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Abstract
Policy robustness in Reinforcement Learning may not be desirable at any cost: the alterations
caused by robustness requirements from otherwise optimal policies should be explainable, quan-
tifiable and formally verifiable. In this work we study how policies can be maximally robust to
arbitrary observational noise by analysing how they are altered by this noise through a stochastic
linear operator interpretation of the disturbances, and establish connections between robustness and
properties of the noise kernel and of the underlying MDPs. Then, we construct sufficient conditions
for policy robustness, and propose a robustness-inducing scheme, applicable to any policy gradi-
ent algorithm, that formally trades off expected policy utility for robustness through lexicographic
optimization, while preserving convergence and sub-optimality in the policy synthesis.
Keywords: Robust Reinforcement Learning, Lexicographic Optimization, Stochastic Control

1. Introduction

Consider a dynamical system where we need to synthesise a controller (policy) through a model-free
Reinfrocement Learning (Sutton and Barto, 2018) approach. When using a simulator for training
we expect the deployment of the controller in the real system to be affected by different sources of
noise, possibly not predictable or modelled (e.g. for networked components we may have sensor
faults, communication delays, etc). In safety-critical systems, robustness (in terms of successfully
controlling the system under disturbances) should preserve formal guarantees, and plenty of effort
has been put on developing formal convergence guarantees on policy gradient algorithms (Agar-
wal et al., 2021; Bhandari and Russo, 2019). All these guarantees vanish under regularization and
adversarial approaches, which are aimed to produce more robust policies. Therefore, for such ap-
plications one needs a scheme to regulate the robustness-utility trade-off in RL policies, that on
the one hand preserves the formal guarantees of the original algorithms, and on the other attains
sub-optimality conditions from the original problem. Additionally, if we do not know the structure
of the disturbance (which holds in most applications), learning directly a policy for an arbitrarily
disturbed environment will yield unexpected behaviours when deployed in the true system.
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Lexicographic Reinforcement Learning (LRL) Recently, lexicographic optimization (Isermann,
1982; Rentmeesters et al., 1996) has been applied to the multi-objective RL setting (Skalse et al.,
2022b). In an LRL setting some objectives may be more important than others, and so we may want
to obtain policies that solve the multi-objective problem in a lexicographically prioritised way, i.e.,
“find the policies that optimize objective i (reasonably well), and from those the ones that optimize
objective i+ 1 (reasonably well), and so on”.

Previous Work In robustness against model uncertainty, the MDP may have noisy or uncertain re-
ward signals or transition probabilities, as well as possible resulting distributional shifts in the train-
ing data (Heger, 1994; Xu and Mannor, 2006; Fu et al., 2018; Pattanaik et al., 2018; Pirotta et al.,
2013; Abdullah et al., 2019), connecting to ideas on distributionally robust optimization (Wiese-
mann et al., 2014; Van Parys et al., 2015). For adversarial attacks or disturbances on policies or
action selection in RL agents (Gleave et al., 2020; Lin et al., 2017; Tessler et al., 2019; Pan et al.,
2019; Tan et al., 2020; Klima et al., 2019; Liang et al., 2022), recently Gleave et al. (2020) propose
to attack RL agents by swapping the policy for an adversarial one at given times. For a detailed
review on Robust RL see Moos et al. (2022). Our work focuses in robustness versus observational
disturbances, where agents observe a disturbed state measurement and use it as input for the pol-
icy (Kos and Song, 2017; Huang et al., 2017; Behzadan and Munir, 2017; Mandlekar et al., 2017;
Zhang et al., 2020, 2021). Zhang et al. (2020) propose a state-adversarial MDP framework, and
utilise adversarial regularising terms that can be added to different deep RL algorithms to make
the resulting policies more robust to observational disturbances, and Zhang et al. (2021) study how
LSTM increases robustness with optimal state-perturbing adversaries.

Contributions Most existing work on RL with observational disturbances proposes modifying
RL algorithms at the cost of explainability (in terms of sub-optimality bounds) and verifiability,
since the induced changes in the new policies result in a loss of convergence guarantees. Our main
contributions are summarised in the following points.

• We consider general unknown stochastic disturbances and formulate a quantitative definition
of observational robustness that allows us to characterise the sets of robust policies for any
MDP in the form of operator-invariant sets. We analyse how the structure of these sets de-
pends on the MDP and noise kernel, and obtain an inclusion relation providing intuition into
how we can search for robust policies more effectively.1

• We propose a meta-algorithm that can be applied to any existing policy gradient algorithm,
Lexicographically Robust Policy Gradient (LRPG) that (1) Retains policy sub-optimality
up to a specified tolerance while maximising robustness, (2) Formally controls the utility-
robustness trade-off through this design tolerance, (3) Preserves formal guarantees.

Figure 1 represents a qualitative interpretation of the results in this work.

1.1. Preliminaries

1. There are strong connections between Sections 2-3 in this paper and the literature on planning for POMDPs (Spaan
and Vlassis, 2004; Spaan, 2012) and MDP invariances (Ng et al., 1999; van der Pol et al., 2020; Skalse et al., 2022a),
as well as recent work concerning robustness misspecification (Korkmaz, 2023).
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Figure 1: Qualitative representation LRPG (right), com-
pared to usual robustness-inducing algorithms.
The sets in blue are the robust policies to be de-
fined in the coming sections. LRPG induces ro-
bustness while guaranteeing that the policies will
deviate a bounded distance from the optimal.

Notation We use calligraphic let-
ters A for collections of sets and
�(A) as the space of probability
measures over A. For two probabil-
ity distributions P, P 0 defined on the
same ��algebra F , DTV (PkP 0) =
supA2F |P (A) � P 0(A)| is the to-
tal variation distance. For two ele-
ments of a vector space we use h·, ·i
as the inner product. We use 1n as a
column-vector of size n that has all
entries equal to 1. We say that an
MDP is ergodic if for any policy the
resulting Markov Chain (MC) is er-
godic. We say that S is a n ⇥ n row-
stochastic matrix if Sij � 0 and each
row of S sums 1. We assume all learning rates in this work ↵t(x, u) 2 [0, 1] (�t, ⌘t...) satisfy the
conditions

P1
t=1 ↵t(x, u) =1 and

P1
t=1 ↵t(x, u)2 <1.

Lexicographic Reinforcement Learning Consider a parameterised policy ⇡✓ with ✓ 2 ⇥, and
two objective functions K1 and K2. PB-LRL uses a multi-timescale optimization scheme to op-
timize ✓ faster for higher-priority objectives, iteratively updating the constraints induced by these
priorities and encoding them via Lagrangian relaxation techniques (Bertsekas, 1997). Let ✓0 2
argmax✓ K1(✓). Then, PB-LRL can be used to find parameters ✓00 2 {argmax✓ K2(✓), s.t. K1(✓) �
K1(✓0)� ✏}. This is done through the update:

✓  proj⇥
⇥
✓ +r✓K̂(✓)

⇤
, � projR�0

⇥
�+ ⌘t(k̂1 � ✏t �K1(✓))

⇤
, (1)

where K̂(✓) := (�1
t +��2

t ) ·K1(✓)+�2
t ·K2(✓), � is a Langrange multiplier, �1

t ,�
2
t , ⌘t are learning

rates, and k̂1 is an estimate of K1(✓0). Typically, we set ✏t ! 0, though we can use other tolerances
too, e.g., ✏t = 0.9 · k̂1. For more details see Skalse et al. (2022b).

2. Observationally Robust Reinforcement Learning

Robustness-inducing methods in model-free RL must address the following dilemma: How do we
deal with uncertainty without an explicit mechanism to estimate such uncertainty during policy
execution? Consider an example of an MDP where, at policy roll-out phase, there is a non-zero
probability of measuring a “wrong” state. In such a scenario, measuring the wrong state can lead
to executing unboundedly bad actions. This problem is represented by the following version of a
noise-induced partially observable Markov Decision Process (Spaan, 2012).

Definition 1 An observationally-disturbed MDP (DOMDP) is (a POMDP) defined by the tuple
(X,U, P,R, T, �) where X is a finite set of states, U is a set of actions, P : U ⇥ X 7! �(X)
is a probability measure of the transitions between states and R : X ⇥ U ⇥ X 7! R is a reward
function. The map T : X 7! �(X) is a stochastic kernel induced by some unknown noise signal,
such that T (y | x) is the probability of measuring y while the true state is x, and acts only on the
state observations. At last � 2 [0, 1] is a reward discount.

3



JARNE ORNIA ROMAO HAMMOND MAZO JR. ABATE

A (memoryless) policy for the agent is a stochastic kernel ⇡ : X 7! �(U). For simplicity, we
overload notation on ⇡, denoting by ⇡(x, u) as the probability of taking action u at state x. In
a DOMDP2 agents can measure the full state, but the measurement will be disturbed by some
unknown random signal in the policy deployment. The difficulty of acting in such DOMDP is
that agents will have to act based on disturbed states x̃ ⇠ T (· | x). We then need to construct
policies that will be as robust as possible against such noise without the existance of a model to
estimate, filter or reject disturbances. The value function of a policy ⇡ (critic), V ⇡ : X 7! R, is
given by V ⇡(x0) = E[

P1
t=0 �

tR(xt, ut, xt+1)] with ut ⇠ ⇡(xt). The action-value function of ⇡
(Q-function) is given by Q⇡(x, u) =

P
y2X P (x, u, y)(R(x, u, y) + �V ⇡(y)). We then define the

objective function as J(⇡) := Ex0⇠µ0 [V
⇡(x0)] with µ0 being a distribution of initial states, and we

use J⇤ := max⇡ J(⇡) and ⇡⇤ as the optimal policy, and ⇧⇤
✏ := {⇡ 2 ⇧ : J⇤ � J(⇡)  ✏} is the set

of ✏-optimal policies. If a policy is parameterised by ✓ 2 ⇥ we write ⇡✓ and J(✓). Finally, we use
µ⇡ for the stationary distribution of states in the MDP under policy ⇡.

Assumption 1 For any DOMDP and policy ⇡, the resulting MC is irreducible and aperiodic.

We now formalise a notion of observational robustness. Firstly, due to the presence of the stochastic
kernel T , the policy we are applying is altered as we are applying a collection of actions in a possibly
wrong state. Then, h⇡, T i(x, u) :=

P
y2X T (y | x)⇡(y, u), where h⇡, T i : X 7! �(U) is the

disturbed policy, which averages the current policy given the error induced by the presence of the
stochastic kernel. Notice that h·, T i(x) : ⇧ 7! �(U) is an averaging operator yielding the alteration
of the policy due to noise. We define the robustness regret3: ⇢(⇡, T ) := J(⇡)� J(h⇡, T i).

Definition 2 (Policy Robustness) A policy ⇡ is -robust against a stochastic kernel T if ⇢(⇡, T ) 
. If ⇡ is 0-robust it is maximally robust. The sets of -robust policies are ⇧ := {⇡ 2 ⇧ :
⇢(⇡, T )  }, with ⇧0 being the maximally robust policies.

One can motivate the characterization and models above from a control perspective, where policies
use as input discretised state measurements with possible sensor measurement errors. Formally en-
suring robustness properties when learning RL policies will, in general, force the resulting policies
to deviate from optimality in the undisturbed MDP. We propose then the following problem.

Problem 1 Consider a DOMDP model as per Definition 1 and let ✏ be a non-negative tolerance
level. Our goal is to find amongst all ✏-optimal policies those that minimize the robustness level :

minimize  s.t.⇡ 2 ⇧?
✏ \⇧.

Note that this is formulated as general as possible with respect to the robustness of the policies: We
would like to find a policy that, trading off ✏ in terms of cumulative rewards, observes the same
discounted rewards when disturbed by T .

2. Definition 1 is a generalised form of the State-Adversarial MDP used by Zhang et al. (2020): the adversarial case is
a particular form of DOMDP where T assigns probability 1 to one adversarial state.

3. The robustness regret satisfies ⇢(⇡⇤, T ) � 0 for all kernels T , and it allows us to directly compare the robustness
regret with the utility regret of the policy.
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3. Characterization of Robust Policies

An important question to be addressed before trying to synthesise robust policies is what these
robust policies look like, and how they are related to DOMDP properties. A policy ⇡ is said to be
constant if ⇡(x) = ⇡(y) for all x, y 2 X , and the collection of all constant policies is denoted by
⇧̄. A policy is called a fixed point of h·, T i if ⇡(x) = h⇡, T i(x) for all x 2 X . The collection of all
fixed points is ⇧T . Observe furthermore that ⇧T only depends on the kernel T and the set4 X . Let
us assume we have a policy iteration algorithm that employs an action-value function Q⇡ and policy
⇡. The advantage function for ⇡ is defined as A⇡(x, u) := Q⇡(x, u) � V ⇡(x). We can similarly
define the noise disadvantage of policy ⇡ as:

D⇡(x, T ) := V ⇡(x)� Eu⇠h⇡,T i(x)[Q
⇡(x, u)], (2)

which measures the difference of applying at state x an action according to the policy ⇡ with that
of playing an action according to h⇡, T i and then continuing playing an action according to ⇡. Our
intuition says that if it happens to be the case that D⇡(x, T ) = 0 for all states in the DOMDP, then
such a policy is maximally robust. And this is indeed the case, as shown in the next proposition.

Proposition 3 Consider a DOMDP as in Definition 1 and the robustness notion as in Definition
2. If a policy ⇡ is such that D⇡(x, T ) = 0 for all x 2 X , then ⇡ is maximally robust, i.e., let
⇧D := {⇡ 2 ⇧ : µ⇡(x)D⇡(x, T ) = 08x 2 X}, then we have that ⇧D ✓ ⇧0.
Proof We want to show that D⇡(x, T ) = 0 =) ⇢(⇡, T ) = 0. Taking D⇡(x, T ) = 0 one has a
policy that produces an disadvantage of zero when noise kernel T is applied. Then, 8x 2 X,

D⇡(x, T ) = 0 =) Eu⇠h⇡,T i(x)[Q
⇡(x, u)] = V ⇡(x). (3)

Now define the value of the disturbed policy as V h⇡,T i(x) = Eu⇠h⇡,T i(x),
y⇠P (·|x,u)

⇥
r(x, u, y) + �V h⇡,T i(y)

⇤
.

We will now show that V ⇡(x) = V h⇡,T i(x), for all x 2 X . Observe, from (3) using V ⇡(x) =
Eu⇠h⇡,T i(x)[Q

⇡(x, u)], we have 8x 2 X:

V ⇡(x)� V h⇡,T i(x) = Eu⇠h⇡,T i(x)[Q
⇡(x, u)]� Eu⇠h⇡,T i(x)

y⇠P (·|x,u)

h
r(x, u, y) + �V h⇡,T i(y)

i
=

= Ey⇠P (·|x,u)

h
�V ⇡(y)� �V h⇡,T i(y)

i
= �Ey⇠P (·|x,u)

h
V ⇡(y)� V h⇡,T i(y)

i
.

(4)

Now, taking the sup norm at both sides of (4) we get

kV ⇡(x)� V h⇡,T i(x)k1 = �
���Ey⇠P (·|x,u)

h
V ⇡(y)� V h⇡,T i(y)

i���
1
. (5)

Since the norm on the right hand side of (5) is over y 2 X and � < 1, it follows that kV ⇡(x) �
V h⇡,T i(x)k1 = 0. Finally, kV ⇡(x) � V h⇡,T i(x)k1 = 0 =) V ⇡(x) � V h⇡,T i(x) = 0 8x 2 X ,
and V ⇡(x)� V h⇡,T i(x) = 0 8x 2 X =) J(⇡) = J(h⇡, T i) =) ⇢(⇡, T ) = 0.

4. There is a (natural) bijection between the set of constant policies and the space �(U). The set of fixed points of the
operator h·, T i also has an algebraic characterization in terms of the null space of the operator Id(·)� h·, T i. We are
not exploiting the later characterization in this paper.
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So far we have shown that both the set of fixed points ⇧ and the set of policies for which the
disadvantage function is equal to zero ⇧D are contained in the set of maximally robust policies. We
now show how the defined robust policy sets can be linked in a single result through the following
policy inclusions.

Theorem 4 (Policy Inclusions) For a DOMDP with noise kernel T , consider the sets ⇧,⇧T ,⇧D

and ⇧0. Then, the following inclusion relation holds: ⇧ ✓ ⇧T ✓ ⇧D ✓ ⇧0. Additionally, the sets
⇧,⇧T are convex for all MDPs and kernels T , but ⇧D,⇧0 may not be.

Proof If a policy ⇡ 2 ⇧ is a fixed point of the operator h·, T i, then ⇢(⇡, T ) = J(⇡)� J(h⇡, T i) =
J(⇡) � J(⇡) = 0 =) ⇡ 2 ⇧0. Therefore, ⇧T ✓ ⇧0. Now, the space of stochastic kernels
K : X 7! �(X) is equivalent to the space of row-stochastic |X| ⇥ |X| matrices, therefore one
can write T (y | x) ⌘ Txy as the xy�th entry of the matrix T . Then, the representation of a
constant policy as an X ⇥ U matrix can be written as ⇡ = 1|X|v

>, where 1|X| and v 2 �(U) is
any probability distribution over the action space. Observe that, applying the operator h⇡, T i to a
constant policy yields h⇡, T i = T1|X|v

>. By the Perron-Frobenius Theorem (Horn and Johnson,
2012), since T is row-stochastic it has at least one eigenvalue eig(T ) = 1, and this admits a (strictly
positive) eigenvector T1|X| = 1|X|. Therefore, h⇡, T i = T1|X|v

> = 1|X|v
> = ⇡ =) ⇧ ✓ ⇧T .

Combining this result with Proposition 3, we simply need to show that ⇧T ✓ ⇧D. Take ⇡ to be a
fixed point of h⇡, T i. Then h⇡, T i = ⇡, and from the definition in (2):

D⇡(x, T ) = V ⇡(x)� Eu⇠h⇡,T i(x,·)[Q
⇡(x, u)] = V ⇡(x)� Eu⇠⇡(x,·)[Q

⇡(x, u)] = 0.

Therefore, ⇡ 2 ⇧D, which completes the sequence of inclusions. Convexity of ⇧,⇧T follows from
considering the convex hulls of two constant or fixed point policies.

Let us reflect on the inclusion relations of Theorem 4. The inclusions are in general not strict,
and in fact the geometry of the sets (as well as whether some of the relations are in fact equalities) is
highly dependent on the reward function, and in particular on the complexity (from an information-
theoretic perspective) of the reward function. As an intuition, less complex reward functions (more
uniform) will make the inclusions above expand to the entire policy set, and more complex reward
functions will make the relations collapse to equalities.

Corollary 5 For any ergodic DOMDP there exist reward functions R and R such that the resulting
DOMDP satisfies A) ⇧D = ⇧0 = ⇧ (any policy is max. robust) if R = R, and B) ⇧T = ⇧D = ⇧0

(only fixed point policies are maximally robust) if R = R.

Proof [Corollary 5] For statement A) let R(·, ·, ·) = c for some constant c 2 R. Then, J(⇡) =
Ex0⇠µ0 [

P
t �

trt | ⇡] = c�
1�� , which does not depend on the policy ⇡. For any noise kernel T and

policy ⇡, J(⇡) � Jh⇡, T i = 0 =) ⇡ 2 ⇧0. For statement B assume 9⇡ 2 ⇧0 : ⇡ /2 ⇧T .
Then, 9x⇤ 2 X and u⇤ 2 U such that ⇡(x⇤, u⇤) 6= h⇡, T i(x⇤, u⇤). Let R(x, u, x0) := c if x = x⇤

and u = u⇤, 0 otherwise. Then, E[R(x,⇡(x), x0] < E[R(x, h⇡, T i(x), x0] and since the MDP is
ergodic x is visited infinitely often and J(⇡)� J(h⇡, T i) > 0 =) ⇡ /2 ⇧0, which contradicts the
assumption. Therefore, ⇧0 \⇧T = ; =) ⇧0 = ⇧T .

We can now summarise the insights from Theorem 4 and Corollary 5 in the following conclu-
sions: (1) The set ⇧ is maximally robust, convex and independent of the DOMDP, (2) The set ⇧T is
maximally robust, convex, includes ⇧, and its properties only depend on T , (3) The set ⇧D includes
⇧T and is maximally robust, but its properties depend on the DOMDP.
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4. Robustness through Lexicographic Objectives

To be able to apply LRL results to our robustness problem we need to first cast robustness as a valid
objective to be maximized, and then show that a stochastic gradient descent approach would indeed
find a global maximum of the objective, therefore yielding a maximally robust policy. 5

Algorithm 1 LRPG
input Simulator, T̃ , ✏
initialise ✓, critic (if using), �, {�1

t ,�
2
t , ⌘}

set t = 0, xt ⇠ µ0

while t < max iterations do
perform ut ⇠ ⇡✓(xt)
observe rt, xt+1, sample y ⇠ T̃ (· | x)
if K̂1(✓) not converged then
k̂1  K̂1(✓)

end if
update critic (if using)
update ✓ using (8) and � using (1)

end while
output ✓

Proposed approach Following the framework
presented in previous sections, we propose the fol-
lowing approach to obtain lexicographic robustness.
In the introduction, we emphasised that the motiva-
tion for this work comes partially from the fact that
we may not know T in reality, or have a way to es-
timate it. However, the theoretical results until now
depend on T . Our proposed solution to this lies in
the results of Theorem 4. We can use a design gen-
erator T̃ to perturb the policy during training such
that T̃ has the smallest possible fixed point set (i.e.
the constant policy set, T̃ satisfies ⇧T̃ = ⇧), and
any algorithm that drives the policy towards the set
of fixed points of T̃ will also drive the policy towards
fixed points of T : from Theorem 4, ⇧T̃ ✓ ⇧T .

4.1. Lexicographically Robust Policy Gradient

Consider then the objective to be minimized:

KT̃ (✓) = �
1

2

X

x2X
µ⇡✓(x)

X

u2U

�
⇡✓(x, u)� h⇡✓, T̃ i(x, u)

�2
, (6)

Notice that optimising (6) projects the current policy onto the set of fixed points of the operator
h·, T̃ i, and due to Assumption 1, which requires µ⇡✓(x) > 0 for all x 2 X , the optimal solution is
equal to zero if and only if there exists a value of the parameter ✓ for which the corresponding ⇡✓ is
a fixed point of h·, T̃ i. We present now the proposed LRPG meta-algorithm to achieve lexicographic
robustness for any policy gradient algorithm at choice. From Skalse et al. (2022b), the convergence
of PB-LRL algorithms is guaranteed as long as the original policy gradient algorithm for each single
objective converges. Let K1(✓) := J(⇡✓).

Assumption 2 The policy is updated through an algorithm (e.g. A2C, PPO...) such that ✓t+1  
proj⇥

⇥
✓t + ↵tr✓tK̂1

⇤
converges a.s. to a (local or global) optimum ✓⇤.

Theorem 6 Consider a DOMDP as in Definition 1 and let ⇡✓ be a parameterised policy. Take
a design kernel T̃ 2 {T : ⇧T = ⇧}. Consider the following modified gradient for objective
KT̃ (✓)(x) and sampled point y ⇠ T̃ (· | x):

r✓K̂
0
T̃
(✓) = �Ex⇠µ⇡✓

⇥X

u2U
(⇡✓(x, u)� ⇡✓(y, u))r✓⇡✓(x, u)

⇤
. (7)

5. The advantage of using LRL is that we can formally bound the trade-off between robustness and optimality through
✏, determinining how far we allow our resulting policy to be from an optimal policy in favour of it being more robust.

7
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Given an ✏ > 0, if Assumptions 1 and 2 hold, then the following iteration (LRPG):

✓  proj⇥
⇥
✓ + (�1

t + ��2
t ) ·r✓K̂1(✓) + �2

tr✓K̂
0
T̃
(✓)

⇤
(8)

converges a.s. to parameters ✓✏ that satisfy ✓✏ 2 argmin✓2⇥0 KT̃ (✓) such that K⇤
1 � K1(✓✏) � ✏,

where ⇥0 = ⇥ if ✓⇤ is globally optimal and a compact local neighbourhood of ✓⇤ otherwise.

Proof To apply LRL results, we need to show that both gradient descent schemes converge (sepa-
rately) to local or global maxima. Let us first show that ✓t+1 = proj⇥

⇥
✓t+↵tr✓K̂ 0

T̃
(✓t)

⇤
converges

a.s. to parameters ✓̃ satisfying KT̃ = 0. We prove this making use of fixed point iterations with
non-expansive operators (specifically, Theorem 4, section 10.3 in Borkar (2008)). First, observe
that for a tabular representation, ⇡✓(x, u) = ✓xu, and r✓⇡✓(x, u) is a vector of zeros, with value 1
for the position ✓xu. We can then write the SGD in terms of the policy for each state x, considering
⇡(x) ⌘ (✓xu1 , ✓xu2 , ..., ✓xuk)

T . Let y ⇠ T̃ (· | x). Then:

⇡t+1(x) = ⇡t(x)� ↵t
�
⇡t(x)� ⇡t(y)

�
= ⇡t(x)� ↵t

⇣
⇡t(x)� h⇡t, T̃ i(x)�

�
⇡t(y)� h⇡t, T̃ i(x)

�⌘
.

We now need to verify that the necessary conditions for applying Theorem 4, section 10.3 in Borkar
(2008) hold. First, making use of the property kT̃k1 = 1 for any row-stochastic matrix T̃ , for any
two policies ⇡1,⇡2 2 ⇧:

kh⇡1, T̃ i � h⇡2, T̃ ik1 = kT̃⇡1 � T̃⇡2k1 = kT̃ (⇡1 � ⇡2)k1  kT̃k1k⇡1 � ⇡2k1 = k⇡1 � ⇡2k1.

Therefore, the operator h·, T̃ i is non-expansive with respect to the sup-norm. For the final condition:

Ey⇠T̃ (·|x)

h
⇡t(y)� h⇡t, T̃ i(x) | ⇡t, T̃

i
=

X

y2X
T̃ (y | x)⇡t(y)� h⇡t, T̃ i(x) = 0.

Therefore, the difference ⇡t(y) � h⇡t, T̃ i(x) is a martingale difference for all x. One can then
apply Theorem 4, sec. 10.3 (Borkar, 2008) to conclude that ⇡t(x) ! ⇡̃(x) almost surely. Finally
from Assumption 1, for any policy all states x 2 X are visited infinitely often, therefore ⇡t(x) !
⇡̃(x)8x 2 X =) ⇡t ! ⇡̃ and ⇡̃ satisfies h⇡̃, T̃ i = ⇡̃, and KT̃ (⇡̃) = 0.

Now, from Assumption 2, the iteration ✓  proj⇥
⇥
✓ + ↵tr✓K̂1

⇤
converges a.s. to a (local or

global) optimum ✓⇤. Then, both objectives are invex Ben-Israel and Mond (1986b) (either locally or
globally), and any linear combination of them will also be invex (again, locally or globally). Finally,
we can directly apply the results from Skalse et al. (2022b), and

✓  proj⇥
⇥
✓ + (�1

t + ��2
t ) ·r✓K̂1(✓) + �2

tr✓K̂
0
T̃
(✓)

⇤

converges a.s. to parameters ✓✏ that satisfy ✓✏ 2 argmin✓2⇥0 KT̃ (✓) such that K⇤
1 � K1(✓✏) � ✏,

where ⇥0 = ⇥ if ✓⇤ is globally optimal and a compact local neighbourhood of ✓⇤ otherwise.

Remark 7 Observe that (7) is not the true gradient of (6), and ✓✏ 2 argmin✓2⇥0 KT̃ (✓) if there
exists a (local) minimum of KT̃ in ⇥✏ := {✓ : K⇤

1 � K1(✓) � ✏}. However, from Theorem 6
we know that the (pseudo) gradient descent scheme converges to a global minimum in the tabular
case, therefore hr✓K̂ 0

T̃
(✓),r✓K̂T̃ (✓)i > 0 (Borkar, 2008), and gradient-like descent schemes will

converge to (local or) global minimizers, which motivates the choice of this gradient approximation.
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We reflect again on Figure 1. The main idea behind LRPG is that by formally expanding the set of
acceptable policies with respect to K1, we may find robust policies more effectively while guaran-
teeing a minimum performance in terms of expected rewards. This addresses directly the premise
behind Problem 1. In LRPG the first objective is still to minimise the distance J⇤ � J(⇡) up to
some tolerance. Then, from the policies that satisfy this constraint, we want to steer the learning
algorithm towards a maximally robust policy, and we can do so without knowing T .

5. Considerations on Noise Generators

A natural question emerging is how to choose T̃ , and how the choice influences the resulting policy
robustness towards any other true T . In general, for any arbitrary policy utility landscape in a given
MDP, there is no way of bounding the distance of the resulting policies for two different noise
kernels T1, T2. However, the optimality of the policy remains bounded: Through LRPG guarantees
we know that, for both cases, the utility of the resulting policy will be at most ✏ far from the optimal.

Corollary 8 Take T to be any arbitrary noise kernel, and T̃ to satisfy T̃ 2 {T : ⇧T = ⇧}. Let
⇡ be a policy resulting from a LRPG algorithm. Assume that min⇡02⇧T̃

DTV (⇡k⇡0) = a for some
a < 1. Then, it holds for any T that min⇡02⇧T DTV (⇡k⇡0)  a.

Proof The proof follows by the inclusion results in Theorem 4. If ⇧T̃ = ⇧, then ⇧T̃ ✓ ⇧T for any
other T . Then, the distance from ⇡ to the set ⇧T is at most the distance to ⇧T̃ .

That is, when using LRPG to obtain a robust policy ⇡, the resulting policy is at most a far from
the set of fixed points (and therefore a maximally robust policy) with respect to the true T . This is
the key argument behind our choices for T̃ : A priori, the most sensible choice is a kernel that has
no other fixed point than the set of constant policies. This fixed point condition is satisfied in the
discrete state case for any T̃ that induces an irreducible Markov Chain, and in continuous state for
any T̃ that satisfies a reachability condition (i.e. for any x0 2 X , there exists a finite time for which
the probability of reaching any ball B ⇢ X of radius r > 0 through a sequence xt+1 = T (xt) is
measurable). This holds for (additive) uniform or Gaussian disturbances.

6. Experiments

We verify the theoretical results of LRPG in a series of experiments on discrete state/action safety-
related environments (Chevalier-Boisvert et al., 2018) (for extended experiments in continuous con-
trol tasks, hyperparameters etc. see extended version). We use A2C (Sutton and Barto, 2018) (LR-
A2C) and PPO (Schulman et al., 2017) (LR-PPO) for our implementations of LRPG. In all cases,
the lexicographic tolerance was set to ✏ = 0.99k̂1 to deviate as little as possible from the primary
objective. We compare against the baseline algorithms and against SA-PPO (Zhang et al., 2020)
which is among the most effective (adversarial) robust RL approaches in literature. We trained 10
independent agents for each algorithm, and reported scores of the median agent (as in Zhang et al.
(2020)) for 50 roll-outs. To simulate T̃ we disturb x as x̃ = x + ⇠ for (1) a uniform bounded
noise signal ⇠ ⇠ U[�b,b] (T̃ u) and (2) and a Gaussian noise (T̃ g) such that ⇠ ⇠ N (0, 0.5). We test
the resulting policies against a noiseless environment (;), a kernel T1 = T̃ u, a kernel T2 = T̃ g

and against two different state-adversarial noise configurations (T 2
adv) as proposed by Zhang et al.

(2021) to evaluate how effective LRPG is at rejecting adversarial disturbances.
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PPO on MiniGrid Environments A2C on MiniGrid Environments

Noise PPO LRPPO(Ku
T ) LRPPO(Kg

T ) SA-PPO A2C LRA2C(K
u
T ) LRA2C(K

g
T ) LRA2C(KD)

LavaGap
; 0.95±0.003 0.95±0.075 0.95±0.101 0.94±0.068 0.94±0.004 0.94±0.005 0.94±0.003 0.94±0.006
T1 0.80±0.041 0.95±0.078 0.93±0.124 0.88±0.064 0.83±0.061 0.93±0.019 0.89±0.032 0.91±0.088
T2 0.92±0.015 0.95±0.052 0.95±0.094 0.93±0.050 0.89±0.029 0.94±0.008 0.93±0.011 0.93±0.021
T2
adv 0.01±0.051 0.71±0.251 0.21±0.357 0.87±0.116 0.27±0.119 0.79±0.069 0.68±0.127 0.56±0.249

LavaCrossing
; 0.95±0.023 0.93±0.050 0.93±0.018 0.88±0.091 0.91±0.024 0.91±0.063 0.90±0.017 0.92±0.034
T1 0.50±0.110 0.92±0.053 0.89±0.029 0.64±0.109 0.66±0.071 0.78±0.111 0.72±0.073 0.76±0.098
T2 0.84±0.061 0.92±0.050 0.92±0.021 0.85±0.094 0.78±0.054 0.83±0.105 0.86±0.029 0.87±0.063
T2
adv 0.0±0.004 0.50±0.171 0.38±0.020 0.82±0.072 0.06±0.056 0.04±0.030 0.01±0.008 0.09±0.060

DynamicObstacles
; 0.91±0.002 0.91±0.008 0.91±0.007 0.91±0.131 0.91±0.011 0.88±0.020 0.89±0.009 0.91±0.013
T1 0.23±0.201 0.77±0.102 0.61±0.119 0.45±0.188 0.27±0.104 0.43±0.108 0.45±0.162 0.56±0.270
T2 0.50±0.117 0.75±0.075 0.70±0.072 0.68±0.490 0.45±0.086 0.53±0.109 0.52±0.161 0.67±0.203
T2
adv -0.49±0.312 0.51±0.234 0.33±0.202 0.55±0.170 -0.54±0.209 -0.21±0.192 -0.53±0.261 -0.51±0.260

Table 1: Reward values gained by LRPG and baselines on discrete control tasks.

Robustness Results We use objectives as defined in (6). Additionally, we aim to test the hypoth-
esis: If we have an estimator for the critic Q⇡ we can obtain robustness without inducing regularity
in the policy using D⇡, yielding a larger policy subspace to steer towards, and hopefully achieving
policies closer to optimal. For this, we consider the objective KD(✓)(x) := 1

2kD
⇡✓(x, T )k22 by

modifying A2C to retain a Q critic. We investigate the impact of LRPG PPO and A2C for dis-
crete action-space problems on Gymnasium (Brockman et al., 2016). Minigrid-LavaGap (fully ob-
servable), Minigrid-LavaCrossing (partially observable) are safe exploration tasks where the agent
needs to navigate an environment with cliff-like regions. Minigrid-DynamicObstacles (stochastic,
partially observable) is a dynamic obstacle-avoidance environment. See Table 1.

7. Discussion

Experiments We applied LRPG on PPO and A2C (and SAC algorithms), for a set of discrete and
continuous control environments. These environments are particularly sensitive to robustness prob-
lems; the rewards are sparse, and applying a sub-optimal action at any step of the trajectory often
leads to terminal states with zero (or negative) reward. LRPG successfully induces lower robustness
regrets in the tested scenarios, and the use of KD as an objective (even though we did not prove the
convergence of a gradient based method with such objective) yields a better compromise between
robustness and rewards. When compared to recent observational robustness methods, LRPG obtains
similar robustness results while preserving the original guarantees of the chosen algorithm.

Shortcomings and Contributions The motivation for LRPG comes from situations where, when
deploying a model-free controller in a dynamical system, we do not have a way of estimating the
noise generation and we are required to retain convergence guarantees of the algorithms used.
Although LRPG is a useful approach for learning policies in control problems where the noise
sources are unknown, questions emerge on whether there are more effective methods of incorporat-
ing robustness into RL policies when guarantees are not needed. Specifically, since a completely
model-free approach does not allow for simple alternative solutions such as filtering or disturbance
rejection, there are reasons to believe it could be outperformed by model-based (or model learning)
approaches. However, we argue that in completely model-free settings, LRPG provides a rational
strategy to robustify RL agents.
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