
Proceedings of Machine Learning Research vol 242:1006–1017, 2024

Parameterized Fast and Safe Tracking (FaSTrack) using DeepReach

Hyun Joe Jeong HJJEONG@UCSD.EDU
Department of Mechanical and Aerospace Engineering, University of California San Diego

Zheng Gong ZHGONG@UCSD.EDU
Department of Mechanical and Aerospace Engineering, University of California San Diego

Somil Bansal SOMILBAN@USC.EDU
Department of Electrical and Computer Engineering, University of Southern California

Sylvia Herbert SHERBERT@UCSD.EDU

Department of Mechanical and Aerospace Engineering, University of California San Diego

Abstract
Fast and Safe Tracking (FaSTrack, Herbert* et al. (2017)) is a modular framework that provides safety
guarantees while planning and executing trajectories in real time via value functions of Hamilton-
Jacobi (HJ) reachability. These value functions are computed through dynamic programming, which
is notorious for being computationally inefficient. Moreover, the resulting trajectory does not adapt
online to the environment, such as sudden disturbances or obstacles. DeepReach (Bansal and Tomlin
(2021)) is a scalable deep learning method to HJ reachability that allows parameterization of states,
which opens up possibilities for online adaptation to various controls and disturbances. In this paper,
we propose Parametric FaSTrack, which uses DeepReach to approximate a value function that
parameterizes the control bounds of the planning model. The new framework can smoothly trade off
between the navigation speed and the tracking error (therefore maneuverability) while guaranteeing
obstacle avoidance in a priori unknown environments. We demonstrate our method through two
examples and a benchmark comparison with existing methods, showing the safety, efficiency, and
faster solution times of the framework.
Keywords: reachability analysis, optimal control, machine learning, online adaptation

1. Introduction

In order for autonomous dynamical systems to be viable in real world applications, they often
require rigorous safety guarantees and efficient computation. Further, many environments will
be a priori unknown, adding to the threshhold of feasibility. Traditionally, real time navigation
for autonomous systems starts with creating waypoints using a geometric or kinodynamic planner
(Schulman et al. (2013); Kobilarov (2012)). Tracking controllers, such as model predictive control
(MPC) (Qin and Badgwell (2003); Alexis et al. (2016)), are then used to track these waypoints.
However, the geometric planners do not account for system dynamics, making them dynamically
infeasible. This can have devastating effects when the system is near obstacles. MPC based methods
(Williams et al. (2016, 2018)) are proposed which sample various trajectories for efficient trajectory
planning. However, no safety guarantees are involved, which can lead to safety violations. To
generate safety guarantees for nonlinear systems with control bounds, control barrier functions (Choi
et al. (2021); Manjunath and Nguyen (2021); Tonkens and Herbert (2022); Ahmad et al. (2022))
and Hamilton Jacobi (HJ) reachability analysis (Fisac et al. (2015); Bansal et al. (2017); Jiang et al.
(2020); Seo et al. (2023)) are popular methods for generating safe sets and controllers that minimally

© 2024 H. Jeong, Z. Gong, S. Bansal & S. Herbert.

JEONG GONG BANSAL HERBERT

modify a reference controller. Although safe, online update of these methods is difficult in unknown
environments.

Fast and Safe Tracking (Herbert* et al. (2017)) is an modular framework built on HJ reachability
analysis for guaranteed safe tracking of a general (possibly geometric) planning algorithm through an
unknown environment. The safety guarantees stem from precomputing a tracking error bound (TEB)
and controller that is robust to any planning algorithm, even one that may act adversarially. Online,
obstacles are augmented by this error bound, and the planning algorithm must seek a path using these
augmented obstacles. Because safety is guaranteed with no assumptions on the specific planning
algorithm or its behavior, this approach often results in very conservative trajectories. Planner aware
FaSTrack (Sahraeekhanghah and Chen (2021)) and Meta-FaSTrack (Fridovich-Keil et al. (2018))
are proposed to overcome this limitation under additional assumptions on the planning algorithm.
However, these methods are still fundamentally limited by the computational complexity of HJ
reachability, which scales exponentially in the number of state dimension. Moreover, adapting the
tracking error bound with changes in planner control or system uncertainties remains challenging.

DeepReach (Bansal and Tomlin (2021)) is a neural PDE solver for high-dimensional HJ reach-
ability analysis. This approach provides safe sets and controllers order of magnitudes faster than
standard methods, while providing probabilistic safety assurances. Many approaches catalyzed by
DeepReach has been proposed, such as parameterizing the value function for online adaptation
(Borquez et al. (2023)), and parameterizing input bounds for real time adaptation to environmental
and system uncertainties (Nakamura and Bansal (2023)). We combine DeepReach with FaSTrack to
propose the Parametric FaSTrack (PF) framework (Fig. 1). Our key contributions are as follows:

1. We use DeepReach to approximate the HJ value function (and the corresponding TEB and
controller), which improves scalability to high dimensional systems.

2. The TEB and controller are parameterized by the speed of the planning algorithm, allowing
the planner to automatically trade off between safety and effiency. For instance, In open
environments, augmenting obstacles by a large TEB associated with fast planning is acceptable.
In cluttered environments, slower planning and tighter TEB is required for safety.

3. We provide algorithms that smoothly switches between different TEB to trade off between
safety and efficiency. The overall navigation speed is increased by 40%, as shown in the
examples compared to state-of-the-art online planning methods.

2. Background

In this section we introduce the FaSTrack algorithm for safe navigation and DeepReach for high-
dimensional reachability analysis.

2.1. Fast and Safe Tracking (FaSTrack) Framework

Tracker Model. In the FaSTrack framework, the tracker model represents the true robot and the
planner model represents the real-time path planner. The tracker model is given by the following
ordinary differential equation (ODE)

ds

dt
= ṡ = f(s(t), us(t), d(t)), t ∈ [0, tf], s ∈ S ⊂ Rns , us ∈ Us ⊂ Rnu , d ∈ D ⊂ Rnd , (1)

2

PARAMETRIC FASTRACK

Figure 1: Left figure denotes the offline framework (performed once), and the right figure denotes the
online framework (performed every iteration). Components of FaSTrack are shown in blue, while
components of PF are shown in orange.

where t is the time and s, us and d are the tracker state, control and disturbance at a given time
respectively, with Us and D to be compact sets. us(·) ∈ Us and d(·) ∈ D are the control and
disturbance signal, assumed to be measurable: us(·) : [0, tf] 7→ Us and d(·) : [0, tf] 7→ D. We
further assume the dynamics f : S × Us ×D 7→ S is Lipschitz continuous in s for fixed us(·) and
d(·). A unique solution of (1) can be solved as ξf (t; 0, s, us(·), d(·)), or in short ξf (t).
Planner Model. The planner model is a virtual model designed for path planning, given ODE

dp

dt
= ṗ = h(p, up), t ∈ [0, tf], p ∈ P ⊂ Rnp , up ∈ W,

where p is the planner state and up is the planner control. We assume the planner state is a subset of
the tracker state, and the planner space is a subspace of the tracker space.

Since path planning is done using the planner model, where goal and constraints sets in the
planner space are denoted as Gp and Cp, respectively. Also, since we assume unknown environment
and limited sense range, we denote the sensed environment as Cp,sense(t), and the augmented obstacle
as Cp,aug(t). Note both Cp,sense(t) and Cp,aug(t) are time-varying sets that update at each iteration.
Relative Dynamics. The FaSTrack framework provides guarantees by precomputing the maximum
error (i.e. distance) possible between the tracker model and planner model. In order to compute this,
the relative dynamics between the two systems must be determined. Since the planner space is a
subspace of the tracker space, we can always find a matrix Q ∈ Rns×np , and assume we can also
find a linear tranformation Φ(s, p) s.t. r = Φ(s, p)(s−Qp) and

ṙ = g(r, us, up, d),

with solution ξ(t; 0, r, us, up, d). We denote the common states in tracker and planner as e and the
rest as η, i.e. r = [e, η].

Running example: consider the tracker model as a Dubin’s car with controls ω and α:

ṡ1 = s4 sin(s3), ṡ2 = s4 cos(s3), ṡ3 = ω, ṡ4 = α.

3

JEONG GONG BANSAL HERBERT

Consider the planning model: ṗ1 = upx, ṗ2 = upy, where upx and upy are planning controls. Given

linear transformation Φ = I4 and matrix Q =

[
1 0 0 0
0 1 0 0

]T
, the relative model is:

ṙ1 = r4 sin(r3)− upx, ṙ2 = r4 cos(r3)− upy, ṙ3 = ω, ṙ4 = α. (2)

Cost Function. With the relative dynamics in hand, the maximum possible relative distance (i.e.
TEB) between the two models can be computed. The error function of this game is denoted as
ℓ(r), and is chosen to be the Euclidean norm in the relative state space (here, low error corresponds
to accurate tracking). We assume that the tracker model seeks to minimize this tracking error by
pursuing the planner model. Because the environment and behavior of the planner model is unknown
a priori, to provide safety guarantees we must assume worst-case actions of the planner model. This
amounts to assuming the planner model seeks to maximize the tracking error and evade the tracker
model. We have therefore constructed a pursuit-evasion game between the tracker and planner.
Offline Computation of the Tracking Error Bound and Controller. We define the strategies of
the planner and disturbance as mappings: γp : Us 7→ W , γd : Us 7→ D and assume they are restricted
to be the non-anticipative strategies γp ∈ Γp, γd ∈ Γd. The value of the game can be defined as:

V (r, tf) = sup
γp∈Γp,γd∈Γd

inf
us∈Us

{ max
t∈[0,tf]

ℓ(ξ(t; 0, r, us(·), γp(·), γd(·)))}. (3)

It has been shown that (3) can be computed by solving the following HJI-VI recursively:

0 = max{ℓ(r)− V (r, t),
∂V

∂t
+ min

us∈Us

max
up∈W,d∈D

∇V · g(r, us, up, d)}, V (r, 0) = ℓ(r), (4)

where H(t, r, ∂V∂r) = minus∈Us maxup∈W,d∈D∇V · g(r, us, up, d) is the Hamiltonian. The value of
at a particular r, tf corresponds to the largest tracking error, that can occur over the time horizon.
The smallest non-empty level set of this function therefore provides the smallest TEB and the set of
relative states for which this bound can be achieved over the time horizon.

In the case where the limit function V ∞(r) = limtf→∞ V (r, tf) exists, every non-empty level
set is a robust control invariant set. The set at level V ∞ = minr V

∞(r), is called the infinite-time
TEB: the relative system will stay inside this set for all t ≥ 0. Throughout the paper, we assume
this limit function exist, though extensions to time-varying error bounds have been successful. The
infinite-time TEB in the relative space and planner space are denoted by

B∞ := {r : V ∞(r) ≤ V ∞}, B∞e := {e : ∃η s.t. V ∞(e, η) ≤ V ∞}.

Online Planning and Tracking. Online, the sensed obstacles are augmented by this error bound
projected into the planner state space. The planning algorithm employs the planning model to
determine the next planner state. The autonomous system (represented by the tracker model) can
efficiently compute the optimal tracking control via the relative state between itself and the planner:

u∗s = argminus∈Us
max

up∈W,d∈D
∇V · g(r, us, up, d). (5)

This process repeats until the system has reached the goal.

4

PARAMETRIC FASTRACK

2.2. DeepReach and Parameter-Conditioned Reachability

While traditional reachability frameworks solves the HJI-VI over a grid, DeepReach approximates the
value function by having a sinusoidal deep neural network (DNN) learn a parameterized estimation of
the value function. The key benefit to this approach is that memory and complexity requirements for
training are tied to the complexity of the value function rather than the grid resolution. DeepReach
trains the DNN using self-supervision on the HJB-VI itself. By inputting state, time, and parameters,
it outputs a learned value function.

Parameter-conditioned reachability (PCR) further parameterizes the reachable sets via uncertain
environment parameters β. These parameters are then treated as a virtual state in the system model.
Though this virtual state has no dynamics, it allows the DNN to learn a family of value functions
simultaneously, producing a parameterized value function V (x, β). PCR effectively diminishes
separate training needs for value functions corresponding to the changed system, and solves them in
the same fashion as DeepReach, which also allows for a swift computation time of high dimensional
systems. A system can leverage the effectiveness of PCR online by taking into account any sudden
changes in the parameters β by just doing a simple query of the value function corresponding to the
changed parameter value. Its online adaptability improves a system’s robustness by maintaining its
safety. The optimal control can also be determined from the gradients of the learned value function.

3. Offline Parameterized Value Function Training

We parameterize the offline computation in FaSTrack with the planner control bound, and use
DeepReach to approximate the value function that corresponds to the new relative dynamics. This
portion outputs the static TEB (sTEB), dynamic TEB (dTEB), and the tracking controller, as shown
in Fig. 1 (left). The sTEB is the TEB given minimal planner control bound, while the dTEB is
determined by the planner control bound used.
Parameterized Relative System. We start by parameterizing the planner control boundW(β):

˙̄r =

[
ṙ

β̇

]
=

[
g(r, us, up, d)

0

]
,

where r̄ = [r, β] is the augmented relative states, and β is the virtual state with zero dynamics. We
assume up ∈ W(β), and β ∈ [βl, βu]. The Hamiltonian for the augmented relative dynamics is
H(r,∇Vθ, t;β) = minus∈Us maxup∈W(β),d∈D∇Vθ · g(r, us, up, d). Note that V (r̄, t) = V (r, t;β).

For the running example, the first four states of the relative system are identical to (2). The
control bounds are given as r3 ∈ [−5, 5] and r4 ∈ [−1, 1]. We add ṙ5 = β̇1 = 0 and ṙ6 = β̇2 = 0 as
the virtual parameter states with no dynamics, with β1, β2 ∈ [0.5, 1.25]:

ṙ1 = r4 sin(r3)− upx, ṙ2 = r4 cos(r3)− upy, ṙ3 = ω, ṙ4 = α, β̇1 = 0, β̇2 = 0. (6)

DeepReach Training. The loss function h used to train the DNN is given by

h1(ri, ti, βi; θ) = ||Vθ(ri, ti;βi)− l(ri)||(ti=T) ,

h2(ri, ti, βi; θ) = ||min{DtVθ(ri, ti;βi) +H(ri,∇Vθ, ti;βi), l(ri)− Vθ(ri, ti;βi)}|| ,
h(ri, ti, βi; θ) = h1(ri, ti, βi; θ) + λh2(ri, ti, βi; θ). (7)

Here, each loss term represents the parameterized value function and the RHS of HJI-VI (4). θ
represents the parameters of the DNN. The term h1(·) is the difference between the parameterized

5

JEONG GONG BANSAL HERBERT

Figure 2: (Left) TEB for system (6) with different planner control bounds β. Training parameters: 40k
pre-train iterations, followed by 110k training iterations. The model is trained until convergence. Total
training took 10h32m on a NVIDIA A30. As β increases, the TEB grows larger. (Right) comparison
between standard dynamic programming based HJ reachability (using codebase HelperOC) and
DeepReach. Empirically, DeepReach produces more conservative error bounds.

value function, Vθ(r̄i, ti;βi), and the boundary condition, ℓ(ri), which ultimately represents the
ground truth value function. This allows the DNN to propogate the value function backwards during
training. h2(·) guides the DNN to train the parameterized value function consistent with the HJI-VI,
which is necessary since true solutions are derived from it. Finally, h(·) weighs h1(·) and h2(·) via λ
to determine the importance between the ground truth value function and the HJI-VI.

A three-layer DNN with a hidden layer size of 512 neurons is trained using the loss function (7).
From Vθ(r, t;β), the TEB can be queried at the convergence time in the relative space. We denote
the converged parameterized value function as V ∞

θ (r;β). For simplicity, the parameter state queried
will represent both β1 and β2, meaning β1 = β and β2 = β.

Figure 2 (left) shows the dTEB corresponds to different β for (2). It can be seen that larger β
result in larger dTEB. This is because larger β means more authority for the planner, making it harder
for the tracker to track. We empirically show that the error bounds (largest euclidean distance to the
boundary of the set) computed by DeepReach is conservative, also shown by Fig. 2 (right). More
details on determining the dTEB is explained in section 4 with queryPlannerControl function.
Static and Dynamic TEB. In Parametric FaSTrack, we define two new terms for the TEB: dTEB
B∞e,d(β) and sTEB B∞e,s. The dTEB in the planner space is defined as the minimal level set of the
value function at a particular β, i.e. B∞e,d(β) := {e : ∃η s.t. V ∞

θ (e, η;β) ≤ V ∞
θ }. The sTEB is the

error bound when the planner is navigating through the environment as slowly as possible, i.e. with
its minimum control bound :B∞e,s := {e : ∃η s.t. V ∞

θ (e, η;βl) ≤ V ∞
θ }. As the robot moves in the

unknown environment, its distance to the obstacle changes, and therefore different planner control
bounds β are applied. The dTEB changes corresponds to the β applied, while sTEB stays unchanged.
Tracking Controller. The tracking controller given the relative states can be computed as in (5)
from the parameterized value function evaluated at the current value of β.

4. Online Adaptive Safe Planning and Control

The planner control bounds β can have a major influence on the speed of the navigation process for
FaSTrack. In our approach, we adapt β based on the distance from the autonomous system (tracker)
to the obstacle while guaranteeing safety. The overall framework is described in Alg. 1 and Fig. 1
(right). We additionally introduce the queryPlannerControl function, which provides the largest β
possible for maximal efficiency, and the adjustPlannerControl function, which intelligently reset

6

PARAMETRIC FASTRACK

Algorithm 1 Online Parametric FaSTrack (converged value function)

Require: V ∞
θ (r;β) and gradient ∇V ∞

θ (r;β),
B∞e,s, B∞e,d(β), initial states s0, p0, βl, βu

1: Initialization:
2: Set initial state, K, βquery, and time: s← s0,
K ←∞, βquery ← βu, replanFlag=1.

3: while not near goal do
4: Sense for obstacles (Cp, sense)
5: Find min distance from obstaclesDobs(s)
6: βold ← βquery
7: βquery,K ←queryPlannerControl
8: Augment obstacles by Cp, aug
9: if obstacle sensed OR replanFlag=1 then

10: praw ← run planner, replanFlag=0
11: end if
12: Find closest planner state p∗ from s
13: pnext ← adjustPlannerControl
14: Find next relative states rnext from pnext
15: Obtain snext by applying u∗s to the tracker
16: s← snext, p← pnext
17: end while
18: queryPlannerControl
19: βquery ← βl
20: if B∞e,s ⊈ ball(0,Dobs/2) then
21: βquery ← βl

22: else
23: while B∞e,d(β) ⊂ ball(0,Dobs/2) do
24: βqueryy ← βquery +∆β
25: end while
26: end if
27: βquery ← βquery −∆β
28: K ← B∞e,d(βquery)
29: Return βquery, K
30: adjustPlannerControl
31: if βquery < βold then
32: if s−Qp∗ ∈ K then
33: pnext ← p∗

34: replanFlag← 0
35: else if s−Qp∗ /∈ K then
36: pnext ← a state p in the Cp,aug free

region such that s−Qp ∈ K
37: replanFlag← 1
38: end if
39: else if up,old ≤ βquery then
40: pnext ← p ∈ praw discretized by βquery
41: end if
42: pnext is removed from praw
43: Return pnext

the planning state when necessary to guarantee safety. We do not make restrictions on the planning
algorithm used. To provide safety guarantees, the sensing range is assumed to be twice the value of
B∞e,d(β) when β is the upper bound parameter value, denoted as βu.

At runtime, the autonomous system first senses the environment (line 4 of Alg. 1, top of Fig. 1).
The obstacles (if sensed) are augmented with sTEB in the planning space, denoted as Cp, aug. Any
path planning algorithm may now be used to generate a raw path, which is a set of planner states,
denoted as praw. This path is guaranteed to be free of augmented obstacles. Note that a new raw path
is generated if a new obstacle is sensed or the replanFlag is 1 (line 9-11 of Alg. 1.)

Next, the planner moves along the raw path based on its planner control bound β. The appropriate
β must be determined such that the planner moves as quickly as possible while maintaining safety.
First, the minimum distance between the tracker and the every sensed obstacle is computed, which is
denoted as Dobs(s), and Dobs(s) = minb∈C ||s− b||. The largest acceptable planner control bound
βquery is determined by Dobs(s), and the corresponding dTEB is denoted as K (left branch of Fig. 1).
When B∞e,s ⊈ ball(0,Dobs/2), K = B∞e,s, otherwise K is the largest dTEB contained in the ball with
radius Dobs/2 and centered at the origin, ball(0,Dobs/2) (line 19-29 of Alg. 1).

Remark 1 The queryPlannerVelocity function constrains the norm of the relative state after planning
and before the tracking. If B∞e,d(β) ⊂ ball(0,Dobs/2), we guarantee the norm is at most Dobs/2,

7

JEONG GONG BANSAL HERBERT

Figure 3: Online simulation of 6D Dubin’s car. The trajectory is color-coded with the speed of
planning: low β = 0.5 (blue), medium 0.5 < β ≤ 1 (purple), and high β > 1 (red). The goal (green
dot) and current tracker state (red dot) are shown. The sTEB is in green. The dTEB for the current β
is in orange. The dotted circle around the tracker represents the sensing range. The left panel shows
the planner applying βu at the initial time since no obstacles are sensed. In the second panel, the
system senses an obstacle (K ⊆ B∞e,s), and slows down to reduce the corresponding TEB. In the third
panel, the system applies higher β values as it moves away from the obstacles and towards the goal.

and the distance between planner and obstacles is greater than Dobs/2. After tracking, the norm
of new relative state will also be smaller than Dobs/2, due to the control invariance of dTEB. If
B∞e,d(β) ⊈ ball(0,Dobs/2), we guarantee that the relative state stays in the sTEB, while the distance
between planner and obstacles is greater than the radius of the sTEB.

Figure 4: Tracker moving away
from the obstacle. K expands and
safety is preserved.

The last iteration’s planner control bound is denoted βold,
and the closest planner state from s to praw states is p∗. Given
praw, βquery, βold, p∗, and K, the adjustPlannerControl function
adapts βquery. There are two cases considered: switching from
a larger bound to a smaller one βquery < βold and vice versa.
If βold ≤ βquery, this means K has increased and the tracker is
moving away from the obstacle, therefore increasing up won’t
jeopardize safety (Fig. 4). The next plan state is determined by
discretizing praw with βquery (Alg. 1, lines 39-41).

On the contrary, if βquery < βold, this means the tracker
is moving towards an obstacle and therefore K is shrinking
compared to last iteration. In this case, we must ensure that
the true system (i.e. the tracker) maintains safety in the smaller
TEB. In other words, the relative state (s − Qp∗) must be
contained in K. If so, p∗ is a planner state that satisfies the
safety constraints (line 32-34 of Alg. 1). If the relative state is
not contained in K, there is no planner state that satisfies the safety constraints on the raw path, and
the planner state must be reset. However, we cannot simply reset the planner state to the tracker state,
as the tracker state may be in the sTEB-augmented obstacle region. The reset planner state must be
in the sTEB-augmented obstacle free region (line 35-37 of Alg. 1). To do this, we select a random
point that is in K centered at current tracker state and not in Cp,aug.

8

PARAMETRIC FASTRACK

Figure 5: Trajectory for F, MF PF, and
MPPI. Trajectory colors correspond
to Fig. 3. MPPI does not have a color
since it does not have a β.

Trajectory Planner Benchmark (20 Run Average)
Metrics F MF PF (ours) MPPI
Reached Goal (%) 100 100 100 65
Obstacle Collision (%) 0 0 0 35
Solution Time (s) 37.31 30.11 22.47 10.94

Table 1: Benchmark testing of trajectory planners; each
row is averaged across 20 runs. F: FaSTrack; MF: Meta-
FaSTrack; PF: Parametric FaSTrack; MPPI: Model Predic-
tive Path Integral.

After adjusting the planner control bound, pnext is removed from praw, and is sent to the tracking
system for finding the optimal safe controller. This process is identical to FaSTrack: compute the
relative state after planning system moves, find the optimal control us from ∇V ∞

θ (r;βquery), and
apply us for ∆t. The planner updates its next state, and the algorithm iterates.

5. Results

We validate our method with a 6D Dubin’s car system and a 13D quadcopter system.

5.1. 6D Dubin’s Car System

Given the running example model (6), the online execution of parametric FaSTrack is shown in
Fig. 3. It can be seen that the planner control bound changes as the distance to the obstacle changes.
We performed a benchmark test in Table 1 on four different trajectory planners to compare safety,
speed, and feasibility metrics. Feasibility is satisfied if the tracker reaches the goal, safety is achieved
if there are no collisions, and solution time is the time it takes for the tracker to reach the goal. All of
the testing was done on identical obstacle maps, control inputs, and β (if applicable):
Feasibility. All of the reachability based trajectory planner reaches its goal 100% of the time, while
MPPI only reaches its goal 65% of the time due to collisions.
Safety. All of the reachability based trajectory planners preserve safety over 20 runs, while MPPI
collides with obstacles 35% of the time. An example of collision for MPPI is shown in Fig. 5, since
there are no safety guarantees for MPPI. The reachability planners are able to stay relatively distant
from the obstacles, albeit trading off navigation speed.
Solution Time. MPPI was faster than all of the reachability based trajectory planners on average
because MPPI tracking does not account for safety, thus speed can be prioritized. For the reachability
based methods, parametric FaSTrack was the fastest, averaging 22.47s. Fig. 5 shows the trajectory
profiles of each framework. FaSTrack performed the slowest since it had to plan around the obstacles
to reach the goal. Although Meta-FaSTrack had a similar trajectory profile to Parametric FaSTrack,
PF is able to adapt to its environment every iteration, which resulted in a faster solution time.

9

JEONG GONG BANSAL HERBERT

Figure 6: Online simulation of 13D quadcopter relative system. The color set up is the same as in
Figure 3 Faster planning speed leads to larger error bounds, and thus can only be applied in open
environments. The framework applies higher planner control bounds in relatively open environments
and lower bounds in tight environments. The system did not raise the replanFlag during online
planning, which implies that the system is able to track the planner despite adjusting β.

5.2. 13D Quadcopter System

For simplicity, we directly provide the parameterized relative system with 3 virtual states added:

ṙ1 = r2 − upx, ṙ2 = g tan(r3), ṙ3 = −d1r3 + r4, ṙ4 = −d0r3 + n0ux,

ṙ5 = r6 − upy, ṙ6 = g tan(r7), ṙ7 = −d1r7 + r8, ṙ8 = −d0r7 + n0uy,

ṙ9 = s10 − upz, ṙ10 = kTuz − g, β̇1 = 0, β̇2 = 0, β̇3 = 0,

where ux, uy, uz are tracker controls, upx, upy, upz are planner controls. g = 9.81, n0 = 10, d1 = 8,
d0 = 10, and kT = 0.91, |ux| , |uy| ≤ π/9, uz ∈ [0, 1.5g], and β1, β2, β3 ∈ [0.5, 1.5]. The
parameterized relative system was trained for a total of 14h10m on a NVIDIA A30, with 50k pretrain
iterations and 150k training iterations. Figure 6 depicts the online simulation results in 3D space.
Similar to the Dubin’s car example, the quadcopter initially applies βu at runtime, but slows down
near obstacles and applies βl. Near the end of the time horizon, the quadcopter applies higher β as it
moves away from obstacles.

6. Conclusions

In this work, we introduced a deep learning based modification to FaSTrack, which leverages
online adaptability and high dimensional feasibility of DeepReach for fast and safe online planning.
Our framework naturally trades off the planning speed with safety to move quickly through open
environments and carefully through cluttered environments. Empirical simulation results show that
our method greatly increased the navigation speed up to 40% compared to original FaSTrack work
while preserving safety. Future directions include providing formal probabilistic guarantees for the
trained value function (Lin and Bansal (2023)), proving guaranteed conservative error bounds for
certain planning model formulations (Rubies-Royo et al. (2019)), adaptation to dynamic obstacles
(Fisac et al. (2018)), smoothing the tracker trajectory, and an extension to other sensors like camera.

10

PARAMETRIC FASTRACK

References

Ahmad Ahmad, Calin Belta, and Roberto Tron. Adaptive sampling-based motion planning with
control barrier functions, 2022.

K. Alexis, C. Papachristos, R. Siegwart, and A. Tzes. Robust model predictive flight control of
unmanned rotorcrafts. J. Intelligent & Robotic Systems, 81(3-4):443–469, 2016.

Somil Bansal and Claire Tomlin. DeepReach: A deep learning approach to high-dimensional
reachability. In IEEE International Conference on Robotics and Automation (ICRA), 2021.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 2242–2253. IEEE, 2017.

Javier Borquez, Kensuke Nakamura, and Somil Bansal. Parameter-conditioned reachable sets for
updating safety assurances online. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 10553–10559, 2023. doi: 10.1109/ICRA48891.2023.10160554.

Jason J. Choi, Donggun Lee, Koushil Sreenath, Claire J. Tomlin, and Sylvia L. Herbert. Robust
control barrier-value functions for safety-critical control, 2021.

Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar Sastry. Reach-avoid problems with time-
varying dynamics, targets and constraints. In Proceedings of the 18th international conference on
hybrid systems: computation and control, pages 11–20, 2015.

Jaime F Fisac, Andrea Bajcsy, Sylvia L Herbert, David Fridovich-Keil, Steven Wang, Claire J
Tomlin, and Anca D Dragan. Probabilistically safe robot planning with confidence-based human
predictions. arXiv preprint arXiv:1806.00109, 2018.

David Fridovich-Keil, Sylvia L Herbert, Jaime F Fisac, Sampada Deglurkar, and Claire J Tomlin.
Planning, fast and slow: A framework for adaptive real-time safe trajectory planning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 387–394. IEEE, 2018.

S. Herbert*, M. Chen, S. Han, S. Bansal, J. Fisac, and Claire J. Tomlin. Fastrack: a modular
framework for fast and guaranteed safe motion planning. IEEE Conference on Decision and
Control, 2017. URL https://arxiv.org/pdf/1703.07373.pdf.

Frank J. Jiang, Yulong Gao, Lihua Xie, and Karl H. Johansson. Ensuring safety for vehicle parking
tasks using hamilton-jacobi reachability analysis. In 2020 59th IEEE Conference on Decision and
Control (CDC), pages 1416–1421, 2020. doi: 10.1109/CDC42340.2020.9304186.

M. Kobilarov. Cross-entropy motion planning. Int. J. Robotics Research, 31(7):855–871, 2012.

Albert Lin and Somil Bansal. Generating formal safety assurances for high-dimensional reachability.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 10525–10531,
2023. doi: 10.1109/ICRA48891.2023.10160600.

Aniketh Manjunath and Quan Nguyen. Safe and robust motion planning for dynamic robotics via
control barrier functions, 2021.

11

https://arxiv.org/pdf/1703.07373.pdf

JEONG GONG BANSAL HERBERT

Kensuke Nakamura and Somil Bansal. Online update of safety assurances using confidence-based
predictions. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
12765–12771, 2023. doi: 10.1109/ICRA48891.2023.10160828.

S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control technology. Control
Engineering Practice, 11(7):733–764, 2003.

Vicenç Rubies-Royo, David Fridovich-Keil, Sylvia Herbert, and Claire J. Tomlin. A classification-
based approach for approximate reachability. In 2019 International Conference on Robotics and
Automation (ICRA), pages 7697–7704, 2019. doi: 10.1109/ICRA.2019.8793919.

Atefeh Sahraeekhanghah and Mo Chen. Pa-fastrack: Planner-aware real-time guaranteed safe
planning. In 2021 60th IEEE Conference on Decision and Control (CDC), pages 2129–2136.
IEEE, 2021.

J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding locally optimal,
collision-free trajectories with sequential convex optimization. In Proc. Robotics: Science and
Systems, 2013.

Hoseong Seo, Donggun Lee, Clark Youngdong Son, Inkyu Jang, Claire J. Tomlin, and H. Jin Kim.
Real-time robust receding horizon planning using hamilton–jacobi reachability analysis. IEEE
Transactions on Robotics, 39(1):90–109, 2023. doi: 10.1109/TRO.2022.3187291.

Sander Tonkens and Sylvia Herbert. Refining control barrier functions through hamilton-jacobi
reachability, 2022.

Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1433–1440, 2016. doi: 10.1109/ICRA.2016.7487277.

Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou.
Information-theoretic model predictive control: Theory and applications to autonomous driv-
ing. IEEE Transactions on Robotics, 34(6):1603–1622, 2018. doi: 10.1109/TRO.2018.2865891.

12

	Introduction
	Background
	Fast and Safe Tracking (FaSTrack) Framework
	DeepReach and Parameter-Conditioned Reachability

	Offline Parameterized Value Function Training
	Online Adaptive Safe Planning and Control
	Results
	6D Dubin's Car System
	13D Quadcopter System

	Conclusions

