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Abstract
We investigate the Distributionally Robust Regret-Optimal (DR-RO) control of discrete-time linear
dynamical systems with quadratic cost over an infinite horizon. Regret is the difference in cost
obtained by a causal controller and a clairvoyant controller with access to future disturbances.
We focus on the infinite-horizon framework, which results in stability guarantees. In this DR
setting, the probability distribution of the disturbances resides within a Wasserstein-2 ambiguity
set centered at a specified nominal distribution. Our objective is to identify a control policy
that minimizes the worst-case expected regret over an infinite horizon, considering all potential
disturbance distributions within the ambiguity set. In contrast to prior works, which assume time-
independent disturbances, we relax this constraint to allow for time-correlated disturbances, thus
actual distributional robustness. While we show that the resulting optimal controller is non-rational
and lacks a finite-dimensional state-space realization, we demonstrate that it can still be uniquely
characterized by a finite dimensional parameter. Exploiting this fact, we introduce an efficient
numerical method to compute the controller in the frequency domain using fixed-point iterations.
This method circumvents the computational bottleneck associated with the finite-horizon problem,
where the semi-definite programming (SDP) solution dimension scales with the time horizon.
Numerical experiments demonstrate the effectiveness and performance of our framework.
Keywords: Distributionally Robust Control, Regret-Optimal Control, Wasserstein distance, Infinite-
Horizon Control.

1. Introduction

Ensuring reliable and effective operation in the face of uncertainty is a fundamental challenge
in decision-making and control. Control systems are inherently subject to diverse uncertainties,
including exogenous disturbances, measurement inaccuracies, modeling discrepancies, and temporal
variations in the underlying dynamics (van der Grinten, 1968; Doyle, 1985). Disregarding these
uncertainties during controller design can lead to significant performance degradation and even
unsafe and unintended behavior (Samuelson and Yang, 2017).

Traditionally, stochastic and robust control frameworks have addressed this issue primarily
through the lens of exogenous disturbances (Kalman, 1960; Zames, 1981; Doyle et al., 1988).
Stochastic control, exemplified by Linear–quadratic–Gaussian (LQG), or H2, control, aims to
minimize the expected cost, assuming disturbances are generated randomly from a known probability
distribution (Hassibi et al., 1999). However, in practice, the true distribution is often estimated
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from sampled data, rendering this approach vulnerable to inaccurate models. Robust control, on the
other hand, seeks to minimize the worst-case cost across a set of potential disturbance realizations,
like those with bounded energy or power (H∞ control) (Zhou et al., 1996). While this guarantees
robustness against adversarial disturbances, it can be overly conservative, discarding potentially
valuable statistical information. To address this issue, two recent approaches have emerged.

Regret-Optimal (RO) Control. Introduced by Sabag et al. (2021); Goel and Hassibi (2023), this
framework provides a promising approach to address both stochastic and adversarial uncertainties. It
defines regret as the performance gap between a causal control policy and a clairvoyant, non-causal
policy with perfect knowledge of the system and future disturbances. In the full-information Linear-
Quadratic Regulator (LQR) setting, RO controllers minimize the worst-case regret across all bounded
energy disturbances (Sabag et al., 2021; Goel and Hassibi, 2023). Furthermore, the infinite-horizon
RO controller admits a state-space form, rendering this approach amenable to efficient real-time
computation (Sabag et al., 2021).

Extensions of this framework have been explored for the measurement-feedback setting (Goel
and Hassibi, 2021a; Hajar et al., 2023b), the dynamic environment setting (Goel and Hassibi, 2021b),
safety critical control (Martin et al., 2022; Didier et al., 2022), filtering (Sabag and Hassibi, 2022;
Goel and Hassibi, 2023), and distributed control (Martinelli et al., 2023). While these controllers
closely track the performance of the non-causal controller in the worst-case disturbance setting, they
can, however, become overly conservative when dealing with stochastic disturbances.

Distributionally Robust (DR) Control. This framework, on the other hand, addresses uncertainty
in system dynamics and disturbances by considering ambiguity sets, i.e., a set of plausible probability
distributions, rather than considering a single distribution as in H2 or worst-case realization of
disturbances as in H∞ and RO control (Yang, 2020; Kim and Yang, 2021; Hakobyan and Yang,
2022; Taskesen et al., 2023; Aolaritei et al., 2023a,b). This approach seeks to design controllers that
perform well across all probability distributions of disturbances within an ambiguity set. The size
of the ambiguity set allows one to control the amount of desired robustness against distributional
uncertainty so that, unlike H∞ and RO controllers, the resulting controller is not overly conservative.

While various distributional mismatch measures like total variation (Tzortzis et al., 2014, 2016)
and KL divergence (Liu et al., 2023) are considered in DR control, ambiguity sets are commonly
chosen as Wasserstein-2 balls around a nominal distribution due to computational tractability (Mo-
hajerin Esfahani and Kuhn, 2018; Gao and Kleywegt, 2022). Therefore, this approach provides a
tractable means to bridge the gap between the realms of stochastic and adversarial uncertainties.

1.1. Contributions

In this work, we consider the Wasserstein-2 distributionally robust regret-optimal (DR-RO) control
framework introduced by Taha et al. (2023) for the full-information LQR setting and extended by
Hajar et al. (2023a) to the partial-observability one. DR-RO control aims to design controllers
that minimize the worst-case expected regret across all distributions chosen adversarially within a
Wasserstein-2 ambiguity set. We summarize our contributions as follows.

Stabilizing Infinite-Horizon Controller. Rather than the finite-horizon setting prevalent in the DR
control literature (Hakobyan and Yang, 2022; Taskesen et al., 2023; Aolaritei et al., 2023b; Taha et al.,
2023; Hajar et al., 2023a), we focus on the infinite-horizon DR-RO control in the full-information
LQR setting. Thus, we are able to provide long-term stability and robustness guarantees.
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Robustness to Arbitrarily Correlated Disturbances. Unlike several prior works which assume
time-independence of the disturbances (Yang, 2020; Kim and Yang, 2021; Hakobyan and Yang,
2022; Taskesen et al., 2023; Zhong and Zhu, 2023; Aolaritei et al., 2023a,b), we do not impose such
assumptions so that the resulting controllers are robust against time-correlated and non-Gaussian
disturbances, thus better capturing distributional robustness.

Computationally Efficient Controller Synthesis. Leveraging a strong duality result, we obtain the
exact Karush-Khun-Tucker (KKT) conditions for the worst-case distribution and the optimal causal
controller. We show that, although the resulting controller is non-rational, i.e., it does not admit a
finite state-space form, it does admit a non-linear finite-dimensional parametric form. We exploit
this parametric structure and provide a computationally efficient numerical method to compute the
optimal DR-RO controller in the frequency domain via fixed-point iterations. Prior works focus on
finite horizon problems (see Taha et al. (2023); Hajar et al. (2023a); Taskesen et al. (2023)) and are
hampered by the fact that they require solving a semi-definite program (SDP) whose size scales with
the time horizon. This prohibits their applicability when the time horizon is large. Our approach
enables efficient implementation of the infinite-horizon DR-RO controller.

A concurrent study by Brouillon et al. (2023) addresses the constrained infinite-horizon DR
control problem with time-correlated disturbances, stability guarantees, and reduction to a finite
convex program. Unlike our approach, it assumes order T stationarity, formulates a stationary control
problem, and uses ambiguity sets centered on nominal empirical distributions, similar to Yang (2020)
and Kim and Yang (2021).

2. Preliminaries and Problem Setup

Notations: From hereon, calligraphic letters (K,M, L, etc.) denote operators. I is the identity
operator. Sans serif type letters (x, u, w, etc.) denote infinite sequences. Boldface letters (K, C, w,
etc.) denote matrices with finite-horizon. AsteriskM∗ denotes the adjoint ofM and ≻ denotes
the positive-definite ordering. P(·) denotes the space of probability measures over a domain. K
stands for (Hardy-2) space of causal block Toeplitz operators. Tr is the normalized trace function
over block Toeplitz operators such that Tr(I) = p, and tr is the trace of matrices. ∥·∥op and ∥·∥F are
the operator (H∞) and Frobenius (H2) norms for operators, respectively. ∥·∥ is the Euclidean norm
of vectors. {M}+ and {M}− denote the causal and strictly anti-causal parts of an operatorM.

2.1. A Linear Dynamical System

We consider a discrete-time linear time-invariant (LTI) dynamical system expressed in its state-space
representation as follows:

xt+1 = Axt +Buut +Bwwt+1, (1)

Here, xt ∈ Rn denotes the state, ut ∈ Rd the control input, and wt ∈ Rp the exogenous disturbance
process. We assume that (A,Bu) and (A,Bw) are stabilizable.

In the rest of this paper, we adopt an operator-theoretic representation of system dynamics (1). To
this end, we denote by x := {xt}t∈Z, u := {ut}t∈Z, and w := {wt}t∈Z the bi-infinite state, control
input and disturbance sequences, respectively. For a finite-horizon index set IT := {−T,−T+1, . . . T−
1, T} with T > 0, we adopt the notation xT := {xt}t∈IT , uT := {ut}t∈IT , and wT := {wt}t∈IT to
denote the finite-horizon counterparts. Using these definitions, we can represent the infinite-horizon
system dynamics (1) equivalently in operator notation as
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x = Fu+ Gw, (2)

where F and G are bi-infinite strictly causal (i.e., strictly lower triangular) and causal (i.e., lower
triangular) time-invariant block Toeplitz operators, respectively, corresponding to the dynamics (1).
We use FT and GT to denote the finite-horizon counterparts of F and G for the interval IT .

Controller. In this paper, we consider linear time-invariant (LTI) disturbance feedback control
(DFC) policies K : w→ u in the form

u = Kw. (3)

Here, K ∈ K stands for the controller, a causal and time-invariant block Toeplitz operator mapping
past disturbance realizations to control inputs. We define the closed-loop transfer operator as

TK : w 7→
[
x
u

]
:=

[
FK + G
K

]
w, (4)

which maps the disturbances to the regulated output and the control input of the system (1) under a
fixed control policy K. We similarly adopt the notations KT and TK,T to respectively denote the
finite-horizon controller and closed-loop transfer matrix for the interval IT .

Cost. We assume that the cumulative cost incurred by a control policy KT within the time interval
IT for the disturbance realization wT is given by:

costT (KT ,wT ) :=
∑

t∈IT
x⊺tQxt + u⊺tRut, (5)

where Q,R ≻ 0. By redefining xt ← Q
1
2xt and ut ← R

1
2ut, we can rewrite the cumulative cost (5)

in terms of the closed-loop transfer operator (4) as costT (KT ,wT ) = w∗
TT

∗
K,TTK,TwT .

2.2. The Regret Measure

In the full-information setting, there exists a unique optimal non-causal policy, K◦, defined as

K◦ := −(I + F∗F)−1F∗G, (6)

that minimizes the infinite-horizon cost, limT→∞
1

|IT | costT (KT ,wT ), and a unique optimal non-
causal policy, K◦,T , defined as

K◦,T := −(I + F∗
TFT )

−1F∗
TGT , (7)

that minimizes the finite-horizon cost (5) for all bounded power disturbance realizations (Hassibi
et al., 1999; Sabag et al., 2021). Since a non-causal controller is physically unrealizable, we aim to
design a causal control policy that performs as best as the optimal non-causal policy K◦, which has
access to the entire disturbance trajectory at the outset. To quantify the disparity in accumulated costs
between a causal controller and the optimal non-causal controller , K◦,T , we define the regret as

RegretT (KT ,wT ) := costT (KT ,wT )−costT (K◦,T ,wT )

= w∗
T

(
T∗

K,TTK,T−T∗
K◦,TTK◦,T

)
wT .

(8)

Put differently, regret measures the excess cost that a causal controller suffers as a result of not
foreseeing the realization of future disturbances. In the regret-optimal control framework, the
objective is to design a causal controller minimizing the worst-case regret among all bounded energy
disturbances, formulated as follows:
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Problem 1 (Regret-Optimal Control (Sabag et al., 2021)) Find a causal control policy, K, that
minimizes the time-averaged worst-case regret as T →∞, i.e.,

inf
K∈K

lim
T→∞

1

|IT |
sup

∥wT ∥2≤1

RegretT (KT ,wT ). (9)

By leveraging the time-invariance of the dynamics (1) and the controller (3), problem (9) can be
reframed as infK∈K ∥T ∗

KTK − T ∗
K◦
TK◦∥op, which can be solved by reducing it to a Nehari problem

(Sabag et al., 2021). The resulting controller closely mirrors the non-causal controller’s performance
under worst-case disturbance but may be overly conservative in stochastic disturbance scenarios.

2.3. Distributionally Robust Regret-Optimal Control

This paper explores the distributionally robust regret-optimal control approach, aiming to design a
causal controller minimizing the worst-case expected regret within an ambiguity set of probability dis-
tributions of disturbances. The ambiguity set during the time interval IT is described as a Wasserstein-
2 ball of radius r

√
|IT | centered around a nominal probability distribution P◦ ∈ P(Rp|IT |), i.e.,

WT :=
{
P ∈P(Rp|IT |) |W2(P, P◦) ≤ r

√
|IT |

}
. (10)

Here, the Wasserstein-2 distance is defined as

W2(P1,P2)
2 := inf

π∈Π(P1,P2)

∫
∥w1 − w2∥2 π(dw1, dw2), (11)

where the set Π(P1,P2) consists of all joint distributions with marginals P1 and P2 (Villani, 2009;
Santambrogio, 2015). The growth rate of the radius with the horizon is justified, as the total squared
energy of a random vector of iid variables scales linearly with its dimension.

In Taha et al. (2023); Hajar et al. (2023a), the worst-case expected regret incurred by a causal
controller KT during the time interval IT is given by

sup
P∈WT

EP [RegretT (KT ,wT )] (12)

where EP denotes the expectation under the distribution P such that wT ∼P. Using this formulation
in the finite-horizon, we define the worst-case expected regret in infinite-horizon as follows:

Definition 2 (Worst-Case Expected Regret) The time-averaged worst-case expected regret suf-
fered by a causal control policy, K ∈ K , over an infinite horizon is given by

R(K,w) := lim
T→∞

1

|IT |
sup

P∈WT

EP [RegretT (KT ,wT )] . (13)

Using this definition, we formally cast the infinite-horizon DR-RO control problem as follows:

Problem 3 (Distributionally Robust Regret-Optimal (DR-RO) Control ) Find a causal control
policy, K, that minimizes the time-averaged worst-case expected regret (13) as T →∞, i.e.,

inf
K∈K

lim
T→∞

1

|IT |
sup

P∈WT

EP [RegretT (KT ,wT )]. (14)

In Section 3, we provide an equivalent formulation to Problem 3 in terms of the closed-loop transfer
operator by appealing to strong duality.
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3. Main Theoretical Results

In this section, we present our main theorems. In Theorem 5, we first establish a strong duality
reformulation for the infinite-horizon worst-case expected regret in operator form. Exploiting the
dual formulation, we reduce solving Problem 3 into solving a suboptimal Problem 6. In Theorem 9,
we present the suboptimal controller and argue that it is stabilizing. Due to space constraints, we
defer the proofs of our theorems to the extended version (Kargin et al., 2023).

3.1. Reduction to a suboptimal Problem via Strong Duality

In the finite-horizon DR-RO problem, Theorem 2 in Taha et al. (2023) establishes an equivalent
formulation for the worst-case expected regret (12) as a single-parameter optimization problem via
strong duality. In Theorem 5, we establish an analogous dual reformulation for the infinite-horizon
worst-case expected regret (13) as a single-parameter search problem. For ease of notation and clarity
of results, we make the following assumption.

Assumption 4 For any finite-horizon interval IT , the nominal distribution, w◦,T ∼P◦, is absolutely
continuous wrt the Lebesgue measure with EP◦ [w◦,Tw

∗
◦,T ] = I .

Theorem 5 (Strong Duality for (13)) Let CK := T ∗
KTK − T ∗

K◦
TK◦ and K ∈ K be a a causal and

time-invariant policy. Under assumption 4, the infinite-horizon worst-case expected regret (13)
incurred by K attains a finite value and is equivalent to the following dual problem:

inf
γ≥0

γ(r2 − Tr I) + γ Tr (I − γ−1CK)−1 s.t. γI ≻ CK. (15)

Furthermore, the worst-case disturbance, w⋆, can be identified from the nominal disturbance, w◦, as
w⋆ = (I − γ−1⋆ CK)−1w◦ where γ⋆ is the optimal solution to (15), which satisfies the following:

Tr ((I − γ−1⋆ CK)−1 − I)2 = r2. (16)

Using the dual problem (15), we can rewrite the DR-RO problem (14) as

inf
K∈K

inf
γ≥0

γ(r2 − Tr I) + γ Tr (I − γ−1CK)−1 s.t. γI ≻ CK. (17)

By exchanging the infima and fixing γ, we can first find a suboptimal solution Kγ to (17). Using the
suboptimal solutions Kγ , we can search for the optimal γ⋆ by solving equation (16). Therefore, we
restrict our attention to the suboptimal DR-RO problem stated below.

Problem 6 (Suboptimal DR-RO Control) For a fixed γ > γRO := infK∈K ∥CK∥op, find a causal
control policy, Kγ , that minimizes the suboptimal objective function (15) i.e.,

inf
K∈K

Tr (I − γ−1CK)−1 s.t. γI ≻ CK. (18)

Remark 7 Note that as r →∞, the optimal γ⋆ approaches the lower bound ∥CK∥op, i.e., the worst-
case expected regret (13) reaches to the worst-case regret as in Sabag et al. (2021) and the optimal
DR-RO controller recovers the optimal RO controller. The optimal regret, γRO, acts as a global lower
bound on γ. Conversely, as r → 0, γ⋆ →∞, leading the worst-case expected regret (13) to nominal
expected regret and the optimal DR-RO controller recovers the optimal H2 controller. Adjusting r
enables the DR-RO controller to interpolate between the RO and H2 controllers.
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3.2. Solution for the Suboptimal Problem 6

In its present form, Problem 6 is challenging since the controller appears both in an operator inverse,
as well as in the constraint γI≻CK. An alternative formulation via Fenchel duality follows.

Lemma 8 (Duality for the Suboptimal Problem 6) Let γ > γRO be fixed and let assumption 4
hold. The γ-optimal DR-RO control Problem 6 is equivalent to the following dual problem

sup
M≻0

inf
K∈K

−Tr(M) + 2Tr(
√
M) + γ−1Tr(CKM). (19)

The concave-convex problem (19) is more manageable since the inner minimization wrt K ∈ K can
be solved via the Wiener-Hopf technique (Kailath et al., 2000). Introducing the spectral factorization
∆∗∆ = I + F∗F with causal and causally invertible ∆, we present our second main result in
Theorem 9, the solution to the suboptimal DR-RO Problem 6.

Theorem 9 (Suboptimal DR-RO Controller) The γ-suboptimal DR-RO controller Kγ of DR-RO
Problem 6 coincides with the saddle point (Kγ ,Mγ) of the dual problem (19). Furthermore, let
Lγ denote the causal and causally invertible spectral factor ofMγ such thatMγ = LγL∗γ . Then
(Kγ ,Mγ) uniquely satisfies the following set of equations:

Kγ = ∆−1 {∆K◦Lγ}+ L
−1
γ , and L∗γLγ =

1

4

(
I+

√
I + 4γ−1{∆K◦Lγ}∗−{∆K◦Lγ}−

)2

. (20)

The proof of Theorem 9, given in the extended version (Kargin et al., 2023), is built upon the KKT
conditions for (19) and the Wiener-Hopf technique (Kailath et al., 2000). Note that for γ > γRO, the
worst-case expected regret (13) is finite, which allows us to present Corollary 10.

Corollary 10 For any fixed γ > γRO, the suboptimal controller Kγ stabilizes the system dynamics.

4. An Algorithm for Irrational Controller Synthesis

In section 4.1, we first show that, in the frequency domain, the KKT conditions (20) are uniquely
determined by a finite-dimensional parameter, Bγ . This allows us to argue that the suboptimal
controller is irrational, and thus does not admit a finite-dimensional state-space realization. In
section 4.2, for any fixed γ, we propose a fixed-point iteration to find Bγ and thereby to compute the
suboptimal controller, Kγ(e

jω). The optimal γ⋆, and thus the optimal DR-RO controller Kγ⋆(e
jω),

can be found by using the bisection method on equation (16).

4.1. Finite-Dimensional Parametrization of the Suboptimal Controller

Defining Sγ,−(e
jω) := {∆K◦Lγ}−(ejω), and Nγ(e

jω) := Lγ(e
jω)

∗
Lγ(e

jω), and using the identity
{X}+=X−{X}− , we restate the KKT equations (20) in the frequency domain as follows:

Kγ(e
jω) = K◦(e

jω)−∆−1(ejω)Sγ,−(e
jω)L−1γ (ejω), (21)

Nγ(e
jω) =

1

4

(
I+

√
I+4γ−1S∗

γ,−(e
jω)Sγ,−(ejω)

)2
. (22)

Furthermore, we define the LQR controller Klqr :=(R+B∗
uPBu)

−1B∗
uPA and the closed-loop

matrix AK := A−BuKlqr where P ≻ 0 is the unique stabilizing solution to the LQR Riccati
equation P = Q + A∗PA − A∗PBu(R+B∗

uPBu)
−1B∗

uPA. In Lemma 11, we show that the
strictly anticausal transfer function Sγ,−(e

jω) admits a finite-dimensional state-space representation.
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Lemma 11 Let A := A∗
K , D := A∗

KPBw, and C := −(R+B∗
uPBu)

−∗/2B∗
u. We have that

Sγ,−(e
jω) = C(e−jωI −A)−1Bγ , where Bγ :=

1

2π

∫ 2π

0
(I − ejωA)−1DLγ(e

jω)dω. (23)

Notice that the rhs of (22) for Nγ(e
jω) involves the square-root of rational term Sγ,−(e

jω)∗Sγ,−(e
jω).

In general, square root does not preserve rationality. We thus get Corollary 12.

Corollary 12 For any fixed γ ∈ (γRO,∞), Nγ(e
jω) and the suboptimal DR-RO controller, Kγ(e

jω),
are irrational. Thus, Kγ(e

jω) does not admit a finite-dimensional state-space form.

Even though Kγ(e
jω) does not admit a finite-dimensional state-space form, Lemma 11 suggests a

finite-dimensional parametrization of Nγ(e
jω) through Bγ . Theorem 13 establishes that Bγ uniquely

determines Nγ(e
jω), and thus the suboptimal controller Kγ(e

jω).

Theorem 13 (Fixed-Point Solution) Fix γ>γRO and consider the following set of mappings:

F1,γ : B 7→ 1

4

(
I+

√
I+4γ−1B

⊺
(e−jωI−A)−∗C

⊺
C(e−jωI−A)−1B

)2

(24)

F2 : N(ejω) 7→ L(ejω), F3 : L(e
jω) 7→ B :=

1

2π

∫ 2π

0
(I − ejωA)−1DL(ejω)dω. (25)

where F2 returns a unique spectral factor of N(ejω) > 0. The composition F3◦F2◦F1,γ : B 7→ B
admits a unique fixed-point Bγ , and Nγ(e

jω) :=F1,γ(Bγ) satisfies the KKT conditions (20).

4.2. Algorithm Description

Motivated by Theorem 13, we introduce Algorithm 1 to compute the suboptimal controller Kγ(e
jω)

at uniformly sampled points on the unit circle. We start the algorithm with an initial estimate of
the parameter B(0)

γ . At the nth iteration, we construct the functions S(n)
γ,−(e

jω) and N
(n)
γ (ejω) from

B
(n)
γ using the mappings in (24), (25). We subsequently compute the the spectral factor L(n)

γ (ejω)

at uniformly sampled points on the unit circle,from which we compute the next iterate B
(n+1)
γ

via numerical integration of F4. Upon convergence upto a tolerance, we ascertain the suboptimal
controller Kγ(e

jω) for a fixed γ > γRO at every sampled frequency point using (21).

Spectral Factorization: Since there is no general closed-form formula for spectral factorization of
irrational spectra, we can compute Lγ(e

jω) only at finitely many frequencies. Focusing on single-
input systems, we employ a discrete Fourier transform (DFT) based factorization method by Rino
(1970), highlighted in Algorithm 2 in Kargin et al. (2023), to approximate Lγ(e

jω) at uniformly
sampled points on the unit circle. This method, tailored for scalar irrational functions, proves
efficient as the associated error term, featuring as a multiplicative phase factor, rapidly diminishes
with increasing number of samples.

5. Experimental Results

In this section, we showcase the applicability of the DR-RO controller, and its performance, compared
to H2, H∞, and regret-optimal controllers. We focus our investigation on a set of 4 diverse systems
from Leibfritz and Lipinski (2003), and, in particular, use the chemical reactor system, [REA4],
as our main benchmark. The system has 8 states and is SISO. We perform all experiments using
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Algorithm 1: Distributionally Robust Regret-Optimal Control via Fixed-Point Iteration
Data: γ > γRO, initial B(0)

γ , and 2k equally spaced values of ω ∈ [0, 2π)

for n ≥ 0 do
Set S(n)

γ,−(e
jω)← C(ejωI −A)−1B

(n)
γ

Set N (n)
γ (ejω)← 1

4

(
I +

√
I + 4γ−1S

(n)
γ,−(e

jω)∗S
(n)
γ,−(e

jω)

)2

Compute L
(n)
γ (ejω)← SpectralFactorization(N (n)

γ (ejω))

Compute B
(n+1)
γ ← 1

2π

∫ π

−π
(I − ejωA)−1DL(n)

γ (ejω)dω

if ∥B(n+1)
γ −B

(n)
γ ∥ < tol then

Compute Kγ(e
jω)← K◦(e

jω)−∆−1(ejω)S
(n)
γ,−(e

jω)L
(n)
γ (ejω)−1

break
end

end

MATLAB, on a Macbook Air with Apple M1 processor and 8 GB of RAM. We specify the nominal
distribution as Gaussian, with zero mean and identity covariance. We investigate various values for
the radius r, and for each solve the optimization problem using the algorithm outlined in section 4.

For the system [REA4], a comparative analysis of worst-case expected regret cost as defined in (2)
is conducted against the H2, H∞ Hassibi et al. (1999), and RO Sabag et al. (2021) controllers, con-
sidering the unique worst-case distribution associated with each controller. The results are depicted
in Figures 1(a) and 1(b). We redo the analysis considering 3 other systems (described in Leibfritz
and Lipinski (2003)), and we show the results in Table 1 in the extended version Kargin et al. (2023).
Another performance metric considered is the operator norm of TK minimized by the H∞ controller,
which is expressed, in the frequency domain as: ∥TK∥2op = max

0≤ω≤2π
σmax(TK(ejω)∗TK(ejω)). This

metric is visualized across all frequencies in Figure 2.
Figures 1(a), and 1(b) emphasize the robust performance of the DR controller in minimizing

worst-case expected regret under worst-case disturbance conditions for any given parameter r.
Notably, the DR controller exhibits a versatile nature, closely mirroring the H2 controller for smaller
r while converging towards the behavior of the RO controller for larger r. This dual capability
underscores its adaptability to different robustness requirements, and aligns with the theoretical
insights outlined in Remark 7. Moreover, in Figure 2, the performance of the DR controller exhibits
an interpolation between the H2 and RO controllers across all frequencies.

Finally, we note that Algorithm 1, coupled with the bisection technique, exhibits notable effi-
ciency; the execution time is 5.8 seconds for [REA4] system, for r = 0.79. This highlights the
significance of our approach compared to other DR control methods that rely on an SDP that scales
with the time-horizon and number of states (e.g., Taha et al. (2023) and Hajar et al. (2023a) could
only address systems with smaller dimensions and a time-horizon of only 10 steps).

6. Conclusion and Future Works

We studied DR-RO control for discrete-time linear dynamical systems over an infinite horizon. Focus-
ing on regret as a measure of performance introduces a nuanced perspective, while the incorporation
of uncertainties within a Wasserstein-2 ambiguity set provides a robust framework for handling un-
predictable disturbances. The infinite horizon setting guarantees stability and robustness, and aligns

9
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Figure 1: (a) The worst-case expected regret cost of each controller for different values of r, for
system [REA4]. (b) The percentage difference in the worst case regret relative to the
DR-RO controller. (a) and (b) show that DR-RO minimizes the cost at all r′s, and for
small (large) r, the cost of DR-RO controller matches that ofH2 (RO). The cost of the DR
controller is less than that of H2 and RO by 14.5%, and of H∞ by 89.7% for r = 0.639.
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Figure 2: The operator norm, ∥T ∗
K(ejω)TK(ejω)∥, of each controller at different frequency values,

for system [REA4]. The cost of the DR-RO controller interpolates between H2 and RO
according to the value of r, across all frequencies. For a small (large) r, DR matches H2

(RO) across all frequencies.

the framework with real-world demands since finite-horizon methods are hampered by ill-scaled
SDPs. A key departure from prior research is our deliberate consideration of dependencies among
disturbances over time. Thus, this approach better captures the essence of distributional robustness.
Even though the optimal controller is irrational, we introduce a computationally efficient numerical
method based on fixed-point iterations to find the controller in the frequency domain. Validation
through numerical experiments demonstrates the effectiveness of our framework. Looking forward,
avenues for future research include finding good low-dimensional rational approximations for the
controller, providing convergence guarantees for the fixed point method, extending the algorithm to
MIMO systems by exploring irrational matrix spectral factorization (see Nurdin (2005); Ephremidze
(2010)), and extending the current framework to the partially observable case.
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