al. (1999b) sheds light on the limitation induced by
standard MDP modeling: “There is no notion of a course
of action persisting over a variable period of time. [. . .] As
a consequence, conventional MDP methods are unable to
take advantage of the simplicities and efficiencies sometimes available at higher levels of temporal
abstraction.”

Temporal abstraction can refer to the concept of selecting the right level of time granularity
to facilitate the description of the world model to achieve a given task. In simpler words, in the
present case, temporal abstraction is the idea of representing and reasoning about actions and states
at different time-scales and duration.

In the present article, temporal abstraction through Semi-Markov Decision Processes (SMDP)
modeling is introduced to improve the informativeness of the sequential exploration of the state-
control space. SMDP modeling is shown to obtain a better sample complexity of the dynamics
model estimator. This article thus extends the previous work of Mehta et al. (2022a) by introducing
temporal abstraction to the acquisition function. The paper is organised as follows. Section 2 re-
views the related works. Section 3 introduces the problem setting. Section 4 presents the hypothesis
and the experimental setup while Section 5 presents the results and Section 6 concludes the paper.
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2. Related Works

Information Driven Model-Based Control The foundations of the Bayesian Experimental De-
sign have been laid by the seminal work of Lindley (1956) where the author presents a measure of
the information provided by an experiment. More recently, MacKay (1992) termed Expected Infor-
mation Gain (EIG) a measure of the information provided by an observation allowing, in his own
terms, to actively select particularly salient data points. In the field of LB-MPC, such a criterion
has been used to cherry-pick the most informative state-control pair to learn the dynamics of the
system (Mehta et al., 2022b,a). Their work is based on the broader Bayesian Optimisation method
of Neiswanger et al. (2021) designed to optimise “blackbox” functions. An extensive review of
Bayesian Optimisation and its applications is available in this latter paper.

Learning-Based Model Predictive Control The history of learning-based models may be traced
back to the seminal work by Stratonovich (1960) in probability theory which stimulated several
contributions, notably the work of Kalman and Bucy (1961), that were to compose a body of work
generally referred to as filtering theory. More recently, Kamthe and Deisenroth (2018) model the
system dynamics with Gaussian Processes (GP) and use MPC for data efficiency. GPs are also
used in the PILCO model (Deisenroth and Rasmussen, 2011) which has a high influence in MB-
RL. Koller et al. (2019) model the uncertainty of the system dynamics for safe-RL. The work
of Bonzanini and Mesbah (2020) presents a stochastic LB-MPC strategy to handle this uncertainty.

Semi-Markov Decision Processes Temporal abstraction in reinforcement learning was pioneered
in Sutton (1995) and Precup and Sutton (1997); Precup (2000). Specifically, Sutton (1995) pro-
posed learning a model and value function at different levels of temporal abstraction. The actions
in SMDPs take variable amounts of time and are intended to model temporally-extended courses of
action. Recent works for continuous-time control use variants of Neural Ordinary Differential Equa-
tions to model dynamics delays (Du et al., 2020; Holt et al., 2023). A classical use of SMDP is for
queueing control and equipment maintenance (Puterman, 2014) where time-delays are prominent.

3. Problem Setting

3.1. Control Model

This work considers a control model given by the following d-dimensional discrete-time dynamical
system X (Duflo, 1997) on a probability space (Ω,F , P ) defined by

Xk+1 = F (Xk, Uk, ηk)

X0 ∼ N (xe, σ
2
eId)

(1)

with Xk ∈ X , Uk ∈ U and ηk ∈ Z for any k ∈ N, where X , U and Z are respectively the
corresponding state, control and disturbance spaces. The initial state starts from a reference state xe
(a system equilibrium or fixed point1) on which centered Gaussian noise with diagonal covariance
is additively applied, X0 ∼ N (xe, σ

2
eId). The i.i.d. random process (ηk)k∈N is such that ηk is

independent of all previous states and controls for any k ∈ N. The distribution of ηk for any k ∈ N
is denoted by Pη. Coupled with the dynamics, an instantaneous cost function c : X × U → R+ is
also given to define the control model.

1In this work a fixed point is considered as a point of the state space xe ∈ X such that F (xe, 0) = xe.
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In the sequel, it will be convenient to define the control model as a Markov Control Model
(MCM) (Hernández-Lerma, 1989) defined by the following transition probability P on X × U :

P(BX , (x, u)) =

∫
Z
1BX (F (x, u, z))Pη(dz) = Pη({z ∈ Z | F (x, u, z) ∈ BX }) (2)

for any BX ∈ B(X ) (Borel σ-algebra) and (x, u) ∈ X ×U . The function 1 is the indicator function.
Hence, the conditional distribution of Xk+1 given Xk and Uk is given by

P(BX , (x, u)) = P (Xk+1 ∈ BX | Xk = x, Uk = u) (3)

Additionally, in this context, a policy π is a transition probability on U given X , i.e., a distribu-
tion on controls conditioned on states. In the rest of the paper, π (x, du) = δ{u} is the Dirac measure
at u. Hence the notation is simplified to π (x) = u.

Together, a control model, a policy π and an initial distribution on X define a stochastic process
with distribution P π on the space of trajectories (X × U)T . The distribution of the process is
given by P (dx0du0dx1 . . . ) = PX0(dx0)π(du0 | dx0)P(dx1 | dx0, du0) . . . More details on the
stochastic process are given in Hernández-Lerma and Lasserre (1996); Puterman (2014). Lastly, the
history process (Hk)k∈N is defined as Hk = (X0, U0, . . . , Xk) for any k ∈ N. When k = T , HT is
called the trajectory of the process. The process (Xk, Uk, Xk+1)k∈N is called the transition process
and the marginal process (Xk)k∈N is called a Markov Decision Process (MDP).

3.2. Control Problem

The studied control problem is to find a policy π∗ which minimises the following performance
criterion

Jπ = Eπ

[
T∑

k=0

c (Xk, Uk)

]
(4)

where T ∈ N is a given time-horizon and Eπ denotes the expectation under the probability measure
P π. The quantity Jπ is called the value function or objective function. The history process under
π∗ is called the optimal history process and is denoted by (H∗

k)k∈N and the random variable H∗
T is

called the optimal trajectory.
In this work, the optimal policy π∗ is estimated with Model Predictive Control (MPC) applied

on a model of the dynamics. The MPC approach consists of solving a finite-horizon optimal control
problem at each time step, formally it defines the following policy

πMPC(x) = u∗0 (5)

s.t. (u∗0, . . . , u
∗
TMPC) = argmin

(u0, ..., uTMPC )
E(u0, ..., uTMPC )

TMPC∑
k=0

c (Xk, uk) | X0 = x

 (6)

where TMPC ≤ T is the MPC planning horizon, x ∈ X is the current state and the expectation is
taken with the underlying probability measure P (u0, ..., uTMPC ) which characterised by a deterministic
policy (Dirac measures) concentrated at uk for all 0 ≤ k ≤ TMPC. The policy obtained with MPC
on P is denoted by πMPC. The history process under πMPC is denoted by HMPC = (HMPC

k )k∈N,
it is an approximation of the optimal history process (H∗

k)k∈N and the random variable HMPC
T is
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an approximation of the optimal trajectory H∗
T . The objective function under πMPC is denoted by

JMPC. The MPC procedure is here performed with the iCEM algorithm, an improved version of the
Cross Entropy Method (CEM) (Rubinstein and Kroese, 2004; Pinneri et al., 2021), a zeroth-order
optimisation algorithm based on Monte-Carlo estimation.

3.3. Gaussian Process Modeling

The use of Gaussian Process (GP) regression to model relevant quantities of controlled dynamical
systems has long been proposed (Kuss and Rasmussen, 2003; Deisenroth and Rasmussen, 2011;
Kamthe and Deisenroth, 2018) notably for its distributional nature, thus its ability to model uncer-
tainty. By definition, a GP is a stochastic process (here indexed by X × U) such that any finite
collection of random variables has a joint Gaussian distribution.

Continuing from the aforementioned papers, GP regression is used to model the transition prob-
ability P with a model estimator P̂D such that

P̂D( · , (x, u)) ∼ N (µ(x, u), Σ ((x, u), (x, u)) | D) (7)

where µ and Σ are respectively the mean and covariance functions of the GP and D is a dataset of
observations from the transition process (Xk, Uk, Xk+1)k∈N. The distribution P̂D of Equation (7)
is the predictive posterior distribution of the GP conditioned on the dataset D (the reader is referred
to Rasmussen and Williams (2006) for more details on GP regression). The processes X̂ , Û and Ĥ
are respectively the state, control and history processes under the approximate model and the same
rules of notation apply as for the original processes. The MPC policy obtained with the approximate
model P̂D is denoted by π̂MPC. The history process under π̂MPC is denoted by ĤMPC = (ĤMPC

k )k∈N
and the objective function under π̂MPC is denoted by ĴMPC.

Notably, this work focuses on the sample complexity required to estimate a model P̂D of the true
dynamics P accurate enough to obtain a MPC policy π̂MPC that is close to the optimal policy π∗.

Hence, two time units are considered: the sampling iteration n which represents the number of
observations gathered from the system so far, and the time index k of the current state Xk of the
underlying dynamical system X . It is supposed in the following that n ≤ k: it is not possible to
gather more observations than the number of time steps of the system.

3.4. Expected Information Gain

For a fixed sampling budget n and a fixed configuration (e.g. the horizon TMPC, the number of
samples for the Monte-Carlo estimation of the cost or the other hyper-parameters of the iCEM
algorithm) to perform the MPC procedure πMPC, the control performance mainly lies in the quality
of the model estimator P̂Dn . It depends on two main elements: the choice a priori of the mean and
kernel functions µ and Σ and the collection Dn of n observations. From the work of Mehta et al.
(2022b,a), the selection of the observations can be guided by the maximisation of the Expected
Information Gain (EIG) on the optimal trajectory.

Let suppose the time iteration k of the underlying observed process X is equal to the number
of samples gathered, i.e., k = n and the dataset is already collected2 at the sampling iteration n
such that Dn = ((xi, ui, x

′
i))

n−1
i=0 and denote by (Xn, Un) a new random state-control pair to draw

2In this specific case of k = n, the dataset Dn simply contains the whole past trajectory of X , it is a realisation of
Hn, in other words Dn = Hn(ω) for some random outcome ω ∈ Ω.
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from the system. The goal is to select the state-control pair (x, u) that maximises the Expected
Information Gain EIG on the optimal trajectory which is defined by

EIGn(x, u) = H
[
Ĥ∗

T | Dn

]
− EPXn+1|Dn,Xn=x, Un=u

[
H

[
Ĥ∗

T | Dn, Xn = x, Un = u,Xn+1

]]
(8)

where H denotes the differential entropy of a random variable. In other words, given a level of un-
certainty H

[
Ĥ∗

T | Dn

]
on the optimal trajectory Ĥ∗

T , the EIG measures the reduction of this uncer-
tainty when the dataset of the model estimator is augmented with the transition tuple (x, u,Xn+1).

An intriguing interpretation can be made by noticing that (8) is also equal to the negative Condi-
tional Mutual Information (CMI) (Pinsker, 1964; Cover and Thomas, 2006) of the optimal trajectory
Ĥ∗

T and the new state Xn+1 given the dataset Dn and the state-control pair (Xn, Un)
3. Thus, max-

imising the EIG is equivalent to minimising the CMI between the optimal trajectory and the new
transition tuple, hence tending to draw new states sharing less information with the optimal trajec-
tory conditioned on the dataset Dn and the event (Xn = x, Un = u). Indeed, by definition, the CMI
quantifies the independence between the distribution of the optimal trajectory and the distribution
of the new state given both the dataset and the current state-action pair.

By symmetry of the EIG, a more tractable formulation is given by

EIGn(x, u) = H [Xn+1 | Dn, Xn = x, Un = u]− E
PĤ∗

T
|Dn

[
H

[
Xn+1 | Dn, Xn = x, Un = u, Ĥ∗

T

]]
(9)

It is in practice estimated by Monte-Carlo sampling as detailed in Section 4.
In the original work of Mehta et al. (2022b), the EIG is maximised with a greedy Monte-Carlo

algorithm (uniform sampling) that selects the next state-control pair (x, u) to interact with the true
system and subsequently update the dataset Dn with the new transition tuple (x, u, x′) where x′ is
sampled from the true transition probability P( · , (x, u)). It assumes any state-control pair (x, u)
can be evaluated and queried at any time step. The authors’ algorithm is called Bayesian Active
Reinforcement Learning (BARL); the dataset and EIG obtained with this algorithm are denoted by
DBARL

n and EIGBARL respectively. In this setting, the dataset support is the whole state-control
space, Supp(DBARL

n ) = (X × U × X )n.
However, in many real-world applications, the system is not always controllable and the state-

control pairs that can be queried are limited to a subset induced by the system trajectory. This
constraint has been considered in the work following the original paper (Mehta et al., 2022a) where
the authors proposed to restrict the dataset support to the trajectory of the system. This second algo-
rithm is called4 Trajectory Information Planning (TIP) and similarly the dataset and EIG obtained
with this algorithm are denoted by DTIP

n and EIGTIP respectively.
In this case, the dataset support is limited to the trajectory of the system, Supp(DTIP

n ) ⊆
{((xk, uk, xk+1))

n
k=1 ∈ (X × U × X )n | ∃(zk)nk=1 ∈ Zn, xk+1 = F (xk, uk, zk), 0 ≤ i ≤

n} ⊆ (X × U × X )n = Supp(DBARL
n ). This set inclusion implies that the optimal EIG obtained

with TIP is lower than the one obtained with BARL provided the transition probability estimator

3Here and after, a slight abuse of notation is made as the dataset Dn should be written Dn = ((xi, ui, x
′
i))

n−1
i=0 since

the sole random quantities are Xn and Ĥ∗
T but it is omitted for the sake of readability.

4It is important to mention that the main asset of TIP is to provide a whole trajectory as input to the EIG, which is
not used in this work. Thus, only the property of querying observations by following the trajectory of the system is used
here.

6



INFORMATION AND SEMI-MARKOV DECISION PROCESSES

P̂Dn are the same for both algorithms for a fixed current state x ∈ X , max{(x,u), u′∈U} EIG(x, u′) ≤
max{(x′,u′)∈X×U} EIG(x′, u′).

Besides, the latter algorithm (TIP) do not take into account the potential benefits of including
dynamics time scales in the sampling process. In the next section, an extension of the TIP algorithm
is proposed to increase the EIG for each of the sampling iteration through the introduction of delayed
state-control pairs in the setting of Semi-Markov Decision Processes (SMDP). The new algorithm
builds upon TIP by considering the inclusion of temporally-extended actions in the data-collection
procedure to reach more distant system states that are not reachable with the original TIP algorithm,
hence increasing the amount of information gathered from the system. A similar use of action
repetition improves learning in Deep-RL (Sharma et al., 2017; Lakshminarayanan et al., 2017).

3.5. Semi-Markov Decision Processes Extension

A formal definition of temporal abstraction is given through the concept of options defined by Sut-
ton et al. (1999b) where it refers to temporally extended courses of action. This concept has been
shown by Parr (1998) to be equivalent to the construction of Semi-Markov Decision Processes
(SMDP) which are defined below.

Let call decision epoch the time index k of the underlying dynamics (Xk)k∈N defined by equa-
tion (1). Semi-Markov Control Models (SMCM) generalise the concept of MCM by letting the
decisions be random variables. Indeed, consider a strictly increasing random sequence (κj)j∈N of
integers. The random quantities τj = κj − κj−1 with support in some finite space T ⊊ N \ {0}
are called inter-decision times and the random index κj are called random decision epochs. The re-
sulting stochastic process (Xκj )j∈N is called a semi-Markov Decision Process. For a more detailed
probabilistic construction, see (Puterman, 2014, p. 534) and (Hernández-Lerma, 1989, p. 15).

In the scope of this paper, SMDP are used to model the temporal extension of the control process.
The corresponding SMCM is introduced by first extending the control space from U to U × T such
that the temporal extension of the control is encoded in the last coordinate of the control tuple, and
the new dynamics is given by PSMDP(dx′ | (x, (u, t))) = P (Xk+t | Xk = x, Uk:k+t−1 = u)
where Uk:k+t−1 = u means that the control process is constant between k and k+ t− 1. The latter
definition illustrates the fact that during the inter-decision time τ = t, the control process is constant
and equal to u.

From now on, this construction allows to enlarge the support of the dataset Dn, for a fixed
number of observations n while maintaining a rollout, trajectory-based sampling procedure. In-
deed, the dataset support is now Supp(DSM-TIP

n ) ⊆ {((xkj , ukj , xkj+1))
n
j=1 ∈ (X × U × X )n |

∃(zk)
n sup(T )
k=1 ∈ Zn sup(T ), xk+1 = F (xk, uk, zk), 0 ≤ k ≤ n sup(T ), (kj)

n
j=1 ∈ T n, kj <

kj+1}, the transitions tuples extracted from the set of all possible subsequences of the trajectory up
to the maximal reachable time value.

Therefore, Supp(DTIP
n ) ⊆ Supp(DSM-TIP

n ). Consequently, this suggests an extension of the EIG
to the SMDP setting. Let t ∈ T be an inter-decision time and DSM-TIP

n be the dataset under the
SMDP setting at the sampling iteration n, the resulting EIGSM-TIP

n (x, (u, t)) is defined as

H[Xκn+t+1|Dn, Xκn = x, Uκn:κn+t= u, κn]−EPĤ∗
T

|Dn

[
H
[
Xκn+ t+1 |Dn, Xκn= x, Uκn:κn+ t= u, Ĥ∗

T , κn

]]
(10)

Hence, this measure allows the introduction of temporal abstraction in the sampling procedure by
considering the inter-decision delay to increase the potential information gain. However, despite
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being tractable in trajectory rollout settings, the metric defined by (10) needs to look ahead in the
future to be computed (non-causal). Last, note that EIGSM-TIP(x, u, 1) = EIGTIP(x, u).

4. Method and Experiments

The main objective of this work is to demonstrate the increase in the total information gathered
from a system with the introduction of temporal abstraction via the EIGSM-TIP measure. To this
end, a comparison between the original TIP algorithm and the proposed SMDP extension is per-
formed on two controlled dynamical systems, the Inverted Pendulum (Trélat, 2005) and the Lorenz
Attractor (Vincent and Yu, 1991).

The algorithm controls the path of the dynamical system (Xk)k∈N and collects observations
(Xi, Ui, Xi+1)

n−1
i=0 to populate the dataset Dn and improve the GP transition probability estimator

P̂Dn . The indices n and k are respectively the sampling iteration and the time index of the under-
lying dynamical system (Xk)k∈N. The TIP algorithm supposes n = k (data collected at each time
step) while n ≤ k (there are time steps where no data is collected) for the SMDP extension. In the
SMDP case, the inter-decision time τn rules the optional sampling procedure which defines the ran-
dom decision epochs κn = κn−1 + τn. The random decision epochs κn define when the algorithm
can query the system (Xk)k∈N.

To estimate EIGSM-TIP
n , a collection of bootstrapped future states, candidate control points and

inter-decision times are sampled. The bootstrapped future states Xκn+t = xt are estimated with
the GP model. This may lead to a bias in the estimation of the EIG due to the bootstrapping
error. The candidate control points and inter-decision times (u, t) are sampled from a uniform
distribution U(U × T ) at time κn to solve argmax(u, t)∈U×T EIGSM-TIP

n (xt, (u, t)). In this work,
T = {1, . . . , tmax} for some tmax ∈ N. The EIGSM-TIP

n is estimated by the Monte-Carlo estimator

ÊIG
SM-TIP
n (x, (u, t)) given by

H [Xκn+t+1 | Dn, Xκn = x, Uκn+t = u, κn]−
1

m

m∑
i=1

H
[
Xκn+ t+1 | Dn, Xκn = x, Uκn+ t = u, ĤMPC

Ti
, κn

]
(11)

where m is the number of Monte-Carlo samples of the optimal trajectory ĤMPC
Ti

under P̂Dn . The
entropy values are easily computed since the conditional distribution of the new state given the
dataset and the current state-control pair is a Gaussian distribution with mean and covariance given
by the GP posterior. More details on this procedure and the settings used are available in the paper
of Mehta et al. (2022a).

Every two sampling iterations n, the MPC policy π̂MPC is evaluated on the true system and
the objective function is computed. Four independent experiments with different maximal inter-
decision time tmax ∈ {1, 2, 4, 8} are performed. For each of the experiments, the algorithm is
run for 10 independent trials (seeds) to alleviate the variability proper to data-driven control meth-
ods (Henderson et al., 2018). The cost function is defined as c(x, u) = ∥x∥2 in the case of the
Lorenz attractor while the classic Gym (Brockman et al., 2016) cost function (also norm-based) is
used for the Inverted Pendulum. The sampling budget is set to nmax = 100 for the Lorenz system
and nmax = 200 for the Inverted Pendulum. To implement the SMDP, the system is stepped forward
in time with the action kept constant during inter-decision times. Details on the implementation and
experimental settings are available on https://github.com/ReHoss/lbmpc_semimarkov.
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5. Results

Among the relevant quantities to be reported, the evolution of the EIG, the interdecision times and
the evaluation of the objective function are of interest to question the hypothesis raised in Section 4.

First, the evolution of the amount of information gathered during sampling through a compari-
son of (EIGTIP

n )nmax
n=1 , and (EIGSM-TIP

n )nmax
n=1 presented in Figure 2 to assess the impact of the SMDP

extension. Second, the corresponding inter-decision times (τn)nmax
n=1 are shown in Figure 3 to eval-

uate the necessity of temporal abstraction. Lastly, the evolution of the objective function J π̂MPC

from 5 fixed initial conditions X0 is shown as a function of the sampling iteration n in Figure 4 to
analyse the effective results of the proposed method. For all the figures, the shaded area represents
the standard error over the 10 independent trials.

About the first point, one can observe that in all cases, the EIG is larger for SM-TIP than
for TIP (tmax = 1) until one-fourth of the sampling budget is reached. This suggests that the
SMDP extension is beneficial to the information gathering process at the beginning of the sampling
procedure. This may be explained by the fact that the inter-decision times allow to de-correlate the
collected states via the same mechanism illustrated in Figure 1. Note also that, in the case of Lorenz
(Figure 2(a)), the EIG after approximately half of the sampling procedure is superior for TIP than
SM-TIP since more information (state-actions pairs minimising the mutual information) remain to
be gathered.

(a) Lorenz (b) Pendulum

Figure 2: Evolution of the Expected Information Gain EIGSM-TIP over the number of sampling iterations.

Examining the inter-decision times (τn)nmax
n=1 on Figure 3, it can first be observed that globally

τn > 1 for the SMDP algorithms (where tmax > 1). This shows that the sequential maximal EIG is
approximately reached for inter-decision times that are larger than the original MDP decision times.
This confirms the relevance of temporal abstraction to increase the information gathering process.
However, the inter-decision times are not necessarily always equal to tmax, suggesting the more
informative observations are not always the temporally most distant ones.

Moving on to the objective function, in the case of the Lorenz system (Figure 4(a)), the evalu-
ation performances show the learning speed is greater for the SM-TIP settings (tmax > 1) than for
the TIP setting (tmax = 1). For the Pendulum case (Figure 4(b)), except for the SM-TIP setting
where tmax = 8, the proposed approach shows better sample complexity since very few itera-
tions are required to reach optimality (light blue curves (tmax ∈ {2, 4}) are below the grey curve
(tmax = 1) for the first (up to n = 20) sampling iterations. Furthermore, one of the reasons the
tmax = 8 fails to achieve optimal performances is likely the bootstrapping prediction error (not
shown in this document) which increases with tmax. Indeed, as mentioned in Section 4 due to the
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(a) Lorenz (b) Pendulum

Figure 3: Inter-decision time τ chosen by the SMDP during training.

(a) Lorenz (b) Pendulum

Figure 4: Evolution of the objective function J π̂MPC
to evaluate the system during training.

non-causal property of EIGSM-TIP, there exists a trade-off between the temporal extension of the
dynamics to reach the new region of the state space and the bootstrapping error which increases
with the temporal extension.

6. Conclusion

This study demonstrates that, when restricted to the trajectory of the system, the total information
gathered for a given sampling budget can be increased by introducing temporal abstraction through
the usage of SMDPs. Results show that learning the dynamics of the Inverted Pendulum and the
Lorenz system is more data-efficient with the use of temporally-extended actions.

Future work may extend this methodology to more complex systems, leveraging the flexibility of
SMDPs. These systems have the potential to reach highly informative regions and efficiently capture
rapid changes in system dynamics, as the information content can be increased when considering
the time resolution as a decision variable.

In summary, this work offers a concise yet comprehensive glimpse into the potential of SMDPs
in Model Predictive Control. The results on known systems establish a robust foundation for broader
applications and unveil potential future advancements in control strategies.
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