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Abstract
This article considers output-feedback control of systems where the function mapping states to
measurements has a set-valued inverse. We show that if the set has a bounded number of ele-
ments, then minimax dual control of such systems admits finite-dimensional information states.
We specialize our results to a discrete-time integrator with magnitude measurements and derive a
surprisingly simple sub-optimal control policy that ensures finite gain of the closed loop. The sub-
optimal policy is a proportional controller where the magnitude of the gain is computed offline, but
the sign is learned, forgotten, and relearned online.

The discrete-time integrator with magnitude measurements captures real-world applications
such as antenna alignment, and despite its simplicity, it defies established control-design methods.
For example, whether a stabilizing linear time-invariant controller exists for this system is unknown,
and we conjecture that none exists.
Keywords: Dual control, robust adaptive control, minimax control, dynamic programming, infor-
mation state

1. Introduction

This article concerns ouput feedback control of discrete-time systems whose measurement equa-
tions have a bounded number of solutions. As a prototype example, we consider the discrete-time
integrator, where the controller only has access to the magnitude of the state. The state xt, the con-
trol signal ut, and disturbance wt are real-valued scalars. The system is described by the recursion

xt+1 = xt + ut + wt. (1)

We consider causal control policies, µ, that map measurements of the state magnitude

yt = |xt| (2)

to control signals
ut = µt(y0, y1, . . . , yt, u0, . . . , ut−1). (3)

The uncertain sign in (2) captures some of the difficulties that may arise when optimizing a system
based on measurements of some (locally) convex or concave performance quantity, as in Figure 1(a).
The problem is also closely related to stabilizing an inverted pendulum by feedback from height
measurements rather than angular measurements, as in Figure 1(b). This plain-looking problem
captures a surprising amount of complexity:

1. Exploration vs. exploitation. The more effectively we control the system, the less confident
we become about the state’s sign. If the system ever reaches y = 0, the state’s sign informa-
tion is lost.

© 2024 O. Kjellqvist.



KJELLQVIST

θ

(a)

θ −θ
h

(b)

Figure 1: Examples of physical systems where the sign of the state is ambiguous: The left figure
illustrates a receiver with an uncertain and potentially non-stationary source location. The
objective is to adjust the receiver’s position to an angle that maximizes signal intensity.
Typically, the receiver’s radiant sensitivity is symmetric relative to deviations from the
incidence angle. The right figure shows an inverted pendulum, which is regulated by
monitoring the pendulum’s height.

2. No stabilizing linear time-invariant controller. Previous work report no stabilizing linear
time-invariant controller for the system (1)–(3) Rosdahl and Bernhardsson (2020); Alspach
(1972) and the system cannot be stabilized by proportional feedback1. This author conjec-
tures that there exists no finite-dimensional linear time-invariant controller that stabilizes the
system.

3. Extended Kalman filter. The extended Kalman filter (EKF) is a popular algorithm for estimat-
ing a nonlinear system’s state, often coupled with certainty-equivalence control. However, the
measurement equation (2) is not differentiable at x = 0, and the EKF is not directly applica-
ble. One may substitute the measurement equation with yt = x2t to recover differentiability,
but this substitution results in an unobservable linearization.

4. Myopic Controller. The Myopic controller Wittenmark (1995) associated with minimizing
the current cost x2t + u2t is not stabilizing.

In this article, we will design a control policy (3) that ensures that the induced ℓ2-gain from w
to (x, u) is less than some positive quantity γ. That is, the inequality

N∑
t=0

(x2t + u2t ) ≤ γ2
N∑
t=0

w2
t + β(x0) (4)

must be fulfilled for all N ≥ 0, real-valued function β and realizations w0:N := w0, w1, . . . , wN of
the disturbance sequence. The condition (4) generalizes the classical H∞-norm for linear systems.
The function β is called a bias term and is used to capture the effect of the initial state. The small-
gain theorem provides sufficient conditions for robust stability against feedback perturbations with
induced ℓ2-norm less than γ−1. We refer the reader to (Khalil, 2002, Chapter 5) for a detailed

1. A linear time-varying controller can stabilize the system. For example, ut = (−1)tyt will ensure xt = 0 for all
t ≥ 2, for any x0 and wt = 0.
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discussion on finite-gain stability and the small-gain theorem. Surprisingly, we will see that it is
possible to compress the observed output trajectory (y0:t, u0:t−1) using two recursively computed
quantities r+t and r−t . These quantities correspond to the smallest feasible disturbance trajectory
compatible with the observed outputs and sign(xt) = 1 or sign(xt) = −1. Together with yt, they
make a sufficient statistic for optimal control of a corresponding dynamic game.

The quantities follow the recursions

r+t+1 = y2t + u2t − γ2max{r+t + (yt+1 − ut − yt)
2, r−t + (yt+1 − ut + yt)

2},
r−t+1 = y2t + u2t − γ2max{r+t + (−yt+1 − ut − yt)

2, r−t + (−yt+1 − ut + yt)
2}.

(5)

In Section 3, we will show that these quantities are sufficient for ensuring bounded ℓ2 gain and
summarize our conclusions about the magnitude control problem in Proposition 1.

Proposition 1 An admissible policy µ exists that ensures ℓ2-gain smaller than γ if, and only if, it
is achievable with a policy of the form ut = ηt(yt, r

+
t , r

−
t ). Further, the controller η(y, r+, r−) =

0.7 sign(r− − r+)y achieves ℓ2-gain less than 4.

We remark that η is admissible as r+t and r−t are functions of previous measurements and control
signals. Via substitution, one can recover µ.

1.1. Related work

Adaptive control From the adaptive control perspective, system (1), (2) could be interpreted as
a linear system with uncertain time-varying parameters. Several methods are described in excel-
lent textbooks like (Goodwin and Sin, 2009, Chapter 6.7) that apply uncertain linear time-varying
systems. However, these methods rely on a separation of time scales between the state dynamics,
the parameter adaptation, and the parameter variation. Hence, we can not expect these methods to
work well in our case Anderson and Dehghani (2008). Nonlinear stochastic control theory provides
a framework that can, in principle, handle fast parameter variation and large uncertainties, and our
problem fits well with the methodology of dual control (Wittenmark, 1995, Chapter 7).

Stochastic dual control has been applied to various problems with uncertain gain, as demon-
strated in Åström and Helmersson (1986); Dumont and Åström (1988); Allison et al. (1995). Alspach
(1972) considered control of an integrator based on noisy measurements of the square of the mag-
nitude. The noise was assumed Gaussian, and the author proposed approximating the information
state by a sum of Gaussians. Rosdahl and Bernhardsson (2020) considered a noisy version of the
problem in this article but from a stochastic dual control perspective. The authors proposed to
approximate the information state by a neural network.

Learning-to-control Lately, there has been a surge of interest in learning to control linear sys-
tems. Much of the work concerns the sample complexity of learning optimal controllers of linear
time-invariant systems. For example, Dean et al. (2018); Mania et al. (2019) concerns quadratic
performance objectives and additive stochastic noise, Chen and Hazan (2021) adapts the theory of
online convex optimization Hazan (2023) to unknown linear time-invariant systems with bounded
disturbances. Yu et al. (2023) proposed a method to control slowly varying linear systems with un-
known parameters belonging to a polytope perturbed by bounded disturbances using convex body
chasing.
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Minimax control Minimax control for uncertain systems was introduced in the Ph.D. thesis
of Witsenhausen (1966). Information states, or sufficient statistics, for optimal control for out-
put feedback minimax control, was discussed in Bertsekas and Rhodes (1973) based on Bertsekas’s
Ph.D. thesis. The game-theoretic formulation of H∞-control Baş̧ar and Bernhard (2008) is a special
case of minimax control, and the information state formulation was derived for nonlinear systems in
James and Baras (1995) demonstrating that, in general, the information state is infinite-dimensional.
The term minimax adaptive control was introduced in Didinsky and Basar (1994). Recently, Rantzer
(2021) proposed a minimax adaptive controller for uncertain linear systems with perfect state mea-
surements. The uncertainty was assumed to belong to a finite, known set. The author proposed a
finite-dimensional information state related to the empirical covariance matrix of the current state,
previous state, and previous control signal. This author extended Rantzer’s results to scalar linear
systems with noisy measurements in Kjellqvist and Rantzer (2022). Recently, Renganathan et al.
(2023) studied the regret of Rantzer’s controller for linear systems with energy-bounded distur-
bances.

1.2. Contributions

This article identifies a class of systems where the minimax dual controller admits a finite-dimensional
information state. The information state admits recursive computation, and Theorem 5 shows the
equivalence between the minimax dual control problem and an information-state dynamic program-
ming problem. We also provide a dissipativity interpretation in Theorem 6. The proofs of Theo-
rems 5 and 6 are available in the ArXiv version of this article Kjellqvist (2023) and omitted here due
to space constraints. These results generalize Theorem 1 in Rantzer (2021) to a larger system class
and specialize the results in James and Baras (1995) to classes of systems where the information
state iteration becomes explicit. The explicit iteration results from the bounded number of solutions
to the measurement equation (2) and can be exploited to obtain closed-form (suboptimal) solutions
to the minimax dual control problem. We specialize these results to the magnitude control problem
in the introduction and prove Proposition 1 in Section 3.

1.3. Notation

We use R to denote the set of real numbers, Rn means the set of n-dimensional real vectors, and
Rn×m means the set of n × m real matrices. The vector of ones is denoted 1. We use y0:N as
shorthand for the sequence (y0, y1, . . . , yN ). For a matrix A ∈ Rn×m, we denote the transpose
by AT. For sets A ⊆ S and B ⊆ T , and a function f : S → T , the image of A is denoted
f(A) and the preimage of B is denoted f−1(B); the Cartesian product is denoted S × T and the
n-ary Cartesian power S = S × S × . . .× S︸ ︷︷ ︸

ntimes

is denoted Sn. For vectors v, v′ ∈ Rn, the inequality

v ≤ v′ is understood component-wise, and for functions f, g : S → T , the inequality f ≤ g means
that f(s) ≤ g(s) for all s ∈ S where ≤ is the partial order on T . Strict inequalities are defined
analogously.

2. Minimax dual control

This section introduces the minimax dual control problem, the information state, and dynamic pro-
gramming. By information state, we mean an auxiliary state variable that is computable by the
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controller, has a recursive expression in observed quantities and is sufficient to compute the op-
timal control policy and the associated cost. For example, in the linear-quadratic Gaussian con-
trol problem, the information state is the conditional mean and covariance of the state given the
observations—the Kalman filter estimate and the error covariance. It is well known that the “worst-
case” history is an information state for the minimax control problem, and dynamic programming
with this information state is pretty well understood. Unfortunately, this information state is gen-
erally infinite-dimensional and, therefore, impractical. The main contribution of this section is to
show that for our class of systems, the worst-case history admits a finite-dimensional representation.
This representation is, in itself, an information state. We derive a verification and an approximation
theorem for value iteration specific to this finite-dimensional representation.

2.1. Problem formulation

Let f : X × U ×W → X and h : X → Y describe the dynamical system

xt+1 = f(xt, ut, wt)

yt = h(xt).
(6)

The control signal, ut ∈ U is generated by a causal control policy µt : Yt × U t−1 → U , where
Y = h(X ) by

ut = µt(y0:t, u0:t−1). (7)

We call the tuple π = (µ0, µ1, . . .) a strategy and the set of all such admissible strategies Π. Con-
sider the objective function as the “worst-case” sum of stage costs l : X × U ×W → R,

JN
π (y0) ≜ sup

w0:N

{
N∑
t=0

l(xt, ut, wt) : w0:N ∈ WN+1, y0 = h(x0)

}
. (8)

The goal of this section is to examine the minimax optimal control problem

J⋆(y0) ≜ inf
π∈Π

sup
N

JN
π (y0). (9)

We make two crucial assumptions:

Assumption 1 For all x ∈ X , u ∈ U , supw l(x, u, w) ≥ 0.

The assumption that supw l(x, u, w) ≥ 0 implies monotonicity properties of JN
π in (8) and, as we

will see later, the value iteration.

Assumption 2 For any y ∈ Y , the preimage h−1{y} ⊂ X is an indexed set of at most M elements.

This assumption relates to the dimensionality of the information state, or sufficient statistic, of the
dynamic programming version of this problem. Technically, the bound M does not have to be
known a priori, but we require the capability to enumerate all the solutions to yt = h(xt) online.
At first glance, this assumption may appear overly limiting, but the following examples prove oth-
erwise.
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Example 1 (Magnitude control of input-output models) Consider controller design for the input-
output system

zt+1 = −a1zt − · · · − adzt−d+1 + b1ut + · · ·+ bdut−d+1 + wt, (10)

where the controller has access magnitude measurements |z0|, |z1|, . . . , |zt| at time t. The sys-
tem (10) has a (nonminimal) state-space realization xt+1 = Axt +But +Gwt, where

xt =



zt
...

zt−d+1

ut−1
...

ut−d+1


, A =



−a1 · · · −ad b2 · · · bd
1

. . .
1

0 · · · 0 0 · · · 0
1

. . .
1


, B =



b1
0
...
0
1
0
...
0


, G =



1
0
...
0
0
0
...
0


.

Store the past d− 1 inputs and outputs and define the augmented measurement

yt = h(xt) = (|zt|, . . . , |zt−n+1|, ut−1, . . . , ut−n+1).

Then, the preimage

h−1{yt} = {±|zt|} × · · · × {±|zt−d+1|} × {ut−1, . . . , ut−d+1}

has cardinality 2n, corresponding to the possible signs of the past measurements. A first-order
difference equation can model the integrator in the introduction, so M = 21 = 2, and the inverted
pendulum (linearized around its equilibrium) by a second-order difference equation, for which M =
22 = 4.

Example 2 (Linear system with uncertain dynamics) Consider the linear system xt+1 = Axt+
But + wt where A,B are unknown matrices belonging to a finite set M of cardinality M . Then,
the equivalent lifted system xt = (zt, At, Bt) with

At+1 = At, Bt+1 = Bt, (A0, B0) ∈ M
zt+1 = Azt +But + wt, yt = h(xt) = zt

satisfies Assumption 2 as h−1{yt} = {zt} ×M has cardinality M .

Example 3 (Finite state space) If the state space X is finite, per definition h−1{y} ⊆ X is finite.

Remark 2 In our case f and h are given by (1) and (2) and the stage cost is l(xt, ut, wt) = x2t +
u2t − γ2w2

t . The states, observations and inputs take values in X = R,U = R,Y = R≥0,W = R.
The finite-gain condition (4) then correspond to J⋆(y0) being bounded. If not for the nonlinearity
h(xt) = |xt|, it would be equivalent to the standard dynamic game formulation of H∞ suboptimal
control Baş̧ar and Bernhard (2008), rather it can be seen as a special case of nonlinear H∞ output
feedback control James and Baras (1995).
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2.2. An information state

Following previous work Witsenhausen (1966); Bertsekas and Rhodes (1973); James and Baras
(1995); Baş̧ar and Bernhard (2008) we consider the “worst-case history”, ρt, that is compatible with
the observations y0:t−1 and inputs u0:t−1 up to time t− 1 reaching the state x at time t:

ρt(x, y0:t−1, u0:t−1)

≜ sup
w0:t−1∈Wt−1

sup
x0∈X

{
t−1∑
τ=0

l(xτ , uτ , wτ ) : xt = x, xτ+1 = f(xτ , uτ , wτ ), yτ = h(xτ )

}
. (11)

Remark 3 We follow the convention that the supremum over the empty set is −∞.

The worst-case performance of a policy π ∈ Π, JN
π (y0) can be expressed in terms of ρt as

JN
π (y0) = sup

y0:N ,x
ρN+1(x, y0:N , u0:N ), (12)

where u0:N is generated by π and y0:N . The functions ρ are causal functions of the measurements
and control signals and obey the forward dynamic programming, Magill (1965), recursion:

ρt+1(x, y0:t, u0:t) = sup
ξ,w

{l(x, ut, w) + ρt(ξ, y0:t−1, u0:t−1) : x = f(ξt, ut, w), yt = h(ξ)} . (13)

Each step (13) involves extremizing over the previous state and the disturbance dependent on the
current state xt, and in general, the computational complexity of evaluating ρt grows with t. How-
ever, for systems satisfying Assumption 2, the set of feasible past states involved in (13) is restricted
by the measurement trajectory. To exploit this restriction, we split the computation of (13) into two
steps: a correction step incorporating the observation yt and a prediction step after selecting ut:

(ξit)
M
i=1 = h−1{yt} (14a)

rit = max
j

ρt(ξ
i
t, y0:t−1, u0:t−1) (14b)

ρt+1(x, y0:t, u0:t) = sup
i,w∈W

{l(ξit, ut, w) + rit : x = f(ξit, ut, w)}. (14c)

The intuition behind procedure (14) is that at time t, the realization of the state xt must belong to
the M solutions of yt = h(ξ). The value rit is the worst-case performance of the system up to time t
under the hypothesis that xt = ξit consistent with y0:t and u0:t−1. The prediction ρt+1(x, y0:t, u0:t)
is the worst-case performance of the system up to time t + 1 under the hypothesis that xt+1 = x
consistent with y0:t and u0:t. The extremization (14c) includes two terms: the stage cost l(x, ut, w)
capturing the cost of transition to xt+1 = x from xt and the past performance rit under the hypothesis
xt = ξit . The extremization is carried out over the hypotheses ξ1t , . . . , ξ

M
t and the disturbance w.

Define the update functions g for the M -dimensional vector rt = (r1t , . . . , r
M
t )

gi(r, ξ+, ξ, u) ≜ sup
j,w∈W

{l(ξj , u, w) + rj : ξi+ = f(ξj , u, w)}

g(r, y+, y, u) ≜ gi(r, h
−1{y+}, h−1{y}, u). (15)

In the following proposition, we formalize the properties of the update functions g and the sequence
r.
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Proposition 4 Fix N , i = 1, . . . ,M , y0, a strategy π and let rN be defined recursively by r0 = 0
and rt = g(rt−1, yt, yt−1, ut−1). Then

ρt+1(x, y0:t, u0:t) = sup
i,w

{
l(x, ut, w) + rit : x = f(ξit, ut, w)

}
.

Furthermore, 1. There exists a sequence w0:N−1 such that maxi r
i
N ≥ 0. 2. For fixed yt, yt−1 ∈ Y

and ut ∈ U , for r ≤ r′ we have g(r, yt, yt−1, ut) ≤ gr(r
′, yt, yt−1, ut). 3. g(r+ 1c, yt, yt−1, ut) =

g(r, yt, yt−1, ut) + 1c for all c ∈ R.

By Proposition 4, the worst-case history ρN , is sufficient to evaluate the objective JN
π (y0). We

will now study value iteration to minimize sup ρN . Consider the time evolutions of the measure-
ments y and representations r:

yt+1 = vt (16a)

rt+1 = g(rt, vt, yt, ut), r0 = 0, (16b)

where the next measurement, vt, is considered an exogenous input.
The optimization problem (9) can be expressed in terms of the worst-case history ρN as

inf
η

sup
N,v0:N−1,x∈X

{ρN (x, v0:N−1, u0:N−1)} , (17)

where an information-state feedback policy generates ut

ut = ηt(rt, yt).

Define the set of information-state strategies Π̃ as the set of strategies π̃ = (η0, η1, . . .). As r is
a causal function of the measurements and control signals, so is ηt (by composition) and Π̃ ⊂ Π.
In other words, information-state feedback is admissible. The following examples illustrate the
information-state recursions (16) for the systems in Examples 1 and 2.

Example 1 [continued] In this case, it is convenient to index the hypotheses h−1{yt} by sequences
of hypothetical signs, st, . . . , st−d+1 of the d stored measurements |zt|, . . . , |zt−d+1|. The update
simplifies significantly as the realizations of zt, . . . , zt−d+2 must remain unchanged between time
steps t and t+1. Further, wt = zt+1+ a1zt+ . . .+ adzt−d+1− b1ut+ . . .+ bdut−d+1 is uniquelly
determined by the state trajectory, so

r
st+1,...,st−d+2

t+1 = max
st−d+1=±1

{
l(st|zt|, ut, w) + r

st,...,st−d+1

t

: w = st+1|zt+1|+ a1st|zt|+ . . .+ adst−d+1|zt−d+1| − b1ut + . . .+ bdut−d+1

}
. (18)

Example 2 [continued] Here, we index the hypotheses h−1{yt} by the matrices At, Bt. The update
becomes

r
At+1,Bt+1

t+1 = sup
At,Bt

{
l(xt, ut, xt+1 −Atxt −Btut) + rAt,Bt

t : At+1 = At, Bt+1 = Bt

}
.

By assumption (At, Bt) = (0, 0) for all t, so the update simplifies to rA,B
t+1 = l(xt, ut, xt+1−Axt−

But) + rA,B
t .
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2.3. Value iteration

Towards finding (sub)optimal solutions to (9), we introduce the Bellman operators B and Bu for
functions V : (R ∪ {−∞})M × Y → R

B V (r, y) = min
u∈U(y)

Bu V (r,y)︷ ︸︸ ︷
max
v∈Y

{V (g(r, v, y, u), v)} . (19)

and the value iteration

V0(r, y) = max
i=1,...,M

{ri} (20a)

Vk+1(r, y) = B Vk(r, y). (20b)

We are ready to state the main theoretical results, justifying the value iteration algorithm (20).

Theorem 5 For the system (6) under Assumptions 1 and 2 and strategy class Π, the value (9) is
bounded for any x0 ∈ X if, and only if, the sequence V0, V1, . . . defined in (20) is bounded. If
bounded, the sequence converges to the optimal value function V⋆. The limit V⋆ is a fixed point of
the Bellman operator (19) and the value J⋆(y0) = V⋆(0, y0). If the minimum in (19) is attained for
some u ∈ U for all y ∈ Y and r, then the policy η∗(r, y) defined as the minimizing argument in (19)
satisfies Bη⋆(r,y) V⋆(r, y) = V⋆(r, y) and the policy

µt(y0:t, u0:t−1) = η⋆(rt, yt)

is optimal for (9).

Theorem 6 (Approximation) For the system (6) under Assumptions 1 and 2 and strategy class Π,
assume that there exists a function V̄ : (R∪{−∞})M ×Y → R and a strategy π̄ = (η̄, η̄, . . .) ∈ Π̃
such that V̄ ≥ V0 and

Bη̄(r,y) V̄ (r, y) ≤ V̄ (r, y).

Then the value iteration V0, V1, . . . is bounded, and Jµ̄(y0) ≤ V̄ (0, y0) for the policy

µ̄t(y0:t, u0:t−1) = η̄(rt, yt).

3. Magnitude Control

We now apply the above results to the example in Section 1. For any y, we denote ξ+ = y and
ξ− = −y. Then h−1{y} = {ξ+, ξ−}. We similarly index r = [r+, r−]. Then g in (15) becomes
gs(r, v, y, u) = y2 + u2 − γ2min{r+ + (sv − u− y)2, r− + (sv − u+ y)2} for s = ±1.

Proof of Proposition 1 By the above analysis, the quantities (5) correspond to (16), and the first
statement in the proposition is a direct consequence of Theorem 5. Drawing inspiration from Rantzer
(2021), we parameterize an upper bound of the optimal value in the parameters 0 < p ≤ q < γ2 by

V̄ (r, y) = max{py2 + r+, py2 + r−, qy2 + (r+ + r−)/2}, (21)

9
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Figure 2: Figures 2(a) and 2(b) contain plots of the outputs and control signal, respectively. Fig-
ure 2(c) shows the empirical gain from w to (y, u) and Figure 2(d) shows the value func-
tion approximation V̄ = max{V̄ ++, V̄ +−, V̄ −−} defined in (21). The black marks cor-
responds to V̄ ++, the half circles to V̄ +−, the white marks to V̄ −− and the blue crosses
to V̄ . Note that the value function approximation is monotonically decreasing.

and a certainty equivalence policy

η̄(r, y) = k sign(r− − r+)y (22)

The following lemma relates the parameters of the value function approximation p, q and k to
the ℓ2 gain of the closed loop.

Lemma 7 Given a quantity γ > 0, parameters 0 < p < q < γ2, k ∈ R, and V̄ as above. The
certainty equivalency policy η̄ in (22) achieves an ℓ2-gain of at most γ for the system (1)–(3) and
an objective value smaller than V̄ (0, |x0|) for the decision problem (9), if

p > 1 + k2 +
(1− k)2

p−1 − γ−2
, q > 1 + k2 +

(1 + k)2

p−1 − γ−2
, q > 1 + k2 +

1

q−1 − γ−2
− γ2k2.

(23)

The values γ = 4, p = 1.7, q = 7 and k = 0.7 satisfy the conditions of Theorem 7 and a
simulation with wt = sin(πt/10) is shown in Figure 2.

4. Conclusion

This article demonstrated that output feedback minimax dual control possesses a finite-dimensional
information state when the measurement equation has a finite number of solutions. We applied
this finding to the magnitude control of an integrator, resulting in a surprisingly simple sub-optimal
control policy. The controller is proportional, with the gain determined through hypothesis testing
and updated online. However, the results are limited to cases where the measurement equation has
a finite number of solutions. This restriction excludes scenarios where measurements are affected
by real-valued sensor noise, which typically leads to an infinite-dimensional information state.

Future work will focus on extending these results to cases with noisy measurements, specifically
where the dynamics are linear and uncertain but belong to a finite set. Progress has already been
made for scalar systems Kjellqvist and Rantzer (2022), and the extension to multi-dimensional cases
is currently under investigation.
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