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Abstract
Safe control of neural network dynamic models (NNDMs) is important to robotics and many ap-
plications. However, it remains challenging to compute an optimal safe control in real time for
NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM
in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics
(BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation func-
tions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent
feasibility of the safe control problems, we synthesize a worst-case safety index using the most
unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time
optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety
constraint as an additional linear layer of NNDM with the ℓ2 bounded bias term for the higher-order
remainder. Comprehensive experiments with different neural dynamics and safety constraints show
that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the
safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of
the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings.
Keywords: safe control, neural network dynamic model, Bernstein polynomial

1. Introduction

Safety is crucial to robotic systems. Safe control of dynamic systems has been well studied in
literature (Nagumo, 1942; Blanchini, 1999). A safe control law maintains the states within the user-
defined safety set by ensuring forward invariance and finite-time convergence, i.e. states remaining
in it once entering; and returning to it in finite time steps once leaving. Although safe control
laws can be designed for control-affine systems (Liu and Tomizuka, 2014; Wei and Liu, 2019;
Agrawal and Panagou, 2021), it is challenging to construct an exact analytical model for complex
real-world systems. Progress in deep neural networks has boosted learning-based methods to model
the complicated dynamics (Nagabandi et al., 2018; Janner et al., 2019). However, these neural
network dynamic models (NNDMs) have limited mathematical interpretability, making it difficult
to design subsequent safe control laws.

This paper considers the safe tracking problem using NNDMs. Recent works (Wei and Liu,
2022; Liu et al., 2023; Li et al., 2023b) model the safe tracking problem as a constrained optimiza-
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tion problem by minimizing the state tracking error for the given system dynamics constraint while
obeying the safety constraint. Since it is challenging to find optimal tracking control for these highly
nonlinear black-box NNDMs through model inverse (Tolani et al., 2000) or shooting methods, re-
searchers resort to mixed integer programming (MIP) to find the optimal tracking control (Wei and
Liu, 2022; Liu et al., 2023; Li et al., 2023b), a method widely used in neural network verification.
However, MIP is well-known for its poor time efficiency and limited scalability in the literature on
neural network verification (Liu et al., 2021; Li et al., 2023a), making these complete MIP-based
methods hardly applicable in real-time safety-critical robot applications.

To this end, we propose Bernstein over-approximated neural dynamics (BOND) with sound
approximation of ReLU activation layers in NNDM to greatly speed up the computation of safe
tracking problems. Specifically, inspired by sound verification of neural networks (Fatnassi et al.,
2023; Huang et al., 2022; Khedr and Shoukry, 2023), we leverage Bernstein polynomial over-
approximation (BPO) to address the nonlinearity of the activation function, replacing integer vari-
ables with inequality constraints for NNDMs in the safe tracking optimization. To deal with the
approximation error caused by BPO and ensure persistent feasibility under safety constraints, we
synthesize the worst-case safety index offline to make the optimization problem feasible even for
the most potentially unsafe state of BOND, and linearize the safety constraint with a linear Taylor
layer in the online optimization. The contributions are listed as below:

• We propose a sound approximation for NNDM using Bernstein polynomial over-approximation
to optimize real-time safe tracking problems efficiently.

• We synthesize the worst-case safety index to ensure the persistent feasibility under approximation
error caused by the over-approximation of NNDMs.

• Extensive experiments validate that BOND is 10-100 times faster and more scalable than MIP-
based baseline in real-time collision avoidance and safe following with different NNDMs.

The remaining paper is organized as follows: Section 2 provides a problem formulation of neural
network dynamics, Bernstein polynomial over-approximation and safe tracking problem. Section 3
describes the proposed method including worst-case safety index synthesis and linearization for
online optimization. Section 4 presents the experimental results with ablation study. Section 5
concludes the paper and discusses potential future directions.

2. Formulation

2.1. Background of Safe Tracking with Neural Network Dynamic Models

Neural network dynamic models (NNDMs). Denote a discrete-time NNDM with state xk and
control uk at time step k as

xk+1 = xk + f(xk,uk)dt, xk ∈ X = Rmx , uk ∈ U ⊂ Rmu (1)

where U is defined by linear constraints and dt is the sampling time. f : Rmx × Rmu 7→ Rmx is
the dynamic model parameterized by n-layer feedforward neural networks with nonlinear activation
functions, i.e. f = fn ◦ fn−1 ◦ · · · ◦ f1, where f i : Rki−1 7→ Rki is the ith linear mapping layer with
a nonlinear activation σi : Rki 7→ Rki over the ki-dimensional hidden variable in layer i. More
concretely, by denoting the weight matrix and bias vector in layer i as Wi ∈ Rki×ki−1 and bi ∈ Rki ,
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(a) (b)
Figure 1: (a) Illustration of the forward invariant sets under exact NNDM and BOND. (b) Approximation of the ReLU
function using BPO of different degrees.

the hidden variable after the layer i is zi = f i(zi−1) = σi(ẑi), where ẑi = Wizi−1 +bi is the pre-
activation variable. Specifically, it trivially holds that z0 = [x⊤

k ,u
⊤
k ]

⊤, k0 = mx +mu, kn = mx.
Let wij ∈ R1×ki−1 be the jth row of Wi and bij be the jth entry of bi, so the jth entry of ẑi is
calculated as ẑij = wijzi−1 + bi,j . We only focus on ReLU activation in this work, so for the jth
entry of zi, we have that zij = σi(ẑij) = max{0, ẑij}.

Optimization problem for tracking. Similar to Wei and Liu (2022), we focus on the tracking
problem with the NNDM as a one-step model predictive control (MPC), optimizing control action
uk via minimizing the ℓp distance between the predicted next state xk+1 and the reference next state
xr
k+1 (known ahead of time) at each time step k, which is shown as follows:

min
uk,xk+1

∥xk+1 − xr
k+1∥p

s.t. xk+1 = xk + f(xk,uk)dt, uk ∈ U .
(2)

where ∥·∥p can be either ℓ1-norm as a linear objective or ℓ2-norm as a quadratic objective. Under the
nonlinear constraint of NNDM with ReLU activation, the optimization problem (2) is challenging
to solve using existing solvers (Wei and Liu, 2022; Liu et al., 2023).

Safety specification and constraint. In addition to the NNDM constraint in (2), the safety con-
straint is also indispensable for the safe tracking problem (Wei and Liu, 2022). We denote the
user-specified safe set X0 as a connected and closed set in the state space, which can be defined as
a zero-sublevel set of a continuous and differentiable function, i.e. X0 = {x ∈ X | ϕ0(x) ≤ 0}.
If the system is already in a safe state, we should ensure forward invariance, i.e. ϕ0(xk) ≤ 0 =⇒
ϕ0(xk+1) ≤ 0. If the system is currently unsafe, we should ensure finite-time convergence, i.e.
ϕ0(xk) > 0 =⇒ ϕ0(xk+1) ≤ ϕ0(xk)− γdt, so that the system will go back to the safe set within
finite time steps ϕ0(xk)/γdt with constant γ. We combine these two constraints at step k as follows,

A(X0,xk, γ) := {xk+1 | ϕ0(xk+1) ≤ max{0, ϕ0(xk)− γdt}, with X0 = {x | ϕ0(x) ≤ 0}. (3)

However, there may not always exist a feasible control input that results in xk+1 ∈ A(X0,xk, γ).
If such control always exists, we say the safe tracking problem is persistently feasible. To achieve
persistent feasibility, the common practice is to find a subset of the safe set XS ⊂ X0 using safety
index synthesis (SIS) (Wei and Liu, 2022) such that there always exist a control that ensures xk+1 ∈
A(XS ,xk, γ). Then A(XS ,xk, γ) will be used as a constraint in (2) to ensure safety.

2.2. Safe Tracking with Bernstein Over-approximated Neural Dynamics (BOND)

Bernstein polynomial over-approximation for NNDMs. Inspired by neural network verification
with Bernstein polynomial over-approximation (BPO) (Fatnassi et al., 2023; Huang et al., 2022;
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Khedr and Shoukry, 2023), we adopt the following K-order BPO for the ReLU activation zij =

σi(ẑij) based on the bounded pre-activation values l̂ij ≤ ẑij ≤ ûij , ûij ̸= l̂ij :

zij ≤ gK(ẑij) =
K∑
k=0

max{0, k
K

(ûij − l̂ij) + l̂ij} ·
(
K
k

)(ûij − ẑij)
K−k(ẑij − l̂ij)

k

(ûij − l̂ij)K
, (4)

where the pre-activation bounds l̂ij and ûij can be found through interval arithmetic (IA) methods
or dual networks (Liu et al., 2021; Wong and Kolter, 2018). When ûij = l̂ij , it trivially holds that
zij = σi(ẑi,j) = σi(l̂i,j) = σi(ûi,j) so the approximation is not needed. Note that when K = 1,
BPO relaxation is degraded to the triangle relaxation (also called LP relaxation) (Wong et al., 2018;
Tjeng et al., 2018; Ehlers, 2017). The nonlinear higher-degree BPOs are visualized in Fig. 1 (b).

Conservative forward invariant set with BPO. Combining BPO (4) with the linear under ap-
proximation for ReLU activation at each node, zij ≥ 0, zij ≥ ẑij , the output of the dynamic
model f(x,u) can be lower-bounded by a function fB and upper-bounded by a function f̄B , i.e.
fB(x,u) ≤ f(x,u) ≤ f̄B(x,u), relaxing the predicted output from the exact f(x,u) to the range
[fB(x,u), f̄B(x,u)]. Therefore, to ensure persistent feasibility of the safety constraints w.r.t the un-
known output f(x,u) ∈ [fB(x,u), f̄B(x,u)], we need to find an even more conservative forward
invariant set XBPO ⊆ XS , which is illustrated in Fig. 1 (a) and will be introduced in section 3.

Safe tracking with BOND. With the BPO relaxation of NNDM and more conservative forward
invariant set XBPO, the tracking problem aims to optimize both the control strategy uk and the hal-
lucinated next state xk+1 within the approximated output range [fB(x,u), f̄B(x,u)] by minimizing
a linear (p = 1) or quadratic (p = 2) objective of the distance between xk+1 and the reference state
xr
k+1 whilst satisfying the safe control constraint that any possible future state should belong to

XBPO. So the safe tracking problem with BOND fB(·) is formulated as the following constrained
optimization problem at every time step k:

min
uk∈U ,xk+1

∥xk+1 − xr
k+1∥p (5a)

s.t. xk + fB(xk,uk)dt ≤ xk+1 ≤ xk + f̄B(xk,uk)dt (5b)

x̃k+1 ∈ A(XBPO,xk, γ),∀x̃k+1 ∈ [xk + fB(xk,uk)dt,xk + f̄B(xk,uk)dt]. (5c)

Note that XS from Wei and Liu (2022) will not work in (5c) as it does not take the approximation
into consideration. In the following section, we first discuss how to obtain XBPO offline; and then
discuss how to efficiently compute the optimization problem (5) online.

3. Method

3.1. Worst-Case Safety Index Synthesis

To characterize the forward invariant set XBPO and A(XBPO,xk, γ), similar to (3), we propose
to synthesize a worst-case safety index ϕ so that XBPO = {x ∈ X | ϕ(x) ≤ 0} and (5c) is
persistently feasible. Following the evolutionary strategy-based safety index synthesis in Wei and
Liu (2022), we parameterize the safety index with αi, β ∈ R, i = 1, 2, . . . , q as ϕ(x) = ϕ∗

0(α0,x)+∑q
i=1 αiϕ

(i)
0 (x) + β, where ϕ∗

0(α0,x) is consistent with user-specified sublevel set ϕ0 and ϕ
(i)
0 (x)
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is denoted as each ithe order derivative of ϕ0 to ensure the relative degree of 1 from ϕ
(q)
0 to u (Liu

and Tomizuka, 2014). Therefore, the safety constraint in (5c) can be equivalently written as

ϕ(xwc
k+1) ≤ max{0, ϕ(xk)− γdt}, (6)

where xwc
k+1 = xk + fwc(xk,uk)dt and fwc(xk,uk) = argmaxfB(xk,uk)≤f≤f̄B(xk,uk)

ϕ(xk + fdt)
is the worst case state and the worst case NN relaxation, respectively. Our goal is to find ϕ such
that for all state xk, there exists a control uk ∈ U that satisfies (6) (persistent feasibility). For the
BPO-relaxed dynamics, we define the whole legal state set without safety constraint as B ⊆ X and
the infeasible state subset of B regarding persistent feasibility as B∗ = {xk ∈ B | ∀uk, ϕ(x

wc
k+1) >

max{0, ϕ(xk)− γdt}}. The emptiness of B∗ = ∅ implies persistent feasibility.
Following Wei and Liu (2022), we adopt the implementation (Feldt, 2018) of evolutionary meth-

ods (Das et al., 2016; Hansen, 2016) to optimize the parameters in ϕ. Specifically, the evolution al-
gorithm runs for multiple generations. In each iteration, we uniformly sample a dense subset S ⊂ B
and find the minimal infeasible rate r = |S ∩ B∗|/|S| based on the sampled parameter candidates
from a multivariate Gaussian distribution. The new Gaussian distribution will be updated based on
the last candidates with the least infeasible rate r. Besides, through reachability-based methods like
interval arithmetic, the Euclidean error of f can be upper-bounded by ∆f = maxx,u ∥fB − f∥.
Therefore, we propose the following Proposition 1 based on Assumption 1, showing that with dense
sampling S ∈ B and the convergence of r to 0, the optimized safety index can induce persistent
feasibility even with the worst-case unsafe state update fwc(x,u) for any state in B.

Assumption 1 f and ϕ are Lipschitz continuous functions over compact set B ⊆ X with Lipschitz
constants kf and kϕ under ℓ2 norm, respectively.

Proposition 1 Suppose 1) we sample a state subset S ⊂ B such that ∀x ∈ B, minx′∈S ∥x −
x′∥ ≤ δ, where δ is the sampling density; and 2) ∀x′ ∈ S, there exists a safe control u, s.t.
ϕ(x′ + fwc(x′,u)dt) ≤ max{−ϵ, ϕ(x′) − γdt − ϵ}, where ϵ = kϕ(2δ + 2∆fdt + kfδdt). Then
∀x ∈ B, ∃u, s.t.

ϕ(xwc) = max
f(x,u)∈[fB(x,u),̄fB(x,u)]

ϕ(x+ f(x,u)dt) ≤ max{0, ϕ(x)− γdt}. (7)

Proof Based on 1), ∀x ∈ B, we can find x′ ∈ S such that ∥x−x′∥ ≤ δ. Based on 2), for this x′, we
can find u such that ϕ(x′+ fwc(x′,u)dt) ≤ max{0, ϕ(x′)− γdt}− ϵ. Based on Assumption 1, we
show below that Eq. (7) holds by using the Lipschitz condition kf and kϕ and triangle inequality:

ϕ(xwc) =ϕ(x+ fwc(x,u)dt)− ϕ(x′ + fwc(x′,u)dt)+ϕ(x′ + fwc(x′,u)dt)

≤kϕ∥x− x′ + [fwc(x,u)− fwc(x′,u)]dt∥+max{0, ϕ(x′)− γdt} − ϵ

≤kϕ∥x− x′∥+ kϕ∥fwc(x,u)− fwc(x′,u)∥dt+max{0, ϕ(x′)− γdt} − ϵ

≤kϕδ + kϕ∥fwc(x,u)− f(x,u)− fwc(x′,u) + f(x′,u) + f(x,u)− f(x′,u)∥dt
+max{0, ϕ(x)− γdt}+max{0, ϕ(x′)− γdt} −max{0, ϕ(x)− γdt} − ϵ

≤kϕδ + kϕ(∥fwc(x,u)− f(x,u)∥+ ∥f(x′,u)− fwc(x′,u)∥+ ∥f(x,u)− f(x′,u)∥)dt
+max{0, ϕ(x)− γdt}+ ∥ϕ(x′)− ϕ(x)∥ − ϵ

≤kϕδ + kϕ(∆f +∆f + kfδ)dt+max{0, ϕ(x)− γdt}+ kϕδ − ϵ

=max{0, ϕ(x)− γdt}, (8)
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which concludes the proof.

3.2. Linearization of the Safety Constraint with a Linear Taylor Layer

Although the persistent feasibility is guaranteed by the worst-case safety index ϕ, we still need to
address the nonlinearity of the safety constraint (6), which is equivalent to

ϕ(xwc
k+1) := max

f(xk,uk)∈[fB(xk,uk),̄fB(xk,uk)]
ϕ(xk + f(xk,uk)dt) ≤ max{0, ϕ(xk)− γdt}. (9)

We apply the first-order Taylor expansion with Lagrange Mean Value Theorem for ϕ(xk+1) at the
point xk for xk+1 = xk + f(xk,uk)dt and obtain

ϕ(xk+1) = ϕ(xk) +∇⊤
xϕ(xk)f(xk,uk)dt︸ ︷︷ ︸
ϕf (xk,uk)

+
1

2
f(xk,uk)

⊤∇2
xϕ(x

′)f(xk,uk)(dt)
2︸ ︷︷ ︸

Rxk (x′)

, (10)

which consists of the first-order Taylor polynomial ϕf (xk,uk) and the Lagrange remainder term
Rxk(x′) with x′ ∈ [xk,xk+1]. Then we formulate the first-order Taylor approximation ϕf (xk,uk) :
Rmx ×Rmu 7→ R as the composite function of the neural network f(xk,uk) : Rmx ×Rmu 7→ Rmx

and an additional linear mapping ϕxk (called the linear Taylor layer) with weight ∇⊤
xϕ(xk)dt ∈

R1×mx and bias ϕ(xk) ∈ R, i.e. ϕf = ϕxk ◦ f , ϕxk(f) = ∇⊤
xϕ(xk)dtf + ϕ(xk).

Similar to the computation of fB(x,u) ≤ f(x,u) ≤ f̄B(x,u) in Section 2.2, with BPO for each
ReLU activation at each layer, the first-order Taylor approximation ϕf = ϕxk ◦ fn ◦ fn−1 ◦ · · · ◦ f1
can be relaxed to be ϕ

fB
(x,u) ≤ ϕf (x,u) ≤ ϕ̄fB (x,u) given x,u. For the Lagrange remainder

term Rxk(x′) with x′ ∈ [xk,xk+1], we show that it can be bounded by 1
2M

2
fMϕ(dt)

2 through
Proposition 2, while Rxk(x′) is usually neglected in the previous work (Wei and Liu, 2022).

Proposition 2 If the ℓ2 operator norm of the Hessian matrix ∇2
xϕ(x) is bounded by Mϕ for any

x ∈ [xk,xk+1] and the Euclidean norm of f(x,u) is bounded by Mf , it holds that

|Rxk(x)| ≤ 1

2
M2

fMϕ(dt)
2, ∀x ∈ [xk,xk+1] (11)

Proof For x ∈ [xk,xk+1], we have ∥∇2
xϕ(x)∥op ≤ Mϕ, ∥f(x,u)∥2 ≤ Mf , where op indicates

the operator norm. Therefore, we show Eq. (11) by using the operator norm and
::::::::::::::::
Cauchy–Schwarz

:::::::::
inequality as below:

|Rxk(x)| =(dt)2

2
∥f(xk,uk)

⊤∇2
xϕ(x

′)f(xk,uk)∥2 ≤
(dt)2

2
∥f(xk,uk)

⊤∥2∥∇2
xϕ(x

′)f(xk,uk)∥op

≤(dt)2

2
∥f(xk,uk)

⊤∥2 max
∥f∥2=1

∥f⊤∇2
xϕ(x

′)f(xk,uk)∥2
:::::::::::::::::::::

≤(dt)2

2
∥f(xk,uk)

⊤∥2 max
∥f∥2=1

∥f∥2∥∇2
xϕ(x

′)f(xk,uk)∥2
:::::::::::::::::::::::

≤(dt)2

2
∥f(xk,uk)

⊤∥2∥∇2
xϕ(x

′)∥op∥f(xk,uk)∥2 ≤
1

2
M2

fMϕ(dt)
2.

which concludes the proof.
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Therefore, the safety constraint in (9) can be rewritten as the linear inequality ϕ̄fB (xk,uk) +
1
2M

2
fMϕ(dt)

2 ≤ max{0, ϕ(xk)− γdt}, where ϕ̄fB (xk,uk) is the upper bound of ϕf (xk,uk) with
BPO relaxation and 1

2M
2
fMϕ(dt)

2 can be approximated as an optimizable parameter in Sec. 3.1.

3.3. Safe Control with BPO-Relaxed NNDM

Based on the worst case safety index (that ensures persistent feasibility) and the linearization of the
worst-case safety constraint, we finally transform the original constrained optimization (5) into the
following form:

min
uk,xk+1,{zi}ni=0

∥xk+1 − xr
k+1∥p (12a)

s.t. xk+1 = xk + zndt, z0 = [x⊤
k ,u

⊤
k ]

⊤, uk ∈ U , (12b)

zij ≥ ẑij , zij ≥ 0, zij ≤ gK(ẑij) in (4), (12c)

ẑij = wijzi−1 + bij , ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , ki} , (12d)

ϕ̄fB (xk,uk) ≤ max{−ζ, ϕ(xk)− γdt− ζ}, (12e)

where ζ = 1
2M

2
fMϕ(dt)

2 is from Proposition 2. In this paper, we consider K = 1, 2 in Eq. 4 as
the BPO degree to illustrate the proposed design. When K = 1, the optimization problem (12) is
either Linear Programming (p = 1) or Quadratic Programming (p = 2); When K = 2, it is either
Quadratically Constrained Linear Programming (p = 1) or Quadratically Constrained Quadratic
Programming (p = 2). Besides, we approximate the upper bound of ϕfB (xk,uk) in (12e) by
sampling and explore the use of the existing solvers, including CPLEX, Gurobi, and Ipopt, to solve
the obtained optimization problems.

4. Experiment

In the experiment, we aim to answer the following questions: how scalable is the proposed BOND
compared to the MIP-based baseline (Wei and Liu, 2022) considering different sizes of models and
tasks? How is the performance influenced by different optimization solvers and the tightness of BPO
relaxation? We answer the first question in Section 4.2 through the comparison of different dynamic
models for collision avoidance and safe following of the unicycle, followed by the validation of the
effectiveness of the worst-case safety constraint. Section 4.3 shows the influence of several key
factors for the second question.

4.1. Experimental Setup

Environment and dynamics. To be consistent with Wei and Liu (2022), the experiment is based
on the neural network dynamic models for a second-order unicycle in a 2D setting. The 4D states
X ⊂ R4 are the 2D positions, velocity and heading angle, and the 2D control inputs U ⊂ R2

are the acceleration and angular velocity. The current states and control inputs are also the inputs
of neural networks, and the outputs of the neural networks are the 2D velocity, acceleration, and
angular velocity as the derivatives of the states. The states and inputs are bounded as B ⊂ X :
[−10, 10]× [−10, 10]× [−2, 2]× [−π, π] and U : [−4, 4]× [−π, π]. Collision avoidance and safe
following are used for evaluation with different safety constraints, where the unicycle is supposed to
be at least 0.5 away from the obstacle for collision avoidance and be within 1 and 2 away from the

7
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(a) (b) (c)
Figure 2: Collision avoidance with (a) MIP-based NNDM with plain safety constraint; (b) BOND with plain safety
constraint; (c) BOND with worst-case safety constraint. The safety constraint is visualized as the half-space of state
space based on (12e). ϕ(x) is the corresponding safety index and d(x) is the distance between the unicycle and obstacle.

Collision
Avoidance

FC2-100 FC3-100 FC4-100

Error Time (s) Error Time (s) Error Time (s)

Linear
Objective

MIND-SIS 2.31e−9 0.0582 1.56e−9 0.255 1.42e−9 151
Ours (BPO-1) 0.106 0.0031 0.0943 0.0080 0.0911 0.0279
Ours (BPO-2) 0.0668 0.0296 0.0298 0.716 0.0757 2.76

Quadratic
Objective

MIND-SIS 1.78e−9 0.0576 1.31e−9 0.338 1.29e−9 226
Ours (BPO-1) 0.0435 0.0085 0.0338 0.0222 0.0401 0.211
Ours (BPO-2) 0.0263 0.0191 0.0191 0.577 0.0273 2.05

Table 1: Comparison of the baseline and ours under different model complexity and optimization objective norms (p =
1, 2) for collision avoidance. Notations: best and second best results.

moving target for safe following. The neural networks have fully-connected layers with the ReLU
activation, with different depths (d = 2, 3, 4) and widths (w = 50, 100, 200) and are denoted as
FCd-w, e.g. FC3-100 means a model of 3-layer with 100 neurons per layer. To verify our small
models (< 1000 neurons), MIP works the best according to α, β-CROWN (Wang et al., 2021).

Optimization and evaluation metrics. To solve the real-time optimization in (12), the reference
states are generated through one-tenth interpolation between the current state and the goal as real-
time planning. We solve the optimization using CPLEX, Gurobi and Ipopt with linear or quadratic
objectives (p = 1, 2, respectively) of the tracking error term in (5a) for both the baseline and our
BPO relaxation of the degree of 1 and 2 (K = 1, 2). The pre-activation bounds are computed using
ConvDual (Wong and Kolter, 2018) and interval arithmetic (IA), where the former is much tighter
(Liu et al., 2021; Gowal et al., 2018). The default setting is with ConvDual pre-activation bounds
under CPLEX solver, for both baseline and our 1-degree BPO, while our 2-degree BPO is with Ipopt
solver as default due to nonconvex quadratic constraints. More results regarding these factors can
be found in Section 4.3. The evaluation metrics are prediction time per step and prediction error per
step, where the latter is between the optimized and the executed states with corresponding norms in
the optimization objective. The mean of each metric is calculated for 10 trajectories with random
initial states under each setting, where the step number per trajectory is around 100. The code is
available at https://github.com/intelligent-control-lab/BOND.

4.2. Performance Comparison with Baseline

Significance of the worst-case safety constraint for BPO-relaxed NNDM. As shown in Fig.
2(a), the MIP-based baseline MIND-SIS (Wei and Liu, 2022) works well under the plain safety
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Safe
Following

FC2-100 FC3-100 FC4-100

Error Time (s) Error Time (s) Error Time (s)

Linear
Objective

MIND-SIS 2.86e−9 0.0387 1.55e−9 0.232 9.34e−10 40.4
Ours (BPO-1) 0.116 0.0034 0.0886 0.0072 0.112 0.444
Ours (BPO-2) 0.0504 0.0360 0.0518 0.579 0.0794 2.40

Quadratic
Objective

MIND-SIS 1.55e−9 0.0517 1.12e−9 0.267 1.08e−9 52.8
Ours (BPO-1) 0.0243 0.0071 0.0417 0.0223 0.0498 0.455
Ours (BPO-2) 0.0241 0.0283 0.0249 0.503 0.0477 2.08

Table 2: Comparison of the baseline and ours under different model complexity and optimization objective norms (p =
1, 2) for safe following. Notations: best and second best results.

Different solvers
for two tasks

MIND-SIS Ours (BPO-1) Ours (BPO-2)

Error Time (s) Error Time (s) Error Time (s)

Collision
Avoidance

CPLEX 1.31e−9 0.338 0.0338 0.0222 — —
Gurobi 2.02e−9 0.516 0.0327 0.0572 0.0396 529
Ipopt — — 0.0332 0.338 0.0191 0.577

Safe
Following

CPLEX 1.12e−9 0.267 0.0417 0.0223 — —
Gurobi 1.25e−9 0.349 0.0418 0.0475 0.0495 333
Ipopt — — 0.0439 0.317 0.0249 0.503

Table 3: Comparison of performance with different solvers using FC3-100 and quadratic objective for both baseline and
ours. The best results among different solvers are in bold and “—” indicates infeasibility.

constraint of XS in Wei and Liu (2022), while the plain safety constraint results in prediction error
between the optimized and executed states under BOND, causing collision as (b) shows. However,
with the proposed worst-case safety constraint (5c) of XBPO, collision avoidance under BOND is
guaranteed in (c) even if the prediction error still exists between the optimized and executed states.
This validates the significance of the more conservative worst-case safety constraint (5c) for BPO-
relaxed NNDM. The offline time for synthesizing the plain safety index is 4.57h for (a) and (b),
while the time for our worst-case one is 19.4h due to higher computation complexity.

Performance comparison of prediction error and computation time. Table 1 and Table 2
present the results of baseline MIND-SIS (Wei and Liu, 2022) and ours with BPO degrees of 1
and 2 for collision avoidance and safe following. It can be seen that under all depths of models, our
BPO relaxation results in 10-100 times less computation time per step compared to the baseline,
although their prediction errors are larger than those of the baseline as ground truth. Across all the
models, BPO-2 has smaller prediction errors but slower computation than BPO-1 due to tighter but
non-convex quadratic relaxation in (4) when K = 2. As the models go deeper, we can see our
prediction time does not drastically increase as MIND-SIS does, showing our method scales better.

4.3. Ablation Study

Influence of optimization solvers. Table 3 shows how commonly used solvers affect the tracking
performance. We can find that CPLEX is usually the fastest for MIND-SIS and our BPO-1, but
it cannot solve BPO-2 with non-convex quadratic constraints. Gurobi generally applies to solving
different problems but suffers from longer computation time, especially for BPO-2. As a nonlinear
optimizer, Ipopt performs satisfactory results for BPO-2 with local convergence at risk of unsound-
ness, and it is much slower for BPO-1 and cannot be used for the MIP-based baseline.
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Different pre-
activation bounds

MIND-SIS Ours (BPO-1) Ours (BPO-2)

Error Time (s) Error Time (s) Error Time (s)

Collision
Avoidance

IA 1.34e−9 0.511 0.0385 0.0260 0.0254 0.812
ConvDual 1.31e−9 0.338 0.0338 0.0222 0.0191 0.577

Safe
Following

IA 1.17e−9 0.365 0.0554 0.0265 0.0510 1.12
ConvDual 1.12e−9 0.267 0.0417 0.0223 0.0249 0.503

Table 4: Comparison of performance with different pre-activation bounds for both baseline and ours using FC3-100 and
quadratic objective. The better results between IA and ConvDual are in bold.

(a) (b) (c)
Figure 3: Comparison of performance with different neuron numbers per layer for both baseline and ours using quadratic
objective. (a) MIND-SIS. (b) Ours (BPO-1). (c) Ours (BPO-2).

Influence of pre-activation bounds. Since the MIP-based baseline and ours both greatly rely
on the pre-activation bounds of ReLU activation layers, we compare the results of different pre-
activation bounds, interval arithmetic (IA) (Liu et al., 2021; Gowal et al., 2018) and ConvDual
(Wong and Kolter, 2018), as shown in Table 4. It can be seen that IA causes longer prediction time
and larger errors per step because of its poor tightness and large search space.

Influence of neuron numbers per layer. From Fig. 3, it can be seen that the time consumption of
MIND-SIS exponentially explodes when layer width increases, while our BPO-based ones maintain
a relatively linearly increased computation time, validating the remarkable scalability of our meth-
ods. Different from Table 1 and Table 2, the errors increase as the neuron number per layer goes up
under BPO relaxation, implying that the relaxation becomes looser with more neurons per layer.

5. Conclusion

In this work, we introduce Bernstein over-approximated neural dynamics (BOND) with Bernstein
polynomial over-approximation (BPO) of ReLU activation layers in NNDMs to speed up the opti-
mization of safe tracking. To ensure the persistent feasibility of safety set under the approximation
error of BOND, the worst-case safety index is synthesized offline to satisfy the safety constraint for
the most unsafe potential predicted states of BOND. Comprehensive experiments validate the time
efficiency and scalability of BOND. Our main limitation lies in the trade-off between optimality
and conservativeness due to the worst-case safety constraint. Besides, the model mismatch has not
been considered in our setting. Future directions can be exploring the robustness of BOND in more
real-world robot settings to ensure safety under out-of-distribution model mismatch.
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