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Abstract
Snake-inspired robots demonstrate versatility through challenging terrains. However, their high-
dimensional continuous action spaces make analytical gait design difficult. Early pioneers showed
gait parameterization over low-dimensional spatially and temporally varying sine waves can serve
as basis functions in gait shape space. Yet, optimizing these gaits is a non-convex problem as
parameter space is fraught with local optima exacerbated by constraints such as actuator limits.
Reinforcement Learning (RL) has emerged as a promising alternative for gait search. However,
end-to-end RL approaches lack the safety guarantees necessary for deep space missions and don’t
yield an interpretable representation of the learned gait. We propose a hybrid method that first
identifies sidewinding gaits for novel bend-twist kinematic chains using RL, before distilling the
gait into an equivalent open-loop parametric approximation. Our method avoids the twist-windup
and twist-jump problems (key shortcomings we identified with prior work) while combining task-
space learning with an interpretable policy. Simulation and hardware experiments demonstrate our
proposed method can generate parametric gaits for a simple line-following task where an existing
optimization-based curve-fitting method cannot.
Keywords: reinforcement learning, snake robotics, gait design, parametric curve fitting.

1. Introduction

From exploring icy crevasses on distant moons Tempest et al. (2020) to traversing the trachea
Boehler et al. (2020), snake robots represent a promising mode of mechanized mobility. These
systems typically consist of actuated links chained together in series. Compared to traditional loco-
motion systems such as rovers or drones, the hyper redundancy of snake robots coupled with their
minimal cross-sectional area makes them well suited to operating in extreme environments. Yet,
characterized by their high degree of freedom and complex terra-mechanical interactions, snake
robots are challenging to control. The motion of one module necessarily affects all others, leading
to a tightly coupled non-linear system.
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The promise of snake robots has prompted intense research, continually pushing these systems
towards higher degrees of autonomy and versatility Sato et al. (2010); Kano and Ishiguro (2013);
Ito and Fukumori (2006); Ye et al. (2007); Duivon et al. (2022). One such system at the NASA Jet
Propulsion Laboratory is the Exo-biology Extant Life Surveyor (EELS, fig. 1(a)). Measuring 4m
and weighing 100kg, this early technology demonstrator aims to one day seek out signs of life on
Enceladus, a distant moon of Saturn Vaquero et al. (2024). EELS consists of ten modules, each
fitted with a propulsive screw, and chained together via novel two-axis bend-twist joints.

(a) EELS: Bend-twist, 100kg, 4m, 20 DOF (b) SEELS: Bend-bend, 13kg, 1.2m, 16 DOF

Figure 1: The two kinematic configurations considered in this study.

The bend-twist joints of EELS (fig. 1(a)) are advantageous compared to status-quo orthogonally
arranged bend-bends, like those on SimpleEELS (SEELS, fig. 1(b)). Bend-twists reduce the effec-
tive length of each module by combining two joints into one, yield the necessary torque density for
sub-surface locomotion, and increase internal module space for scientific payloads Gildner et al.
(2024). However, EELS twist joints have maximum deflection hard stops at ±2⇡. This introduces
a phenomenon we term twist-windup, where roll in successive twists tends to accumulate, reach the
limit, and stall the gait. Thus, designing bend-twist gaits is a challenging research problem, both for
EELS and the community at large.

2. Background

The space of possible gaits for even a simple snake robot is immense, broadly categorized into
sidewinding, concertina, rectilinear, and pipe-crawling classes. Early approaches to serpentine
locomotion were first pioneered by Hirose (1994). Through propagating parameterized traveling
waves down a continuous backbone curve, the undulating motion of a side-winding desert snake
was emulated, allowing for coupled translational and rotational control.

�bend(n, t) =

(
�e +Ae sin(!sn+ !tt) if n is even
�o +Ao sin(!sn+ !tt+ �) if n is odd

(1)

Variations on this idea have been thoroughly explored. The serpentoid curve Shi et al. (2016); Tang
et al. (2018); Gong et al. (2013) is a common heuristic function that operates over combinations of
spatial !s and temporal !t phase shifts, joint offsets �, and reference angles � to describe motion.
Manual gait design strategies like this necessitate empirically tuned thresholds derived through ex-
pert observation. Nevertheless, once parameters are found, the method performs well on bend-bend
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configurations Zade et al. (2021). Unfortunately, application to EELS is complicated by bend-twist
joints, invalidating the effectiveness of such a simple approach.

Optimization approaches to gait design represent the current class of state-of-art techniques. A
common theme is so-called curve-fitting whereby a gait is defined in high-level task space, then
converted into a corresponding low-level joint space. Xiao et al. (2015) approached this via Lo-

comotion Reduction, which projects the problem into an embedding space by taking a previously
formulated basis gait, such as conical sidewinding, and substituting a steering control law. This
reduces the system to an approximation of the simpler differential-drive car model.

Generalization by hierarchically decomposing gait design has also been explored. Hatton and
Choset (2010) introduced Annealed Chain Fitting (ACF) to translate a continuous backbone curve
into joint angles, and Keyframe Wave Extraction to identify parameterized periodic functions that
produce those sequences. Previously, this method had been successfully applied to torsion-free
kinematic chains where the robot can bend but not twist with respect to itself. When we attempted to
generalize ACF to our bend-twist case (in Section 4), either the optimizer failed to fit the kinematic
chain to the curve while satisfying twist constraints (twist windup), or it converged to an alternate
kinematic assembly mode that would require rapid changes in actuator angles (twist jumps).

These two failure modes motivate our use of reinforcement learning for a more robust, complete
gait search through joint hyperspaces. Relevant techniques include proximal Policy Optimization
Yongqiang et al. (2021) Bing et al. (2020a), Deep Q-learning Zhang et al. (2024), and Policy Fitting
Wang et al. (2021), which to date have all been applied in an end-to-end manner. These works focus
on improvements in energy efficiency and movement speed compared to classical methods like the
Serpentoid equation introduced above.

However, RL in snake robotics tends to exploit several small, but consequential, simplifications.
The frictional anisotropy of snakeskin is often used to justify imposing side-slip constraints, typi-
cally achieved by installing passive wheels, skates, or tracks along each module. Furthermore, to
the best of our knowledge, prior work in this area exclusively focuses on bend-bend configurations,
likely because orthogonally arranged joints simplify mechanical design. Both of these assumptions
are invalidated on EELS, which precludes artificially imposed sideslip constraints due to its disabled
propulsive screws, and has a bend-twist configuration.

More importantly, end-to-end RL methods lack the safety guarantees required for robust de-
ployment in risk-critical settings, such as during deep space missions, despite recent emphasis on
sim-to-real transfer Bing et al. (2022). This is because actions are stochastically sampled from a
probability distribution. The interpretability and introspection offered by a simple gait equation
is also lost with RL since the behavior of learned control policies is implicitly represented by the
weights of a neural network.

3. Methodology

A two-fold approach (fig. 2) is proposed to address the previously established shortcomings. First,
to mitigate non-convexity challenges introduced by twist constraints in bend-twist kinematic con-
figurations, we cast gait optimization as a Markov Decision Process solved using RL. This is done
without artificially imposed frictional anisotropy. Once trained, the policy is frozen, an episode
roll-out executed, and joint trajectories recorded. To address interpretability and safety guarantees,
a parametric representation is fitted to the joint trajectories by either 1) approximation via the top k
dominant gait frequency components or 2) applying least squares regression between the gait’s joint
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trajectory and classical serpentoid equation to automatically infer its coefficients. We then evaluate
the two parametric forms across simulations and a hardware experiment, showing our method works
with bend-twist and bend-bend chains.

Figure 2: Methodology overview. (A) shape-based locomotion policy is trained in simulation to
move from a start point to goal using RL. (B) Progress rewards incentivize reaching the
goal while safety rewards (gradient) penalize lateral divergence. An action regularisation
term avoids twist windup. (C) The policy is reconstructed into an equivalent parametric
form and replayed on the real robot in an open-loop manner.

3.1. Gait Search

We begin by building a neural network controller capable of learning a shape-based gait that min-
imizes the time taken to reach a designated goal without prior knowledge of snake dynamics. To
achieve this, EELS is simulated in Nvidia’s IsaacGym Makoviychuk et al. (2021) as a 20-degree-
of-freedom bend-twist kinematic chain with uniform module mass and moments of inertia.

The shape-based locomotion problem is framed as an infinite-horizon Markov Decision Process
defined by tuple (S,A,P,R, �). The agent starts from a state st 2 S , drawn from an initial state
distribution. For each time step t, an action at 2 A is sampled from a stochastic policy ⇡✓(at|st),
with weights ✓. at is executed, the agent transitions to new state st+1 2 S and receives reward
rt+1 2 R discounted by �. The objective is to find network parameters ✓ that maximize the expected
discounted reward. Off the shelf Proximal Policy Optimization from RL Games Makoviichuk and
Makoviychuk (2021) is used to find ✓.

A reward function that minimizes time-to-target directly encapsulates our learning objective.
However, this signal is sparse and can only be calculated upon the successful completion of an
episode. Prior works have addressed this hurdle by designing dense proxy rewards to approximate
an underlying task reward Hadfield-Menell et al. (2017). In car and drone racing contexts, projecting
an agent’s body frame onto a curve and maximizing the distance between current and previous
projected positions over successive timesteps has shown promising results Song et al. (2021); Fuchs
et al. (2020).
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Importantly, though, progress rewards rely on a body frame that is fixed to the chassis and which
remains unaffected from internal shape changes. This requirement is trivially met on quadrotors.
In the robotic snake domain, defining such a frame that intuitively describes the robot’s motion is
harder. We avoid fixing this frame to a physical snake module (i.e., head, tail) like in prior work
Bing et al. (2022) Bing et al. (2020b) as this will likely bias the types of learned gaits. Alternatively,
constraining joint limits would impede the versatility of the shape-based performance envelope.
Rollinson and Choset (2011) demonstrated that a body frame whose origin is the snake’s center
of mass and whose axes are aligned with the snake’s principal moments of inertia is one where
the intuitive notions of position and orientation prevail. This averaged frame, termed the Virtual

Chassis, isolates the internal motion of the robot’s shape changes from its external motion. Figure 2
(B) depicts this idea by drawing center-of-mass indicators over two sequential iterations.

For theoretical details on the Virtual Chassis, we point the interested reader to Rollinson and
Choset (2011). Here, the necessary results are restated. First, a n⇥3 data matrix is constructed with
rows representing individual module locations in world space, shifted by the snake’s overall center
of mass (x̄, ȳ, z̄) (eq. (3)). Next, the Single Value Decomposition (SVD) is applied, decomposing P
into three new matrices eq. (4). U and V are discarded. Importantly, S describes a rotation matrix
that aligns the axes of the body frame with the principal moments of inertia of the module positions
about the center of mass. To ensure uniqueness after the decomposition, the third singular vector of
S is set as the cross product of the first and second. This Virtual Chassis frame accurately describes
the average position and orientation of the snake.

pi =

2

4
xi � x̄
yi � ȳ
zi � z̄

3

5 2 R3 (2) P =

2

64
p>
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n

3
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To formalize the line-following locomotion task, we draw a heading line between the start lo-
cation of an episode GStart and the end GEnd. At time t, the distance between the virtual chassis
projected onto the heading line, and the goal, is pt. The shortest distance between the snake’s center
of mass and the heading line is denoted dt, as depicted in fig. 2 (B).

Rewards: Progress reward in our context are given by rprog
t in eq. (6). Maximizing progress

reward equates to maximizing the velocity of the virtual chassis towards the goal location, incen-
tivizing getting there in minimal time. Early experiments trained using progress rewards alone
revealed a tendency for the agent to diverge laterally from the heading line. Thus, safety rewards

were introduced to minimize divergence dt, keeping the virtual chassis centered. The gradient back-
ground of fig. 2 shows the safety reward over a 5x5m interval, and eq. (6) defines it symbolically.
To prevent twist windup discussed earlier, an action penalty term raction

t is applied to incentivize
minimal deflection of the snake’s joints, keeping them near their zero point throughout a gait cycle.

rt = rprog
t + rsafe

t + raction
t + rheading

t (5)

=
�
k GStart � pt�1 k � k GEnd � pt k

�
| {z }

Progress Reward

+C1 exp(
�d2t
C2

)
| {z }

Safety Reward

� C3|at|2| {z }
Action Penalty

+C4 exp(
� 2

t

C5
)

| {z }
Heading Reward

(6)

States: The state vector encodes observations made by the robot into a 3+3n length real vector,
for n the number of snake modules eq. (7).

st =
⇥
pt dt �t  t  ̇t at�1

⇤T (7)
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A heading angle,  t, is formed between the heading line and the y (forward, blue) axis of the
virtual chassis. �t is a vector of n snake joint angles (both bend and twist) with �̇t their correspond-
ing angular velocities. at�1 is the policy action from the previous timestep. We justify privileged
information, such as ground truth progress, heading, and divergence measurements, in our state
vector since this dependency is removed via parametric policy reconstruction (Section 3.2).

Actions: Each action at 2 Rn is a vector of desired module joint bend angles. Joints are
articulated using proportional derivative (PD) controllers with desired joint position set-points com-
manded by the RL policy at each time step. The robot is terminated if it reaches the goal, the
divergence distance dt is greater than a fixed threshold, or the episode length is exceeded.

3.2. Parametric Gait Fitting

Once a stable line-following policy ⇡✓ is learned using RL in simulation, policy weights ✓ are
frozen, a single rollout is performed, and the resultant joint trajectories are recorded. This produces
joint time-series like those shown in fig. 3(a) and fig. 3(b). To parametrically approximate the the
recording, Fast Fourier Transform (FFT) and Least Squares Regression (LSR) are applied. Each
method assumes independence between individual joints.

�̄(t, n) ⇡
KX

k=1

An,k sin(2⇡!n,kt+ �n,k) (8) �̄(t, n) ⇡ An sin(!sn+ !tt+ �n) + �n (9)

Fast Fourier Transform: FFT is a common method for approximating functions as a sum of
sinusoids. In the Snake domain, we acknowledge its prior use in dominant frequency identification
in gait design Gong et al. (2014), particularly when inferring parametric gaits from recordings of
biological snakes Gong et al. (2016). We take a similar approach, instead fitting to an RL policy
rollout instead of a biological counterpart. The top K dominant frequency components of a joint
trajectory are extracted using FFT with the trajectory is approximated as a sum of these components
eq. (8). Larger K increases approximation fidelity at the expense of model complexity. K is ablated
as a hyper-parameter in Section 4.

Least Squares Regression: For each joint, LSR fits the corresponding joint trajectory to the
Serpentoid Equation eq. (9) by finding the equation coefficients (A,!t,!s, �,�) that minimize the
sum of squared residuals. The scipy.curve fit function is used Gommers et al. (2022).

4. Results & Discussion

Our experiments aim to answer: 1) Can complexity introduced by twist joint constraints be avoided
by casting gait optimization as an RL problem? 2) What is the translational distance and lateral
divergence of RL, RL + FFT, and RL + LSR gaits during the line-following task? We ask both for
bend-twist (EELS fig. 1(a)) and bend-bend (SimpleEELS fig. 1(b)) kinematics. Annealed Chain
Fitting from Hatton and Choset (2010) is implemented as a baseline for EELS, and the classical
Serpentoid equation for SimpleEELS.

Figure 3(a) demonstrates the first part of our method, learning a shape-based gait via RL to
track a heading line. Minimal lateral divergence between the virtual chassis and line is observed.
Trajectories for head (�0, bend), middle (�10, twist), and tail (�20, bend) modules are highlighted.
A complex time-varying periodic gait structure over 13 cycles is evident. This proved an emergent
policy property since sinusoidal oscillations were not explicitly incentivized in the MDP.
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Figure 3(b) shows the RL + FFT parametric gait deployed on EELS in the JPL Mars Yard. The
robot traverses ⇡ 0.4m, illustrating our method’s potential for real world transfer.

(a) Sim: RL (closed-loop) Sidewinding policy that avoids twist windup while tracking heading line.

(b) Real: RL + FFT (open-loop) parametric reconstructed gait moving ⇡ 0.4m in JPL Mars Yard.

Figure 3: Key result of our training and deployment process.

Figure 4 depicts FFT and LSR parametric approximations for the rollout given in fig. 3. Both
parametric methods obtain acceptable reconstruction performance. FFT yields the closest approx-
imation using a sum of K = 75 sines, translating 3.8m towards the goal in 600 timesteps. Con-
versely, LSR approximates the RL gait using a single sinusoidal component, at the expense of poor
reconstruction quality early in the gait (t < 200). A marginally reduced translation distance (2.5m)
results. Evidently, LSR can only fit the dominant gait frequency mode. While sufficient to capture
the general shape, it can’t to encode higher-frequency, more nuanced details.

The Annealed Chain Fitting (ACF) baseline (fig. 4, bottom) demonstrates a key failure mode
where joint angles windup or rapidly jump during a rollout. Joint jumps are likely a consequence
of the numerical solver rapidly switching between different local optima in joint hyperspace across
keyframes while trying to optimise backbone fit. Such erratic changes in joint angles can’t be ac-
curately tracked by the low-level PD controllers and if deployed in the real world, would damage
the hardware. Clearly, while the path traced through joint hyperspace by ACF over successive
keyframes is geometrically correct, it is not guaranteed to be practically feasible. As this joint
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flipping failure mode was not reported by the original authors for torsion-free bend-bend configura-
tions, we conclude it is a consequence of the increased kinematic complexity imposed by EELS’s
twist joints.

Figure 4: Bend-Twist Case. (Top, Middle): Our parametric methods (FFT, LSR) fitted to the RL
rollout in fig. 3(a). (Bottom): Sidewinding Annealed Chain Fitting baseline from fig. 5.

Figure 5 further analyses why the ACF rollout shown in fig. 4 (bottom) fails. ACF begins by
sculpting a bend-twist chain to a parametric backbone curve (left column, fig. 5). This is done
via an iterative, sliding window numerical optimization process. Twist joints introduce a degree of
freedom tangent to the curve, which surprisingly makes it easier for the solver to obtain a better fit
compared to bend-bends. These fits are performed at discrete ’keyframes’ over a fixed gait cycle
(middle). Extracted Keyframe Waves are interpolated, producing the joint-angle plot (right column)
representing commands sent to the robot. Actuator jumps and windup phenomena are annotated for
a subset of three joints. Windup angles exceeding ±2⇡ are clamped, stalling that joint. Jumps cause
rapid changes in joint angles, potentially damaging hardware.

Figure 5: Baseline Experiment. (Left): Annealed Chain Fitting (Hatton and Choset (2010)) be-
tween bend-twist snake robot and side-winding backbone curve (Middle): Extracted
Keyframes of annealed sidewinding gait. (Right): Gait joint angles during rollout.
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Next, we show our method also works for the easier status-quo bend-bend case through application
to SEELS (fig. 1(b)). We again train a sidewinding gait using RL (fig. 6 top) before fitting the FFT
(upper middle) and LSR (lower middle) approximations to this single RL rollout. The Serpentoid
baseline (bottom) obtains similar translation and divergence distances but at a much slower speed
(its episode length was increased from T = 600 to T = 3000).

Our method reduces the burden of expert tuning associated with Serpentoid coefficients or back-
bone curves as gait search is offloaded to RL. Because the RL policy can explore a larger region of
the state space during training (than manual empirical search), it tends to find policies that increase
the effective use of snake actuators, yielding better and translation distances while minimising lat-
eral divergence.

Figure 6: Bend-Bend Case. (Top): RL Gait. (Middle): FFT and LSR approximations to RL gait.
(Bottom): Manually tuned Serpentoid Equation baseline (eq. (1)).

Importantly, these results collectively show our method is also kinematic configuration invari-
ant, capable of deriving gaits for both bend-twist (fig. 4) and bend-bend cases (fig. 6). To the best of
our knowledge, this is a unique property. Specialised classical approaches such as ACF or the Ser-
pentoid Equation explicitly assume a bend-bend design. However, this only guarantees kinematic
transfer. A low-level tracking controller is still required for the dynamics to transfer for any general
snake system.

Finally, we ablate the FFT frequency component count, k, which determines parametric ap-
proximation fidelity. We can principally select k by analysing the gait frequency distribution (fig. 7
left) and the effect of k on distance travelled compared to the parent RL gait (fig. 7 right). Evi-
dently, Seels (blue line) has three distinct gait frequency peaks. Setting k = 3 proved sufficient to
reconstruct its RL gait. Increasing k > 3 improves fit quality but with no notable improvement in
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traversal distance beyond that learned by the RL gait. Conversely, for EELS, frequency-amplitude
peaks are comparatively less pronounced, suggesting its learned gait is more complex as it uses a
broader spectrum of component frequencies. This increases the requirement on k, with RL + FFT
only achieving comparable traversal distances for k � 75. Evidently, there is a quality-of-fit versus
complexity trade-off that must be considered when selecting k for RL+FFT.

Figure 7: (Left): Gait frequency distribution. (Right): Ablation over k FFT components.

5. Conclusion & Future Work

The primary challenge when designing gaits for snake robots lies in their high-dimensional continu-
ous joint spaces, compounded by the presence of bend-twist actuators. Until now, there has been no
principled method to design parametric gaits for bend-twist snake robots. In this work, we proposed
a hybrid approach to meet this need, surpassing the limitations of Annealed Chain Fitting and the
Serpentoid Equation on novel bend-twist kinematic configurations.

Our method achieves larger translation distances with smaller lateral divergence on the line
following task. This was achieved by casting gait design as an RL problem, avoiding challenging
non-convexity by replacing hard twist constraints with a soft reward term. Through our parametric
gait distillation process, the benefits of safety, determinism, and interpretability are preserved. The
twist-jump and twist-windup failure modes of ACF are avoided. Kinematic invariance across two
different chain configurations (bend-twist, bend-bend) is also demonstrated.

Gaits produced by our method can be used as building blocks for more complex behaviours by
high-level mission planners further up the robotcs control stack. We believe this work represents a
small, but valuable, step towards enabling EELS to robustly and safely explore distant worlds.

Despite our promising results, several limitations are evident. The RL formulation is only ca-
pable of learning a single forward translation motion primitive. Future works could examine more
sophisticated gaits for turning or translating over non-planar terrain. Our method also assumes kine-
matic chain symmetry. However, some snake robots have asymmetric modules, eg: a large sensor
head at one end. Future work could explore head-holding constraints to avoid high-speed impacts
damaging sensitive electronics. We also adopted a very simple FFT and LSR scheme for parametric
gait approximation. Future studies could examine more sophisticated variations on this theme that
yield better fits, possibly by incorporating a Gaussian Process with a specialized periodic kernel
function.

10



KINEMATIC INVARIANT PARAMETRIC SNAKE ROBOT GAIT DESIGN FOR ENCELADUS EXPLORATION

6. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Jack
Naish acknowledges the generous support of the New Zealand Space Scholarship, the combined
Cambridge Trusts-Rosalie Crawford Girton Scholarship, and the Pillman and Cody Fund.

References

Zhenshan Bing, Christian Lemke, Long Cheng, Kai Huang, and Alois Knoll. Energy-efficient and
damage-recovery slithering gait design for a snake-like robot based on reinforcement learning
and inverse reinforcement learning. Neural Networks, 129:323–333, September 2020a. ISSN
0893-6080. doi: 10.1016/j.neunet.2020.05.029.

Zhenshan Bing, Christian Lemke, Fabric O Morin, Zhuangyi Jiang, Long Cheng, Kai Huang, and
Alois Knoll. Perception-action coupling target tracking control for a snake robot via reinforce-
ment learning. Frontiers in Neurorobotics, 14:591128, 2020b.

Zhenshan Bing, Long Cheng, Kai Huang, and Alois Knoll. Simulation to real: Learning energy-
efficient slithering gaits for a snake-like robot. IEEE Robotics & Automation Magazine, 29(4):
92–103, 2022.

Quentin Boehler, David S. Gage, et al. REALITI: A Robotic Endoscope Automated via Laryngeal
Imaging for Tracheal Intubation. IEEE Transactions on Medical Robotics and Bionics, 2(2):
157–164, January 2020. ISSN 2576-3202. doi: 10.1109/TMRB.2020.2969291.

Askan Duivon, Pino Kirsch, et al. The Redesigned Serpens, a Low-Cost, Highly Compliant
Snake Robot. MDPI, 2022. ISSN 2218-6581. URL https://uia.brage.unit.no/

uia-xmlui/handle/11250/3012088.

Florian Fuchs, Yunlong Song, et al. Super-Human Performance in Gran Turismo Sport Using Deep
Reinforcement Learning. arXiv, August 2020. doi: 10.1109/LRA.2021.3064284.

Matthew Gildner, Nikola Georgiev, Eric Ambrose, Torkom Pailevanian, Avak Archanian, Hov-
hannes Melikyan, Daniel Loret de Mola Lemus, Michael Paton, Rohan Thakker, and Masahiro
Ono. To boldly go where no robots have gone before–part 2: The versatile mobility of the eels
robot for robustly exploring unknown environments. In AIAA SCITECH 2024 Forum, page 1965,
2024.

Ralf Gommers, Pauli Virtanen, Evgeni Burovski, Warren Weckesser, Travis E Oliphant,
Matt Haberland, David Cournapeau, Tyler Reddy, Pearu Peterson, Andrew Nelson, et al.
scipy/scipy: Scipy 1.9. 0. Zenodo, 2022. URL https://web.archive.org/

web/20240223013146/https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.curve_fit.html.

Chaohui Gong, Matthew J. Travers, Xiaozhou Fu, and Howie Choset. Extended gait equation for
sidewinding. In 2013 IEEE International Conference on Robotics and Automation, pages 5162–
5167. IEEE, May 2013. doi: 10.1109/ICRA.2013.6631315.

11

https://uia.brage.unit.no/uia-xmlui/handle/11250/3012088
https://uia.brage.unit.no/uia-xmlui/handle/11250/3012088
https://web.archive.org/web/20240223013146/https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://web.archive.org/web/20240223013146/https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://web.archive.org/web/20240223013146/https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html


KINEMATIC INVARIANT PARAMETRIC SNAKE ROBOT GAIT DESIGN FOR ENCELADUS EXPLORATION

Chaohui Gong, Matthew Tesch, et al. Snakes on an inclined plane: Learning an adaptive sidewind-
ing motion for changing slopes. In 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 14–18. IEEE, 2014. doi: 10.1109/IROS.2014.6942697.

Chaohui Gong, Matthew J Travers, Henry C Astley, Lu Li, Joseph R Mendelson, Daniel I Goldman,
and Howie Choset. Kinematic gait synthesis for snake robots. The International Journal of

Robotics Research, 35(1-3):100–113, 2016.

Dylan Hadfield-Menell, Smitha Milli, et al. Inverse Reward Design. Advances in Neural Infor-

mation Processing Systems, 30, 2017. URL https://papers.nips.cc/paper_files/

paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html.

Ross L. Hatton and Howie Choset. Generating gaits for snake robots: annealed chain fitting and
keyframe wave extraction. Auton. Robot., 28(3):271–281, April 2010. ISSN 1573-7527. doi:
10.1007/s10514-009-9175-2.

Shigeo Hirose. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators by
Shigeo Hirose Oxford University Press, Oxford, 1993, 220 pages, incl. index (£40). Robotica

(Cambridge. Print), 1994. URL https://www.semanticscholar.org/paper/

Biologically-Inspired-Robots%3A-Snake-Like-Locomotors-Owen/

b84dfcd1184c570118c9ab77c335bc15863e531f.

K. Ito and Y. Fukumori. Autonomous control of a snake-like robot utilizing passive mechanism.
In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA

2006., pages 15–19. IEEE, 2006. ISBN 978-0-7803-9505. doi: 10.1109/ROBOT.2006.1641741.

Takeshi Kano and Akio Ishiguro. Obstacles are beneficial to me! Scaffold-based locomotion of
a snake-like robot using decentralized control. In 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 03–07. IEEE, 2013. doi: 10.1109/IROS.2013.6696821.

Denys Makoviichuk and Viktor Makoviychuk. rl games. GitHub, May 2021. URL https:

//github.com/Denys88/rl_games. [Online; accessed 10. May 2024].

Viktor Makoviychuk, Lukasz Wawrzyniak, et al. Isaac Gym: High Performance GPU-Based
Physics Simulation For Robot Learning. arXiv, August 2021. doi: 10.48550/arXiv.2108.10470.

David Rollinson and Howie Choset. Virtual chassis for snake robots. In 2011 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 221–226. IEEE, September 2011.
doi: 10.1109/IROS.2011.6094645.

Takahide Sato, Wataru Watanabe, and Akio Ishiguro. An adaptive decentralized control of a ser-
pentoid robot based on the discrepancy between body, brain and environment. In 2010 IEEE

International Conference on Robotics and Automation, ICRA 2010, pages 709–714. 2010. doi:
10.1109/ROBOT.2010.5509236.

Peipei Shi, Qianjun Shao, and Dongtai Liang. Design and improved serpentoid curve locomotion
control of a planar modular snake robot. In 2016 IEEE International Conference on Informa-

tion and Automation (ICIA), pages 1398–1402. IEEE, August 2016. doi: 10.1109/ICInfA.2016.
7832038.

12

https://papers.nips.cc/paper_files/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html
https://www.semanticscholar.org/paper/Biologically-Inspired-Robots%3A-Snake-Like-Locomotors-Owen/b84dfcd1184c570118c9ab77c335bc15863e531f
https://www.semanticscholar.org/paper/Biologically-Inspired-Robots%3A-Snake-Like-Locomotors-Owen/b84dfcd1184c570118c9ab77c335bc15863e531f
https://www.semanticscholar.org/paper/Biologically-Inspired-Robots%3A-Snake-Like-Locomotors-Owen/b84dfcd1184c570118c9ab77c335bc15863e531f
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games


KINEMATIC INVARIANT PARAMETRIC SNAKE ROBOT GAIT DESIGN FOR ENCELADUS EXPLORATION

Yunlong Song, Mats Steinweg, et al. Autonomous Drone Racing with Deep Reinforcement Learn-
ing. arXiv, March 2021. doi: 10.48550/arXiv.2103.08624.

Lei Tang, Li-Min Zhu, Xiangyang Zhu, and Guoying Gu. A serpentoid Curve Based Motion
Planning Method for Cable-Driven Snake Robots. In 2018 25th International Conference on

Mechatronics and Machine Vision in Practice (M2VIP), pages 1–6. IEEE, November 2018. doi:
10.1109/M2VIP.2018.8600874.

Marco Tempest, Hiro Ono, et al. EELS ICRA Presentation. Pasadena, CA: Jet Propulsion Lab-

oratory, National Aeronautics and Space Administration, 2020, May 2020. URL https:

//ntrs.nasa.gov/citations/20220001316.

T. S. Vaquero, G. Daddi, R. Thakker, M. Paton, A. Jasour, M. P. Strub, R. M. Swan, R. Royce,
M. Gildner, P. Tosi, M. Veismann, P. Gavrilov, E. Marteau, J. Bowkett, D. Loret de Mola Lemus,
Y. Nakka, B. Hockman, A. Orekhov, T. D. Hasseler, C. Leake, B. Nuernberger, P. Proença,
W. Reid, W. Talbot, N. Georgiev, T. Pailevanian, A. Archanian, E. Ambrose, J. Jasper,
R. Etheredge, C. Roman, D. Levine, K. Otsu, S. Yearicks, H. Melikyan, R. R. Rieber, K. Carpen-
ter, J. Nash, A. Jain, L. Shiraishi, M. Robinson, M. Travers, H. Choset, J. Burdick, A. Gardner,
M. Cable, M. Ingham, and M. Ono. EELS: Autonomous snake-like robot with task and motion
planning capabilities for ice world exploration. Sci. Rob., 9(88), March 2024. ISSN 2470-9476.
doi: 10.1126/scirobotics.adh8332.

Renpeng Wang, W. Xi, Xian Guo, and Yongchun Fang. Path Follow-
ing for Snake Robot Using Crawler Gait Based on Path Integral Reinforce-
ment Learning. International Conference on Advanced Robotics and Mecha-

tronics, 2021. URL https://www.semanticscholar.org/paper/

Path-Following-for-Snake-Robot-Using-Crawler-Gait-Wang-Xi/

6267b505a0bcbd5161f31a054aaf1566e9460a17.

Xuesu Xiao, Ellen Cappo, et al. Locomotive reduction for snake robots. In 2015 IEEE International

Conference on Robotics and Automation (ICRA), pages 26–30. IEEE, 2015. doi: 10.1109/ICRA.
2015.7139718.

Changlong Ye, Shugen Ma, et al. Development of a 3D Snake-like Robot: Perambulator-II. In
2007 International Conference on Mechatronics and Automation, pages 05–08. IEEE, 2007. doi:
10.1109/ICMA.2007.4303526.

Qi Yongqiang, Yang Hailan, Rong Dan, Ke Yi, Lu Dongchen, Li Chunyang, and Liu Xiaoting. Path-
integral-based reinforcement learning algorithm for goal-directed locomotion of snake-shaped
robot. Discrete Dynamics in Nature and Society, 2021:1–12, 2021.

Harshad Zade, Aadesh Varude, Karan Pandya, Ajinkya Kamat, Shital Chiddarwar, and Rohan
Thakker. Requbis-reconfigurable quadrupedal-bipedal snake robots. In 2021 IEEE 17th Inter-

national Conference on Automation Science and Engineering (CASE), pages 2241–2246. IEEE,
2021.

Dong Zhang, Renjie Ju, and Zhengcai Cao. Reinforcement learning-based motion control for snake
robots in complex environments. Robotica, 42(4):947–961, April 2024. ISSN 0263-5747. doi:
10.1017/S0263574723001613.

13

https://ntrs.nasa.gov/citations/20220001316
https://ntrs.nasa.gov/citations/20220001316
https://www.semanticscholar.org/paper/Path-Following-for-Snake-Robot-Using-Crawler-Gait-Wang-Xi/6267b505a0bcbd5161f31a054aaf1566e9460a17
https://www.semanticscholar.org/paper/Path-Following-for-Snake-Robot-Using-Crawler-Gait-Wang-Xi/6267b505a0bcbd5161f31a054aaf1566e9460a17
https://www.semanticscholar.org/paper/Path-Following-for-Snake-Robot-Using-Crawler-Gait-Wang-Xi/6267b505a0bcbd5161f31a054aaf1566e9460a17

	Introduction
	Background
	Methodology
	Gait Search
	Parametric Gait Fitting

	Results & Discussion
	Conclusion & Future Work
	Acknowledgements

