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Abstract
End-to-end learning has emerged as a major paradigm for developing autonomous controllers. Un-
fortunately, with its performance and convenience comes an even greater challenge of safety assur-
ance. A key factor in this challenge is the absence of low-dimensional and interpretable dynamical
states, around which traditional assurance methods revolve. Focusing on the online safety predic-
tion problem, this paper systematically investigates a flexible family of learning pipelines based
on generative world models, which do not require low-dimensional states. To implement these
pipelines, we overcome the challenges of missing safety labels under prediction-induced distri-
bution shift and learning safety-informed latent representations. Moreover, we provide statistical
calibration guarantees for our safety chance predictions based on conformal inference. An exten-
sive evaluation of our predictor family on two image-controlled case studies, a racing car and a cart
pole, delivers counterintuitive results and highlights open problems in deep safety prediction.
Keywords: pixel-to-action control, world models, confidence calibration, conformal prediction

1. Introduction

To handle real-world complexity, autonomous systems increasingly rely on high-resolution sensors
like cameras/lidars and large learning architectures to process the sensing data. It has become in-
creasingly commonplace to use end-to-end reinforcement and imitation learning Codevilla et al.
(2018); Tomar et al. (2022); Betz et al. (2022), conveniently bypassing conventional intermediate
steps such as state estimation and planning. While end-to-end controllers can learn complex behav-
iors from large raw datasets, they complicate safety assurance of such systems Fulton et al. (2019).

Traditional approaches to ensure safety (e.g., a car avoids an obstacle) rely on the notion of a
low-dimensional state with a physical meaning (e.g., the car’s position and velocity). For example,
reachability analysis propagates the system’s state forward Bansal et al. (2017); Chen and Sankara-
narayanan (2022), barrier functions synthesize safe low-dimensional controllers Ames et al. (2019);
Xiao et al. (2023), and trajectory predictors output future states of agents Salzmann et al. (2020);
Teeti et al. (2022). These methods do not straightforwardly scale to image-based controllers with
thousands of inputs without an exact physical interpretation. Instead, to take images into account,
they would need abstractions of sensing/perception, which are either system-specific and effortful
to build (e.g., modeling the ray geometry behind pixel values Santa Cruz and Shoukry (2022)) or
simplified and potentially inaccurate (e.g., a linear overapproximation of vision Hsieh et al. (2022)).

The problem raised in this paper is the reliable online prediction of safety for an autonomous
system with an image-based controller without access to a physically meaningful low-dimensional
dynamical state or model. For instance, given an image, what is the probability that a racing car stays
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within the track’s bounds in the next 5 seconds? Here, the reliability requirement, also known as cal-
ibration Guo et al. (2017), is to provide an upper bound on the difference between the estimated and
true probabilities. Devoid of typical dynamical models, this setting calls for a careful combination of
image-based prediction and statistical guarantees. Existing works focus on learning to control rather
than assuring image-based systems Hafner et al. (2019), assume access to a true low-dimensional
initial state Lindemann et al. (2023), or do not provide any reliability guarantees Acharya et al.
(2022). Nonetheless, reliably solving the prediction problem would enable downstream safety in-
terventions like human handoff or fallback control, which are outside of this paper’s scope.

This paper systematically formalizes and investigates a family of learning-based pipelines for
safety prediction. This family varies in its specificity to a given controller and in its modularity —
from single-step supervised learning (which serves as a baseline) to learning intermediate represen-
tations, inspired by generative architectures for reinforcement learning known as world models Ha
and Schmidhuber (2018).

To provide reliability/calibration guarantees, we combine post-hoc calibration Zhang et al.
(2020) with the recently popular distribution-free technique of conformal prediction Vovk et al.
(2005); Lei et al. (2018). This enables tuning the predictive safety chances orthogonally to the
choice of the prediction pipeline and providing statistical bounds for them from validation data.

We perform extensive experiments on two popular benchmarks in the OpenAI Gym Brockman
et al. (2016): racing car and cart pole. Focusing on long prediction horizons, we discover counterin-
tuitive impacts of modularity and controller-specificity in our pipeline family. We also find that pre-
dicting well-calibrated safety chances is easier than safety labels over longer horizons. Due to space
limits, we report only the key results and refer the reader to the full online version Mao et al. (2024).

Thus, we make three contributions: (i) an organization of learning pipelines for online safety
prediction in image-driven autonomy; (ii) a conformal post-hoc calibration technique with statistical
guarantees for safety chances; and (iii) an extensive evaluation of our predictors on two case studies.

After notation in Sec. 2, we describe our predictor family in Sec. 3 and conformal calibration in
Sec. 4. Case study results are given in Sec. 5, then we review related work in Sec. 6 and conclude.

2. Notation and Problem Formulation

Definition 1 (Dynamical system) A discrete-time dynamical system s = (X,Z,U, h, f, o, x0, φ)
consists of: state space X, containing continuous states x; observation space Z, containing images
y; action space U, with discrete/continuous commands u; image-based controller h : Z → U,
typically implemented by a neural network; dynamical model f : X × U → X, which sets the
next state from a past state and an action (unknown to us); observation model o : X → Z, which
generates an observation based on the state (unknown to us); initial state x0, from which the system
starts executing; state-based safety property φ : X→ {0, 1}, which determines if a state x is safe.

We focus on systems with observation spaces with thousands of pixels and unknown non-linear
dynamical and observation models. In such systems, while the state space X may be conceptually
known (if only to define φ), it is not necessary (and often difficult) to construct f and o because the
controller acts directly on the observation space Z. Without relying on f and o, end-to-end methods
like deep reinforcement learning Mnih et al. (2015) and imitation learning Hussein et al. (2017) train
controller h on the observation data. Once deployed in state x0, the system executes a trajectory,
which is a sequence {xi, yi, ui}ti=0 up to time t, where: xi+1 = f(xi, ui); yi = o(xi);ui = h(yi).
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Instead of using this model, we extract predictive information from three sources of data. First,
we will use the current observation, yi, at some time i. For example, when a car is at the edge
of the track, it has a higher probability of being unsafe in the next few steps. Second, past obser-
vations yi−m+1, . . . , yi provide dynamically useful features only available in time series, such as
the speed/direction of motion. For example, just before a car enters a turn, the sequence of past
observations implicitly informs how hard it will be to remain safe. Third, not only do observations
inform safety, but so do the controller’s past/present outputs h(yi−m+1, . . . , yi). For instance, if by
mid-turn the controller has not changed the steering angle, it is less likely to navigate this turn safely.

Our goal is to predict the system’s safety φ(xi+k) at time i+ k given a series of m observations
yi = (yi−m+1, ..., yi). This sequence of observations does not, generally, determine the true state xi
(e.g., when m = 1, function o may not be invertible). This leads to partial state observability, which
we model stochastically. Specifically, we say that from the predictor’s perspective, xi is drawn from
some belief distribution Dyi . This induces a distribution of subsequent trajectories and transforms
future safety φ(xi+k) into a Bernoulli random variable. Therefore, we will estimate the conditional
probability P (φ(xi+k) | yi) and provide an error bound on our estimates. Note that process noise
in fd and measurement noise in fo are orthogonal to the issue of partial observability; nonetheless,
both of these noises are supported by our approach and would be treated as part of the stochastic
uncertainty in the future φ. To sum up the above, we arrive at the following problem description.

Problem (Calibrated safety prediction) Given horizon k > 0, confidence α ∈ (0, 0.5), and
observations yi from system s with unknown f and o, estimate future safety chance P (φ(xi+k) | yi)
and provide an upper bound for the estimation error that holds in at least 1− α cases.

To address this problem, we will build two types of predictors: for safety labels and chances.

Definition 2 (Safety label predictor) For horizon k > 0, a safety label predictor ρ : Zm → {0, 1}
predicts the safety outcome φ(xi+k) at time i+ k.

Definition 3 (Safety chance predictor) For horizon k > 0, a safety chance predictor g : Zm →
[0, 1] predicts the safety chance P (φ(xi+k) | yi) at time i+ k.

Controller-specific (resp. controller-independent) predictors are trained on observation-controller
(resp. observation-action) datasets. We expect that using controller-independent predictors trades
off some prediction power for generalizability, and it is the first flexibility dimension of our family
of learning pipelines — controller-specificity. We compare these two types of predictors in Sec. 5.

Our problem setting assumes that all our training data for training these predictors is obtained
offline. We collect two types of datasets, with a conveniently unified notation Z and z to mean either
of the dataset types. The first type in Def. 4 only contains data from a specific controller, while the
second in Def. 5 can mix controllers due to explicit actions.

Definition 4 (Observation-controller dataset) An observation-controller dataset Z = {(zj , φj) | j =
1, . . . , N} consists of pairs of m-long sequences zj := (yi−m, ..., yi) for some time i and safety la-
bels φj := φ(xi+k) at k steps later, collected by executing a fixed controller h.

Definition 5 (Observation-action dataset)
An observation-action dataset Z = {(zj , φj) | j = 1, . . . , N} consists of pairs of m-long

sequences of paired observations and corresponding actions zj = ((yi−m+1, ui−m+1), ..., (yi, ui)),
and safety labels φj := φ(xi+k) obtained k steps later.
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Figure 1: Left: Dynamical system with predictors. Arrows are dataflows, and dashes are controller
dependencies. Right: monolithic, composite image-based, and latent-based predictors.

3. Safety Predictor Family

This section develops safety label predictors, and Sec. 4 transforms them into chance predictors.

3.1. Monolithic and Composite Label Predictors

The second dimension of our predictor family is modularity, which distinguishes three types of
safety label predictors: monolithic predictors, composite image predictors, and composite latent pre-
dictors. The main distinction between monolithic and composite predictors is that the latter end with
an evaluator, a separate component that determines the safety of the prediction — as shown in Fig. 1.

Monolithic predictors directly determine the future safety property based on the observations, as
described in Def. 2. These predictors implement a baseline approach of single-step supervised bi-
nary classification similar to many existing papers, e.g., Strickland et al. (2018), by leveraging deep
vision models (with convolutional layers) and time-series models (with recurrent layers). These
models are trained on any training dataset Zt with a fixed horizon k and a typical binary classifi-
cation loss such as cross-entropy. The key drawback of monolithic predictors is their need to be
completely re-trained to change the prediction horizon or other hyperparameters.

A composite predictor consists of multiple learning models. A forecaster model constructs
the likely future observations, essentially approximating the dynamics f and observation model o.
Another binary classifier — an evaluator — judges whether a forecasted observation is safe.

Definition 6 (Composite image predictor) A composite image predictor v(fg(zi)) consists of an
image forecaster fg : Zm → Y, which predicts the future observation ŷi+k based on past zi; and
an evaluator v : Y → {0, 1}, which determines the safety of the predicted images φ(ŷi+k).

We implement the composite image predictor with a convolutional LSTM (conv-LSTM) Shi
et al. (2015) for image forecasting and a convolutional neural network (CNN) for evaluating.

Definition 7 (Composite latent predictor) A composite latent predictor v(d(fl(e(zi)))) consists
of an autoencoder, which provides an encoder e and decoder d over latent space Θ with state
vectors θ; a latent forecaster fl : Θm → Θ, which predicts future latent state θ̂i+k based on the past
m ones; and an evaluator v : Y → {0, 1}, which operates on the images from the decoder d.

We implement composite latent predictors using a Variational Autoencoder (VAE) Kingma and
Welling (2014), although we have experimented with vanilla autoencoders Hinton and Salakhutdi-
nov (2006) and vector-quantized VAEs van den Oord et al. (2017) as well. Latent forecasting uses
Long-Short Term Memory (LSTM) networks Lindemann et al. (2021), and evaluators are CNNs.
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3.2. Training Process

Monolithic label predictors ρ evaluators v, and image forecasters fg are trained with supervision on
a training dataset Zt of observation sequences “labeled” with safety or future images respectively.
Latent forecasters fl are trained on latent vector sequences, obtained from observations with an en-
coder e, which is trained as shown below. Monolithic predictors and evaluators use cross entropy
(CE) loss. The binary cross-entropy (BCE) loss, i.e., average CE per pixel, is used for the conv-
LSTM image forecaster fg, and the mean squared error (MSE) loss is used for the LSTM latent
forecaster fl. We also use early stopping to reduce the learning rate as the loss drop slows.

For the VAE, the overall loss function L consists of three parts with regularizers λ1, λ2 > 0:

L = Lrecon + λ1Llatent + λ2Lsafety, (1)

where the first is the reconstruction loss Lrecon, which quantifies how well an original image y is
approximated by d(e(y)) using MSE. The second is the latent loss Llatent, which uses Kullback-
Leibler divergence to minimize the difference between two latent-vector probability distributions
e(y | θ) ≈ d(θ | y), where θ is a latent vector and y is an input image. To preserve the information
about safety in latent representations, we add a safety loss Lsafety, which is a BCE loss based on the
true safety φi truth of the original images yi and the safety evaluation of the reconstructed images:

Lsafety = LCE(v(d(e(yi))), φi) (2)

One challenge is that the balance of safety labels changes in Zt with the horizon k, leading to
imbalanced (less safe) data for higher horizons. To ensure a balanced label distribution, we resample
with replacement for a 1:1 safe:unsafe class balance both in the training and testing datasets.

Another and greater challenge is the distribution shift between the original and forecasted im-
ages from the image/latent forecasters: the forecasted images are distorted (e.g., see the images in
the online version Mao et al. (2024)) and they do not automatically come with safety labels because
they are sampled from the forecasted space without a physical ground truth. However, these labels
are needed to train high-performance evaluators on the forecasted images, as per Fig. 1.

To overcome the distribution shift, we implement two specialized evaluators to finish the last
step that generates binary safety consequences from predicted images. One evaluator is trained with
data augmentation by randomly adjusting the brightness, inverting, and adding Gaussian blur to the
training image. The other evaluator implements vision-based logic with robust system-specific fea-
tures. For example, for the racing car, we take advantage of the fixed location of the car in the image
and the contrasting colors to determine whether the car is in a safe position. Specifically, we crop
the image to the area directly surrounding the car and use the mean of the pixel values to determine
whether the car is on or off the track. To overcome color inversion in image-based forecasters we
use the median pixel value of the full image to determine whether the track surface is painted in an
inverted, lighter-than-background color. We discuss the implications of such hand-tuning in Sec. 7.

4. Conformal Calibration for Chance Predictors

To turn a label predictor ρ into a chance predictor g, we perform post-hoc calibration over its nor-
malized softmax scores Guo et al. (2017); Zhang et al. (2020). On a held-out calibration dataset
Zc, we hyperparameter-tune the choice of a post-hoc calibrator: temperature scaling, logistic/beta
calibration, histogram binning, isotonic regression, ensemble of near isotonic regression (ENIR),
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Algorithm 1 Conformal calibration for chance predictions
Input: A validation dataset bin B = {bk}k=1,... which each contains sequences of observations and
safety bk = (yk, φ(xk)), trained safety chance predictor g, and miscoverage level α.
Output: confidence bound c satisfying Eq. 3.
FUNCTION ConCali (B, g, α):

1: for i = 1 to M do
2: Bi ← N i.i.d. samples from B {obtain a resampled bin from original bin number j}
3: qi ← 1

N

∑N
l=1 g(yl), for each yl ∈ Bi {compute the mean safety chance prediction}

4: pi ← 1
N

∑N
l=1 φ(xl), for each φ(xl) ∈ Bi {compute the true safety chance}

5: δi ← |qi − pi| {use the calibration error as a non-conformity score}
6: end for
7: n← ⌈(M/2 + 1)(1− α)⌉ {compute the conformal quantile for the upper bound}
8: c← the n-th smallest value among δ1, . . . , δM {pick the upper-bound value}
9: return c

and Bayesian binning into quantiles (BBQ). The one with the smallest calibration error gives us cal-
ibrated softmax values g(yi). To ensure sufficient samples in each bin, we perform equal-frequency
binning as defined below to structure a validation dataset Zv, on which we obtain our guarantees.

Definition 8 (Equal-frequency binning) Given a dataset Z, split Z into Q bins {Bj}Qj=1 by a

constant count of samples, ⌊|Z|/Q⌋ each. The resulting {Bj}Qj=1 is a binned dataset.

From each bin Bj , we draw N i.i.d. samples with replacement M times to get resampled bins
{Bj1, . . . , BjM}. For each Bji, we calculate the average safety confidence score gji, the true safety
chance pji (i.e., the fraction of samples that are truly safe), and the calibration error δji := |gji−pji|.

Given a bin number j, our goal is to build prediction intervals [0, cj ] that contain the calibration
error of the next (unknown) average confidence gj∗ that falls into bin Bj with chance at least 1−α:

P (|gj∗ − pj | ≤ cj) ≥ 1− α for each j = 1 . . . Q (3)

Once we get a statistical upper bound cj on the calibration error in bin j, it will be combined with
a chance prediction gj∗ into an uncertainty-aware interval [gj∗−cj ; gj∗+cj ], which contains the true
probability of safety in 1− α cases. This guarantee is relative to the binned dataset fixed in Def. 8.

To give this guarantee, Alg. 1 applies conformal prediction Lei et al. (2018) by ranking chance
errors in resampled bins and getting a quantile-based upper bound for a given bin. As in other works
using conformal prediction Qin et al. (2021); Lindemann et al. (2023), this algorithm ensures Eq. 3.
Note that bin averaging is necessary to obtain meaningful probabilities, rather than binary outcomes.

Theorem 9 (Theorem 2.1 in Lei et al. (2018)) Given a dataset bin B = {bk}Kk=1 of i.i.d. state-
observation pairs bk = (xk, yk), we obtain a collection of datasets {Bj}Mj=1 by drawing M datasets
of N i.i.d. samples from B, leading to datasets Bj to be drawn i.i.d. from a dataset distribution D.
Then for another, unseen dataset BM+1 ∼ D, safety chance predictor g, and miscoverage level α,
calculating c = ConCali(B, g, α) leads to prediction intervals with guaranteed containment:

PD(|q − p| ≤ c) ≥ 1− α,

where q is the mean safety chance prediction score: q ← 1
N

∑N
l=1 g(yl) for each yl ∈ BM+1, and

p is the mean true safety chance: p← 1
N

∑N
l=1 φ(xl) for each safety label φ(xl) ∈ BM+1.
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Figure 2: Performance of safety label predictors over varied horizons. L to R: (1) controller-
specific (‘c-sp’) monolithic (‘mon’) vs. latent composite (‘comp’) for the racing car;
(2) controller-independent (‘ind’) monolithic vs. latent composite for the racing car;
(3) controller-specific monolithic vs. latent composite for the cart pole; (4) controller-
independent monolithic vs. latent composite for the cart pole. Shaded uncertainty shows
standard deviation due to different controllers and resampling.

5. Experimental Results
Systems. Our case studies are the racing car and cart pole from the OpenAI Gym Brockman
et al. (2016), which we chose over autonomy datasets (e.g., Waymo Open) for two reasons. First,
studying safety prediction requires a large dataset of safety violations, rarely found in real-world
data. Second, simulated systems let us collect unbounded image data with direct access to the true
state for evaluation. We defined the racing car’s safety as staying within the track. The cart pole’s
safety is defined by the angles in the range of [−6, 6] degrees (the full range is [−48, 48] degrees).
Performance Metrics. F1 score is our main metric for evaluating safety label predictors, as it bal-
ances the precision and recall: F1 = 2 × Precision×Recall

Precision+Recall = 2 × TP
TP+FP+FN

2

. False Positive Rate

(FPR) is also a major concern in safety prediction (actually unsafe situations predicted as safe):
FPR = FP

FP+TN . To evaluate our chance predictors, we compute the Expected Calibration Error
(ECE, intuitively a weighted average difference between the predicted and true chances) and Max-
imum Calibration Error (MCE, intuitively the maximum above difference) Minderer et al. (2021).
Dataset. Deep Q Networks (DQN) implement three image-based controllers for each system. For
racing car, we collected 240K samples for training and 60K for calibration/validation/testing each.
For cart pole, we collected 90K samples for each of the four datasets. All images were processed
with normalization and grayscale conversion. Each study’s data is randomly partitioned into four
datasets: (i) predictors learn on the training dataset Zt; (ii) hyperparameter tuning and calibrator
fitting happen on the calibration dataset Zc; (iii) conformal calibration guarantees are made based
on the validation dataset Zv; and (iv) the performance metrics are computed on the test dataset Ze.
Training details. We used PyTorch 1.13.1 with the Adam optimizer for training. The maximum
training epoch is 500 for VAEs and 100 for predictors. The safety loss in Eq. 1 uses λ1 = 1 and
λ2 = 4096, which equals the total pixel count in our images. The miscoverage level is α = 0.05.
The remaining hyperparameters are found in the online supplement Mao et al. (2024). We released
our code at https://github.com/maozj6/hsai-predictor.

5.1. Comparative Results

Below we make comparisons and ablations along the four key dimensions of our predictor family.
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Result 1: Monolithic predictors outperforms composite ones. Monolithic predictors do not learn
the underlying dynamics, so we hypothesized that they would do well on short horizons but lose to
composite predictors on longer horizons. To our surprise, as illustrated in the 1st and 3rd plot of
Fig. 2, the performance of composite predictors degrades faster for longer horizons; the only aspect
in which composite predictors excelled was a better FPR for the racing car, which may be desirable
in safety-critical systems. We attribute the degradation of composite predictors to the challenge of
learning coherent long-term latent dynamics, which remains an open problem.
Result 2: Latent predictors exceed the performance of image-based ones. Latent predictors
outperform image-based ones both in F1 and FPR, for two reasons. The first is that the efficient
compression by a safety-informed VAE supports generalizable learning of the dynamics: note the
performance drop of image-based predictors when the horizon exceeds the training sequence length.
Second, image-based forecasters tend to induce a stronger distribution shift on the forecasted im-
ages, hence disrupting the evaluator. This result is shown on Mao et al. (2024) due to the space limit.
Result 3: Controller-independent and controller-specific predictors show comparable perfor-
mance. We hypothesized that controller-specific predictors would work better due to less variance.
For composite predictors, the results are inconsistent with our hypothesis (see 1st vs 2nd, and 3rd vs
4th plots in Fig. 2). For monolithic predictors, we were surprised to see no significant difference be-
tween controller-specific and independent ones in F1 scores, while the independent ones do slightly
better in FPR. This means that monolithic predictors obtain their versatility virtually “for free”.
Result 4: Calibrated predictors are superior to uncalibrated ones. An example reliability dia-
gram (1st plot of Fig. 3) shows a trend we saw among uncalibrated predictors: underconfident for re-
jected class (below 0.5) and overconfident for the chosen class (above 0.5). Our calibration reduces
the overconfidence to be within our conformal prediction intervals (2nd plot of Fig. 3) and leads to
lower ECE/MCE even over long horizons (3rd plot of Fig. 3). The best calibrators were the isotonic
regression (racing car) and ENIR (cart pole). Thus, we conclude that predicting the safety chance,
rather than the label, is a more suitable formulation for highly uncertain image-controlled autonomy.
Result 5: Conformal calibration coverage is reliable. Supporting our theoretical claims, the pre-
dicted intervals for calibration errors contained the true error values from the test data. One example
of these intervals is shown in the 4th plot of Fig. 3, where most error samples fall into the predicted
intervals. Our average error bound is 0.022 for the racing car and 0.0041 for the cartpole. Therefore,
our predicted chance ± its bin’s calibration bound can be used reliably and informatively online.
Additional results, illustrations and performance of different evaluators can be found in the extended
online version: Mao et al. (2024).

6. Related Work

Performance and safety evaluation for autonomy. Recent research enables autonomous self-
evaluation of competency Basich et al. (2022). Performance metrics vary significantly, including
the time to goal navigation and safety violations. For systems with access to low-dimensional states,
performance degradation has been measured with hand-crafted indicators, referred to as robot vi-
tals Ramesh et al. (2022), alignment checkers Gautam et al. (2022), assumption monitors Ruchkin
et al. (2022), and operator trust Conlon et al. (2022). These indicators rely on domain knowledge
and careful offline analysis, which are difficult to obtain and perform for high-dimensional systems.

Autonomy with neural network (NN) controllers is difficult to analyze and vulnerable to distri-
bution shift Moreno-Torres et al. (2012); Huang et al. (2020). Model-based closed-loop verification
approaches analyze the safety of a NN-controlled system Ivanov et al. (2021); Tran et al. (2022),
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Figure 3: Calibration of a monolithic predictor for the racing car with horizon k = 100. L to R: (1)
uncalibrated; (2): calibrated w/ isotonic regression, conformal bounds for α = 0.05; (3)
ECE/MCE over varied k before/after calibration; (4) our conformal bounds for α = 0.05
(blue) contain more than 95% of the true calibration errors (box and whisker plots).

but for vision-based systems, require detailed modeling and have limited scalability Santa Cruz and
Shoukry (2022); Hsieh et al. (2022). On the other hand, model-free safety predictions rely on the cor-
relation between performance and uncertainty measures/anomaly scores, such as autoencoder recon-
struction errors Stocco et al. (2020) and distances to training data Yang et al. (2022); however, such
approaches fail to fully utilize the information about the system’s closed-loop behavior. Striking the
balance between model-based and model-free approaches are black-box statistical methods for risk
assessment and safety verification Zarei et al. (2020); Michelmore et al. (2020); Qin et al. (2022);
Cleaveland et al. (2022). They usually require low-dimensional states and rich outcome labels (e.g.,
signal robustness) — an assumption that our work relaxes while addressing a similar problem.
Trajectory prediction. A system’s safety can be inferred from its predicted trajectories. Model-
based approaches can estimate collision risks with, say, bicycle dynamics and Kalman filtering Am-
moun and Nashashibi (2009); Lefèvre et al. (2014). One approach to safety guarantees is Hamilton-
Jacobi (HJ) reachability Li et al. (2021); Nakamura and Bansal (2022), which requires model-based
precomputation. Among many deep learning-based predictors Huang et al. (2022), a recently pop-
ular architecture, Trajectron++ Salzmann et al. (2020), takes in high-dimensional scene graphs and
outputs future agent trajectories. A conditional VAE Sohn et al. (2015) is used in Trajectron++ to
add constraints at the decoding stage. Learning-based predictions can improve their reliability with
conformal inference Lindemann et al. (2023); Muthali et al. (2023). In contrast, we eschew first-
principles scene and state representations, instead using images and safety-informed latent vectors.
Safe control. Safe planning/control is a complementary problem to ours: controlling a system
safely, usually with respect to a model, such as motion planning for uncertain systems Knuth et al.
(2021); Hibbard et al. (2022); Chou and Tedrake (2023) and a growing body of work on control
barrier functions Ames et al. (2019); Xiao et al. (2023). Some recent works are robust to errors of
learning-based perception Dean et al. (2021); Yang et al. (2023), but they require low-dimensional
states — a paradigm we aim to circumvent. On the other hand, our approach is constrained to a
non-modifiable end-to-end controller, which can be implemented with the above methods.
Confidence calibration. Softmax scores of classification NNs tend to be miscalibrated as class
probabilities Guo et al. (2017); Minderer et al. (2021), as measured by the Brier score and Expected
Calibration Error (ECE). Calibration approaches can be extrinsic (post-hoc), added on top of a
trained network like Platt scaling Platt (1999), isotonic regression Zadrozny and Elkan (2002), and
histogram/Bayesian binning Naeini et al. (2015) — and intrinsic, which modify the training, such
as ensembles Zhang et al. (2020), adversarial training Lee et al. (2018), and learning from hints De-
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Vries and Taylor (2018), error distances Xing et al. (2019), or true class probabilities Corbiere
et al. (2019). Similar techniques have been used for regression NNs Vovk et al. (2020); Marx et al.
(2022). To obtain calibration guarantees for safety chances, past works require a low-dimensional
model-based setting Ruchkin et al. (2022); Cleaveland et al. (2023). To the authors’ knowledge,
such guarantees have not been instantiated for model-free autonomy.
Deep surrogate models. Trajectory predictions are challenging for systems with high-resolution
images and complex dynamics. Physics-based methods and classical machine learning perform
poorly in these settings, leading to the almost exclusive application of NNs. Vanilla deep sequence
prediction models, originating in video prediction Oprea et al. (2022), are challenging to train be-
cause they require long horizons and many samples from each controller. However, we add ob-
servations and actions to sequence predictors to improve their performance and meantime propose
different architectures in monolithic pipelines Strickland et al. (2018).

High-dimensional data contains redundant and irrelevant information, leading to higher compu-
tational costs. Generative adversarial networks (GANs) map observations into a low-dimensional
latent space, enabling conventional assurance Katz et al. (2022). Low-dimensional representations
can rely on conformal inference for performance monitoring Boursinos and Koutsoukos (2021).
World models Ha and Schmidhuber (2018); Deng et al. (2023) provide surrogate training for con-
trollers in reinforcement learning, instead of real data, showing high performance with the actor-
critic DreamerV2 algorithm Hafner et al. (2021). Such models implicitly learn the dynamics with
recurrent NNs and use a VAE to learn the observation-latent space mapping. Our composite latent
approach is inspired by recent adaptations of world models for trajectory prediction Acharya et al.
(2023) and competency assessment Acharya et al. (2022). Lately, transformer-based world models
Micheli et al. (2023); Robine et al. (2023) achieve more vivid image predictions. Our composite
latent approach adopts the original world models with VAEs and recurrent NNs, which we compare
with standalone recurrent/convolutional NNs; thus, our predictor family provides a systematic char-
acterization of the latest prediction approaches from the literature. On top of these approaches, we
have developed chance calibration guarantees, which were previously unexplored.

7. Discussion

Limitations: our predictor family’s scope is limited to systems where safety can be inferred from
raw sensor data. Also, our safety evaluators are system-specific, and developing them may require
substantial effort; however, this effort is balanced with the savings of not designing state represen-
tations and dynamical models (both of which would be system-specific as well). Besides, obtaining
negative safety samples can have a high cost in reality, which can be overcome with transfer learning
from simulation and generative models.

Due to space limits, we did not report some poorly-performing techniques. For instance, flexible-
horizon predictors, which predict the time until the next safety violation, failed to train due to a
complex and insufficiently regularized prediction space. Also, latent space evaluators (as opposed
to image evaluators, which we use) have shown particularly poor performance — providing evi-
dence that latent vectors failed to preserve sufficient safety information. Thus, learning meaningful
safety-informed representations for autonomy remains an open problem Liu et al. (2023).

Future work includes adding physical constraints to latent states as in neural ODEs Wen et al.
(2022), jointly learning forecasters and evaluators to overcome distribution shifts, using transformer
world models Micheli et al. (2023); Robine et al. (2023), and applications to physical systems.
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