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Abstract
For an adversarial observer of parametric systems, the identifiability of parameters reflects the
possibility of inferring the system dynamics and then affects the performance of attacks against the
systems. Hence, achieving unidentifiability of the parameters, which makes the adversary unable
to get identification with low variance, is an attractive way to enhance security. In this paper,
we propose a quantitative definition to measure the unidentifiability based on the lower bound
of identification variance. The lower bound is given via the analysis of the Fisher Information
Matrix (FIM). Then, we propose the necessary and sufficient condition for unidentifiability and
derive the explicit form of the unidentifiability condition for linear autoregressive systems with
exogenous inputs (ARX systems). It is proved that the unidentifiability of linear ARX systems can
be achieved through quadratic constraints on inputs and outputs. Finally, considering an optimal
control problem with security concerns, we apply the unidentifiability constraint and obtain the
optimal controller. Simulations demonstrate the effectiveness of our method.
Keywords: System Identification, Unidentifiability, Fisher Information, Linear ARX Systems

1. Introduction

System identification is an active and diverse branch of system theory (Nguyen and Wood, 1982).
One of the attractive applications of system identification is to identify the parameters for agent
models (Gautier et al., 2013). Then, the identification result provides an avenue for an adversarial
observer to infer the control law or optimization task of the agent (Grover et al., 2021). Recently, a
substantial amount of research has been proposed on attacking an agent based on the prior knowl-
edge of the model parameters (Phillips et al., 2019; de Sá et al., 2020). Note that the convergence
and accuracy of identification are important to the performance of attacks (Yuan and Mo, 2015).
Hence, we can enhance the security of the agents by achieving unidentifiability of the parameters.

In the literature, a multitude of research efforts has been devoted to analyzing the identifiability
(Bellman and Åström, 1970; Brun et al., 2001; Wieland et al., 2021). The necessary and sufficient
conditions for the identifiability of parametric systems of various kinds of models are proposed
(Walter and Lecourtier, 1982; Walter and Pronzato, 1996; Karlsson et al., 2012). However, there
remain some notable issues for achieving unidentifiability despite the above contributions. First,
system unidentifiability does not have a recognized definition temporarily. Existing definitions of
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identifiability are mainly qualitative definitions, which reflect the possibility of identification under
a best-case scenario, rather than give the quantitative measurement of identification performance
(Eisenberg and Hayashi, 2014). For security concerns, it is necessary to define unidentifiability
quantitatively to measure the identification performance of the adversary, which is closely con-
nected to the performance of attacks (Teixeira et al., 2015; Teixeira, 2019). Second, few of the
existing papers consider control problems with security concerns from the perspective of unidenti-
fiability. Existing literature mainly considers optimal and robust control under conditions of limited
identification performance (Stojanovic et al., 2016; Lale et al., 2021). Optimal control with con-
straints for limitation of identification performance remains an open issue.

The above concerns motivate us to enhance the security of parametric systems by proposing a
quantitative unidentifiability definition and achieving unidentifiability. We take linear ARX systems
as an example of analysis. Compared with the existing methods used to enhance the security of
parametric systems against adversarial attacks, the proposed method has the advantage that the
proposed definition of unidentifiability does not rely on the adversarial identification method. The
main contributions in this paper are summarized as follows.

• We propose a quantitative definition for unidentifiability based on the evaluation of the lower
bound of identification variance. For linear ARX systems, we derive the explicit form of
conditions for unidentifiability. We prove that the unidentifiability of linear ARX systems can
be achieved through quadratic constraints on inputs and outputs.

• For linear quadratic regulator (LQR) control problem for linear ARX systems, we provide a
solution with security concern of unidentifiability conditionin this paper. We proved that this
problem can be relaxed as a quadratic constrained quadratic programming (QCQP) problem.
Simulations demonstrate the effectiveness of our method.

In Section 2, we provide the basic model, the scenario considered in this paper, and the definition
of unidentifiability. Section 3 proposes the conditions and the realization for unidentifiability. In
Section 4, we present numerical simulation examples, followed by conclusions in Section 5.

2. Preliminaries and Definition of Unidentifiability

2.1. Notations

We use capital letters with subscript t (e.g., Yt) as vectors or matrices at time t and lower-case letters
and subscript (i) or (i, j) (e.g., yt,(i))as the i-th element in the vector or the element at the i-th row
and j-th column of the matrix, respectively. We define A ∗B as the matrix obtained by multiplying
the matrices with the same dimension A and B by elements. We denote the dimension of a matrix
(·) by dim(·). We use ‘⪰’ as an operator of matrix inequality where A ⪰ B means for any vector
x ∈ Rdim(A), x⊤(A−B)x ≥ 0. We denote the expectation of a random variable (·) by E[(·)].

2.2. Model Description

The basic model investigated in this paper is a linear discrete-time, parametric, autoregressive sys-
tem S with exogenous inputs (ARX(p, q)), which is given by

S : Yt =

p∑
i=1

A∗
iYt−i +

q∑
j=1

B∗
jUt−j + Vt, (1)
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where t ∈ N, Yt ∈ Rm represents the output, Ut ∈ Rl is the input vector, Vt ∈ Rm is the noise and
A∗

i ∈ Rm×m, B∗
i ∈ Rm×l are matrices of parameters to be identified.

For brevity, we define n = pm+ ql and let

Xt =
[
Y ⊤
t−1, . . . , Y

⊤
t−p, U

⊤
t−1, . . . , U

⊤
t−q

]⊤
, Θ∗ =

[
A∗

1, . . . , A
∗
p, B

∗
1 , . . . , B

∗
q

]
.

Then, the system model can be generalized as a system with mn parameters Θ with the true value
Θ = Θ∗ as follows.

S : Yt = ΘXt + Vt. (2)

The following assumption is made throughout the paper, which is commonly used for the anal-
ysis of system identification (de Sá et al., 2020; Nguyen and Wood, 1982).

Assumption 1 The noise term Vt is an i.i.d. sequence of noise variables with each element obeying
Gaussian distribution N (0, σ2

v).

2.3. Scenario and Definition

Considering a given control sequence U0:T =
[
U⊤
0 , U⊤

1 , . . . , U⊤
T−1

]⊤, the system has a stochastic

trajectory/output sequence, Y0:T =
[
Y ⊤
0 , Y ⊤

1 , . . . , Y ⊤
T−1

]⊤.
We suppose that there is an adversary, who knows that the orders of the ARX system model,

i.e., m, l, and (p, q), and can passively observe {Y0:T , U0:T }. The objective of the adversary is to
use the observed data {Y0:T , U0:T } to identify the parameters Θ of S, which is described as follows.

• Parameter Identification: Derive an unbiased estimation function of Θ ∈ Rm×n for any
given observed data {Y0:T , U0:T }, i.e., derive

Θ̂ : {RmT ,RlT } → Rm×n, s.t., ∀Θ, E
[
Θ̂(Y0:T , U0:T )

]
= Θ. (3)

Note that Y0:T is a vector of random variables since V0:T are unknown sequences. It follows that
the estimator Θ̂(Y0:T , U0:T ) is also a matrix of random variables. Hence, we can use the covariance
matrix of Θ̂(Y0:T , U0:T ) to define unidentifiability as follows.

Definition 1 (Parameter Unidentifiability) Given a control sequence {U0:T }, a semi-positive
definite matrix Σ ∈ Rmn×mn, S is Σ-unidentifiable iff for any unbiased parameter estimator
Θ̂(Y0:T , U0:T ),

E
[(

θ̂(Y0:T , U0:T )− θ∗
)(

θ̂(Y0:T , U0:T )− θ∗
)⊤]

⪰ Σ, (4)

where θ̂,θ∗ ∈ Rmn×1 are the reshaped vectors which are obtained by expanding Θ̂ and Θ∗ by
rows, respectively.

By Definition 1, we know that if a system is Σ-unidentifiable, then the identification of parameters
obtained by the adversary always has a variance matrix larger than Σ. Specifically, we have θ̂(i)
satisfy E∥θ̂(i) − θ∗(i)∥ ≥ σ(i), i = 1, 2, . . . ,mn, where (σ2

(1), σ
2
(2), . . . , σ

2
(mn)) are the main diagonal

elements of Σ.
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2.4. Problem Formulation

We aim to derive the condition for unidentifiability and apply the condition to an LQR control
problem for security. We assume that the control sequence can be fully designed U0:T by us but
the noises are unknown both to us and to the adversary. The main difficulty is that we do not know
the distributions of θ̂ since we do not know the estimator of the adversary. Hence, we are supposed
to design the controller to ensure unidentifiability for all unbiased estimators just like Definition 1.
The LQR control problem considered in this paper is a finite, discrete-time control problem with
cost of trajectory tracking and energy of control signal, which is given by

P1 : min
U0:T

(
T∑
t=0

(Yt − Yref,t)
⊤Q(Yt − Yref,t) +

T−1∑
t=0

U⊤
t RUt

)
,

s.t. E
[(

θ̂(Y0:T , U0:T )− θ∗
)(

θ̂(Y0:T , U0:T )− θ∗
)⊤]

⪰ Σ,

Yt = Θ∗Xt + Vt, t = 1, 2, . . . , T.

(5)

3. System Unidentifiability: Conditions and Realization

In this section, we investigate the conditions for parameter unidentifiability. We start with the defi-
nition of FIM of linear ARX models. Then, we analyze the bound of the identification variance by
FIM and give the conditions for parameter unidentifiability. Finally, we derive the solution to P1 to
achieve unidentifiability.

3.1. Fisher Information Matrix in System Identification

The FIM plays a significant role in parameter estimation. It is a symmetric matrix that represents
the amount of information contained in the observation data. Hence, this paper starts from FIM and
derives the specific form of FIM for parameter identification problems under linear ARX models.

First, we give the basic definition of FIM. We consider a vector of random processes Y with
unknown parameters θ, assuming that the probability density function f of Y is smooth and log(f)

is continuously differentiable w.r.t θ. Denote f =
[
f(1), f(2), . . . , f(m)

]⊤. Supposing that we make
observations of Y and get Y0:T . The likelihood function vector L(Y ;θ) and the score function
matrix S(Y ;θ) are defined as follows.

L(Y ;θ) =

[
T∏
t=1

f(1)(Yt|θ), . . . ,
T∏
t=1

f(m)(Yt|θ)

]⊤
, S(Y ;θ) =

T∑
t=1

∂ log f(Yt|θ)
∂θ⊤ . (6)

Then, the FIM, denoted by I(θ), is defined by

I(θ) = E
[
S(Y ;θ)⊤S(Y ;θ)

]
= −E

[
∂2

∂θ⊤∂θ
log (L(Y ;θ))

]
. (7)

Then, we derive the form of the FIM in the parameter identification problem of linear ARX
models. We have the following theorem (see the proof in the appendix).
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Theorem 1 For a linear ARX system S defined as (2) with parameters Θ and observation {Y0:T , U0:T },
the FIM, I(Θ) is a blocked diagonal matrix with m identical blocks as follows.

I(Θ) = diag(
1

σ2
v

E

[
T∑
t=1

XtX
⊤
t

]
, . . . ,

1

σ2
v

E

[
T∑
t=1

XtX
⊤
t

]
). (8)

Remark 1 Existing literature on system identification (Eisenberg and Hayashi, 2014) has a differ-
ent definition of FIM compared to this paper, where the FIM is defined by sensitivity matrix W , i.e.,
I = W⊤W, where W =

[
∂Y
∂θ(1)

, . . . , ∂Y
∂θ(mn)

]
. This definition ignores the impact of observation

errors on identification variance, and it is generally used to analyze identifiability. Considering that
we need to determine the bound of the identification variance, we adopt the definition of (8).

3.2. On the Unidentifiability of Parameters

In this subsection, we investigate the condition of unidentifiability based on the FIM. Considering
that Definition 1 makes sense only when the unbiased estimator of Θ exists, first, we give the con-
dition for the existence of unbiased estimators. We define observationally equivalence as follows.

Definition 2 (Observationally equivalence,(Rothenberg, 1971)) Two parameter points of Θ1 and
Θ2 are said to be observationally equivalent iff for all Xt in the observation data, Θ1Xt = Θ2Xt.

Then, we propose the following lemma (see the proof in the appendix).

Lemma 1 Supposing that the parameters taking value in Ω, an unbiased estimator of Θ exists iff
all the parameter points in Ω are not observationally equivalent to each other.

Next, the condition for the existence of an unbiased estimator of Θ is given by the following lemma.

Lemma 2 Unbiased estimator of Θ exists iff I(Θ) has full rank.

Lemma 2 can be directly obtained by combining Lemma 1 with Theorem 1 in (Rothenberg, 1971).
It implies that Definition 1 can be discussed when rank(

∑T
t=1XtX

⊤
t ) = n.

Then, we use FIM to derive the variance bound of parameter identification.

Theorem 2 Supposing that I(Θ) has full rank, for all unbiased estimator Θ̂, we have

E
[(

θ̂ − θ∗
)(

θ̂ − θ∗
)⊤]

⪰ I−1(θ). (9)

Furthermore, for a linear ARX system S defined as (2) with parameters Θ and observation {Y0:T , U0:T },

we have I−1(θ) = inf E
[(

θ̂ − θ∗
)(

θ̂ − θ∗
)⊤]

.

The first part of Theorem 2 is known as the Cramér-Rao lower bound (Cramér, 1999). Note that
the Cramér-Rao lower bound only provides a lower bound of the variance of unbiased estimators,
which is not an infimum of the variance. To prove the second part of Theorem 2, we find that the
Maximum Likelihood Estimation (MLE) for ARX system models that has the minimum variance
I−1(θ) (see the proof in appendix). The MLE is given by

Θ̂MLE =

(
T∑
t=1

YtX
⊤
t

)(
T∑
t=1

XtX
⊤
t

)−1

. (10)
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It is proved that Θ̂MLE is an unbiased estimator with E
[(

θ̂MLE − θ∗
)(

θ̂MLE − θ∗]
)⊤]

= I−1(θ).

Next, from Theorem 2, we can get the following theorem for parameter unidentifiability.

Theorem 3 Supposing that I(Θ) has full rank, given a control sequence {U0:T } and Σ ⪰ 0, S is
Σ-unidentifiable iff

I−1(θ) ⪰ Σ. (11)

3.3. Controller Design for Parameter Unidentifiability

We can re-write the controller design problem P1 as P ′
1 by Theorem 3.

P ′
1 : min

U0:T

(
T∑
t=0

(Yt − Yref,t)
⊤Q(Yt − Yref,t) +

T−1∑
t=0

U⊤
t RUt

)
,

s.t. I−1(θ) ⪰ Σ, Yt = Θ∗Xt + Vt, t = 1, 2, . . . , T.

(12)

To avoid the computation of I−1(θ) which is complicated in practice, we give the following corol-
lary.

Corollary 1 Given Σ = diag(σ2
(1), σ

2
(2), . . . , σ

2
(mn)), supposing σmax = max(σ(1), . . . , σ(mn)) >

0, S is Σ-unidentifiable if I(Θ) has rank n and ∀t = 0, 1, . . . , T − 1,

∥Ut∥2∞ ≤ σ2
v

Tσ2
max

, E
[
∥Yt∥2∞

]
≤ σ2

v

Tσ2
max

. (13)

Corollary 1 gives a sufficient condition for parameter unidentifiability. Since sometimes it is hard to
limit the bound of initial output, we can release the constraint (13) in Corollary 1 as follows, which
also serves as a sufficient condition for Σ-unidentifiable (please see the proof in appendix).

∥
T−1∑
t=0

Ut ∗ Ut∥∞ ≤ σ2
v

σ2
max

, E

[
∥
T−1∑
t=0

Yt ∗ Yt∥∞

]
≤ σ2

v

σ2
max

. (14)

Then, we can apply the condition for parameter unidentifiability in the controller design process.
Equation (14) serves as a released form of sufficient condition for Σ-unidentifiable. Next, we can
relax the constraint in the controller design problem P1 as follows.

P2 : min
U0:T

(
T∑
t=0

(Yt − Yref,t)
⊤Q(Yt − Yref,t) +

T−1∑
t=0

U⊤
t RUt

)
,

s.t. ∥
T−1∑
t=0

Ut ∗ Ut∥∞ ≤ σ2
v

σ2
max

, E

[
∥
T−1∑
t=0

Yt ∗ Yt∥∞

]
≤ σ2

v

σ2
max

,

Yt = Θ∗Xt + Vt, t = 1, 2, . . . , T.

(15)

Since the constraint and the cost function of P2 are convex, P2 can be seen as a convex relaxation of
P1. Note that P2 is a QCQP problem. Hence, it can be solved by solvers such as the CVX toolbox
in Matlab, which means the optimal control problem with security concern P2 is solvable.
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3.4. Other Conditions for Parameter Unidentifiability

By Theorem 3, we can also give a necessary condition for Σ-unidentifiable as follows.

Corollary 2 Given Σ = diag(σ2
(1), σ

2
(2), . . . , σ

2
(mn)), supposing that S is Σ-unidentifiable, we have

∀i = 1 + pm, 2 + pm, . . . , ql + pm and ∀j = 1, 2, . . . , pm,

max(σ2
(i), σ

2
(i+n), . . . , σ

2
(i+(m−1)n))

T−1∑
t=0

u2t,(i−pm) ≤ σ2
v ,

max(σ2
(j), σ

2
(j+n), . . . , σ

2
(j+(m−1)n))E

[
T−1∑
t=0

y2t,(j)

]
≤ σ2

v .

(16)

Corollary 3 Given Σ = diag(σ2
(1), . . . , σ

2
(mn)), supposing that max(σ2

(j), . . . , σ
2
(j+(m−1)n)) > 0,

there always exist TM , s.t. when T > TM , system S is not Σ-unidentifiable.

Corollary 2 gives the necessary condition for parameter unidentifiability. While Corollary 3 shows
that Σ-unidentifiable cannot be achieved when T → ∞, which means that we can always find a
convergent unbiased estimator for linear ARX parametric systems.

Moreover, by Theorem 3, we can obtain the bound of output prediction as follows.

Corollary 4 Given Σ, supposing that S is Σ-unidentifiable, we have

E
[(

ŶT+1 − YT+1

)(
ŶT+1 − YT+1

)⊤]
⪰ J⊤

T ΣJT + σ2
vIm, (17)

where ŶT+1 = Θ̂XT , Θ̂ is an unbiased estimator of Θ and JT is a blocked diagonal matrix with m
blocks, i.e., JT = diag(XT , XT , . . . , XT ).

Corollary 4 can be proved by combining Assumption 1 and the fact that ∂ŶT+1

∂θ̂⊤ = JT . Corollary
4 shows that when the system is Σ-unidentifiable, the prediction of system output by parameters is
bounded by the Jacobian matrix and FIM.

4. Numerical Simulation

This section uses a numerical example of solving P2 with simulation to verify the conditions for pa-
rameter unidentifiability. Then, to evaluate security, we use a backpropagation (BP) neural network
to predict the output of an unidentifiable system.

4.1. LQR Control Considering Parameter Unidentifiability

First, we consider an LQR control problem with security concerns defined as P2. We consider a
double-input double-output system S with an ARX(9, 9) model, with Yt ∈ R2, Ut ∈ R2, Vt ∈ R2 is
the noise obeying N (0, 10−4). A∗

i ∈ R2×2, B∗
i ∈ R2×2 are constant matrices which are randomly

generated. We let the initial state Y0 = 0, the maximum time length of observation T = 100, and the
trajectory Yref that needs to be tracked is defined as Yref,t,1 = 0.97t/T, Yref,t,2 = 0.83 sin(πt/T ).

For the identification method of Θ, we use the MLE of Θ defined as (10). As is proved in
Theorem 2, the MLE of Θ is an unbiased estimator with the minimum identification variance.

7
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Then, we design the controller which is the solution to P2. We conduct experiments under
σmax = 10−2, 10−3 and σmax = 0 and get three controllers.

In Fig.1(a), the identification errors of MLE under the three controllers are compared. It intu-
itively illustrates the effectiveness of the unidentifiability condition. It can be seen that the iden-
tification error under all controllers tends to decrease. However, the controller designed under
σmax = 10−2 makes the performance of identification much worse than that of the controller under
σmax = 10−3, followed by the best performance of controller without unidentifiability condition.

Fig.1(b) shows the control cost under the three controllers and Fig.1(c) shows the system tra-
jectories. It follows from Fig.1(b) that using larger σmax has more control cost. This is intuitively
illustrated in Fig.1(c) where under the larger σmax, the trajectory is harder to track Yref. Hence, in
practice, it is necessary to make a trade-off between unidentifiability and control performance.

(a) The identification errors of MLE un-
der the three different controllers.

(b) The system trajectories under the
three different controllers.

(c) The control cost under the three dif-
ferent controllers.

Figure 1: Experiment of LQR control under the three different controllers.

4.2. Parameter Unidentifiability Against BP Neural Network Prediction

(a) Output prediction of the BP network
under different unidentifiability con-
ditions.

(b) Box-plot of output prediction of Yt

in 100 Monte Carlo runs by the MLE
predictor and the BP network.

(c) Training process of the BP network
under σmax = 0.01 in one of the
Monte Carlo runs in Fig.2(b).

Figure 2: Experiment of BP network output prediction under unidentifiability conditions.

To prove that the condition of unidentifiability works for other estimators, in Fig.2, we use a
backpropagation (BP) neural network to predict the output of S1 under the two controllers with
σmax = 10−2 and σmax = 0. We use a fully connected neural network with four layers, with 45
and 5 nodes in the two hidden layers for identification. Fig.2(a) shows the output prediction of
the BP network under different unidentifiability conditions. It is shown that the prediction under
larger σ in the unidentifiability condition tends to have a large error. This conclusion is shown
more obviously in Fig.2(b), which provides the box plot of the prediction of Y and shows that the

8
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prediction variance is higher under larger σ. Fig.2(c) gives the training process of the BP network,
which shows that the optimal value of the mean square error of the BP network cannot convergent
to the target 10−5 under σmax = 10−2. It can be seen from these figures that the unidentifiability
conditions work for the BP neural network.

5. Conclusion

In this paper, we propose a definition of unidentifiability which gives the lower bound of identifi-
cation variance of system parameters. Then, we obtain the condition for achieving unidentifiability
and apply this condition to linear ARX systems for an example to get explicit expressions of the
unidentifiability conditions. The condition is provided by the analysis of the Cramér-Rao lower
bound, which is defined by the inverse of FIM. It is proved that the unidentifiability of linear ARX
systems constraint is a quadratic constraint on inputs and outputs. Next, we derive the solution to
an LQR controller design problem with conditions of unidentifiability, which serves as an example
of the combination of optimal control and security concerns. Finally, we use numerical simulations
to illustrate the effectiveness of unidentifiability. It shows that the unidentifiability condition can
protect the parameters from being identified not only by the MLE or least-squares methods but also
BP networks, which enhance the security of the system.

Appendix A. Proof of Theorem 1

From the system model (2) and Assumption 1, we have

f(i)(Y = y|θ) = 1√
2πσv

exp

−

(
e⊤(i)(y −ΘXt)

)2
2σ2

v

, i = 1, 2, . . . ,m, (18)

where e(i) ∈ Rm is a vector with the i-th element being 1 and the remaining elements being 0. We
define wt,(i) = e⊤(i)(Yt −ΘXt). It follows that

log (L(Y ;θ)) = − 1

2σ2
v

T∑
t=1

[
w2
t,(1), . . . , w

2
t,(m)

]⊤
− T log(

√
2πσv) [1, 1, . . . , 1]

⊤ . (19)

Then, combining with the system model, we have I(Θ)(i+kn,j+kn) = 1
σ2
v
E
[∑T

t=1 xt,(i)xt,(j)

]
,

where i, j = 1, 2, . . . , n and k = 0, 1, . . . ,m − 1, I(Θ)(i+kn,j+kn) is the i-th row and j-th col-
umn element of I(Θ) and xt,(i) is the i-th element of vector Xt. For k1 ̸= k2, we obtain that
I(Θ)(i+k1n,j+k2n) = 0. Hence, Theorem 1 is proved.

Appendix B. Proof of Lemma 1

Suppose that there exist two observationally equivalent parameter points Θ1 ̸= Θ2 and an unbiased
estimator Θ̂. When Θ∗ = Θ1, given U0:T , we have E

[
Θ̂(y1, U0:T )

]
= Θ1.

Similarly, when Θ∗ = Θ2, we have E
[
Θ̂(y2, U0:T )

]
= Θ2.

Since Θ1Xt = Θ2Xt, by Assumption 1, we have E
[
Θ̂(y1, U0:T )

]
= E

[
Θ̂(y2, U0:T )

]
, which

means Θ1 = Θ2. Hence, Lemma 1 is proved.

9



MAO HE YU FANG

Appendix C. Proof of Theorem 2

It follows from (19) that ∂ logL(Y ;Θ)
∂Θ⊤ = − 1

σ2
v

∑T
t=1(Yt − ΘXt)X

⊤
t . By letting ∂ logL(Y ;θ)

∂Θ⊤ = 0,
we have the Maximum Likelihood Estimation (MLE) of Θ as defined in (10). This estimator has
the same expression as the Ordinary Least Square (OLS) estimator, which is known as an unbiased
estimator, i.e., E[θ̂MLE ] = θ∗.

Since the variance of the MLE is I−1(θ), we have that for ARX models and parameters Θ,
Θ̂MLE is an ubiased estimator that has the minimum variance I−1(θ).

Hence, Theorem 2 is proved.

Appendix D. Proof of Corollary 1

From Theorem 3 and (8), given Σ = diag(σ2
(1), σ

2
(2), . . . , σ

2
(mn)), S is Σ-unidentifiable iff

diag(
1

σ2
v

E

[
T∑
t=1

XtX
⊤
t

]
, . . . ,

1

σ2
v

E

[
T∑
t=1

XtX
⊤
t

]
)−1 ⪰ Σ,

which is equivalent to ∀k = 0, 1, . . . ,m− 1,

E

[
T∑
t=1

XtX
⊤
t

]−1

⪰ 1

σ2
v

diag(σ2
(1+kn), . . . , σ

2
(n+kn)). (20)

Supposing that σmax = max(σ(1), . . . , σ(mn)) > 0, we can derive a sufficient condition for (20),

i.e., σ2
max
σ2
v
In ⪰ E

[∑T
t=1XtX

⊤
t

]
. It follows that for all e ∈ Rn where ∥e∥2 = 1, we have that

E
[∑T

t=1 ∥e⊤Xt∥22
]
≤ σ2

max
σ2
v

, which means

∥
T−1∑
t=0

Ut ∗ Ut∥∞ ≤ σ2
v

σ2
max

, E

[
∥
T−1∑
t=0

Yt ∗ Yt∥∞

]
≤ σ2

v

σ2
max

. (21)

Hence, we prove the release form of Corollary 1 in (14). Then, we can directly obtain Corollary 1,
which is a sufficient condition for (14).

Appendix E. Proof of Corollary 2

Similar to the proof of Corollary 1, we have thatS is Σ-unidentifiable iff (20) holds. Then, we define

the matrix formed by the main diagonal elements of matrix of E
[∑T

t=1XtX
⊤
t

]−1
as D(X). Then,

by expanding the expression of X , we prove Corollary 2.

Appendix F. Proof of Corollary 3

Note that yt,(j) = e⊤(j)(
∑p

i=1A
∗
iYt−i +

∑q
j=1B

∗
jUt−j + Vt), where e(j) ∈ Rm is a vector with

the i-th element being 1 and the remaining elements being 0. By Assumption 1, we have that
E[y2t,(j)] ≥ E[v2t,(j)] = δ2v . Hence, we have E

[∑T−1
t=0 y2t,(j)

]
≥ Tσ2

v . Combining this inequality
with Corollary 2, Corollary 3 is proved.
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