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Jannis O. Lübsen1 JANNIS.LUEBSEN@TUHH.DE

Christian Hespe1 CHRISTIAN.HESPE@TUHH.DE

Annika Eichler1,2 ANNIKA.EICHLER@TUHH.DE
1Hamburg University of Technology, Germany
2Deutsches Elektronen-Synchrotron DESY, Germany

Abstract
Bayesian optimization has emerged as a highly effective tool for the safe online optimization of
systems, due to its high sample efficiency and noise robustness. To further enhance its efficiency,
reduced physical models of the system can be incorporated into the optimization process, acceler-
ating it. These models are able to offer an approximation of the actual system, and evaluating them
is significantly cheaper. The similarity between the model and reality is represented by additional
hyperparameters, which are learned within the optimization process. Safety is a crucial criterion
for online optimization methods such as Bayesian optimization, which has been addressed by re-
cent works that provide safety guarantees under the assumption of known hyperparameters. In
practice, however, this does not apply. Therefore, we extend the robust Gaussian process uniform
error bounds to meet the multi-task setting, which involves the calculation of a confidence region
from the hyperparameter posterior distribution utilizing Markov chain Monte Carlo methods. Sub-
sequently, the robust safety bounds are employed to facilitate the safe optimization of the system,
while incorporating measurements of the models. Simulation results indicate that the optimization
can be significantly accelerated for expensive to evaluate functions in comparison to other state-of-
the-art safe Bayesian optimization methods, contingent on the fidelity of the models. The code is
accessible on GitHub1.
Keywords: Bayesian Optimization, Gaussian Processes, Controller Tuning, Safe Optimization

1. Introduction

Bayesian optimization (BO) is an iterative, learning-based, gradient-free, and global optimization
method which gained attention in recent years. The method involves learning a probabilistic surro-
gate model of an arbitrary objective function in order to optimize it, while requiring minor assump-
tions. The utilization of Gaussian processes (GP) allows including prior knowledge of the objective
which makes the procedure very suitable for expensive to evaluate functions and robust to noisy
observations. Enhanced sample efficiency can be achieved by incorporating reduced models of the
objective function into the optimization process, as demonstrated in a proof-of-principle study by
Ferran Pousa et al. (2023); Letham and Bakshy (2019). The key tool, multi-task Gaussian pro-
cess prediction, was initially presented in Bonilla et al. (2007). This approach utilizes correlation
matrices to depict the influence between various tasks, learned from available data. Subsequently,
Swersky et al. (2013) introduced the first multi-task Bayesian optimization algorithm, where its su-
perior efficiency was highlighted. The key idea revolves around incorporating extra models of the
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actual function, allowing the prediction of the real function (main task) to be estimated by evaluat-
ing the model functions (supplementary tasks) when there exists some correlation. Since evaluating
the model functions is significantly more cost-effective in practice, the optimization process can be
accelerated considerably, depending upon the fidelity of the supplementary tasks.

Many real-world optimization problems require the consideration of constraints to avoid the
evaluation of inputs which invoke undesirable effects, e.g., damaging the system. Often, these
constraints are also unknown and need to be learned online. The theoretical fundament for safe
Bayesian optimization was inherited from bounding regrets via uniform error bounds in a multi
armed bandit problem Srinivas et al. (2010) and improved with respect to performance by Chowd-
hury and Gopalan (2017). Subsequently, Sui et al. (2015) used the results from Srinivas et al.
(2010) to describe SafeOpt, the first safe Bayesian optimization method. Uniform error bounds
are defined by scaling the posterior standard deviation by a constant. Typically, these bounds are
of probabilistic nature, meaning they hold with high probability. In the previous mentioned works,
the assumption is made that the unknown function is deterministic and belongs to the reproducing
kernel Hilbert space (RKHS) defined by chosen kernel. In addition, several additional methodolo-
gies have been developed such as the work by Lederer et al. (2019); Sun et al. (2021) where the
unknown function is assumed to be a sample of the prior distribution defined by the Gaussian pro-
cess. In statistics, the former approaches are known to operate in the frequentist setting whereas
the latter operate in the Bayesian setting, see Murphy (2012) for more information about frequentist
and Bayesian statistics. However, all these approaches assume that the complexity of the Gaussian
process aligns perfectly with the objective, implying that the kernel hyperparameters are known. In
case of the RKHS methods, the situation is even worse since they require also knowledge about an
upper bound of the RKHS norm of the unknown function. Clearly, from a practical standpoint, this
is usually not the case. Furthermore, this aspect is particularly crucial, especially in the context of a
multi-task setting, wherein the main task is biased by the supplementary tasks. Capone et al. (2022)
introduced a method to address this issue by establishing robust bounds on hyperparameters through
a Bayesian framework (c.f. Section 2.1), and Fiedler et al. (2021) proposed a robustness approach
for the frequentist setting where the upper bound on the RKHS norm is still valid. However, these
results are not applicable to a multi-task setting.

Contribution The primary contribution involves introduction of a Bayesian optimization algo-
rithm designed to ensure safe optimization of a system while incorporating measurements from
various tasks. This is achieved by extending the outcomes of Capone et al. (2022) to a multi-task
setting with the use of Lemma 2 and 3. Furthermore, we assume to operate in the bayesian setting.
To the best of the authors’ knowledge, this is the first robustly safe Bayesian optimization algorithm
in a multi-task setting. Finally, we underscore the significance of the proposal by conducting a
benchmark comparison with other state-of-the-art Bayesian optimization methods.

2. Fundamentals

In Bayesian optimization, Gaussian processes are used to model an unknown objective function
f : X −→ R, where the domain X ⊆ Rd is a compact set of input parameters. In general, f
is non-convex and learned online by evaluating the function at some inputs x ∈ X . The function
values themselves are not accessible, rather noisy observations are made. This behavior can be
modeled by additive Gaussian noise ϵ ∼ N (0, σ2

n), i.e., y = f(x) + ϵ, where y is the measured
value and σ2

n denotes the noise variance. Furthermore, we assume to have a set of observations
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by D := {(xk, yk), k = 1, . . . , n} which is composed of the evaluated inputs combined with the
corresponding observations. This set can be considered as the training set. A more compact notation
of all inputs of D is given by the matrix X = [x1, . . . ,xn]

T and of all observations by the vector
y = [y1, . . . , yn]

T . With this data set, the Gaussian process creates a probabilistic model to predict
f(x). These predictions serve as inputs for an acquisition function α(·), which identifies new
promising inputs likely to minimize the objective. A common choice is expected improvement (EI)
as initially described by Jones et al. (1998).

2.1. Gaussian Processes

A Gaussian process is fully defined by a mean function m(x) and a kernel k(x,x′). The function
values f(x) are modeled by normal distributions and the kernel determines the dependency between
function values at different inputs

cov(f(x), f(x′)) = k(x,x′). (1)

Commonly used kernels are the spectral mixture, Matérn or squared exponential kernel, where
the latter is defined as kSE(x,x

′) = σ2
f exp

(
−1

2(x− x′)T∆−2(x− x′)
)

with ∆ = diag(ϑ) =

diag([ϑ1, . . . , ϑd]
T ). The signal variance σ2

f , the lengthscales ϑ and the noise variance σ2
n consti-

tute the hyperparameters, allowing for the adjustment of the kernel function. For a more compact
notation, we define the tuple of hyperparameters by θ = (σ2

f ,ϑ, σ
2
n).

Given the set of observations, the Gaussian process is used to predict the function values f∗ =
∧

f(x∗) at unobserved test points x∗ ∈ X by determining the posterior distribution p(f∗|X,y) =
N (µ(x∗), σ

2(x∗)). As shown by Williams and Rasmussen (2006) the posterior distribution is
Gaussian given by

µθ(x∗) = Kθ(x∗, X)
(
Kθ + σ2

nI
)−1

y

σ2
θ(x∗) = Kθ,∗ −Kθ(x∗, X)

(
Kθ + σ2

nI
)−1

Kθ(X,x∗),

where Kθ = Kθ(X,X) and Kθ,∗ = Kθ(x∗,x∗) are the Gram matrices of the training and test
data, respectively. We use the subscript notation to emphasize the dependcy of the respective on the
hyperparameters θ.

LEARNING HYPERPARAMETERS

The selection of hyperparameters is a challenging task due to their substantial impact on the pre-
dictive distribution. If selected inaccurately, the predictions do not agree with the true function and
safeness conditions may not hold. The most common method is to select the hyperparameters such
that the log marginal likelihood (2) is maximized, which provides a good trade-off between function
complexity and accuracy with respect to the data, given by

log p(y|X,θ) = −1

2
log |K̃θ| −

N

2
log(2π)− 1

2
yT K̃−1

θ y (2)

with K̃θ = Kθ + σ2
nI . The maximization can be carried out efficiently using gradient based

methods. However, the log marginal likelihood is non-convex in most cases which makes global
optimization challenging. It is commonly assumed that the initial hyperparameters are proximate to
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the global optimum. In scenarios with limited information about the underlying objective, selecting
suitable hyperparameters becomes exceptionally difficult. Consequently, the optimization process
may become trapped in a local optimum Williams and Rasmussen (2006).

An advanced strategy was introduced by Capone et al. (2022). Here, the authors consider the
lengthscales in a single-task setting and perform model selection in a Bayesian sense. The idea is to
replace the deterministically chosen initial lengthscales ϑ ∈ Rd by a prior distribution p(ϑ). Then,
for a given data set D = {X,y} the posterior distribution of the lengthscales can be computed by
applying Bayes rule

p(ϑ|X,y) =
p(y|X,ϑ)p(ϑ)

p(y|X)
. (3)

Note that computing (3) analytically is not tractable in general, however, one can use approxima-
tions such as Laplace approximation or Markov chain Monte Carlo (MCMC) methods to estimate
the posterior. Considering the posterior distribution rather than deterministic values offers the op-
portunity to establish robust probability bounds wherein the majority of the probability mass lies,
i.e.,

Pδ =

{
(ϑ′,ϑ′′) ∈ Θ2

∣∣∣∣∣
∫
ϑ′≤ϑ≤ϑ′′

p(ϑ|X,y)dϑ ≥ 1− δ

}
, (4)

where 1 − δ is the confidence interval with δ ∈ (0, 1). After estimating the ranges, one can apply
Lemma 3.3 and Theorem 3.5 from Capone et al. (2022) to obtain the new scaling factor

β̄ = γ2
(

max
ϑ′≤ϑ≤ϑ′′

β
1
2 (ϑ) +

2 ∥y∥2
σn

)2

, (5)

with γ2 =
∏d

i=1
ϑ′′
i

ϑ′
i
, that guarantees with probability (1 − δ)(1 − ρ) that |f(x) − µϑ0(x)| ≤

β̄
1
2σϑ′(x), ∀x ∈ X , where ρ > 0 denotes the failure probability.

2.2. Multi-Task Gaussian Processes

So far, only scalar functions are considered, which is different from the considered setting. Since
we want to include simulator observations, the GP needs to be extended to model vector-valued
functions f = [f1, . . . fu] : X → Ru. To tackle inter-function correlations, the covariance func-
tion from (1) is extended by additional task inputs, i.e., k((x, t), (x′, t′)) = cov(ft(x), ft′(x

′))
where t, t′ ∈ {1, . . . , u} denote the task indices and u is the total number of information sources.
If the kernel can be separated into a task-depending kt and an input-depending kernel kx, i.e.,
k((x, t), (x′, t′)) = kt(t, t

′) kx(x,x
′), then the kernel is called separable which is used in most

literature, e.g., Bonilla et al. (2007); Letham and Bakshy (2019); Swersky et al. (2013). Typically,
this is represented by the intrinsic coregionalization model (ICM) Álvarez and Lawrence (2011), in
which kx measures the dependency in the input space, while kt measures the dependency between
tasks.

Since the task indices are integers and independent of the inputs, the task covariance function
is usually substituted by constants σ2

t,t′ which are treated as additional hyperparameters. Hence,
defining the correlation matrix Σ = [σt,t′ ]

u
t,t′=1, we have Σ k(x,x′) = cov(f(x),f(x′)) which
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denotes the multi-task kernel. In this setting, it is reasonable to assume positive correlation between
tasks solely. Moreover, it is assumed that for each task there exists a data set Di which is stacked
into a global set D := {X, ỹ}, where X = [XT

1 , . . . , X
T
u ]

T and ỹ = [yT
1 , . . . ,y

T
u ]

T . Then, the
Gram matrix is given by

KΣ = KΣ(X,X) =

σ
2
1,1K1,1 . . . σ2

1,uK1,u
...

. . .
...

σ2
u,1Ku,1 . . . σ2

u,uKu,u

 ,

where Kt,t′ are Gram matrices using data sources t and t′. For notational reasons, we neglect
θ to denote the dependency of the Gram matrices on the remaining hyperparameters, which are
equivalent for all tasks. Note that if the covariance entries are zero, i.e., σt,t′ = 0, ∀t ̸= t′, the off-
diagonal blocks of KΣ are zero which means that all information sources are independent and can
be divided into u separate Gaussian processes. To perform inference in the multi-task setting, one
simply needs to substitute the single-task Gram matrix K and measurements y by their multi-task
equivalents KΣ and ỹ.

3. Extension of Uniform Error Bounds for Unknown Source Correlation

Now, we introduce an extension of the uniform error bounds for unknown hyperparameters. We
consider the correlation matrix Σ ∈ C to be the only uncertain hyperparameter and C ⊂ Ru×u to
be the set of all positive definite correlation matrices, where u denotes the number of sources. By
definition, this type of matrices are real and symmetric. In addition, we introduce P(·) : Ru → [0, 1]
to denote the Gaussian measure. The results presented in this section and in Capone et al. (2022)
can be combined to consider also the uncertainty of the lengthscales.

In this work, we operate in the Bayesian setting, which is manifested in the following assump-
tion:

Assumption 1 The function f(·) is a sample of a Gaussian process with multi-task kernel Σ k(·, ·) :
X × X −→ Ru×u and hyperprior p(Σ) of positive definite correlation matrices.

If a base kernel k(·, ·) is selected that satisfy the universal approximation property Micchelli et al.
(2006), then the multi-task kernel Σ k(·, ·) also satisfies the universal approximation property Capon-
netto et al. (2008) which makes the assumption non-restrictive. In addition, we assume that there
exists a known scaling function β : C → R+ such that

P
(
|f(x)− µΣ(x)| ≤ β

1
2 (Σ)σΣ(x), ∀x ∈ X

)
≥ 1− ρ, (6)

equivalently to Assumption 3.2 by Capone et al. (2022). There exist different methods to define the
scaling functions, e.g., Lederer et al. (2019). If the input space X has finite cardinality, β is constant
and independent of the hyperparameters Srinivas et al. (2010). In (4), the posterior probability
density function is integrated over the interval from ϑ′ to ϑ′′ which is selected such that some
confidence is included. First, we need to define a relation for C to be able to order the members
of the set. Therefore, the function h(Σ1,Σ2) = max eigΣ−1

1 Σ2 is introduced which maps two
correlation matrices into the positive reals. The reason for selecting this function follows from the
definition of the error bounds in Lemma 2. Using h(·, ·) we define the set

CΣ′,Σ′′ = {Σ ∈ C|h(Σ′,Σ) ≤ h(Σ′,Σ′′)}, (7)
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which is a subset of C and comprises all correlation matrices that have a smaller value in h than two
selected (Σ′,Σ′′). Now we are able to define a set of bounding correlation matrices by

Cδ =
{
(Σ′,Σ′′) ∈ C2

∣∣∣∣∣
∫
CΣ′,Σ′′

p(Σ|X, ỹ)dΣ ≥ 1− δ

}
.

In words, we are searching for a bound Σ′,Σ′′ such that their corresponding set CΣ′,Σ′′ comprises
enough members that establish a predefined confidence region on the posterior. After identifying
a matching pair of bounds, we are able to modify the scaling function β(·) such that safeness for
the uncertain hyperparameters can be guaranteed. The extension is summarized in the following
results.

Lemma 2 Let σΣ′(x),σΣ(x) be the posterior variance conditioned on the data D with different
correlation matrices Σ′,Σ′′ ∈ Cδ, Σ ∈ CΣ′,Σ′′ , and let γ2 ≥ h(Σ′,Σ′′). Then

γ2σΣ′(x) ≥ σΣ(x), ∀x ∈ X , ∀Σ ∈ CΣ′,Σ′′ .

Proof See Lübsen et al. (2024).

Lemma 2 bounds the posterior variance for all correlation matrices in the set CΣ′,Σ′′ . However,
bounding the posterior variance solely is not sufficient since the error bounds also depend on the
posterior mean. This is addressed in the following Lemma 3.

Lemma 3 Let µ be a member of the reproducing kernel Hilbert space (RKHS) H′′ with kernel
K ′′(x,x′) = Σ′′ k(x,x′), and let H′ be an RKHS with kernel K ′(x,x′) = Σ′ k(x,x′). Then with
λ2 ≥ h(Σ′′,Σ′) it follows

λ2||µ||2K′ ≥ ||µ||2K′′ .

Proof See Lübsen et al. (2024).

Lemma 3 is used to bound the posterior mean in different RKHS. In contrast to the unknown
function f which is not restricted to the RKHS as stated in Assumption 1, the posterior mean is a
member of the RKHS since µ(x∗) = ⟨α,K(x∗, ·)⟩K with α = (KΣ + σ2

n I)
−1ỹ. With the two

intermediate results robust error bounds in the multi-task setting can be specified as summarized in
Theorem 4.

Theorem 4 Let Assumption 1 hold, and assume there exists a scaling function β(·) and a fail-
ure probability ρ which are known such that (6) holds. Let (Σ′,Σ′′) ∈ Cδ with posterior of
hyperparameters p(Σ|X, ỹ), let σ2

Σ′ be the posterior variance and µΣ0 the posterior mean ob-
tained with correlation matrices Σ′ and Σ0 ∈ CΣ′,Σ′′ , respectively, and select γ2 ≥ h(Σ′,Σ′′) and
λ2 ≥ maxΣ∈CΣ′,Σ′′ h(Σ

′′,Σ). Then with

β̄ =

(
λ
2 ∥ỹ∥2
σn

+ γ max
Σ∈CΣ′,Σ′′

β
1
2 (Σ)

)2

we have

P
(
|f(x)− µΣ0(x)| ≤ β̄

1
2σΣ′ , ∀x ∈ X

)
≥ (1− δ)(1− ρ).

6



TOWARDS SAFE MULTI-TASK BAYESIAN OPTIMIZATION

Proof The result can be obtained by following the same steps as in Theorem 3.7 by Capone et al.
(2022) where the scaling parameter γ from Lemma 2 replaces Lemma 3.3, and λ from Lemma 3
replaces Lemma A.7 in Capone et al. (2022). We take the maximum λ over the set CΣ′,Σ′′ to ensure
safeness for every Σ0 ∈ CΣ′,Σ′′ . For γ this follows immediately from the definition of the set CΣ′,Σ′′

in (7).

The correlation bounds (Σ′,Σ′′) and scaling parameters γ, λ can be computed numerically, for
example, via comparing samples from the hyperparameter posterior which can be generated with
MCMC methods. In general, the computational cost of inverting correlation matrices is lower when
compared to computing the posterior distribution of a Gaussian process, as these matrices are no-
tably smaller than the Gram matrix. The highest time consumption comes from computing the
posterior distribution and generating posterior samples. Regarding the computation of posterior
distributions, there are several approximation methods that can be employed to enhance the infer-
ence speed when dealing with a substantial amount of data points Snelson and Ghahramani (2005);
Titsias (2009).

4. Safe Multi-Task Bayesian Optimization

In safe Bayesian optimization, the goal is to minimize a multi-output objective f(x) while includ-
ing constraints g(x) for each fi(x), i.e., minx∈X f(x) s. t. g(x) ≥ 0. Frequently g(x) =
T − f(x), where T is a safety threshold. Nonetheless, all the results are applicable to arbi-
trary constraints that fulfill Assumption 1. Moreover, it is necessary to possess information re-
garding an initial safe set, denoted as S0 which comprises at least one input that fulfills the con-
straints. This assumption is widespread, as asserted by Kirschner et al. (2019); Sui et al. (2015),
even in practical scenarios where an initial estimation is typically provided. Note that since f(x)
is unknown also g(x) is unknown according to the definition of the constraints and needs to be
learned online. This means that only stochastic statements can be made about satisfying the con-
straints. Similarly to SafeOpt-MC in Berkenkamp et al. (2021), the safe set is defined to be
S := ∩ui=1{x ∈ X |µΣ′,i(x) + β̄

1
2σΣ′,i(x) ≤ T}, which includes inputs where the constraints are

fulfilled with high probability according to Theorem 4. Starting from the initial safe set, the domain
is explored to find the minimum. There exist various approaches to conduct this optimization, in
Berkenkamp et al. (2016) the most uncertain points in a subset of S are repetitively evaluated. In
Sui et al. (2018) and Lübsen et al. (2023), the exploration and exploitation phases are separated,
meaning that the algorithm first focuses on expanding S and then on optimization. The commonal-
ity among all methods is their requirement for numerous evaluations of the objective function. This
can be reduced by including simulations of the objective in the optimization.

Figure 1 compares the safe region of the naive single-task optimization (a) with the multi-task
setting where a low fidelity (b) and a high fidelity model (c) are considered. The fidelity of a model
is reflected in the correlation matrix; the higher the agreement of model and the ground truth, the
higher the information quality of the function value. Figure 1 (b) shows that even small correlations
extend the safe set.

The proposed method is summarized in Algorithm 1. We start with an initial safe set, a scaling
function β(·) and a GP equipped with an appropriate hyperprior that reflects the initial guess about
the hyperparameter. In the loop, posterior samples are generated and collected in the set P . The
samples allow to approximate the robust scaling parameter from Theorem 4. In addition, Σ′ is

7
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x ∈ X

(b)

−1.0 −0.5 0.0 0.5 1.0

(c)

µ(x)± β̄1/2σ(x) main source simulation source f(x) S

Figure 1: Overview of different safe Bayesian optimization settings with safety threshold T denoted
by ”- - -”. (a) shows the single-task setting, where no simulation samples are considered,
and the safe region is the smallest. (b) visualizes the multi-task setting with slight cor-
relation and (c) with high correlation. In both cases, The multi-task setting increases the
safe region.

Algorithm 1: Safe Multi-Source Bayesian Optimization (SaMSBO)
Input: Initial safe set S0, multi-task Gaussian process model GP with hyperpriors p(Σ),

scaling function β(·)
Output: xopt

while termination condition not true do
P ← MCMC(GP, p(Σ)) // generate samples via MCMC methods

β̄1/2 ← P , GP ← Σ′ // Determine β̄ from samples according to Theorem 4

// load Σ′ into GP

GP,D ← BO(GP) // Perform BO step for all tasks and update GP model

end
xopt ← arg minD // return best main task solution

loaded into the GP model. Then, the predictive distribution is used by an acquisition function to
identify promising inputs at which the objective functions are evaluated, and both the GP model
and the data set are updated. Finally, after the loop terminates, the best input of the main task is
returned.

5. Simulation Results

In this section we demonstrate the proposed algorithm in simulation. The considered plant models
the laser-based synchronization (LbSync) system Schulz et al. (2015) at European XFEL, akin to
the system employed in Lübsen et al. (2023) and depicted in Figure 2. The difference lies in the
fact that all models G represent the same laser models in this scenario, in other words, Gi =
Gj , ∀i, j = 1, . . . , N . The filter models Fr and F1:N colorize the white Gaussian noise inputs
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G1(s)Kl(s) ... GN(s)KN(s)wN+1

w1

y

- -
z-e1 eN

Fr(s)

F1(s)

wN

FN(s)
Gcl(s)

r

Figure 2: Illustration of the interconnected system. The blocks Fr and Fi, i = 1, . . . , N denote
disturbance filters which colorize the white noise inputs wj , j = 1, . . . , N +1. Gi denote
the laser plants and Ki PI controllers for each subsystem.

w1:N+1 to model environmental disturbances, e.g., vibrations, temperature changes and humidity.
Throughout the optimization procedures, we operate under the assumption that, alongside the main
task, there exist two supplementary tasks of information that simulate the main task, i.e., f(x) =
[f1(x), f2(x), f3(x)]

T where f1(x) is the main task. TIn order to emulate the discrepancy between
simulation and reality, the primary task employs nominal models, while supplementary tasks are
subjected to disturbances. It is assumed that uncertainty resides in the filter models, given that the
laser model can be accurately identified and exhibits minimal variation over time, while disturbance
sources change more frequently. Furthermore, it is essential to ensure the safety of the primary
task i.e., g(x) = [T − f1(x), 0, 0]

T , as the supplementary tasks are simulations, where T = 30.
Hence, evaluating unsafe regions will not damage the system, rather, this can help to estimate the
safe region. The goal is to minimize the root-mean-square seminorm of the performance output z
by tuning the PI parameters of the controllers Ki:N . Following Parseval’s Theorem this corresponds
to a H2 minimization of the closed-loop system Heuer (2018). Implementations are carried out
using GPyTorch Gardner et al. (2018) and BoTorch Balandat et al. (2020), and MCMC samples
are generated with the No-U Turn Sampler algorithm Hoffman and Gelman (2014). In addition, a
Lewandowski-Kurowicka-Joe distribution Lewandowski et al. (2009) is used for prior distribution
over correlation matrices, because it easily allows including prior knowledge about the expected
correlation by adjusting the shape factor η ∈ (0,∞). Setting η < 1 matrices with higher correlation
are favored, while for η > 1 low correlation matrices are favored. Note that, the definitions in
Lemma 2, 3 provide error bounds to ensure safeness along all tasks, while in this setting, only the
main task needs to be safe. Therefore, we neglect the influence of the uncertainty of the posterior
mean in Theorem 4, i.e., λ2 = 0, to avoid overly conservative error bounds in the optimization.
In addition, we select a constant scaling factor β = 4 and adjust the remaining hyperparameters
such that the single-task optimization is safe. Per BO step, one evaluation of the main task and 15
evaluations of the supplementary tasks are taken.

Figure 3 summarizes the benchmark results. In (a), the robustness of the algorithm is investi-
gated, where the supplementary tasks are constructed with disturbed filter transfer functions. The
disturbances are generated by sampling from a uniform distribution with magnitude according to the
line color in the legend. A ±10% variation signifies that the state space model values can fluctuate
by up to 10% (in both directions) from their nominal values. (a) displays the average of the best
observation from 20 instances of the optimization. For each instance, the filter models’ disturbances
are resampled. Clearly, the number of observations increases with the uncertainty of the supplemen-
tary tasks because the optimal solutions among the tasks may not perfectly match. Nevertheless,
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Figure 3: (a) shows the performance of SaMSBO by tuning a chain for N = 2 lasers, where the
extra tasks have disturbed filter transfer functions. The line colors indicate the range of
the disturbance. (b) shows the performance of different BO algorithms applied on a chain
with N = 5 lasers. In this trial the filter disturbance lies in the range ±10%.

the optimal solutions are found for all uncertainties. In (b) the initial points are changing, and the
models are fixed across the iterations. Additionally, the outcomes obtained by applying a Safe BO
algorithm, similar to SafeOpt Sui et al. (2015) but with EI acquisition function, and MoSaOpt,
a line search method from Lübsen et al. (2023), are plotted. The mean values are denoted by the
lines and the shaded area represents the standard deviation. SaMSBO outperforms both regarding
solution quality and sample efficiency of the main task.

6. Conclusion and Outlook

We proposed the first robustly safe Bayesian optimization algorithm in a multi-task setting. We
theoretically derived bounds that guarantee safeness for unknown correlation hyperparameters with
high probability. Moreover, the proposed algorithm was benchmarked against other state-of-the-
art methods in simulation. SaMSBO demonstrated superior solution quality and sample efficiency,
ultimately achieving the most favorable convergence rate. However, one drawback is the doubled
computation time per iteration compared to naive multi-task BO, due to the MCMC approxima-
tion of the hyper posterior, especially in later stages of the algorithm. Nevertheless, based on the
simulation results, the total optimization time is still significantly reduced overall.

In the future, numerous aspects can be enhanced. Primarily, the scaling bounds specified in
Lemma 2, 3 will become less stringent if safety is required for the main task solely, which is in real
applications usually the case. Furthermore, including an efficient exploration technique of the safe
set is crucial, particularly in high-dimensional scenarios. An approach to tackle this challenge has
been introduced by Zagorowska et al. (2023), wherein exploration is reformulated as an optimiza-
tion problem which can be efficiently solved. Finally, our plan involves testing the algorithm in a
real environment by optimizing the LbSync system at European XFEL.
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