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Abstract
Deep neural networks have repeatedly been shown to be non-robust to the uncertainties of the real
world, even to naturally occurring ones. A vast majority of current approaches have focused on
data-augmentation methods to expand the range of perturbations that the classifier is exposed to
while training. A relatively unexplored avenue that is equally promising involves sanitizing an im-
age as a preprocessing step, depending on the nature of perturbation. In this paper, we propose to
use control for learned models to recover from distribution shifts online. Specifically, our method
applies a sequence of semantic-preserving transformations to bring the shifted data closer in distri-
bution to the training set, as measured by the Wasserstein distance. Our approach is to 1) formulate
the problem of distribution shift recovery as a Markov decision process, which we solve using re-
inforcement learning, 2) identify a minimum condition on the data for our method to be applied,
which we check online using a binary classifier, and 3) employ dimensionality reduction through
orthonormal projection to aid in our estimates of the Wasserstein distance. We provide theoreti-
cal evidence that orthonormal projection preserves characteristics of the data at the distributional
level. We apply our distribution shift recovery approach to the ImageNet-C benchmark for distri-
bution shifts, demonstrating an improvement in average accuracy of up to 14.21% across a variety
of state-of-the-art ImageNet classifiers. We further show that our method generalizes to composites
of shifts from the ImageNet-C benchmark, achieving improvements in average accuracy of up to
9.81%. Finally, we test our method on CIFAR-100-C and report improvements of up to 8.25%.
Keywords: distribution shift, Markov decision process, reinforcement learning

1. Introduction

Deep learning models are excellent at learning patterns in large high dimensional datasets. How-
ever, the brittleness of deep neural networks (DNNs) to distribution shifts is a challenging problem.
Hendrycks and Gimpel (2018) showed that, even in naturally occurring distribution shift scenar-
ios, a classifier’s performance can deteriorate substantially. Arguably, one of the most widespread
uses of deep learning techniques currently is in image recognition. In this paper, we propose to
use decision and control for learned models (DC4L) to improve robustness to distribution shifts,
with demonstration on image classification tasks. The idea is to actively sanitize a set of images
depending on the type of the distribution shift. Intuitively, the training distribution of a classifier is
viewed as its comfort zone, where the behavior is more predictable and trustworthy. At run time,
when exposed to perturbations that push the images outside of this comfort zone, a feedback policy
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takes control actions which can bring the images back to a more familiar space. The control actions
are so chosen that the semantic meaning of the images are preserved. This ensures correctness.
While approaches for DNN robustness have until now focused on data-augmentation techniques
(Hendrycks et al., 2019; Erichson et al., 2022; Verma et al., 2019; Yun et al., 2019; Kim et al.,
2020b; Hendrycks et al., 2020), we show that by using ideas from the data-driven control paradigm,
it is possible to provide an additional level of performance boost beyond what can be offered by
SOTA augmentation methods.

Our technique exploits the following observation: when distribution shift arises in the external
environment due to natural causes, it persists for a certain duration of time. For instance, when
a corruption in image quality occurs due to snow, this corruption does not disappear in the next
image frame. This gives the system some time to adapt and recover from this shift by computing
some semantic preserving transformations to the data. Our technique, Supervisory system for Shift
Adaptation and Recovery (SuperStAR), applies a sequence of semantic-preserving transforms
to the input data, correcting the input to align with the original training set of the classifier. We
show that formulating the sequence selection problem as a Markov decision process (MDP) lends a
natural solution: reinforcement learning (RL).

In summary, our contributions towards addressing the problem of robustness to semantic pre-
serving shifts are as follows. 1) We translate the problem of distribution shift recovery for neural
networks to a Markov decision process, which we solve using reinforcement learning. 2) We iden-
tify a minimum condition of operability for our method, which we check online using a binary
classifier. 3) We develop a method to efficiently compute the degree of distribution shift by project-
ing to a lower dimensional space. This uses results from Cai and Lim (2022) in conjunction with
the Wasserstein distance. 4) We demonstrate an application to ImageNet-C and achieve significant
accuracy improvements (up to 14.21% averaged across all shift severity levels) on top of standard
training and data-augmentation schemes. We further show that our method generalizes beyond the
ImageNet-C benchmark, yielding up to 9.81% on composite Imagenet-C shifts and up to 8.25% on
CIFAR-100-C in accuracy improvements.

2. Preliminaries

We begin by assuming that the images are sampled from a measurable space (X ,AX ). Let ∆(X ,AX )
denote the set of all probability measures on (X ,AX ). We pick a distribution D ∈ ∆(X ,AX ) from
which the current set of images are sampled. Assume that the labels belong to a measurable space
(Y,AY), and a classifier C is an AX \AY measurable map, C : X → Y . An oracle classifier C∗
produces the ground truth labels. Next, we define a semantic preserving transform T.

Definition 1 (Semantic Preserving Transform) A function T : X → X is semantic preserving iff
C∗(x) = C∗(T(x)), for all x ∈ X .

We denote by S the set of all such semantic preserving transforms. In the standard empirical
risk minimization (ERM) paradigm, we approximate C∗ with some classifier C. When measuring
robustness to common corruptions, typically a corrupting transform Tc belongs to S. This includes
transforms like the addition of Gaussian noise, speckle noise, and alike. The error of a classifier C
under the distribution D, is defined as

err(D) := Ex∼D [1(C∗(x) ̸= C(x))] ,
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Figure 2: Example transformations applied to an image with contrast shift level 5. CLAHE(x,y) denotes histogram
equalization with strength determined by x and y (details in Appendix E of Lin et al. (2023)). The policy applies a non-
trivial composition of transformations that would be difficult to find through manual manipulation. The policy chooses
few redundant actions and improves the accuracy of an AugMix-trained ResNet-50 on a random batch of 1000 images.

where 1 is the standard indicator function, which evaluates to 1 iff C∗(x) ̸= C(x).1 For a robust
classifier we expect err(D) to be minimal for multiple choices of the distribution D. For instance
in the case of common corruptions introduced in Hendrycks and Dietterich (2019), the goal is to
optimize the choice of classifier C such that err(D) is minimized, even under shift. This is typically
achieved using data-augmentation schemes such as Augmix, NoisyMix, and DeepAugment.

3. Functionality and Problem Statement

Figure 1: Overview of SuperStAR. At deployment,
assume that a distribution shift causes a drop in accu-
racy. This is detected through changes in the Wasser-
stein distance between a validation set and the corrupted
set. SuperStAR computes a composition of trans-
forms Ik to adapt to the shift and recover accuracy. This
composition of SuperStAR with the classifier helps it
detect and adapt, boosting robustness of classification.

At a high level, the functioning of SuperStAR is
akin to a supervisor for the classifier shown in Fig-
ure 1. SuperStAR detects distribution shifts and
computes a recovery strategy to be applied before
sending an image to a classifier. Determining the
appropriate recovery strategy presents an interest-
ing challenge.

Consider a random variable xc = T(z), where
z ∼ D and T is a semantic preserving transform.
Note that T is generally not invertible. However,
one may possibly choose an element T′ from the
set of semantic preserving transforms S that par-
tially recovers the accuracy drop due to T. It might even be effective to select a sequence of
such transforms: an ordered set T := {Tk,Tk−1, . . .T1} with k ≥ 1, such that S ∋ Ik(x) :=
Tk ◦ Tk−1 ◦ · · · ◦ T1(x).2 Ideally, we wish to find an algorithm which optimizes the following:

I∗k = argminIk R(Ik) , where R(Ik) = err(DIk◦T)− err(D), (1)

with DIk◦T denoting the distribution of Ik ◦ T(z), z ∼ D. The transform Ik is what effectively
reverses an image corruption due to T.

At deployment, when SuperStAR detects a shift in distribution compared to a clean validation
set, it should propose a composition of transforms Ik to minimize the cost outlined in Equation 1.
From the vantage point of classifier C, images transformed using Ik appear to be closer to the home
distribution D. An example result of this is shown in Figure 2.

4. Distribution Shift Recovery is a Markov Decision Process

Our task is to compute a composition of transforms Ik to apply to the corrupted set Vc, sampled
i.i.d from DT, to realize the optimization cost outlined in Equation 1. To this end, we note the
following theorem.

1. For notational convenience, we hereafter denote both a random variable and its realization by a lowercase Latin letter.
2. The order ≺T on T is given by Ti ≺T Tj ⇐⇒ i < j, i, j ∈ N. T0 is assumed to be the identity function.
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Theorem 2 R(Ik) ≤ α·dTV (D,DIk◦T), for some finite α ∈ R and semantic preserving transform
Ik.

Proof Let us denote by d the pdf of DIk◦T and by d′ the pdf of D. We begin by expanding the
definition of R(Ik).

R(Ik) = err(DIk◦T)− err(D)

= Ex1∼DIk◦T,x2∼D [1(C∗(x1) ̸= C(x1))− 1(C∗(x2) ̸= C(x2))]
=

∫
X 1(C∗(x) ̸= C(x))[d(x)− d′(x)]dx

≤
∣∣∫

X (supx∈X 1(C∗(x) ̸= C(x))) [d(x)− d′(x)]dx
∣∣

=
∣∣(supx∈X 1(C∗(x) ̸= C(x)))

∫
X [d(x)− d′(x)]dx

∣∣
≤ |supx∈X 1(C∗(x) ̸= C(x))| · supA∈AX

∣∣∫
A[d(x)− d′(x)]dx

∣∣
= α · dTV (D,DIk◦T),

where α = |supx∈X 1(C∗(x) ̸= C(x))|. The first step assumes X is a continuous space. The rest
follows from expressing the definition of computing expectation in terms of the classifier error.

Thus, for a transform T (possibly a corruption), it is possible for the classifier to recover perfor-
mance if the apparent distribution under Ik ◦ T is close enough to the original distribution D. Then
the optimal Ik is the sequence of semantic preserving transforms that minimize the distance from
D. Equivalently, this can be viewed as a sequence of actions maximizing a reward. More formally,
the task of computing Ik can be formulated as a reactive policy for an MDP, which can be learned
using standard reinforcement learning techniques. In this section, we present this MDP formulation
in the context of an image classification task, but it may be applied in any learning setting.

Definition 3 (MDP) A Markov Decision Process (MDP) is a 6-tuple E = (S,A,P,R, γ, I0),
where S ⊆ Rn is the set of states, A ⊆ Rm is the set of actions, P(s′|s, a) specifies the probability
of transitioning from state s to s′ on action a, R(s, a) is the reward returned when taking action a
from state s, γ ∈ [0, 1) is the discount factor, and I0 is the initial state distribution.

State Representation. The environment has access to a set Vc ⊂ X , which is a set of possibly
corrupted images. A state of the MDP is a compressed representation of this set Vc, capturing the
type of corruptions in an image. Let us assume that this projection is captured by some function FR :
AX → R, where R is the space of representations for a set of images. We want a representation
r = FR(Vc) to be rich enough that a policy can decipher the appropriate choice of action in A, but
also compact enough that it is possible to learn a policy within a few episodes. Typically, a smaller
state space size leads to faster convergence for reinforcement learning algorithms.

In this paper, for a set of images Vc, we select a 3-dimensional state representation that measures
the average brightness, standard deviation, and entropy of the images in Vc. We convert each image
x to grayscale, then obtain the discrete wavelet transform and compute its average brightness B(x),
standard deviation S(x), and entropy E(x). The state representation is an average of all these values
across the images,

FR(Vc) =
1

|Vc|
∑

x∈Vc

[
B(x), S(x), E(x)

]⊤
. (2)

Actions and Transitions. The set of actions A ⊆ S is a set of semantic preserving transforms
from which the learner chooses to maximize some reward. For an example, see the action set
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selected for the ImageNet-C benchmark in Appendix E of Lin et al. (2023). Hence, capturing
Equation 1 as a reward leads the agent to pick actions that mitigate the current corruption to some
extent. Transitions model the effect of applying a transform from S to a possibly corrupted set Vc.
With slight abuse of notation, we use T(Vc) to denote set {v′ : v′ = T(v), v ∈ Vc}.

Figure 3: Operation of SuperStAR. Starting from
Vc, the algorithm selects a sequence of transforms T
which move Vc closer to the original distribution V.
During the sequence, the orthonormal projections φ(V)
and φ(Vc) are used to compute the Wasserstein distance
Wp(φ(Vc), φ(V)). See Section 6 for details.

Computing Reward. As shown in Figure 3,
computing the reward for a set of images Vc cor-
responds to measuring the distance from a clean
validation set V. Ideally, the distance between
the distributions from which Vc and V are drawn
would be measured, but this is difficult without
knowledge of the source distributions. Instead,
we use an empirical estimate of the Wasserstein
distance (Bonneel et al., 2011) to compute the
distributional distance between sets Vc and V. It
should be noted that a variety of distance func-
tions can be employed here. We explore alterna-
tives in Appendix A of Lin et al. (2023).

In practice the policy might not be able to
reduce the W e

p to a level such that the classifier
completely recovers the loss in accuracy. One reason for this is the possible non-existence of the
inverse of the corruption transform. Another possible issue is that a transformation may overly alter
the image such that the classifier performs poorly. Although we can combat against this by ensuring
that actions make incremental changes to the image, this is hard to control. We therefore add a reg-
ularizer to the Wasserstein distance that penalizes excessive changes to the image. This is achieved
using a visual similarity between pairs of images known as ssim (Wang et al., 2004).

Given λ > 0 and 0 ≤ ω < 1, the reward function is given by

R(st, at) = −W e
p (V,F−1

R (st)) + λLS(F−1
R (s0),F−1

R (st+1)), (3)

where,

LS(X,Y) =

{
log(1− ssim(X,Y)), ssim(X,Y) < ω

0 otherwise.
(4)

Note that the regularization hyperparameter λ influences the level of aggression in correction. For
example, selecting a large λ favors actions with minimal influence on the data.

Initial State. At test time, the initial state of the MDP is produced by a random environment
corruption from the set S that the system is subjected to. In reality the designer does not have access
to any of these corrupting transforms. Hence, at training time we train a policy network to reverse a
set of surrogate corruptions from S, with the hope that some of these transfer at inference time to an
unseen set of corruptions. An example surrogate corruption set and selection methodology for the
ImageNet-C benchmark is given in Appendix E of Lin et al. (2023). We pick uniformly randomly
from a finite set of Sc ⊂ S of these surrogate corruptions to sample the initial state I0.

Standard RL techniques can be applied to learn a policy π : S → A for the MDP E , which
is a strategy to recover the distribution shift. The value of a state for policy π is the expected
return Rπ(s0), starting from state s0, while executing the policy π at every step, at = π(st).
The optimal policy π∗ maximizes the reward starting from the initial state distribution – i.e., π∗ =
argmaxV I0(π), where V I0(π) = Es0∈I0 [Rπ(s0)].
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5. Applying a Learned Policy for Detection and Correction

Algorithm 1 Transformation Selection
Require: Validation set V, corrupted

set Vc, policy π, horizon k, thresh-
olds α, β ∈ (0, 1]

1: w0 ← W̃ (V,Vc)
2: V0 ← Vc

3: T ← { }
4: for i = 1, . . . , k do
5: if Vi is inoperable then
6: return T
7: end if
8: Ti ← π(Vi−1)
9: Vi ← Ti(Vi−1)

10: wi ← W̃ (V,Vi)
11: if wi ≤ αw0 ∨ wi ≥ β wi−1

then
12: return T
13: end if
14: T ← {Ti} ∪ T
15: end for
16: Return T

As described in Section 4, a DNN policy π is trained
at design time such that, given a corrupted set Vc of i.i.d
observations from corrupted distribution DT, the policy
generates a finite composition Ik of k < ∞ transforms
from S. This solves the optimization problem in Equation
1. At design time, we assume the algorithm has access to
a validation set V = {v1, . . . , vn}, where vi is drawn i.i.d
from the training distribution D.

At inference / run-time SuperStAR uses the cor-
rupted set Vc = {vc1, vc2, . . . , vcn} drawn i.i.d from DT,
T ∈ S, and the policy π to select a correcting sequence
T := {Tk,Tk−1, . . .T1}. We fix a maximum horizon
k to keep the algorithm tractable at both learning and de-
ployment. The procedure for selecting sequence T is pre-
sented in Algorithm 1.

In Line 1, Algorithm 1 uses the estimator W̃ to esti-
mate the initial Wasserstein distance. Next, it runs policy
π for k steps (Lines 5−16), where it iteratively applies the
transform picked by the policy to update the corrupted set.
The algorithm uses a lower dimensional state representa-
tion of V for evaluating the policy and for the estimator
W̃ (see Section 4). The algorithm collects and returns this
set of transforms in T .

There are two stopping criteria to prevent the selection of damaging transforms. The first, in
line 5, checks for a minimum condition of operability on the set (see Section 5.1). The second, in
Line 11, guards against overly transforming images to diminishing returns. It also hedges against
the chance that the distribution shift is not semantic preserving, which is always possible in reality.
Hence, we pause the policy when the Wasserstein distance decreases beyond a threshold.

5.1. Minimum Condition for Operability

The optimal policy π∗ selects transformations that maximize the reward function, consisting of some
distance function (e.g., the Wasserstein distance) plus a regularizing factor. The efficacy of such a
policy thus depends on the distance function being a reliable estimate of a classifier’s performance
on the given data. We define an operable corrupted set Vc as follows.

Definition 4 (Operable Set) For some distance function d, classifier f , validation set V, and set of
transformations {Ti}ti=1, a set Vc = {vc1, cc2, . . . , vcn} is operable iff {d(V,Ti(Vc))}ti=1 is negatively
linearly correlated with { 1n

∑n
j=1 1[f(Ti(v

c
j)) = C∗(Ti(v

c
j))]}ti=1.

Since the accuracy of the classifier we wish to adapt is unknown on inference-time data, op-
erability is in practice difficult to evaluate. However, we can instead predict operability from the
state representation FR(Vc) using a simple binary classifier, which is trained on surrogate corrupted
data generated at design time. Label generation can be performed by evaluating the distance func-
tion and accuracies on these surrogate shifts, where Ti(Vc) are variations in the severity of shift
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approximating the effect of applying transformations. To evaluate accuracy, the selected classifier
f can be unique from the classifier we wish to adapt. This is motivated by the model collinearity
phenomenon (Mania and Sra, 2020), in which the relative accuracy on different distributions of data
is often the same across multiple classifiers.

6. Dimensionality Reduction

The empirical estimate of the Wasserstein distance converges in sample size to the true Wasserstein
distance slowly in large dimensions (Ramdas et al., 2017). Ideally, by reducing the dimensionality
of the sample data, fewer samples are needed to achieve an accurate estimate of the Wasserstein
distance. We present rigorous theoretical justification that orthonormal projection is a reduction
technique that preserves characteristics of the sample data at a distributional level.

Let m,n ∈ N and p ∈ [1,∞]. Call M(Rn) and M(Rm) the spaces of probability measures on
Rn and Rm, respectively. Denote by Mp(Rn) and Mp(Rm) the spaces of probability measures hav-
ing finite p-th moment on Rn and Rm, respectively (here p =∞ is interpreted in the limiting sense
of essential supremum). For convenience, we consider only probability measures with densities, so
that we do not have to check which measure is absolutely continuous to which other measure (Cai
and Lim, 2022, Section III).

Suppose m ≤ n and consider the Stiefel manifold on m× n matrices with orthonormal rows.

O(m,n) := {V ∈ Rm×n : V V ⊤ = Id}.

For any V ∈ O(m,n) and b ∈ Rm, let

φV,b : Rn → Rm, x 7→ φV,b(x) := V x+ b,

and for any µ ∈ M(Rn), let φV,b(µ) := µ ◦ φ−1
V,b be the pushforward measure. This can be seen

as a projection of µ onto the smaller dimensional space Rm, and we call it a Cai-Lim projection; it
is not unique: it depends on the choice of V and b. Recall then the definition of the p-Wasserstein

distance between µ, ν ∈ Mp(Rn): Wp(µ, ν) :=
[
infγ∈Γ(µ,ν)

∫
R2n ∥x− y∥p2 dγ(x, y)

] 1
p , where

∥ · ∥2 denotes the Euclidean norm and Γ(µ, ν) := {γ ∈ M(R2n) : πn
1 (γ) = ν, πn

2 (γ) = µ} is the
set of couplings between µ and ν, where πn

1 is the projection onto the first n coordinates and πn
2 is

the projection onto the last n coordinates. The following is an important result.

Lemma 5 (Cai and Lim, 2022, Lemma II.1) Let m,n ∈ N and p ∈ [1,∞], and assume m ≤ n.
For any µ, ν ∈Mp(Rn), any V ∈ O(m,n), and any b ∈ Rm, we have that

Wp (φV,b(µ), φV,b(ν)) ≤Wp (µ, ν) .

This can be interpreted as “losing some information” when performing a Cai-Lim projection: in
smaller dimensional spaces, distributions µ and ν seem to be closer than they actually are. This is
an inevitable byproduct of any projection operation. Lemma 5 implies the following corollary.

Corollary 6 Let m,n ∈ N and p ∈ [1,∞], and assume m ≤ n. Consider µ, ν, ρ, ζ ∈ Mp(Rn),
and pick any V ∈ O(m,n) and any b ∈ Rm. Suppose Wp(µ, ν) ≥ Wp(ρ, ζ). Then, there exists
ε > 0 such that if Wp (µ, ν)−Wp (φV,b(µ), φV,b(ν)) ≤ ε, then

Wp (φV,b(µ), φV,b(ν)) ≥Wp (φV,b(ρ), φV,b(ζ)) .
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Proof Set ε = Wp (ρ, ζ)−Wp (φV,b(ρ), φV,b(ζ)). The result follows immediately by Lemma 5.

Corollary 6 states the following. If we “do not lose too much information” when performing a
Cai-Lim projection of the two farthest apart distributions, then the inequality Wp(µ, ν) ≥Wp(ρ, ζ)
between the original distribution is preserved between their projections. A more intuitive discussion,
as well as empirical justification, can be found in Appendices B and C of Lin et al. (2023).

7. Related Work

Distribution shifts can make deep learning models act dangerously in the real world (Narasimhamurthy
et al., 2019). Some offline techniques aim to improve classification robustness to distribution shift at
training time. These include data augmentation, which expands the experiences that a model would
be exposed to during training (Hendrycks et al., 2019; Erichson et al., 2022; Verma et al., 2019;
Yun et al., 2019; Kim et al., 2020b; Hendrycks et al., 2020). Another offline approach is domain
adaptation, in which models are adapted to perform well on unlabeled data in some new distribution
(Ben-David et al., 2010; Bousmalis et al., 2017; Hoffman et al., 2018). Offline approaches lack
flexibility to shifts unforeseen at train time, but they can be combined with online methods like
SuperStAR to further improve performance.

Alternate techniques aim to handle distribution shift online. For example, test-time adaptation
methods perform additional training at inference time in response to incoming data (Gandelsman
et al., 2022; Wang et al., 2022; Mummadi et al., 2021). Test time augmentation approaches instead
apply transformations to the input, then ensemble predictions if multiple transformations are applied
(Simonyan and Zisserman, 2014; Krizhevsky et al., 2012; He et al., 2016; Guo et al., 2017; Mum-
madi et al., 2021; Kim et al., 2020a; Lyzhov et al., 2020). In contrast, SuperStAR selects trans-
formations online without querying the model. Furthermore, our work uniquely identifies MDPs
as an equivalent formulation of the transformation selection problem, enabling the application of
standard RL techniques. We further explore related work in Appendix D of Lin et al. (2023).

8. Application: ImageNet-C

The ImageNet-C dataset (Hendrycks and Dietterich, 2019) is constructed from ImageNet sam-
ples corrupted by 19 semantic preserving transformations. We deploy the learned policy π in
SuperStAR to correct ImageNet-C corruptions, and we evaluate the accuracies of Resnet-50 clas-
sifiers with and without correction. We evaluate a baseline classifier trained without data augmen-
tation and classifiers trained with data augmentation through AugMix, NoisyMix, DeepAugment,
DeepAugment with Augmix, and Puzzlemix. We also evaluate the ability to generalize outside of
the ImageNet-C benchmark. Experiment details can be found in Appendix E of Lin et al. (2023).3

ImageNet-C. Table 1 summarizes the classifier accuracy improvements from applying SuperStAR
to ImageNet-C. For brevity, we exclude from Table 1 shifts for which SuperStAR incurs no change
in accuracy (see Appendix F of Lin et al. (2023) for full table). Corrections via our SuperStAR
algorithm lead to accuracy improvements for a majority of shifts, with maximum improvement of
14.21% (averaged across all five severity levels). In general accuracy improvements are greater for
higher severities (due to space constraints, per-severity accuracy improvements are shown in Ap-
pendix F of Lin et al. (2023)). Furthermore, when combined with data augmentation, SuperStAR

3. Our code can be found at https://github.com/vwlin/SuperStAR.
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Table 1: Average accuracies (%) on each ImageNet-C shift with and without SuperStAR for ResNet-50 classifiers.
Accuracy improvement is denoted by ∆ = R (recovered) − S (shifted). Values are over 5 severity levels with 3 trials
each. ”gaussian” refers to Gaussian noise.

No Data Aug AugMix NoisyMix DeepAugment DeepAug+AugMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆ S R ∆ S R ∆
none 74.52 74.52 0.00 75.94 75.94 0.00 76.22 76.22 0.00 75.86 75.86 0.00 75.26 75.26 0.00 75.63 75.63 0.00
gaussian 31.11 43.44 12.33 41.90 50.87 8.98 52.71 55.51 2.80 59.07 59.48 0.41 55.39 61.43 6.05 41.48 46.94 5.46
shot 28.61 42.81 14.21 41.78 50.93 9.15 51.81 55.38 3.57 58.21 58.46 1.24 55.76 62.37 6.61 37.39 45.56 7.77
impulse 26.57 39.36 12.79 38.78 47.49 8.71 50.73 53.37 2.64 58.61 58.38 -0.23 55.16 60.67 5.50 35.28 42.82 7.54
snow 30.51 29.28 -1.13 37.89 36.85 -1.04 43.20 41.52 -1.68 41.71 39.91 -1.80 47.68 46.36 -1.32 39.48 37.74 -1.75
frost 35.16 35.07 -0.09 41.39 41.24 -0.15 50.05 49.46 -0.59 46.87 46.08 -0.78 51.21 50.26 -0.95 46.96 45.75 -1.21
brightness 65.17 65.72 0.55 67.35 68.46 1.11 68.82 69.87 1.05 69.04 69.73 0.69 69.42 70.18 0.76 69.59 69.67 0.08
contrast 35.56 37.69 2.14 48.96 49.85 0.89 50.37 52.74 2.37 44.89 48.23 3.33 56.01 57.40 1.39 50.56 52.87 2.30
speckle 36.09 49.26 13.18 50.61 56.94 6.33 57.67 60.88 3.22 62.21 63.81 1.59 60.93 65.66 4.74 42.24 51.92 9.68
spatter 46.65 46.44 -0.20 53.25 52.93 -0.32 57.63 57.34 -0.29 53.74 53.58 -0.16 57.75 57.61 -0.14 53.27 52.95 -0.32
saturate 59.00 59.17 0.17 61.42 61.89 0.47 63.48 64.00 0.52 64.59 64.81 0.22 65.79 66.12 0.33 65.96 65.60 -0.37

often leads to higher accuracies than SuperStAR or data augmentation alone. In the cases of no
shift and the shifts not shown in Table 1, SuperStAR refrains from taking any action and does not
affect accuracy. This is examined further in Appendix G of Lin et al. (2023).

Interestingly, for a hyperparameter selection that allows some increase in Wasserstein distance
at each step (β = 1.12), we find that SuperStAR selects a non-trivial 5-action sequence of trans-
formations for contrast shift severity level 5, which incrementally increases the accuracy of the
AugMix classifier. Figure 2 shows a sample image with the applied transformations and resulting
accuracies. The transformations incur a noticeable change in the image.

Generalization beyond ImageNet-C. We also evaluate the ability of SuperStAR to gener-
alize outside of the ImageNet-C benchmark. 1) We construct composite ImageNet-C shifts from
pairs of the ImageNet-C corruptions for which SuperStAR improves accuracy. To each shift,
we reapply our operability classifier and policy network without retraining. Table 2 shows the
average classifier accuracy improvements from SuperStAR. For nearly all shifts, our method im-
proves classifier accuracy, with a maximum improvement in average accuracy of 9.81% (see Ap-
pendix H of Lin et al. (2023) for severity level breakdowns). 2) We also apply our method to
CIFAR-100-C (Hendrycks and Dietterich, 2019), an analagous benchmark to ImageNet-C. We use
the pretrained policy network and retrain only the operability classifier on the surrogate corruptions
regenerated for CIFAR-100. We evaluate on a variety of Wide ResNets trained with data augmenta-
tion (AugMix, NoisyMix, and PuzzleMix) and without (baseline).4 Appendix I of Lin et al. (2023)
contains further details. Table 3 shows the accuracy improvements from applying SuperStAR
to CIFAR-100-C. Without any retraining of the policy network, SuperStAR improves average
accuracy by up to 8.25% (see Appendix J of Lin et al. (2023) for full table and severity level break-
downs). In some cases, such as impulse noise, our method decreases accuracy for the classifiers
trained with data augmentation, while increasing that of the baseline classifier. We attribute this to
the operability classifier mislabeling such shifts as operable.

Overall, SuperStAR demonstrates an ability to dynamically respond to distribution shift on-
line, selecting context-appropriate actions (or inaction) and significantly improving classification
accuracy on ImageNet-C for a variety of corruptions. In some cases, SuperStAR identifies com-
plex sequences of corrective transformations. We attribute this strong performance largely to our
selection of surrogate shifts (see Appendix K of Lin et al. (2023) for more discussion). SuperStAR

4. DeepAugment and DeepAugment with Augmix are not evaluated on CIFAR-100 in the original publications.

9



LIN JANG DUTTA CAPRIO SOKOLSKY LEE

Table 2: Average accuracies (%) on each composite ImageNet-C shift with and without SuperStAR for ResNet-50
classifiers. Composites are combinations of Gaussian noise (GN), shot noise (ShN), impulse noise (IN), speckle noise
(SpN) with brightness (B), contrast (C), saturate (S). Accuracy improvement is denoted ∆ = R (recovered)−S (shifted).
Values are over 5 severity levels with 3 trials each.

No Data Aug AugMix NoisyMix DeepAugment DeepAug+AugMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆ S R ∆ S R ∆
GN + B 23.75 30.65 6.90 29.03 37.20 8.17 42.87 44.37 1.50 51.29 49.80 -1.49 43.03 52.17 9.11 33.25 35.15 1.90
GN + C 22.39 22.39 0.00 29.40 29.40 0.00 35.96 35.96 0.00 34.00 34.00 0.00 41.31 41.31 0.00 32.46 32.46 0.00
GN + S 19.35 26.37 7.02 26.65 33.43 6.79 37.13 38.50 1.37 42.83 44.50 1.68 42.41 50.82 8.41 28.96 30.98 2.02
IN + B 22.03 30.08 8.04 29.62 37.91 8.29 43.66 45.89 2.24 52.47 52.90 0.43 44.14 53.95 9.81 32.13 35.65 3.52
IN + C 18.41 18.41 0.00 25.89 25.89 0.00 33.05 33.05 0.00 31.61 31.61 0.00 39.72 39.72 0.00 26.27 26.27 0.00
IN + S 17.59 24.61 7.02 25.24 30.37 5.12 34.23 36.07 1.84 40.96 42.34 1.37 43.58 49.05 5.47 25.74 29.37 3.62
ShN + B 22.32 30.08 7.76 28.38 35.82 7.44 40.26 41.64 1.38 49.44 47.65 -1.79 41.38 50.61 9.23 31.84 33.63 1.79
ShN + C 21.13 21.03 -0.10 28.36 27.94 -0.42 35.22 34.98 -0.24 34.26 33.96 -0.30 41.05 40.76 -0.29 30.13 30.26 0.13
ShN + S 18.49 26.03 7.54 27.33 33.74 6.40 37.58 39.11 1.52 42.47 44.84 2.37 44.04 51.26 7.22 26.33 30.03 3.70
SpN + B 27.20 32.43 5.23 32.64 38.55 5.91 43.60 45.64 2.05 52.77 52.37 -0.41 45.82 52.99 7.17 35.80 37.81 2.01
SpN + C 24.00 24.18 0.18 32.70 32.58 -0.12 39.21 39.57 0.36 36.30 36.98 0.68 44.19 44.49 0.30 33.40 33.74 0.34
SpN + C 23.80 31.36 7.56 35.87 40.22 4.35 45.04 45.98 0.93 47.64 50.87 3.23 50.25 55.98 5.72 30.55 35.94 5.39

Table 3: Average accuracies (%) on each CIFAR-100-C shift with and without SuperStAR for Wide ResNet classi-
fiers. Accuracy improvement is denoted by ∆ = R (recovered) − S (shifted). Values are over 5 severity levels with 3
trials each.

No Data Aug AugMix NoisyMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆
none 81.13 81.13 0.00 76.28 76.28 0.00 81.29 81.29 0.00 84.01 84.01 0.00
gaussian noise 21.12 26.81 5.70 47.89 51.07 3.18 65.91 66.34 0.43 20.87 28.18 7.31
shot noise 29.96 36.34 6.38 55.69 58.24 2.55 70.39 70.72 0.33 31.12 39.37 8.25
impulse noise 19.21 26.09 6.88 59.68 59.09 -0.59 79.72 76.08 -3.64 37.18 37.01 -0.17
glass blur 20.68 26.61 5.93 54.08 56.09 2.00 58.82 60.48 1.66 31.07 37.62 6.55
speckle noise 31.58 35.76 4.18 58.11 59.33 1.23 71.67 71.57 -0.09 33.96 38.94 4.98
spatter 61.23 62.23 1.00 72.28 71.25 -1.02 78.11 77.44 -0.67 79.73 78.90 -0.83
saturate 68.82 68.88 0.06 64.52 64.77 0.25 69.83 70.21 0.39 72.93 72.99 0.05

also generalizes to distribution shifts outside of the ImageNet-C benchmark, without retraining the
policy network. Finally, we note that although promising, SuperStAR is limited in its speed of
response and its reliance on appropriately selected actions and surrogate corruptions. We further
discuss these limitations and more in Appendix L of Lin et al. (2023).

9. Conclusion

In this work we presented SuperStAR, which uses control for learned models to detect and recover
from distribution shift. SuperStAR uses the Wasserstein distance (with a theoretically-sound ap-
proach for dimensionality reduction using orthonormal projections) to detect distribution shifts and
select recovery actions from a library of image correction techniques. We formulate this action se-
lection problem as a Markov decision process, and we train the policy for computing actions using
reinforcement learning. To hedge against harmful actions, we employ a binary classifier to check
a minimum condition for our method to operate on corrupted data. We applied our approach to
various classifiers on the ImageNet-C dataset, and we obtained significant accuracy improvements
when compared to the classifiers alone. Finally, we showed that SuperStAR generalizes to com-
posite ImageNet-C shifts and CIFAR-100-C with no retraining of the policy. Expansion of the
action library and additional tuning can lead to further improvements on these benchmarks.
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