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Abstract
Given the success of model-free methods for control design in many problem settings, it is natural to
ask how things will change if realistic communication channels are utilized for the transmission of
gradients or policies. While the resulting problem has analogies with the formulations studied under
the rubric of networked control systems, the rich literature in that area has typically assumed that the
model of the system is known. As a step towards bridging the fields of model-free control design
and networked control systems, we ask: Is it possible to solve basic control problems - such as the
linear quadratic regulator (LQR) problem - in a model-free manner over a rate-limited channel?
Toward answering this question, we study a setting where a worker agent transmits quantized policy
gradients (of the LQR cost) to a server over a noiseless channel with a finite bit-rate. We propose a
new algorithm titled Adaptively Quantized Gradient Descent (AQGD), and prove that above a certain
finite threshold bit-rate, AQGD guarantees exponentially fast convergence to the globally optimal
policy, with no deterioration of the exponent relative to the unquantized setting. More generally, our
approach reveals the benefits of adaptive quantization in preserving fast linear convergence rates,
and, as such, may be of independent interest to the literature on compressed optimization.
Keywords: Model-free learning, Quantized optimization, Policy gradient algorithms for LQR,
Rate-limited channels

1. Introduction

In recent years, there has been significant interest in analyzing the non-asymptotic performance
of control algorithms that do not rely on any initial model of the dynamics. The body of work
in this space can be broadly grouped into two categories: (i) (model-based) approaches that use
data to construct empirical models, and then apply either certainty-equivalent or robust control
techniques (Tsiamis et al., 2022); and (ii) (model-free) approaches that directly try to find the optimal
policy from data, without maintaining an explicit estimate of the model (Fazel et al., 2018; Zhang
et al., 2021; Zhao et al., 2023; Hu et al., 2023). Due to their ease of implementation, model-free
policy gradient (PG) algorithms, in particular, have gained a lot of popularity. When applied to the
classical linear quadratic regulator (LQR) problem (Anderson and Moore, 2007), the authors in Fazel
et al. (2018) showed that despite the non-convexity of the optimization landscape, model-free PG
algorithms guarantee convergence to the globally optimal policy. However, almost nothing is known
about the robustness of such PG algorithms to communication-induced distortions that may be
introduced if transmission of the gradient or the policy occurs over realistic communication channels.

* The first two authors contributed equally to this work.
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Figure 1: Communication-constrained policy optimization for LQR. At each iteration t, the decision-
maker sends the current policy Kt to an agent over a noiseless channel of infinite capacity.
The agent evaluates and encodes the policy gradient ∇J(Kt) using B̄ bits, and transmits
the encoded symbol σt to the decision-maker over a noiseless rate-limited channel. The
decision-maker updates the policy based on the decoded policy gradient gt.

This problem, where a remote sensing agent collects measurements of a dynamical process
and transmits them over a communication channel to a controller, or when the controller transmits
the control input to an actuator over a communication channel, has been broadly studied in the
field of networked control systems in control theory. Perhaps the earliest setting studied here was
when the sensor-controller channel was rate-limited while the controller-actuator communication
occurred without any loss of information, and the focus was on the stabilization of the closed loop
process. A celebrated result shows that even for the simplest case when the open loop plant is a
linear time-invariant (LTI) system, there is a minimal bit rate (which depends on the magnitudes of
the open loop unstable eigenvalues of the plant) that must be supported by the channel in order for an
encoder-decoder and controller design to exist such that the plant can be stabilized (Tatikonda and
Mitter, 2004; Nair and Evans, 2004). The result has been extended in various directions (e.g., Nair
et al. (2007); Minero et al. (2009); Tallapragada and Cortés (2015); Martins (2006)). However, except
for some limited deviations (Okano and Ishii, 2014), this line of work (or more generally, the field of
networked control systems) has relied on one crucial assumption: the model of the system dynamics
is known. As it stands, there is little to no theoretical understanding of communication-constrained
control in the absence of such an assumption. In this paper, we seek to bridge this gap between the
two directions of work summarized above.

Our Setup and Motivation. The goal of this work is to connect control, communication, and
learning by initiating a study of model-free control under communication constraints. To that end, we
introduce a new setting depicted in Figure 1.1 As in Tatikonda and Mitter (2004), our setup involves
a remote sensing agent separated from a decision-maker by a noiseless channel that can support a
message of B̄ bits per channel use. The agent interacts with an environment by executing the control
policy relayed to it by the decision-maker. Assuming that the dynamics of the environment can be
captured by an unknown LTI system, the collective objective of the agent and the decision-maker is
to optimally control such dynamics by solving an LQR problem with known cost matrices.2 To that
end, the agent uses the measurements (rewards, state observations) received as feedback from the
environment to construct a policy gradient (or an estimate thereof) of the LQR cost function. It then

1. The notation that appears in this figure is formally defined in Section 2.
2. Note that the objective in Tatikonda and Mitter (2004) is merely to stabilize the closed loop system.
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encodes this gradient using B̄ bits, and transmits it to the decision-maker. The decision-maker decodes
the received message and then uses the resulting inexact policy gradient to update the policy. The
motivation behind studying this abstraction is to eventually enable model-free control/reinforcement
learning in multi-agent networked systems, where communication plays a key role (Lin et al., 2021;
Shin et al., 2023). Given this motivation, we aim to answer the following questions.

Is it possible to design a quantized policy gradient scheme that guarantees exact convergence
to the globally optimal policy? If so, is there an unavoidable loss in the rate of convergence
that one incurs with a finite value of B̄ relative to when the channel has infinite capacity?

We answer the above questions by making the following contributions.
• Problem Formulation. We introduce a new formulation to analyze the effects of commu-

nication constraints on the performance of the popular policy-gradient algorithm for solving the
LQR problem. Our setting is inspired by two different strands of literature: the classical bit-rate-
constrained control formulation (see, e.g., Tatikonda and Mitter (2004); Nair and Evans (2004)),
and the more recent works on quantization in optimization (Gandikota et al., 2021; Lin et al., 2022;
Mayekar and Tyagi, 2020) that, like us, also consider a single-worker single-server framework.

• Novel Quantized Gradient Descent Scheme. On the algorithmic front, our chief contribution
is to develop Adaptively Quantized Gradient Descent (AQGD) - a novel quantized
gradient descent algorithm that carefully exploits smoothness of the loss/cost function to encode the
“change" (innovation) in the gradient, as opposed to the gradient itself. Our key guiding observation
here is that for smooth loss functions, the gradient at the agent/worker should not change drastically
from one iteration to the next. As such, it makes sense to encode the innovation in the gradient.

• Preserving Linear Rates under Global Assumptions. In Theorem 1, we prove that for
smooth and strongly-convex loss functions, AQGD guarantees exponentially fast convergence to the
optimal solution. Furthermore, we prove that above a finite bit-rate, the exponent of convergence
for AQGD is exactly the same as that of unquantized gradient descent, i.e., AQGD leads to no loss
in performance relative to when the channel has infinite capacity. Unfortunately, however, the
optimization landscape for the LQR problem admits neither strong-convexity nor global smoothness.
Thus, it is unclear if we can continue to use AQGD for our quantized policy gradient problem. Toward
resolving this issue, in Theorem 2, we prove that the assertions of Theorem 1 continue to hold without
any change under the weaker assumption (relative to strong convexity) of gradient-domination.

• Preserving Linear Rates under Local Assumptions. The above developments still leave
open the following question: Can one continue to preserve rates with quantized policy gradients
when smoothness and gradient-domination only hold locally? Moreover, to make AQGD amenable
for the LQR problem, we need to ensure that despite the inexactness introduced by quantization,
the policies generated iteratively by AQGD are all stabilizing. In Theorem 6, we overcome these
challenges, and prove that AQGD continues to preserve rates under local assumptions and generates a
sequence of stabilizing policies.

• Proof Technique. Our proofs rely on the construction of a novel Lyapunov function that
simultaneously accounts for the optimization error and also the error introduced due to quantization.

Limitation. This work is only a first step in this rich area. Throughout the paper, we assume that
the worker has access to exact policy gradients. In other words, the only source of inexactness in
the policy gradients is due to quantization; however, the gradients themselves are deterministic. We
make this assumption to focus on the unique challenges introduced by the rate-limited channel.
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More Related Work. Despite the large body of work that has emerged on the topic of
communication-constrained optimization (Bernstein et al., 2018; Stich et al., 2018; Gandikota
et al., 2021; Mayekar and Tyagi, 2020; Richtárik et al., 2021), the only paper we are aware of that
manages to preserve fast linear rates (despite quantization) is the recent work by Lin et al. (2022).
In Lin et al. (2022), the authors devise an elegant new method titled “differential quantization" (DQ).
The key idea behind this approach is to first compute an auxiliary sequence that mimics the trajectory
of unquantized gradient descent by carefully keeping track of past quantization errors. Crucial to
the DQ approach is computing the worker’s gradients at the auxiliary sequence, not the true iterate
sequence. For globally smooth and strongly-convex functions, it is then shown in Lin et al. (2022)
that above a finite bit-rate, the DQ approach guarantees exponentially fast convergence to the optimal
solution with no loss in rate relative to unquantized gradient descent. Our work differs from that
of Lin et al. (2022) both algorithmically, and also in terms of results: unlike the DQ scheme, AQGD
does not require maintaining any auxiliary sequence. In addition to being conceptually simpler, AQGD
preserves rates under weaker assumptions of local smoothness and gradient-domination. As such, our
proposed technique might be of independent interest to the literature on compressed optimization.

2. Problem Formulation

We begin with the standard setup in works on model-free learning in LQR problems. Consider a
linear time-invariant (LTI) system given by

xt+1 = Axt + But + wt,

where A ∈ Rn×n and B ∈ Rn×m are system matrices, xt ∈ Rn is the state, ut ∈ Rm is the control
input and w0, w1, . . . are i.i.d. disturbances with zero mean and covariance Σw ∈ Sn

++, where Sn
++

denotes the set of all positive definite n × n matrices. We also assume without loss of generality that
x0 = 0. The goal is to design the control policy to calculate the control inputs u0, u1, . . . , that solve

min
u0,u1,...

lim
T→∞

1
T

E
[ T−1

∑
t=0

x⊤t Qxt + u⊤
t Rut

]
, (1)

where Q ∈ Sn
++ and R ∈ Sm

++ are cost matrices, and the expectation is taken with respect to
the disturbance process {wt}. It is well known that (1) can be solved by considering the static
state-feedback control policy ut = Kxt for some controller K ∈ Rm×n (see, e.g., Bertsekas (2015)).
In other words, (1) may be equivalently cast into the following form:

min
K∈Rm×n

J(K) ≜ lim
T→∞

1
T

E
[ T−1

∑
t=0

x⊤t (Q + K⊤RK)xt

]
. (2)

Moreover, we know from e.g. Bertsekas (2015) that the value of the cost function J(K) is finite
if and only if K is stabilizing, i.e., the matrix (A + BK) is Schur-stable. One can then solve (2)
by minimizing J(K) over the set of stabilizing K. In particular, if K is stabilizing, J(K) yields the
following closed-form expression (Bertsekas, 2015):

J(K) = trace(PKΣw) = trace
(
(Q + K⊤RK)ΣK

)
, (3)

where PK and ΣK are positive definite solutions to the following Riccati equations:

PK = Q + K⊤RK + (A + BK)⊤PK(A + BK), ΣK = Σw + (A + BK)⊤ΣK(A + BK). (4)
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Worker Server
Iterate xt

B̄-bit symbol σt

Channel

Encode ∇ f (xt) Perform update: xt+1 = xt − αgt

Figure 2: Communication-constrained optimization setup. This setup is analogous to that in Fig. 1,
with gt representing the decoded gradient at the server.

Even if the system matrices A and B are not known, the above properties on J(·) can be utilized to
calculate K∗ = argminK J(K) using the so-called policy gradient method (see, e.g., Mårtensson and
Rantzer (2009); Malik et al. (2020); Hu et al. (2023); Bu et al. (2020); Fatkhullin and Polyak (2021)).
The basic scheme is to initialize with an arbitrary stabilizing K0 and iteratively perform updates
of the form: Kt+1 = Kt − α∇J(Kt) for t = 0, 1, . . . , where α ∈ R>0 is a step size. As shown in
Fazel et al. (2018); Malik et al. (2020), if the exact gradient ∇J(Kt) of J(Kt) is available, then the
above algorithm converges exponentially fast to the optimal policy K∗, even though the cost J(K)
is not strictly convex. Further, even without the knowledge of the system model, J(K) and ∇J(K)
for a given K can be accurately estimated based on observed system trajectories of (2) obtained by
applying the control policy ut = Kxt; hence, the name model-free learning for LQR.

Objective. We are interested in model-free learning for LQR under communication constraints
on the policy gradient updates. To that end, we consider the setup in Fig. 1. In this setup, policy
gradients computed by a worker agent are transmitted to the decision maker (or a server) who then
updates the policy. Crucially, the transmission from the worker agent to the decision maker occurs
across a channel that supports noise-free transmission of a finite number of bits B̄ per use of the
channel. Our goal then is to design (i) an encoding scheme at the worker, and (ii) a policy update
rule at the decision-maker, such that the resulting quantized policy gradient algorithm continues to
guarantee convergence to the optimal solution K∗ (if possible). Furthermore, we seek to identify
the rate of convergence as a function of the capacity B̄ of the channel. The challenge here lies in
the fact that the channel distorts the policy gradients; as such, it is a priori unclear whether the
sequence of policies generated using such distorted policy gradients remain stabilizing, or converge
to K∗. To focus on this challenge, we will assume throughout that the worker has access to exact
deterministic policy gradients. Beyond this assumption, however, we do not require the worker or
the decision-maker to possess any knowledge of the system model.

Communication-Constrained Optimization. To make concrete progress toward the above
objective, we will find it convenient to first analyze the communication-constrained optimization
setup shown in Fig. 2. Suppose for the moment that a function f : Rd → R which is L-smooth and
µ-strongly convex is sought to be minimized. It is well-known that when the channel from the worker
to the server has infinite capacity, i.e., when B̄ = ∞, running gradient descent xt+1 = xt − α∇ f (xt)
with a step-size α = 1/L provides a convergence guarantee of the following form ∀t ≥ 0:

f (xt)− f (x∗) ≤
(

1 − 1
κ

)t

( f (x0)− f (x∗)) . (5)
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Algorithm 1 Adaptively Quantized Gradient Descent (AQGD)
1: Initialization: x0 = 0, g−1 = 0, contraction factor γ, and pick R0 such that ∥∇ f (x0)∥2 ≤ R0.
2: For t = 0, 1, . . . , do
3: At Worker:
4: Receive iterate xt, gradient estimate gt−1, and range Rt from server.
5: Compute innovation it = ∇ f (xt)− gt−1.
6: If it ∈ Bd(0, Rt), encode the innovation: ĩt = Qb,Rt(it).
7: At Decision-Maker/Server:
8: Decode ĩt, and estimate current gradient: gt = gt−1 + ĩt.
9: Update the model as follows:

xt+1 = xt − αgt. (6)

10: Update the range of the quantizer map as follows:

Rt+1 = γRt + αL∥gt∥2. (7)

11: End For

Here, κ = L/µ is the condition number of f , and x∗ = argminx∈Rd f (x) is the unique minimizer of
f . If instead, one employs the rule: xt+1 = xt − αgt, where gt is a quantized version of the gradient
∇ f (xt), the guarantee in Eq. (5) may no longer hold: the typical convergence rate achieved by
almost all existing compressed gradient descent algorithms (see, e.g., Stich and Karimireddy (2019))
is O(exp(− t

κδ )), where δ ≥ 1 captures the level of compression. Clearly, a higher δ introduces
more distortion and causes the exponent of convergence to be a factor of δ slower than that of gradient
descent. Given this premise, we will proceed in two steps. First, in Section 3, we will introduce our
proposed algorithm AQGD, and prove (in Section 4) that above a finite threshold for the bit-rate, it
preserves the exact same convergence rate as for unquantized gradient descent in Eq. (5). Next, in
Section 5, we will show how AQGD can be applied to the LQR problem.

3. Adaptively Quantized Gradient Descent (AQGD)

In this section, we will develop our proposed approach (Algorithm 1) titled Adaptively Quantized
Gradient Descent (AQGD). We start with the simplest building block of AQGD - a scalar quantizer.

Scalar Quantizer. Suppose we are given a vector X ∈ Rd such that ∥X∥2 ≤ R, and we wish to
encode each component of this vector using b bits. Clearly, Xi ∈ [−R, R], ∀i ∈ [d], where Xi is the
i-th component of X. For each i ∈ [d], to encode Xi, we simply partition the interval [−R, R] into
2b bins of equal width, and set the center X̃i of the bin containing Xi to be the quantized version of
Xi. This yields X̃ = [X̃1, . . . , X̃d]

T as the quantized version of X. To succinctly describe the above
operation, we will use a quantizer map Qb,R : Rd → Rd that is parameterized by the number of bits
b used to encode each component of the input, and the range of each component R. Thus, given
∥X∥2 ≤ R, we have X̃ = Qb,R(X). We are now in a position to describe AQGD.

Description of AQGD. Let gt−1 represent the estimate of the gradient ∇ f (xt−1) at the decision
maker or the server in iteration t − 1. Now, since the function f is smooth, the new gradient ∇ f (xt)
at the worker cannot change abruptly from what it was at the previous iteration, namely ∇ f (xt−1).
This simple observation suggests that if the decision-maker has a reasonably good estimate gt−1 of

6



TOWARDS MODEL-FREE LQR CONTROL OVER RATE-LIMITED CHANNELS

the true gradient ∇ f (xt−1) at iteration t − 1, then such an estimate cannot be too different from
∇ f (xt). As such, it makes sense to encode the “innovation" signal it = ∇ f (xt)− gt−1, as opposed
to the gradient ∇ f (xt) itself. In words, the innovation is the new information in the worker’s gradient
at iteration t, relative to the most recent estimate of the gradient held by the decision-maker from
iteration t − 1. Now if our algorithm operates correctly, then it should be that ∇ f (xt) → 0. This, in
turn, would imply that the sequence {∇ f (xt)} is Cauchy, i.e., the gap between consecutive gradients
should eventually shrink to 0. Intuitively, one should thus expect the innovation signal it to be
contained in balls of progressively smaller radii. Our key idea is to maintain estimates of the radii of
such balls, and use this information to refine the range of the quantizer used to encode the innovation.

With the above intuition in place, we now explain the steps of Algorithm 1. The decision-maker
or the server starts out with an initial iterate x0 = 0, an initial gradient estimate g−1 = 0, and an
initial upper bound R0 on ∥∇ f (x0)∥2. At each iteration t, the server transmits the current iterate xt,
the gradient estimate gt−1, and the dynamic quantizer range Rt to the worker without any loss of
information. The worker then computes the gradient ∇ f (xt), the innovation it = ∇ f (xt)− gt−1,
and checks if it ∈ Bd(0, Rt); here, we use Bd(0, Rt) to represent the d-dimensional Euclidean ball
of radius Rt centered at the origin. If so, the quantized innovation ĩt = Qb,Rt(it) is transmitted to the
server (line 6). The server decodes ĩt and forms an estimate gt of the gradient ∇ f (xt) as per line
8 of AQGD. This estimate is used to perform a gradient-descent-type update as per Eq. (6). Finally,
the server updates the dynamic quantizer range Rt as per Eq. (7). In this equation, γ ∈ (0, 1) is a
contraction factor that will be specified later. In Lemma 3, we show that our range update ensures
it ∈ Bd(0, Rt), ∀t. Before we analyze AQGD in the next section, a few comments are in order.

• Correct Decoding. We assume that the server is aware of the encoding strategy at the worker.
Thus, since the server knows b and Rt, given the B̄-bit symbolic encoding of ĩt, where B̄ = bd, the
server can decode ĩt exactly.

• Adaptive Ranges. Notice that the number of bits b we use to encode each component of the
innovation vector remains the same across iterations. However, as time progresses, we invest our
bits more carefully by dynamically updating Rt as per Eq. (7). Our analysis will reveal that Rt → 0,
suggesting that the region we encode becomes progressively finer.

• Exploiting Smoothness. As explained earlier, the idea of encoding innovations hinges on
the assumption that successive gradients at the worker do not change abruptly - a condition met by
smooth functions. Notice also that the rule for updating the range Rt in Eq. (7) uses the smoothness
parameter L. In short, AQGD carefully exploits smoothness for quantization.

4. Convergence Results and Analysis for AQGD

Our main result pertaining to the convergence performance of AQGD is as follows.

Theorem 1 (Convergence of AQGD) Suppose f : Rd → R is L-smooth and µ-strongly convex.
Suppose AQGD (Algorithm 1) is run with step-size α = 1/(6L) and contraction factor γ =

√
d/2b.

There exists a universal constant C ≥ 1 such that if the bit-precision b per component satisfies

b ≥ C log
(

dκ

κ − 1

)
, (8)

then the following is true ∀t ≥ 0:

f (xt)− f (x∗) ≤
(

1 − 1
12κ

)t (
f (x0)− f (x∗) + αR2

0
)

, where κ = L/µ. (9)
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Before providing a proof sketch for the above result, we first discuss its key implications.
Discussion. Comparing Eq. (9) to Eq. (5), we immediately note that AQGD preserves the exact

same linear rate of convergence (up to universal constants) as vanilla unquantized gradient descent,
provided the channel capacity B̄ = bd satisfies the requirement on b in Eq. (8). This result is
significant since it is the only one we are aware of - other than that in Lin et al. (2022) - which
establishes linear convergence rates can be exactly preserved despite quantization. As mentioned
earlier, commonly used compression schemes, including sophisticated ones like error-feedback (Stich
et al., 2018), cause the exponent of convergence to get scaled down by a factor δ ≥ 1 that captures
the level of compression. Our chief contribution is to show that such a scale-down of the rate can be
avoided completely, without the need for maintaining an auxiliary sequence as in Lin et al. (2022).

On Minimal Bit-Rates. The authors in Lin et al. (2022) prove a converse result showing that to
match the rate of unquantized gradient descent, a necessary condition on the bit-rate is

b ≥ log
(

κ + 1
κ − 1

)
.

Comparing the above minimal rate with that for AQGD in Eq. (8), we see that there is an additional
logarithmic dependence on d in Eq. (8). This dependence can be directly attributed to our choice of
the uniform scalar quantizer to encode the innovation in line 6 of Algorithm 1 – a choice dictated by
ease of implementation. At the expense of using a more involved vector quantizer, one can easily
shave off the additional log(d) factor in Eq. (8); see Mitra et al. (2024) for more details on this.

Theorem 1 assumes strong convexity. Can we hope to achieve a similar result under the weaker
gradient-domination condition? Our next result establishes that this is, indeed, possible.

Theorem 2 Suppose f : Rd → R is L-smooth and satisfies the following gradient-domination
property:

∥∇ f (x)∥2
2 ≥ 2µ( f (x)− f (x∗)), ∀x ∈ Rd, (10)

where x∗ ∈ argminx∈Rd f (x). Let α, γ, and the bit-precision b be chosen as in Theorem 1. Then,
AQGD provides exactly the same guarantee as in Eq. (9).

While the above result generalizes Theorem 1, it still requires smoothness and gradient-domination
to hold globally. However, for the LQR problem of interest to us, these properties only hold locally.
Nonetheless, in the next section, we will show how our developments thus far can still be extended
to the LQR setting. Before we do so, we provide a proof sketch for Theorem 2 that naturally also
applies to Theorem 1. In the interest of space, a complete proof is deferred to Mitra et al. (2024).

Proof Sketch for Theorem 2. The key technical innovation in our analysis lies in carefully
defining a new Lyapunov (potential) function candidate, and showing that this function contracts
over time. Our choice of a Lyapunov function candidate is the following:

Vt ≜ zt + αR2
t , where zt = f (xt)− f (x∗). (11)

For analyzing vanilla unquantized gradient descent, it suffices to use zt (defined in Eq. (11)) as
the Lyapunov function (Bubeck et al., 2015). Unfortunately, such a choice is insufficient for our
situation since due to the nature of the AQGD algorithm, the dynamics of the iterate xt are intimately
coupled with the errors induced by quantization. A measure of such quantization-induced errors
turns out to be the dynamic range Rt. As such, to study the joint evolution of xt and Rt, we introduce

8
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the Lyapunov function candidate in Eq. (11). However, just introducing Vt is not enough: we need to
argue that Vt decays to 0 exponentially fast at the same rate as unquantized gradient descent. Toward
that end, we will crucially rely on the following two lemmas.

Lemma 3 (No Overflow and Quantization Error) Suppose f is L-smooth. The following are then
true for all t ≥ 0: (i) ∥it∥2 ≤ Rt; and (ii) ∥et∥2 ≤ γRt, where et = ∇ f (xt)− gt.

The first part of the above result tells us that the innovation it always belongs to Bd(0, Rt),
i.e., there is never any need for transmitting an overflow symbol. This justifies the update for the
quantizer range in Eq. (7). The second part of Lemma 3 reveals that the quantization error et can be
conveniently bounded by the dynamic range Rt. Thus, if Rt → 0, then et → 0. To argue that the
dynamic range Rt does, in fact, converge to 0, we will require the following result.

Lemma 4 (Recursion for Dynamic Range) Suppose f is L-smooth. If α is such that αL ≤ 1, then
for all t ≥ 0, we have:

R2
t+1 ≤ 8γ2R2

t + 2α2L2∥∇ f (xt)∥2
2. (12)

The above lemma establishes a recursion for Rt which depends on the magnitude of the gradient
∇ f (xt). We can immediately see that to reason about the long-run behavior of Rt, we need to
understand how such behavior relates to that of xt. This is precisely what motivates the choice of the
potential function Vt in Eq. (11). The remainder of the proof constitutes two steps. Using the two
lemmas above along with smoothness and gradient-domination, we establish

Vt+1 ≤
(

1 − αµ

2

)
zt︸ ︷︷ ︸

T1

+ 9αγ2R2
t .︸ ︷︷ ︸

T2

In the above display, T1 represents the optimization error while T2 represents the quantization
error. To achieve the final rate in Eq. (9), we need the quantization error to decay faster than the
optimization error. The requirement on the bit-rate b (as stated in Theorem 1) ensures that this
condition holds. For details of these steps, we refer the reader to Mitra et al. (2024).

5. Quantized Policy Gradient for the Linear Quadratic Regulator Problem

We now extend the algorithm design and analysis in Section 3 to f : Rd → R with only local
properties, which will be applicable to the LQR problem described in Section 2. We need to
resolve two major challenges. First, the objective function J(·) in (2) does not possess the global
L-smoothness and gradient-domination properties as required by Theorem 2 (Fazel et al., 2018).
More importantly, we need to ensure that all the iterates K0, K1, . . . stay in the set of stabilizing
controllers. To proceed, we first show that the results in Section 4 can be extended to general
functions f : Rd → R with an imposed feasible set X ⊆ Rd, and then specialize the extension to
the LQR problem setting. We introduce the following definitions.

Definition 5 (Locally Smooth) A function f : Rd → R is said to be locally (L, D)-smooth over
X ⊆ Rd if ∥∇ f (x)−∇ f (y)∥2 ≤ L∥x − y∥2 for all x ∈ X and all y ∈ Rd with ∥y − x∥2 ≤ D.

We then have the following result; the proof can be found in Mitra et al. (2024).

9
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Theorem 6 (Convergence of AQGD under Local Assumptions) Consider f : Rd → R≥0 and
X = {x ∈ Rd : f (x) ≤ v}, where v ∈ R≥0. Suppose f (·) is (L, D)-smooth, ∥∇ f (x)∥2 ≤ G for
all x ∈ X , and f (·) satisfies the following local gradient-domination property:

∥∇ f (x)∥2
2 ≥ 2µ( f (x)− f (x∗)), ∀x ∈ X , (13)

where x∗ ∈ argminx∈X f (x). Suppose AQGD (Algorithm 1) is initialized with x0 ∈ Rd such that
f (x0) ≤ v/2, and run with step-size α ≤ min{D/(2G), v/(2G2), 1/(6L)}. Let the contraction
factor γ be the same as in Theorem 2. Then, for all t ≥ 0, xt ∈ X and the following is true:

f (xt)− f (x∗) ≤
(

1 − αµ

2

)t (
f (x0)− f (x∗) + αR2

0
)

. (14)

Discussion. It was shown in, e.g., Fazel et al. (2018); Cassel and Koren (2021), that the objective
function J(·) in the LQR problem given by (2) possesses the properties required by Theorem 6.
Specifically, Fazel et al. (2018); Cassel and Koren (2021) characterize the objects G, L, µ, and D
for J(·) in terms of the problem parameters of (2). As such, one can apply our proposed algorithm
AQGD - exactly as in Section 3 - to solve the LQR problem (2). In this context, Theorem 6 reveals
that despite the inexactness due to quantization, AQGD guarantees exponentially fast convergence to
the globally optimal solution of the LQR optimization problem. To identify the rate of convergence,
we note that if v/(2G2) ≤ D/(2G) or v/(2G2) ≤ 1/(6L) holds, the choice of the step size
becomes α ≤ min{ D

2G , 1
6L}, and the convergence rate of AQGD in Theorem 6 matches with that of

the unquantized gradient descent algorithm given in Cassel and Koren (2021) for objective functions
f (·) with the local properties described in Theorem 6. In fact, one may argue that the local properties
of J(·) characterized in Fazel et al. (2018); Cassel and Koren (2021) naturally lead to the choice of
the above step size; detailed arguments can be found in Mitra et al. (2024). For the LQR problem,
the feasible set X comprises the set of stabilizing controllers. Theorem 6 tells us that if x0 ∈ X ,
then xt ∈ X , ∀t ≥ 0, i.e., the sequence of iterates/policies generated by AQGD remain stabilizing.
The proof of this result - provided in Mitra et al. (2024) - is a variation on that of Theorem 2, and
relies on a careful inductive argument. We conclude this section with a remark on implementation.

Remark 7 Note that both K and ∇J(K) are matrices in Rm×n, while our analysis here is conducted
with vectors x,∇ f (x) ∈ Rd. Nonetheless, one can simply vectorize K and ∇J(K) to be vectors in
Rm×n, and then apply Algorithm 1 to achieve the convergence result provided in Theorem 6.

6. Conclusions and Future Directions

With the aim of merging model-free control with the area of networked control systems, we studied
how policy gradient algorithms for the LQR problem are affected by communication constraints.
Specifically, we considered a rate-limited channel and introduced a novel adaptively quantized
gradient-descent algorithm titled AQGD. We showed that under both global and local assumptions
of smoothness and gradient-domination, AQGD guarantees exponentially fast convergence to the
globally optimal solution. Most importantly, above a finite bit-rate, the exponent of convergence
of AQGD remains unaffected by quantization. We finally argued how our results have immediate
implications for the LQR problem. Our work opens up various interesting directions for future work:
one may consider (i) noisy estimated gradients, (ii) more complex channel models, (iii) model-free
control problems beyond the LQR setting, and (iv) multi-agent environments. Can one continue to
preserve rates in these more involved settings? This remains to be seen.
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theoretical foundation of policy optimization for learning control policies. Annual Review of
Control, Robotics, and Autonomous Systems, 6:123–158, 2023.

Chung-Yi Lin, Victoria Kostina, and Babak Hassibi. Differentially quantized gradient methods.
IEEE Transactions on Information Theory, 2022.

Yiheng Lin, Guannan Qu, Longbo Huang, and Adam Wierman. Multi-agent reinforcement learning in
stochastic networked systems. Advances in neural information processing systems, 34:7825–7837,
2021.

11



MITRA† YE† GUPTA

Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L Bartlett, and Martin J
Wainwright. Derivative-free methods for policy optimization: Guarantees for linear quadratic
systems. Journal of Machine Learning Research, 21(21):1–51, 2020.

Karl Mårtensson and Anders Rantzer. Gradient methods for iterative distributed control synthesis. In
Proc. IEEE Conference on Decision and Control, pages 549–554, 2009.

Nuno C Martins. Finite gain lp stabilization requires analog control. Systems & control letters, 55
(11):949–954, 2006.

Prathamesh Mayekar and Himanshu Tyagi. Ratq: A universal fixed-length quantizer for stochastic
optimization. In Proc. International Conference on Artificial Intelligence and Statistics, pages
1399–1409, 2020.

Paolo Minero, Massimo Franceschetti, Subhrakanti Dey, and Girish N Nair. Data rate theorem for
stabilization over time-varying feedback channels. IEEE Transactions on Automatic Control, 54
(2):243–255, 2009.

Aritra Mitra, Lintao Ye, and Vijay Gupta. Towards model-free lqr control over rate-limited channels.
arXiv preprint arXiv:2401.01258, 2024.

Girish N Nair and Robin J Evans. Stabilizability of stochastic linear systems with finite feedback
data rates. SIAM Journal on Control and Optimization, 43(2):413–436, 2004.

Girish N Nair, Fabio Fagnani, Sandro Zampieri, and Robin J Evans. Feedback control under data
rate constraints: An overview. Proceedings of the IEEE, 95(1):108–137, 2007.

Kunihisa Okano and Hideaki Ishii. Minimum data rate for stabilization of linear systems with
parametric uncertainties. arXiv preprint arXiv:1405.5932, 2014.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

Sungho Shin, Yiheng Lin, Guannan Qu, Adam Wierman, and Mihai Anitescu. Near-optimal
distributed linear-quadratic regulator for networked systems. SIAM Journal on Control and
Optimization, 61(3):1113–1135, 2023.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Advances in Neural Information Processing Systems, pages 4447–4458, 2018.

Pavankumar Tallapragada and Jorge Cortés. Event-triggered stabilization of linear systems under
bounded bit rates. IEEE Transactions on Automatic Control, 61(6):1575–1589, 2015.

Sekhar Tatikonda and Sanjoy Mitter. Control under communication constraints. IEEE Transactions
on Automatic Control, 49(7):1056–1068, 2004.

12



TOWARDS MODEL-FREE LQR CONTROL OVER RATE-LIMITED CHANNELS

Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni, and George J Pappas. Statistical learning theory
for control: A finite sample perspective. arXiv preprint arXiv:2209.05423, 2022.

Kaiqing Zhang, Bin Hu, and Tamer Basar. Policy optimization for h2 linear control with h∞
robustness guarantee: Implicit regularization and global convergence. SIAM Journal on Control
and Optimization, 59(6):4081–4109, 2021.
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