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Abstract
Willems’ fundamental lemma enables a trajectory-based characterization of linear systems through
data-based Hankel matrices. However, in the presence of measurement noise, we ask: Is this noisy
Hankel-based model expressive enough to re-identify itself? In other words, we study the output
prediction accuracy from recursively applying the same persistently exciting input sequence to the
model. We find an asymptotic connection to this self-consistency question in terms of the amount of
data. More importantly, we also connect this question to the depth (number of rows) of the Hankel
model, showing the simple act of reconfiguring a finite dataset significantly improves accuracy. We
apply these insights to find a parsimonious depth for LQR problems over the trajectory space.
Keywords: Hankel matrix, random matrices, behavioral systems, data-driven control

1. Introduction

This paper concerns Hankel matrices of the form

HL(z) =





z0 z1 . . . zN−L

z1 z2 . . . zN−L+1
...

...
. . .

...
zL−1 zL . . . zN−1




, (1)

where each zi ∼ N (0, 1). This structure arises naturally in the context of a nominal linear time-
invariant (LTI) system whose state x evolves in Rn:

xt+1 = Axt +But

yt = Cxt t = 0, 1, 2, . . .
(2)

By organizing the inputs and outputs of the system in Hankel matrices HL(u) and HL(y), re-
spectively, Willems’ fundamental lemma characterizes the trajectory space of Eq. (2) through the
matrix-vector product


HL(u)
HL(y)


α. (A precise formulation is given in Section 2.) Taking the input to

be a Gaussian probing signal u and the output to be subject to measurement noise, y = y + ω, we
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Figure 1: For a fixed-size dataset, adjusting the depth of the input-output Hankel matrices dramat-
ically improves self-consistency. Results are for L = 2, 5, 10, 20 and each color corre-
sponds to 50 rollouts with different output noise instances but a fixed input sequence.

arrive at the following situation:

HL(u)
HL(y)


α =


HL(u)
HL(y)


α

  
True trajectory

+


0

HL(ω)


α

  
Error

(3)

The question then arises: which term dominates the right-hand side? To give the problem a little
more structure, we assume the input and output noise profiles are fixed, and we are only able to
manipulate the depth and width, which are characterized by the window length L and the number of
samples N , respectively. Therefore, we are interested in the interplay between the amount of data,
the depth of the Hankel matrices, and the overall error.

In practice, we employ a self-consistency test to determine a sufficiently expressive L from a
fixed dataset. That is, we use the same input sequence u in Eq. (3) to iteratively predict some output
sequence ỹ with the hope that it is close to the underlying sequence y. We show in Theorem 4
and Section 3.2 that increasing the depth mitigates the effect of the noise term in Eq. (3). This is
illustrated in Fig. 1 as motivation and explained in more detail in Section 5.

The most similar works to ours are Coulson et al. (2023); Guo et al. (2023); Yan et al. (2023).
However, none of them consider the matrix depth in their formulation. Coulson et al. (2023) propose
casting Willems’ lemma in terms of a minimum singular value criterion, rather than the standard
binary rank condition. Guo et al. (2023) consider perturbations to the data-based model, similar to
Eq. (3), but their analysis is based on Page matrices and the assumption that the perturbation has
a known upper bound. (We use Hankel matrices and show the random perturbation in Eq. (3) is
unbounded.) Yan et al. (2023) examine the approximation properties of noisy Hankel models, but
their analysis is framed in terms of independent rollouts rather than trajectory length and depth.
More related work is discussed in Section 4. Finally, the authors’ work Lawrence et al. (2024)
contains similar analytical tools used here, but the setting is completely different: this work zooms
in on the approximation properties of random Hankel matrices, while Lawrence et al. (2024) uses
the behavioral setting for reinforcement learning problems.
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2. Background

Notation. We often write a vector of sequential variables as z = [z0, . . . , zk]
⊤ when the num-

ber of elements is clear from context. When specifying the time indices, we write z0:k. The
spectral radius function ρ ingests a square matrix and returns a nonnegative scalar: ρ(M) =
max {|λ| : λ ∈ C, Mv = λv for some v ∕= 0} . We use · for the Euclidean norm and ·F for
the Frobenius norm. A+ denotes the Moore-Penrose inverse, or pseudoinverse, of the matrix A.
Willems’ fundamental lemma. We assume single-input single-output dynamics; however, the
following formulation holds for general LTI systems and multidimensional noise. Given an N -
element sequence {zt}N−1

t=0 ⊂ R and an integer L, 1 ≤ L ≤ N , the Hankel matrix of depth L is the
L× (N − L+ 1) array with the constant skew-diagonal structure HL(z) defined in Eq. (1).

Definition 1 The signal {zt}N−1
t=0 ⊂ R is persistently exciting of order L if rank(HL(z)) = L.

Definition 2 An input-output sequence {ut, yt}N−1
t=0 is a trajectory of an LTI system (A,B,C) as in

Eq. (2) if there exists a state sequence {xt}N−1
t=0 such that Eq. (2) holds.

We assume the matrices A,B,C in Eq. (2) are unknown, (A,B) is controllable, and (A,C) is
observable. This lays the foundation for the following data-driven characterization of LTI systems.

Theorem 3 (Willems’ fundamental lemma (van Waarde et al., 2020; Willems et al., 2005)) Let
{ut, yt}N−1

t=0 be a trajectory of an LTI system (A,B,C) where u is persistently exciting of order
L + n. Then {ut, yt}L−1

t=0 is a trajectory of (A,B,C) if and only if there exists α ∈ RN−L+1 such
that 

HL(u)
HL(y)


α =


u
y


. (4)

Equivalently, one may check if the stacked matrix in Eq. (4) has rank L+ n (Coulson et al., 2023).
Theorem 3 says that a Hankel matrix constructed from sufficiently exciting input-output data con-
tains enough information to serve as a dynamic model.

The standard form above provides a certificate for a given trajectory; from that trajectory, one
may also wish to advance it forward in time. To that end, we use Theorem 3 to generate arbitrarily
long rollouts from some input sequence {ut}t as follows: Given N and vectors z0, . . . , zN , let
z = {zt}N−1

t=0 and z′ = {zt}Nt=1. Then define the time-shifted Hankel matrix as follows:

H ′
L(z) = HL(z

′).

If α satisfies Eq. (4), then, assuming L ≥ n, multiplying H ′(y) by α is equivalent to advancing the
internal state forward, yielding the unique next output trajectory

y′ = H ′(y)α.

Algorithm 1 repeats this procedure for any number of time steps.
Tools for analysis. Our problem setup postulates that the input sequence and output noise are
(sub-)Gaussian. To understand the approximation properties of noisy models such as Eq. (3), we
analyze the singular values of the purely noisy arrays introduced in Eq. (1). Doing so is related to
studying the norm of the pseudoinverse. By extension, we can apply the techniques and results to
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Algorithm 1: Data-driven rollout
Input: Data {uk, yk}Nk=0 with persistently exciting input of order L+ 1 + n; Initial trajectory

{uk, yk}L−1
k=0 ; An input sequence {ut} for simulation.

for each u ∈ {ut} do
Solve for α:


HL(u)
HL(y)


α =


u
y



Compute the next element y′ = H ′
L(y)α

Queue the next control input uL = u
Update trajectory: {uk, yk}L−1

k=0 ← {uk, yk}Lk=1

end

the full noisy model in Eq. (3). In pursuit of this, we leverage two ingredients: 1. A Gershgorin
disk theorem for generalized eigenvalue problems of the form Av = λBv (Nakatsukasa, 2011).
This gives bounds on the singular values of Hankel matrices using row-wise information. 2. The
Hanson-Wright inequality (Rudelson and Vershynin, 2013) for analyzing the concentrations of key
terms that appear in item 1.

3. Main results

We first analyze the singular values of random matrices of the form in Eq. (1). This will then give
insight into its approximation properties of the full noisy model as a function of N and L.

3.1. Singular values of random Hankel matrices

The following theorem establishes that the singular values of HL = HL(z) diverge to infinity with
high probability as the amount of data increases.

Theorem 4 For any L ∈ N, in the context detailed above, there is a sequence N → 0+ such that

lim
N→∞

P


1

σmin(HL)
≤ N


= 1. (5)

See the appendix for a full proof. The main idea is to employ a Gershgorin-type argument to contain
all L singular values of


HLH

⊤
L

−1 within shrinking disks around the origin. However, to make
the problem tractable, we rewrite it as a generalized eigenvalue problem:

Iv =
1

σ2
HLH

⊤
L v (6)

Therefore, we can employ concentration inequalities to analyze the diagonal and off-diagonal terms
of HLH

⊤
L in a similar fashion to the classical Gershgorin disk theorem.

The proof of Theorem 4 provides many suitable sequences N → 0+. In particular, we arrive at
the general estimate:

1

σ2
≤ 1

(N − L+ 1)(1− β)


1 +

γ

1− γ


,
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where β, γ ∈ (0, 1). We therefore want β, γ to be close to 0. For example, with a “large” (N ≫ L)
but finite dataset, setting β = γ = 1

L+1 leads to the approximation

1

σ
 1√

N

L+ 1

L
. (7)

Figure 2: Illustration of Eq. (7).

Therefore, with a fixed amount of data, the bound on the sin-
gular values can be reduced by increasing L. Of course, in-
creasing L is helpful only up to a point, as the quantity L+1

L
decreases to 1 “slowly” meaning more data are preferable, if
available. Moreover, we caution that L cannot be increased
arbitrarily, as doing so decreases the underlying probabilities
needed for Eq. (5) to hold. Equation (7) is illustrated in Fig. 2
for a fixed L. The solid curve is the median inside the in-
terquartile range across 50 random instances of HL.

3.2. A tale of two Gaussians

We can apply the techniques described in Section 3.1 to characterize the singular values of the full
noisy model in Eq. (3). In particular, we have two random matrices HL(u), HL(ω) and a third output
component HL(y). The input term HL(u) fits the formulation of the previous section and requires
no modification. We can leverage this fact to characterize the singular values of the full model.
Define HL to be the noisy stacked Hankel matrix in Eq. (3) and HL to be the clean counterpart.

Putting these pieces together in a Gram matrix yields:

HLH
⊤
L = HL

H⊤
L

+

0 0
0 HL(ω)HL(ω)

⊤


+


0 HL(u)HL(ω)

⊤

HL(ω)HL(u)
⊤ 0


+

0 0
0 HL(y)HL(ω)

⊤+HL(ω)HL(y)⊤
 (8)

To align with Willems’ lemma, we are interested in the top L + n eigenvalues of HLH
⊤
L . Using

standard estimates, we can lower bound λL+n(HLH
⊤
L ) by λL+n( HL

H⊤
L ) +

3
i=1 λmin(Mi) for

each remaining matrix Mi in Eq. (8). The first term, λL+n( HL
H⊤
L ), comfortably tends to infinity

using the Cauchy interlacing theorem (Coulson et al., 2023; Horn and Johnson, 2012) and Theo-
rem 4. We can disregard the second term in Eq. (8). Finally, the last two terms threaten to shift
the momentum away from +∞. The second-to-last term is concentrated around zero due to the
classical Gershgorin disk theorem: one can obtain a well-behaved bound similar to Eq. (15) in the
proof of Theorem 4. The last term is similar if we assume a positive c such that yt ≤ c for all
t ≥ 0. (Otherwise, one expects to run into numerical stability issues when computing these singular
values for large N and a preconditioner should be used.) Consequently, λL+n


HLH

⊤
L


→ ∞ with

high probability as in the case shown in Section 3.1.

3.3. Increasing depth improves self-consistency

In light of the question surrounding Eq. (3), Theorem 4 says the additive error term is not a “small”
perturbation to the true data matrix. However, this result still works in our favor. Indeed, writing
out the noisy linear system implied by Willems’ fundamental lemma (Theorem 3), HLα =


u
y


,
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the minimum-norm solution is α = H+
L


u
y


. Consequently, our results and discussion from Sec-

tions 3.1 and 3.2 show that
lim

N→∞
P


H+
L 

  
1

σL+n(HL)

≤ N
→0+


= 1.

Further, following Eq. (7), increasing L accelerates the convergence by a linear factor.
To see the effect on the prediction accuracy, consider the following evaluation procedure: Run

Algorithm 1 where the simulation sequence {ut} = {uk}Nk=0. Then, evaluate the root-mean-square
error (RMSE) between the resulting outputs {ỹt} and the true measured sequence {yk}Nk=0. Note
each prediction has the general form ỹi = [yL . . . yN ]α where [yL . . . yN ] is the last row of H ′

L(y)
and yi+L is the target. Then, we see

ỹi − yi+L = ([yL . . . yN ] + [ωL . . .ωN ])α− yi+L
≤ [yL . . . yN ]α− yi+L+ [ωL . . .ωN ]α

We find that increasing L has two desirable effects: 1. It improves the bound on 1
σL+n(HL)

when
N ≫ L, decreasing the minimum-norm solution. 2. It decreases the number of noise terms on the
right-hand side shown above. Together, the influence of the noise term in the Hankel matrix HL(y)
is mitigated. In that spirit, balancing N with a larger L serves a similar function as a regularized
solution by decreasing the norm of the α vector. A key difference, however, is that we are not
introducing bias into the solution.

4. More related work

The behavioral approach to control (Willems et al., 2005; Markovsky et al., 2006; Markovsky and
Rapisarda, 2008) has seen a resurgence in interest in recent years (Markovsky and Dörfler, 2021;
Martin et al., 2023; Faulwasser et al., 2023). This is largely due to the data-enabled predictive con-
trol (DeePC) framework introduced by Coulson et al. (2019). Markovsky and Dörfler (2021) gives
an overview of the history, applications, and theoretical developments surrounding Willems’ fun-
damental lemma, the key driver behind behavioral approaches to control. In particular, significant
attention has been given to “robustifying” Willems’ result in the face of uncertainty (De Persis and
Tesi, 2020; van Waarde et al., 2023) and its practical deployment (Huang et al., 2019; Berberich
et al., 2021). See Faulwasser et al. (2023) and the references therein for a recent account.

Measurement noise requires significant consideration, as Willems’ lemma is squarely in the de-
terministic regime. A standard approach is to regularize the solution α used for predictions (Coulson
et al., 2019; Markovsky and Dörfler, 2021; Breschi et al., 2023). Other approaches take advantage
of the structure of the uncertainty, leading to stochastic variants of the fundamental lemma (Pan
et al., 2021; Faulwasser et al., 2023) and maximum likelihood estimation techniques (Yin et al.,
2020, 2023) for dealing with measurement noise. Further, robust control techniques, for example,
based on the gap metric for uncertainty quantification or the S-lemma for robust stability, have been
proposed (Padoan et al., 2022; van Waarde et al., 2021; Berberich et al., 2023).

5. Numerical experiments

Code for the experiments is available: https://github.com/NPLawrence/deepHankel
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Figure 3: Data preprocessing versus simply using raw noisy data for evaluating self-consistency.
The curves show the average RMSE plus/minus the standard deviation over all rollouts.

5.1. Rollout accuracy

We revisit the motivating example in Fig. 1: Rollouts with small L are nearly degenerate around the
origin. But with additional depth, L-length trajectories carry more of a “trend”, hence becoming
more distinguishable from noise and improving prediction accuracy. For this example, we consider
the system 1

s2+0.5s+1
, discretized with a sampling time of 0.1 seconds. We assume a standard

normal probing signal and output noise with variance 0.1.
We repeatedly run Algorithm 1 as follows to gauge its prediction accuracy: For a fixed L, the

initial trajectory is set to the origin in R2L. Then for each N ∈ {150, 200, 250}, 10 rollouts are
performed under the same input sequence used in the Hankel matrix. Each rollout uses a new
sampled dataset to construct the Hankel matrices. Finally, the RMSE is calculated based on the
rollout output trajectory and the true, noise-free underlying signal inside the dataset. These RMSE
values are averaged, giving the results shown in Fig. 3. We repeat this experiment with a noise
variance of 1.0 and N ∈ {1500, 2500, 5000}.

The curves in Fig. 3 illustrates the RMSE as a function of L. We repeat the above procedure
using 3 preprocessing steps of varying complexity:

• Do nothing: This is referred to as “Noisy” and corresponds to using the raw sampled data.

• Smoothing: This is referred to as “Smooth” and corresponds to replacing the measured
input–output data with a moving average:

{ut, yt}N−1
t=L−1 ←


1

L

t

k=t−L+1

uk,
1

L

t

k=t−L+1

yk

N−1

t=L−1

(9)

L serves both as the depth parameter of the Hankel matrix and the moving average window
length. With no noise, this is a realizable trajectory, as it corresponds to averaging the internal
state sequence. When multiplying the resulting averaged Hankel matrix by some α, this
strategy is effectively an ensemble of time-shifted noisy Hankel matrices.

• Singular spectrum analysis (SSA) (Hassani, 2007): SSA is a time series analysis method
similar to PCA with the key feature of preserving the Hankel structure. Since a reconstructed
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matrix with the top L singular values/vectors is not necessarily a Hankel matrix, SSA “Han-
kelizes” it through skew-diagonal averaging, thereby recovering a new signal.

All three preprocessing methods lead to a steep descent in RMSE with respect to L. Smoothing
the data has the most dramatic descent, both with small and large output noise. However, the error
starts to increase after depth 20 in the right plot of Fig. 3: While Eq. (9) decreases the variance
of the output noise, it also decreases the magnitude of the input excitation; moreover, this strategy
essentially removes L additional columns from the model (relative to the other methods), tampering
with the L − N balance alluded to in Section 3.1. SSA is also a reasonable option in both cases.
However, in the large variance setting, it is nearly indistinguishable from the “Noisy” strategy since
a large L corresponds to recreating the noise.

In all cases, the simple act of increasing the depth from a fixed dataset has a dramatic positive
effect on rollout performance. This is true even without any preprocessing, as illustrated in Fig. 1.
However, there are only incremental gains after a certain point. The next example shows that finding
the beginning of this plateau is also useful for control.

5.2. Application to LQR

We formulate the LQR problem over the space of trajectories and study the influence of depth on
closed-loop performance. Starting with the standard linear equation


HL(u)
HL(y)


α =


u
y


, we note

that by sequentially applying new inputs u, Algorithm 1 relates the current solution vector α to the
solution at the next time step α′ as follows:


HL(u)
HL(y)


α′ =




H ′

L−1(u)

0

H ′
L(y)



α+




0

1

0



 u =




u0:L−2

u
y′



 . (10)

That is, Eq. (10) describes the evolution from u, y to u′, y′.
Standard LQR solvers can be readily applied to the trajectory-space model in Eq. (10). In

particular, assuming a pseudoinverse solution, one obtains a feedback controller of the form u =
−Kα, which can be rewritten as

u = −K


HL(u)
HL(y)

+ 
u
y


.

This feedback controller only uses previous input-output data, rather than employing explicit state
estimation, to perform actions. We deploy this idea for setpoint tracking on the plant

P (z) = 0.1159
z3 + 0.5z

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225

studied by Ljung (1999); Pillonetto and De Nicolao (2010); Yin et al. (2020). Integral action is
achieved by defining a state-space model around the variable x =


α′−α
r−y


, where r is a reference

signal, and solving for the optimal gain matrix. (See, for example, Young and Willems (1972).)
We collect 400 input-output samples from P with standard normal input and output noise. Some

of these samples are shown in Fig. 4. This collection of data is used to run the self-consistency test
from Section 5.1. L = 10 is a minimal yet expressive depth, as it marks the beginning of a plateau
akin to that in Fig. 3. To illustrate this, we perform 3 LQR experiments with L = 5, 10, 20. Figure 4
shows that L = 10 deviates the least from the ground-truth closed-loop trajectory.
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Figure 4: (left) Noisy output data; (center) The difference between the closed-loop trajectory from
using a noisy model to obtain an LQR controller and the noise-free counterpart; (right)
Tracking performance of the noisy controller on the true system.

6. Conclusion

We have illustrated the effectiveness of deep Hankel matrices for approximation and control. In
particular, we showed that the length of an input-output trajectory is important for asymptotic ap-
proximation properties, while depth influences the transient behavior of this rate. Practically, for a
long rollout of excitation data, simply reconfiguring the Hankel matrices for a parsimonious depth
has a profound impact on performance. However, we caution that this would not hold in other
settings, such as with an impulse response. Therefore, future work should study different probing
profiles and extend these results to systems with static nonlinearities or time-varying elements.

Proof of Theorem 4

Inventing the special bold font notation for row vectors with N − L+ 1 consecutive components

zi =

zi zi+1 . . . zi+N−L


, i = 0, 1, . . . , L− 1 (11)

gives the following convenient notation for the L × L Gram matrix that often appears in what
follows: HLH

⊤
L = [〈zi, zj〉]i,j=1:L where HL = HL(z). Let z0, z1, . . . , be a sequence of IID

standard normal random variables. Fix N ≥ L; for convenience, let N = N − L + 1 denote the
number of components in the row vectors zi defined in Eq. (11).

We are interested in the set of nonnegative σ for which HLH
⊤
L v = σ2v for some real-valued

vector v ∕= 0, or equivalently written in Eq. (6). This generalized eigenvalue problem is suitable for
a Gershgorin-type argument by containing all 1

σ2 in a set of disks around the origin. In particular,
we utilize Corollary 2.6 in Nakatsukasa (2011): By formulating conditions under which HLH

⊤
L is

diagonally dominant, it follows that all 1
σ2 are captured by the union of L disks:

1

σ2
∈

L−1

i=0

{s ∈ C : |s− ci| ≤ ρi} , (12)

where the centers and radii are defined by ci = 1
〈zi,zi〉 and ρi = ri

〈zi,zi〉(1−ri)
, respectively, with

ri =
1

〈zi,zi〉


j ∕=i|〈zi, zj〉| for i = 0, . . . , L− 1.
To harness this fact, fix any constants β, γ in (0, 1) and introduce

θ =
γ(1− β) N

L− 1
, so 0 ≤ (L− 1)θ = γ(1− β) N. (13)

9
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Consider the random event in which all of the following inequalities hold:

|〈zi, zi〉 − N | ≤ β N, i = 0, 1, . . . , L− 1; (14)

|〈zi, zj〉| ≤ θ, i, j = 0, 1, . . . , L− 1 with i ∕= j. (15)

These conditions suffice to make HLH
⊤
L strictly diagonally dominant, because (for each i)

〈zi, zi〉 ≥ N − β N = γ−1(L− 1)θ >


j ∕=i

|〈zj , zi〉|.

For each i, inequality Eq. (15) and definition Eq. (13) imply ri ≤ (L−1)θ
N(1−β)

= γ. We have the bound
on the center and radius

|ci| ≤
1

N(1− β)
and ρi ≤

γ

N(1− β)(1− γ)
.

Applying Eq. (12) for the disks with indices i = 0, . . . , L− 1, this implies

1

σ2
≤ |ci|+ ρi ≤

1

N(1− β)


1 +

γ

1− γ


. (16)

Therefore, the right side of Eq. (16) converges to 0 as N → ∞. Define N by equating N with the
right side of Eq. (16). Then Eq. (16) says precisely that ρ


HLH

⊤
L

−1

≤ N , and we have just

shown that N → 0 as N → ∞. To complete the proof, it remains only to estimate the probabilities
of the random events in Eqs. (14) and (15) in terms of N .

This is a consequence of the Hanson-Wright inequality (Rudelson and Vershynin, 2013), which
establishes the existence of a universal constant c > 0 such that

P

|z⊤Mz − E


z⊤Mz


| > t


≤ 2 exp


−cmin


t2

M2F
,

t

M


, t ≥ 0. (17)

for any matrix M Indeed, consider the N -dimensional row vectors zi, i = 0, . . . , L. Each one
can be extracted from the extra-long row z = [z0 . . . zN ] by multiplication with a suitable block-
structured matrix: zi = zUi where Ui =


0
I
0


has i zeros in the top block, L− i zeros in the bottom

block, and I ∈ R N× N . Thus we have 〈zi, zj〉 = zizj
⊤ = zUiUj

⊤z⊤. Each Mij = UiUj
⊤ is a zero

matrix of size (N +1)× (N +1) containing an embedded N × N identity matrix. The embedding
puts the N nonzero elements of matrix Mij on the diagonal if and only if i = j. Thus we have
E

zMiiz

⊤ = N for 0 ≤ i ≤ L, and E

zMijz

⊤ = 0 whenever i ∕= j. Now Eq. (17) gives

P

|〈zi, zi〉 − N | ≤ β N


≥ 1− 2 exp


−cβ2 N


→ 1 0 ≤ i ≤ L− 1,

P (|〈zi, zj〉| ≤ θ) ≥ 1− 2 exp


−c

γ2(1− β)2 N
(L− 1)2


→ 1 i ∕= j, 0 ≤ i, j ≤ L− 1.

In summary, by choosing N sufficiently large, Eqs. (14) and (15) define L2 random events that
hold with probability arbitrarily close to 1. □
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