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Abstract
The Neural Network (NN), as a black-box function approximator, has been considered in many
control and robotics applications. However, difficulties in verifying the overall system safety in
the presence of uncertainties hinder the deployment of NN modules in safety-critical systems.
In this paper, we leverage the NNs as predictive models for trajectory tracking of unknown dy-
namical systems. We consider controller design in the presence of both intrinsic uncertainty
and uncertainties from other system modules. In this setting, we formulate the constrained tra-
jectory tracking problem and show that it can be solved using Mixed-integer Linear Program-
ming (MILP). The proposed MILP-based approach is empirically demonstrated in robot navi-
gation and obstacle avoidance through simulations. The demonstration videos are available at
https://xiaolisean.github.io/publication/2023-11-01-L4DC2024.
Keywords: neural networks, system-level safety, uncertainties, trajectory tracking

1. Introduction

Robotic and autonomous driving systems are typically structured as a pipeline of individual
modules, which are designed separately to satisfy corresponding performance requirements and are
verified at a system level. With recent advances in machine learning, NNs have been utilized in
individual modules, e.g., localization (Li et al. (2021)), mapping (Roddick and Cipolla (2020)), and
path planning (Barnes et al. (2017)). However, the NNs approximate the desired functionalities as
nonlinear mappings from data, thereby introducing (intrinsic) approximation errors. On a system
level, the performance of an NN module can also be affected by extrinsic uncertainties from other
modules. In safety-critical scenarios, considering both intrinsic and extrinsic uncertainties is crucial
to the module design, yet vital to securing safety at the system level.

Several methods have been proposed to employ NNs in control development with safety guar-
antees. In particular, constrained nonlinear optimal control problems have been pursued to control
complex dynamical systems leveraging NN-learned dynamic models, e.g., control of quadrotor mo-
tion (Bansal et al. (2016)) and reduction of diesel engine emission (Zhang et al. (2023)). To mitigate
the computation effort, methods based on MILP have been employed to embed NNs with ReLU ac-
tivation functions in Model Predictive Control formulations (Wei and Liu (2021)). However, the
notion of uncertainties has not been considered in the literature above. In this work, we consider
trajectory tracking controller design leveraging NNs as predictive models (see Figure 1). Apart from
NN prediction errors, we consider the presence of uncertainties from other modules, which affect
the NN predictions and, subsequently, impact the controller design and the system’s safety.
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Figure 1: Trajectory tracking through an NN-learned predictive model: The controller leverages
an NN-learned model (with prediction errors) for predicting the unknown dynamics and tracks the
reference trajectories. The NN predictions depend on the states xk before the sensing module and
the control uk out of the actuator module, which are not directly accessible by the controller in this
pipeline, and are uncertain quantities due to sensing noises and actuator disturbances.

In addition, several methods have been investigated for the safety verification of NNs, where
safety constraints are imposed on NN outputs for a fixed set of inputs. The MILP-based meth-
ods have been utilized for evaluating NN classifiers with ReLU activation functions (Tjeng et al.
(2017)). Approaches to reachability analysis based on Bernstein polynomials (Huang et al. (2019))
and Semi-Definite Programming (SDP) (Hu et al. (2020)) have been proposed to estimate an over-
bound of the reachable set given an input domain and a NN representation. Differently from the
existing literature, we employ NNs as predictive models for dynamical systems, and the NN inputs
are affected by uncertainties that belong to a decision-variable-dependent set. This renders the acti-
vation status of NN neurons uncertain and dependent on the decision variables of the optimal control
problem. We focus on exploiting the structure of NNs in accounting for uncertainty propagation.

The contributions of this paper are as follows: 1) We propose an approach to robust track-
ing controller design subject to system-level safety constraints, which leverages an NN-learned
dynamic model of the system. The safety and dynamics constraints are informed by decision-
variable-dependent uncertainty set propagation through NN and are handled using MILP. 2) We
consider both intrinsic uncertainties from NN prediction errors and extrinsic uncertainties present
in other modules and establish theoretical properties for the proposed method. 3) We illustrate the
applications of the proposed approaches in simulations of collision-avoiding navigation for both an
omnidirectional mobile robot and a conventional vehicle.

This paper is organized as follows: In Section 2, we introduce the assumptions on the actual
dynamics of the system as well as the NN learned dynamics, and we formulate a robust tracking
problem. In Section 3, we present our method to solve the robust tracking problem, using MILP
and its theoretical properties. In Section 4, we use the proposed method, in combination with a
Reachability-Guided RRT algorithm, to navigate an omnidirectional robot through a maze filled
with obstacles. In Section 5, we leverage a set-theoretical localization algorithm that provides ve-
hicle state measurements with uncertainty bounds, and we use our method to navigate a vehicle
while avoiding collisions. Finally, conclusions are given in Section 6. Due to length constraints, the
proofs of the theoretical properties are relegated to our full technical report (Li et al. (2023a)).

2. Problem Formulation

We consider a discrete-time dynamical system represented by xk+1 = f(xk, uk), where the
state xk ∈ X evolves within a specified feasible set X ⊂ Rnx ; uk ∈ U is the control and U ⊂ Rnu

is the control admissible set; and f : X × U → X is an unknown nonlinear mapping. In the
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sequel, we use lowercase letters, e.g., x, y, u, w, to represent vectors, capital letters, e.g., W , to
define matrices, and scripted letters, e.g., X ,U , to denote sets. With a slight abuse of notation, we
use a ≤ b to denote the element-wise order between two vectors a, b ∈ Rn. In addition, given a
lower bound a ∈ Rn, an upper bound b ∈ Rn and a ≤ b, we use [a, b] to denote a hypercube in Rn.
We use In×n to represent the identity matrix of size n. We use 1n×m, and 0n×m to denote matrices
with all zeros and ones, respectively, of size n×m. We neglect the subscript n×m in calculations
assuming that the dimensions are appropriate. We first discuss the NN-learned dynamic model for
controller design that is subject to both intrinsic and extrinsic uncertainties in Section 2.1. Then, we
introduce the robust tracking problem ensuring safety under uncertainties in Section 2.2.

2.1. Model Preliminaries

As shown in Figure 1, we approximate the dynamics f with a pre-trained ℓ−layer fully con-
nected neural network (NN) f̃ : X × U → X that admits the following form

zi = σ(i)(ẑi), ẑi = W (i)zi−1 + b(i), i = 1, . . . , ℓ− 1,

z0 = [xTk , u
T
k ]

T , x̃k+1 = W (ℓ)zℓ−1 + b(ℓ),
(1)

where W (i) ∈ Rni×ni−1 , b(i) ∈ Rni and σ(i) : Rni → Rni are the weight matrix, the bias vector
and an element-wise nonlinear activation function in the ith layer, respectively. The NN uses the
inputs xk, uk to compute a prediction x̃k+1 = f̃(xk, uk) of the actual state xk+1. We consider the
overall system to be subject to uncertainties (see Figure 1) of three types: Firstly, the NN prediction
x̃k+1 of the actual state xk+1 is subject to an unknown prediction error wx

k , i.e.,

x̃k+1 = xk+1 + wx
k , w

x
k ∈ Wx, (2)

where Wx ⊂ Rnx is a bounded set; moreover, the actual states xk and the actual control input uk
are both unknown to the controller due to the presence of noises in other modules. Secondly, we
assume that a state measurement yk of the actual state xk is available from the sensing module and
admits the form,

yk = xk + wy
k, w

y
k ∈ Wy, (3)

where wy
k is an unknown measurement noise, and Wy ⊂ Rnx is a bounded set. Thirdly, we consider

the use of a feedback controller π : X × X → U to track the reference state xr (to be designed).
Then the actual control signal uk is subject to an unknown additive actuator disturbance wu

k , i.e.,

uk = ũk + wu
k , ũk = π(yk, x

r), wu
k ∈ Wu, (4)

where Wu ⊂ Rnu is a bounded set.

2.2. Robust Constrained Tracking Problem

Assume that Xu ⊂ X is an unsafe set, e.g., representing obstacles, that the system should avoid.
Given a reference xr ∈ Xs in the safe subset, Xs = X\Xu, and a state measurement yk that obeys
the assumption in (3), our task is to design a controller π(yk, xr) to track the reference xr while
keeping the system in the safe subset Xs, i.e., ensuring xk+1 ∈ Xs given xk ∈ Xs. These objectives
can be accounted for in a constrained optimization problem,

π(yk, x
r) = argmin

ũk

(
max

x∈F
(
Xk, Uk(ũk)

) ∥x− xr∥p
)

(5a)

subject to: ũk ∈ U , Xk =
(
yk ⊕−Wy

)
∩Xs, Uk = Uk(ũk) = (ũk ⊕Wu)∩U , (5b)
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F̃(Xk,Uk) =
{
x̃k+1 ∈ X : x̃k+1 = f̃(xk, uk),∀xk ∈ Xk,∀uk ∈ Uk

}
, (5c)

F(Xk,Uk) = F̃(Xk,Uk)⊕Wx, F(Xk,Uk) ⊂ Xs, (5d)

where ũk is the decision variable, ∥·∥p represents the ℓp norm, and ⊕ denotes the Minkowski sum.
The term yk ⊕ −Wy stands for {yk} ⊕ {w : −w ∈ Wy} where we omit the curly brackets for
simplicity. Given the measurement yk that satisfies (3), the set Xk in constraint (5b) represents an
uncertainty set that contains the actual state xk. Similarly, the set Uk in constraint (5b) depends on
the decision variable ũk and contains the actual control uk based on (4). The set-valued function
F̃ : X × U → X in (5c) calculates the one step ahead reachable set of the learned NN dynamic
model. The reachable set F(Xk,Uk) in (5d) is derived from F̃(Xk,Uk) and contains the actual
state xk+1 based on (2). Meanwhile, the constraints in (5d) also guarantee the safety of the next
state xk+1 for all the possible uncertainties modeled by (2), (3), (4). The objective defined by
(5a) minimizes the maximum distance between the states in the reachable set F(Xk,Uk) and the
reference, thereby steering the system closer to xr. Unlike reachability analysis Hu et al. (2020),
the input set Uk = Uk(ũk) is conditioned on the decision variable ũk.

Remark We introduce our methodology in the simplest possible setting, i.e., horizon-one Model
Predictive Control with no control cost. This is the same setting as considered in Wei and Liu (2021).
The methodology can be extended to accommodate a multi-step prediction horizon, by augmenting
(5c) and (5d) with the following constraints:

F (i+1) = F̃ (i+1) ⊕Wx ⊂ Xs, F̃ (i+1) = F̃(F (i),Uk), i = 1, 2, . . . , N − 1,

where N is the prediction horizon length, and F (1) = F(Xk,Uk). We consider p = 1 in the sequel
as it leads to linear constraints and MILP.

3. Mixed-integer Linear Programming

To simplify the exposition of the approach, we assume that the uncertainty sets in (2), (3), (4)
are hyper-cubes defined according to

Wx = {wx ∈ Rnx : |wx| ≤ ϵx, ϵx ∈ Rnx , ϵx ≥ 0} , (6a)

Wy = {wy ∈ Rnx : |wy| ≤ ϵy, ϵy ∈ Rnx , ϵy ≥ 0} , (6b)

Wu = {wu ∈ Rnu : |wu| ≤ ϵu, ϵu ∈ Rnu , ϵu ≥ 0} . (6c)

Note that, in principle, one can always find a hypercube overbounding a bounded set. Moreover, we
assume that the nonlinear functions in the NN model are ReLU activation functions

σ(i)(x) = ReLU(x) = max{0, x}, i = 1, · · · , ℓ, (7)

that are commonly adopted in contemporary NN architectures and have demonstrated good empir-
ical performance (LeCun et al. (2015)). We, furthermore, focus on the case when the state feasible
set, control admissible set, and unsafe set are represented as

X = [x, x], x, x ∈ Rnx , x ≤ x, (8a)

U = [u, u], u, u ∈ Rnu , u ≤ u, (8b)

Xu = ∪iX (i)
u , X (i)

u = [x(i)u , x(i)u ], x(i)u , x(i)u ∈ Rnx , x ≤ x(i)u ≤ x(i)u ≤ x. (8c)
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The definition of the unsafe set (8c) enables us to tightly over-bound obstacles of irregular shapes
using unions of hypercubes in the optimization problem. Then, equations (5b), (5c), (5d) encode
the constraints associated with the input feasibility, NN structural non-linearity, and system safety,
respectively, and are realized using integer decision variables as described in the respective Sections
3.1, 3.2, and 3.3. In this setting and when p = 1 in (5a), i.e., the cost function is based on the ℓ1
norm, we show that (5) reduces to a MILP in Section 3.4. The proofs of the theoretical properties
in this section are provided in our full technical report (Li et al. (2023a)).

3.1. Constraints Embedding Input Feasibility

Given a measurement yk and the decision variable ũk, the constraints (5b) define the sets Xk,
Uk that are guaranteed to contain the actual state xk and the control uk while the decision variable
shall be admissible, i.e., xk ∈ Xk, uk ∈ Uk, ũk ∈ Uk. We embed these feasibility conditions of the
NN inputs using linear inequality and equality constraints in the following proposition.

Proposition 1 Given state measurement yk and a decision variable ũk, assume that the unknown
actual quantities xk and uk obey (3), (4) with assumptions in (6b), (6c), (8a), (8b). Let the decision
variables ũk ∈ Rnu , a0, b0 ∈ Rnx+nu , and δa, δb ∈ Rnu satisfy the following constraints

a0,1:nx = max{x, yk − ϵy}, b0,1:nx = min{x, yk + ϵy}, a0 ≤ b0, (9)

u ≤ ũk ≤ u, δaj , δ
b
j ∈ {0, 1}, j = 1, . . . , nu,

a0,(nx+1):(nx+nu) ≥ u
a0,(nx+1):(nx+nu) ≥ ũk − ϵu

a0,(nx+1):(nx+nu) ≤ u+M(1− δa)
a0,(nx+1):(nx+nu) ≤ ũk − ϵu +Mδa

,


b0,(nx+1):(nx+nu) ≤ u
b0,(nx+1):(nx+nu) ≤ ũk + ϵu

b0,(nx+1):(nx+nu) ≥ u−M(1− δb)

b0,(nx+1):(nx+nu) ≥ ũk + ϵu −Mδb

,
(10)

where δaj denotes the jth element in column vector δa, a0,m:n represents the vector containing
elements between row n and row m in a0, the constant matrix M = Diag (max{ϵu, u− u− ϵu}),
and Diag(x) ∈ Rn×n yields a square matrix with elements of x on the diagonal and zero anywhere
else. Then, it is guaranteed that z0 = [xTk uTk ]

T ∈ [a0, b0].

The constraints in Proposition 1 enforce input feasibility, i.e., ũk ∈ Uk, and provide bounds
a0, b0 on the NN input subject to extrinsic uncertainties, i.e., a0 ≤ [xT , uT ]T ≤ b0 for all x ∈
Xk, u ∈ Uk. Specifically, based on assumption (6b) and (8a), the constraints (9) imply Xk ⊆
[a0,1:nx , b0,1:nx ]. Based on assumption (6c) and (8b), the constraints (10) are equivalent to the
following inequalities

max{u, ũk − ϵu} = a0,(nx+1)···(nx+nu) ≤ b0,(nx+1)···(nx+nu) = min{u, ũk + ϵu},

thereby Uk ⊆ [a0,(nx+1):(nx+nu), b0,(nx+1):(nx+nu)]. We use integer variables δa, δb to move the
decision variable ũk out of the nonlinear min/max function: δaj = 1 implies the jth element of
max{u, ũk − ϵu} attains the value of the jth element of u, otherwise δaj = 0; δbj = 1 indicates the
jth element of min{u, ũk + ϵu} attains the value of the jth element of u, otherwise δbj = 0.

3.2. Constraints Encoding NN Structural Non-Linearity

Using the bounded sets X in (8a) and U in (8b), we can numerically derive lower and upper
bounds ẑi, ẑi ∈ Rni , i = 1, . . . , ℓ on the neuron values ẑi and the output x̃k+1 using interval
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arithmetic, i.e., ẑi ∈ [ẑi, ẑi] and x̃k+1 ∈ [ẑℓ, ẑℓ]. In the sequel, these derived bounds are used to
tighten the constraints and limit the search region for the optimization solver. Given the decision
variables a0, b0 in Proposition 1 as bounds on the NN input, we can encode the decision-variable-
dependent uncertainty set propagation through the NN defined in (5c) using the following results:

Proposition 2 Given z0 = [xTk uTk ]
T ∈ [a0, b0], consider a NN defined by (1) and (7), and let the

decision variables ai−1, bi−1 ∈ Rni−1 , âi, b̂i ∈ Rni , δ−−
i , δ−+

i , δ++
i ∈ {0, 1}ni , i = 1, . . . , ℓ − 1,

and ak+1, bk+1 ∈ Rnx satisfy the following constraints

âi,j = w
(i)
j Si

(
(w

(i)
j )T

)[
ai−1

bi−1

]
+ b

(i)
j , b̂i,j = w

(i)
j Si

(
(w

(i)
j )T

)[
bi−1

ai−1

]
+ b

(i)
j ,

ẑi ≤ âi ≤ b̂i ≤ ẑi, ∀j = 1, · · · , ni, ∀i = 1, . . . , ℓ− 1,

(11)


ai ≥ âi
ai ≤ âi −Diag(ẑi)(δ

−−
i + δ−+

i )

ai ≤ Diag(ẑi)δ
++
i

,


bi ≥ b̂i
bi ≤ b̂i −Diag(ẑi)δ

−−
i

bi ≤ Diag(ẑi)(δ
−+
i + δ++

i )

,

0 ≤ ai ≤ bi, δ−−
i,j , δ−+

i,j , δ++
i,j ∈ {0, 1}, δ−−

i,j + δ−+
i,j + δ++

i,j = 1,

∀j = 1, · · · , ni, ∀i = 1, . . . , ℓ− 1,

(12)

ẑℓ ≤ ak+1 ≤ bk+1 ≤ ẑℓ, ak+1,j = w
(ℓ)
j Sℓ

(
(w

(ℓ)
j )T

)[
aℓ−1

bℓ−1

]
+ b

(ℓ)
j ,

bk+1,j = w
(ℓ)
j Sℓ

(
(w

(ℓ)
j )T

)[
bℓ−1

aℓ−1

]
+ b

(ℓ)
j , ∀j = 1, · · · , ni,

(13)

where âi,j is the jth element of âi; w
(i)
j is the jth row of W (i); b(i)j is the jth element of b(i); δ−−

i,j

denotes the jth element of δ−−
i ; ak+1,j , bk+1,j represent the jth element of ak+1, bk+1, respectively;

The functions Si : Rni−1 → Rni−1×2ni−1 and s : R → R2ni−1 are defined according to

Si




...
wq
...


 =


...

(s(wq))
T

...

 , s(wq) :=


[

eq
0ni−1×1

]
if wq ≥ 0[

0ni−1×1

eq

]
if wq < 0

,

and eq ∈ Rni−1 (q = 1, . . . , ni−1) has 1 as the qth element and other elements being zero. Then, the
reachable set F̃(Xk,Uk) defined in (5c) is a subset of the hypercube [ak+1, bk+1], i.e., F̃(Xk,Uk) ⊆
[ak+1, bk+1].

From the (i − 1)th to ith layer of the NN, the uncertainty set propagation is realized through
variables ai−1, bi−1 and âi, b̂i that are the lower and upper bounds of zi−1 and ẑi, respectively
(i.e., zi−1 ∈ [ai−1, bi−1] and ẑi ∈ [âi, b̂i]). The constraints (11) and (13) encode the uncertainty
propagation through the fully connected layers, ẑi = W (i)zi−1 + b(i) and x̃k+1 = W (ℓ)zℓ−1 + b(ℓ),
respectively. The uncertainty set propagation through the nonlinear ReLU function is enforced in
constraints (12). In constraints (11) and (13), the qth row of matrix Si((w

(i)
j )T ) switches the upper

and lower bounds of zi−1 if the qth element in w
(i)
j is negative. Meanwhile, since the values zi−1

in neurons fall into a bounded hypercube [ai−1, bi−1], the activation status of each ReLU activation
function is uncertain. Inspired by Tjeng et al. (2017), we introduce integer variables δ−−

i , δ−+
i , δ++

i
in constraints (12) to encode the uncertainty in the ReLU activation status according to

âi,j ≤ b̂i,j ≤ 0 if δ−−
i,j = 1; âi,j ≤ 0 ≤ b̂i,j if δ−+

i,j = 1; 0 ≤ âi,j ≤ b̂i,j if δ++
i,j = 1.

Furthermore, as can be shown, the hypercube defined by lower bound ak+1 and upper bound bk+1

is an over-estimation of the actual reachable set F̃ , i.e., F̃ ⊆ [ak+1, bk+1].
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3.3. Constraints Enforcing System Safety

Given a hypercube [ak+1, bk+1] as an over-estimation of the reachable set F̃ in Proposition 2, we
enforce the safety constrains (5d) of the system such that xk+1 ∈ F(Xk,Uk) ⊂ Xs. We consider the
presence of a simple unsafe subset Xu = [xu, xu] in the following result and discuss the extension
to a union of X (i)

u defined in (8c) at the end of this section.

Proposition 3 Given F̃(Xk,Uk) ⊆ [ak+1, bk+1] and state space defined in (8a), assume that the
NN predictions are subject to bounded additive errors defined in (2) and (6a), and the decision
variables xk+1, xk+1 ∈ Rnx , δu1 , δ

u
2 ∈ Rnx satisfy the following constraints:

x ≤ xk+1 ≤ xk+1 ≤ x, xk+1 = ak+1 − ϵx, xk+1 = bk+1 + ϵx, (14)
xk+1 ≤ x+Diag (xu − x) δu1
xk+1 ≥ xu −Diag (xu − x) δu1
xk+1 ≥ x+Diag (xu − x) δu2
xk+1 ≤ xu −Diag (xu − x) δu2

,

δu1,j , δ
u
2,j ∈ {0, 1}, ∀j = 1, . . . , nx,

δu1,j + δu2,j ≤ 1, ∀j = 1, . . . , nx,
nx∑
j=1

(
δu1,j + δu2,j

)
≥ 1,

(15)

where δu1,j , δ
u
2,j are the jth element of δu1 , δ

u
2 , respectively. Then, xk+1 ∈ F(Xk,Uk) where F(Xk,Uk)

is the reachable set defined in (5d), and F(Xk,Uk) ⊆ [xk+1, xk+1] ⊂ Xs with Xu = [xu, xu].

In Proposition 3, the constraints (14) are equivalent to [xk+1, xk+1] = [ak+1, bk+1] ⊕ Wx and
[xk+1, xk+1] ⊂ X . Considering the result F̃(Xk,Uk) ⊆ [ak+1, bk+1] from Proposition 2, it is
obvious that F(Xk,Uk) ⊆ [xk+1, xk+1] based on the definition of F(Xk,Uk) in (5d). Subse-
quently, the safety constraint of F(Xk,Uk) ⊂ Xs can be enforced with [xk+1, xk+1] ⊂ Xs, which
is equivalent to [xk+1, xk+1] ⊂ X and [xk+1, xk+1] ∩ Xu = ∅. The constraints (15) enforce
[xk+1, xk+1] ∩ Xu = ∅ using integer variables according to

xk+1,j ≤ xk+1,j ≤ xu,j if δu1,j = 1, δu2,j = 0

xk+1,j ≥ xk+1,j ≥ xu,j if δu1,j = 0, δu2,j = 1

xu,j ≤ xk+1,j ≤ x, x ≤ xk+1,j ≤ xu,j if δu1,j = 0, δu2,j = 0
,

where xk+1,j , xk+1,j , xu,j , xu,j are the jth element of xk+1, xk+1, xu, xu, respectively. The integer
constraints imply that there exists at least one dimension j where [xk+1,j , xk+1,j ] ∩ [xu,j , xu,j ] =
∅. Subsequently, the hypercube [xk+1, xk+1] has zero overlaps with the unsafe subset [xu, xu].
Notably, in the case of a complex unsafe region Xu, we can derive a union of hypercubes ∪iX (i)

u as
in (8c) that over-bounds Xu. Thereafter, to ensure safety, we can formulate similar constraints (15)
with each individual hypercube X (i)

u in the union.

3.4. Safe Tracking Control using MILP

The optimization objective in (5a) is designed to minimize the maximum distance between the
points in the reachable set and the reference state xr. Focusing on the case when p = 1, i.e., the cost
is defined using ℓ1 norm, we can introduce a vector of slack variables λ ∈ Rnx , and reformulate
(5a) as

argminũk

∑nx
q=1 λq,

subject to: λ ≥ 0, −λ ≤ xk+1 − xr ≤ λ, −λ ≤ xk+1 − xr ≤ λ, (16)

where λq designates the qth element of vector λ. This objective function relies on the fact that the
maximum distance, between a reference xr and points in the hypercube [xk+1, xk+1], is attained at
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the points located at the boundary of the hypercube. Then, the optimization problem (5) for tracking
the reference state xr safely can be rewritten into a MILP according to

Robust Constrained Tracking Control Problem:

argmin
ũk, δ

a, δb, a0, b0, ak+1, bk+1, xk+1, xk+1, δ
u
1 , δ

u
2 , λ,

ai, bi, âi, b̂i, δ
−−
i , δ−+

i , δ++
i , i=1,...,ℓ−1,

nx∑
q=1

λq,

subject to: (9), (10), (11), (12), (13), (14), (15), (16).

(17)

We note that the number of decision variables in the MILP problem (17) scales linearly with the
number of neurons in the NN. In the subsequent examples, we use the YALMIP toolbox (Lofberg
(2004)) for MATLAB to solve the optimization (17). The code is available at https://github.
com/XiaoLiSean/MILPSafetyGuard. It also has the following property.

Proposition 4 Consider a NN-learned dynamical system defined by (1), (7) that takes control uk
and state xk as inputs and yields x̃k+1 as a prediction of the next state xk+1 and satisfies the
bounded additive error assumption in (2), (6a). We assume that xk ∈ Xs is unknown but belongs
to a safe set Xs = X\Xu that is the complement set of the unsafe region Xu given by (8c) in the
state space X defined by (8a). Also assume that a measurement yk of xk is given that satisfies the
assumptions in (3), (6b). If there exists a solution of the Problem (17) such that the corresponding
ũk is in the admissible set U defined by (8b), then for all actuator disturbances wu

k in set Wu defined
by (6c), the actual control uk subject to this additive disturbance wu

k according to (4) renders the
actual next system state safe, i.e., xk+1 ∈ Xs.

4. Obstacle Avoidance and Reachability-Guided RRT

Figure 2: Schematic of obstacle avoidance using an omnidirectional robot: (Left) The reachability-
guided RRT algorithm expands the tree from the start x0 to the goal xg over the safe state space Xs.
Then, we use the Dijkstra planning algorithm to find a reference path (black lines with red dots)
from x0 to xg that has the shortest distance defined by ℓ1 norm. (Middle) We use the proposed
method in (17) to track the reference states (red dots). Our method can guarantee that the robot
motion is collision-free under uncertainties, i.e., the unknown actual states in blue asterisks are in
the safe set Xs, even with most of the reference points located near the obstacles.

We consider an omnidirectional robot as a point mass and use the following equation to rep-
resent its kinematics: xk+1 = f(xk, uk) = xk + uk + wk, where xk ∈ R2 is the robot coor-
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dinates in the X − Y plane, uk ∈ R2 contains the displacements, and the values of the distur-
bance wk ∼ U(−ϵx, ϵx) are sampled uniformly from the interval [−ϵx, ϵx]. We consider the sets
U =

{
[u1 u2]

T ∈ R2 : −0.25 ≤ u1, u2 ≤ −0.25
}

, X =
{
[x1 x2]

T ∈ R2 : −1 ≤ x1, x2 ≤ 10
}

to-

gether with obstacles X (i)
u visualized as orange boxes in Figure 2. The NN is manually constructed

and admits the following form

x̃k+1 =
[
−I2×2 −I2×2

]
ReLU

([
I2×2 02×2

02×2 I2×2

] [
xk
uk

]
+

[
−50 · 12×1

−50 · 12×1

])
+ 100 · 12×1,

which is equivalent to x̃k+1 = f̃(xk, uk) = xk + uk given xk ∈ X and uk ∈ U . Finally, the
uncertainty bounds are set to ϵx = ϵu = ϵy = [0.05, 0.05]T . We develop a reachability-guided
RRT planner similar to Shkolnik et al. (2009) using the CORA toolbox (Althoff (2015)), combined
with the Dijkstra algorithm, to generate a path of reference states xr. Different from the classic
RRT, the reachability-guided RRT incorporates dynamics as a constraint to extend the edges of
the tree. This tree T ({x(i)}, {E(ij)}) comprises nodes x(i) ∈ Xs and directed edges E(ij). The
edge E(ij) connects node x(i) to node x(j) and implies that there exists a control uk ∈ U such that
x(j) = f̃(x(i), uk) ∈ Xs, i.e., x(j) ∈ F̃({x(i)},U) ∩ Xs. As shown in Figure 2, the algorithm
is initialized with an initial node x0 and is terminated if there exists a node x(i) ∈ T such that
xg ∈ F̃({x(i)},U). At each time step, we take the first node x(i) in the shortest path as the reference
state xr in (17). We solve the optimization (17) and apply the resulting control ũk to the actual
dynamic model f . Then, we remove x(i) from the path if x(i) ∈ [xk+1, xk+1] and the navigation
terminates when xg ∈ [xk+1, xk+1]. The solution of (17) takes 0.16± 0.08 sec on a laptop with an
Intel i7-8550U CPU and 8 GB memory. As shown in Figure 2, after taking control ũk, the resulting
next states xk+1 in blue asterisks are within the reachable set [xk+1, xk+1] in green boxes and the
boxes [xk+1, xk+1] are collision-free, which empirically validates Proposition 4.

5. Vehicle Navigation and Set-theoretical Localization

We next consider a front-wheel drive vehicle of 2 m width shown in Figure 3. The length of the
vehicle wheelbase is l = 5 m. We adopt the vehicle kinematics model from Li et al. (2023b), which
admits the form,

xk+1 = f(xk, uk) =

 px,k + vkdt cos θk cos δk
px,k + vkdt sin θk cos δk

θk + vkdt/l sin δk

 ,

where xk = [px,k py,k θk]
T is the state vector, (px,k, py,k) in meters are the coordinates of the center

of the vehicle rear wheel axis, and θk ∈ [−π, π] is the vehicle orientation; uk = [vk δk]
T is the con-

trol vector, vk in m/s is the vehicle longitudinal speed, and δk in rad is the vehicle steering angle;
dt = 0.1 sec is the sampling period. We use the sets U = {uk : vk ∈ [2, 5], δk ∈ [−0.6, 0.6]}, X =

{xk : px,k, py,k ∈ [−50, 50], θk ∈ [−π, π]} together with obstacles X (i)
u visualized in grey boxes in

Figure 3. For the uncertainties, we assume the actuator disturbance ϵu = [0.01 m/s, 0.5 deg]T.
We densely sample a dataset D = {(x(i)k , u

(i)
k , x

(i)
k+1)}i from X ×U for NN training and quantifying

the NN prediction error. The NN has two hidden layers of 8 and 4 neurons, respectively. Based
on Pytorch library (Paszke et al. (2019)), we train an NN f̃ using the Stochastic Gradient Descent

algorithm and dataset D to minimize the mean-squared error
∥∥∥x(i)k+1 − f̃(x

(i)
k , u

(i)
k )

∥∥∥2
2
, and the pre-

diction error is equal to ϵx = [0.02 m, 0.02 m, 1.5 deg]T. We quantify the prediction error as the
maximum value of the empirical absolute error, i.e.,

ϵx = max
{
ϵ ∈ R3 : ϵ =

∣∣∣x(i)k+1 − f̃(x
(i)
k , u

(i)
k )

∣∣∣ , (x(i)k , u
(i)
k , x

(i)
k+1) ∈ D

}
,
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Figure 3: Schematic of navigating a vehicle through a maze with tracking controller (17) and with
a set-theoretic localization algorithm. The zoom-in view, at the top-left, demonstrates that the set-
theoretic localization algorithm provides estimates of the vehicle body and orientation that are guar-
anteed to contain the actual ones. The tracking controller (17) leverages this information, together
with an NN-learned vehicle dynamics model, to avoid obstacles.

and the function max is applied element-wise. The theoretical properties of uncertainty-bound
quantification from samples are discussed in Dean et al. (2020) and are beyond the scope of this
work. At each time step k, we apply the set-theoretic localization algorithm presented in Li et al.
(2023b) to generate an uncertainty polygon Pxy that contains the actual vehicle position [px,k, py,k]

T

and an uncertainty interval Pθ that contains the actual vehicle orientation θk, i.e., [px,k, py,k]
T ∈

Pxy and θk ∈ Pθ. Subsequently, we can derive the smallest hypercube P that over-bounds Pxy×Pθ,
and the measurement error ϵy is quantified as half of the sizes of P . The algorithm can also produce
a polytope estimation of the vehicle body as demonstrated in Figure 3. Then, akin to the process
in Section 4, we solve the optimization problem (17) and use the resulting control to navigate the
vehicle through the maze. The solution of (17) takes 0.14± 0.06 sec. As shown in Figure 3, we can
also observe that the vehicle motion is collision-free, which is consistent with Proposition 4.

6. Conclusion and Future Work

In this paper, we developed an approach for robust reference tracking that leveraged a learned
NN model to control the actual dynamics. We considered both bounded intrinsic and extrinsic un-
certainties from the controller and other system modules, respectively. We transcripted the resulting
decision-variable-dependent uncertainty set propagation through NN using a MILP. We provided
results which ensure that the proposed MILP can render the overall system safe considering all
possible actuator disturbances, measurement noise, and prediction errors within their corresponding
bounded sets. We tested the proposed method in navigation and obstacle avoidance scenarios for an
omnidirectional robot and a vehicle in simulations. We also note that the recursive feasibility is not
guaranteed under the current horizon-one MPC setting; this will be addressed in future work.
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