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Abstract
Path signatures have been proposed as a powerful representation of paths that efficiently captures
the path’s analytic and geometric characteristics, having useful algebraic properties including fast
concatenation of paths through tensor products. Signatures have recently been widely adopted in
machine learning problems for time series analysis. In this work we establish connections between
value functions typically used in optimal control and intriguing properties of path signatures.
These connections motivate our novel control framework with signature transforms that efficiently
generalizes the Bellman equation to the space of trajectories. We analyze the properties and
advantages of the framework, termed signature control. In particular, we demonstrate that (i) it can
naturally deal with varying/adaptive time steps; (ii) it propagates higher-level information more
efficiently than value function updates; (iii) it is robust to dynamical system misspecification over
long rollouts. As a specific case of our framework, we devise a model predictive control method for
path tracking. This method generalizes integral control, being suitable for problems with unknown
disturbances. The proposed algorithms are tested in simulation, with differentiable physics models
including typical control and robotics tasks such as point-mass, curve following for an ant model,
and a robotic manipulator.
Keywords: Decision making, Path signature, Bellman equation, Integral control, Model predictive
control, Robotics

1. Introduction

Path tracking has been a central problem for autonomous vehicles (e.g., Schwarting et al. (2018);
Aguiar and Hespanha (2007)), imitation learning, learning from demonstrations (cf. Hussein et al.
(2017); Argall et al. (2009)), character animations (with mocap systems; e.g., Peng et al. (2018)),
robot manipulation for executing plans returned by a solver (cf. Kaelbling and Lozano-Pérez (2011);
Garrett et al. (2021)), and for flying drones (e.g., Zhou and Schwager (2014)), just to name a few.

Typically, path tracking is dealt with by using reference dynamics if available or is formulated
as a control problem with a sequence of goals to follow using optimal controls based on dynamic
programming (DP) (Bellman, 1953). In particular, DP over the scalar or value of a respective policy
is often studied and analyzed through the lenses of the Bellman expectation (or optimality) equation
which describes the evolution of values or rewards over time (cf. Kakade (2003); Sutton and Barto
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(2018); Kaelbling et al. (1996)). This is done by computing and updating a value function which
maps states to values.

However, value (cumulative reward) based trajectory (or policy) optimization is suboptimal for
path tracking where appropriate waypoints are unavailable. Further, value functions capture state
information exclusively through its scalar value, which makes it unsuitable for the problems that
require the entire trajectory information to obtain a desirable control strategy.

In this work, we adopt a rough-path theoretical approach in DP; specifically, we exploit path
signatures (cf. Chevyrev and Kormilitzin (2016); Lyons (1998)), which have been widely studied as
a useful geometrical feature representation of path, and have recently attracted the attention of the
machine learning community (e.g., Chevyrev and Kormilitzin (2016); Kidger et al. (2019); Salvi et al.
(2021); Morrill et al. (2021); Levin et al. (2013); Fermanian (2021)). Our decision making framework
predicated on signatures, named signature control, describes an evolution of signatures over an
agent’s trajectory through DP. By demonstrating how it reduces to the Bellman equation as a special
case, we show that the S-function representing the signatures of future path (we call it path-to-go in
this paper) is cast as an effective generalization of value function. In addition, since an S-function
naturally encodes information of a long trajectory, it is robust against misspecification of dynamics.
Our signature control inherits some of the properties of signatures, namely, time-parameterization
invariance, shift invariance, and tree-like equivalence (cf. Lyons et al. (2007); Boedihardjo et al.
(2016)); as such, when applied to tracking problems, there is no need to specify waypoints.

In order to devise new algorithms from this framework, including model predictive controls
(MPCs) (Camacho and Alba, 2013), we present path cost designs and their properties. In fact,
our signature control generalizes the classical integral control (see Khalil (2002)); it hence shows
robustness against unknown disturbances, which is demonstrated in robotic manipulator simulation.

Notation: Throughout this paper, we let R, N, R≥0, and Z>0 be the set of the real numbers, the
natural numbers ({0, 1, 2, . . .}), the nonnegative real numbers, and the positive integers, respectively.
Also, let [T ] := {0, 1, . . . , T − 1} for T ∈ Z>0. The floor and the ceiling of a real number a is
denoted by ⌊a⌋ and ⌈a⌉, respectively. Let T denote time for random dynamical systems, which is
defined to be either N (discrete-time) or R≥0 (continuous-time).

Figure 1: Left: simple tracking example. The black and blue circles represent an obstacle and the
goal. Given a path (black line), a point-mass (red) follows this reference via minimization
of deviation of signatures in an online fashion with optimized action repetitions. Right:
illustration of path-to-go formulation as an analogy to value-to-go in the classical settings.
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2. Related work

Path signature: Path signatures are mathematical tools developed in rough path research (Lyons,
1998; Chen, 1954; Boedihardjo et al., 2016). For efficient computations of metrics over signatures,
kernel methods (Hofmann et al., 2008; Aronszajn, 1950) are employed (Király and Oberhauser,
2019; Salvi et al., 2021; Cass et al., 2021; Salvi et al., 2021). Signatures have been applied to various
applications, such as sound compression (Lyons and Sidorova, 2005), time series data analysis and
regression (Gyurkó et al., 2013; Lyons, 2014; Levin et al., 2013), action and text recognition (Yang
et al., 2022; Xie et al., 2017), and neural rough differential equations (Morrill et al., 2021). Also,
deep signature transform is proposed in (Kidger et al., 2019) with applications to reinforcement
learning which is still within Bellman equation based paradigm. In contrast, our framework is solely
replacing this Bellman backup with signature based DP. Theory and practice of path signatures in
machine learning are summarized in (Chevyrev and Kormilitzin, 2016; Fermanian, 2021).

Value-based control and RL: Value function based methods are widely adopted in RL and optimal
control. However, value functions capture state information exclusively through its scalar value,
which lowers sample efficiency. To alleviate this problem, model-based RL methods learn one-step
dynamics across states (cf. Sun et al. (2019); Du et al. (2021); Wang et al. (2019); Chua et al.
(2018)). In practical algorithms, however, even small errors on one-step dynamics could diverge
along multiple time steps, which hinders the performance (cf. Moerland et al. (2023)). To improve
sample complexity and generalizability of value function based methods, on the other hand, successor
features (e.g., Barreto et al. (2017)) have been developed. Costs over the spectrum of the Koopman
operator were proposed by Ohnishi et al. (2021), but without DP. We tackle the issue from another
angle by capturing sufficiently rich information in a form of path-to-go, which is robust against long
horizon problems; at the same time, it subsumes value function (and successor feature) updates.

Path tracking: Traditionally, the optimal path tracking control is achieved by using reference
dynamics or by assigning time-varying waypoints (Paden et al., 2016; Schwarting et al., 2018; Aguiar
and Hespanha, 2007; Zhou and Schwager, 2014; Patle et al., 2019). In practice, MPC is usually
applied for tracking time-varying waypoints and PID controls are often employed when optimal
control dynamics can be computed offline (cf. Khalil (2002)). Some of the important path tracking
methodologies were summarized in (Rokonuzzaman et al., 2021); namely, pure pursuit (Scharf et al.,
1969), Stanley controller (Thrun et al., 2007), linear control such as the linear quadratic regulator after
feedback linearization (Khalil, 2002), Lyapunov’s direct method, robust or adaptive control using
simplified or partially known system models, and MPC. Those methodologies are highly sensitive
to time step sizes and require analytical (and simplified) system models, and misspecifications of
dynamics may also cause significant errors in tracking accuracy even when using MPC. Due to those
limitations, many ad-hoc heuristics are often required when applying them in practice. Our signature
based method can systematically remedy some of those drawbacks in its vanilla form.

3. Preliminaries

3.1. Path signature

Let X ⊂ Rd be a state space and suppose a path (a continuous stream of states) is defined over a
compact time interval [s, t] for 0 ≤ s < t as an element of X [s,t]. The path signature is a collection
of infinitely many features (scalar coefficients) of a path with depth one to infinite. Coefficients of
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each depth roughly correspond to the geometric characteristics of paths, e.g., displacement and area
surrounded by the path can be expressed by coefficients of depth one and two.

The formal definition of path signatures is given below. We use T ((X )) to denote the space of
formal power series and ⊗ to denote the tensor product operation (see supplementary materials).

Definition 1 (Path signatures (Lyons et al., 2007)) Let Σ ⊂ X [0,T ] be a certain space of paths.
Define a map on Σ over T ((X )) by S(σ) ∈ T ((X )) for a path σ ∈ Σ where its coefficient
corresponding to the basis ei ⊗ ej ⊗ . . .⊗ ek is given by

S(σ)i,j,...,k :=

∫
0<τk<T

. . .

∫
0<τj<τk

∫
0<τi<τj

dxτi,idxτj ,j . . . dxτk,k.

Here, xt,i is the ith coordinate of σ at time t.

The space Σ is chosen so that the path signature S(σ) of σ ∈ Σ is well-defined. Given a positive
integer m, the truncated signature Sm(σ) is defined accordingly by a truncation of S(σ) (as an
element of the quotient denoted by Tm(X ); see supplementary materials for the definition).

Properties of the path signatures: The basic properties of path signature allow us to develop
our decision making framework and its extension to control algorithms. Such properties are also
inherited by the algorithms we devise, providing several advantages over classical methods for tasks
such as path tracking (further details are in Section 5 and 6). We summarize these properties below:

• The signature of a path is invariant under a constant shift and time reparameterizations. Straight-
forward applications of signatures thus represent shape information of a path irrespective of
waypoints and/or absolute initial positions.

• A path is uniquely recovered from its signature up to tree-like equivalence (e.g., path with
detours) and the magnitudes of coefficients decay as depth increases. As such, (truncated) path
signatures contain sufficiently rich information about the state trajectory, providing a valuable
and compact representation of a path in several control problems.

• Any real-valued continuous map on the certain space of paths can be approximated to arbitrary
accuracy by a linear map on the space of signatures (Arribas, 2018). This universality property
enables us to construct a kernel operating over the space of trajectories, which will be critical
to derive our control framework in section 4.

• The path signature has a useful algebraic property known as Chen’s identity (Chen, 1954),
stating that the signature of the concatenation of paths can be computed by the tensor product
of the signatures of the paths. Let X : [a, b] → Rd and Y : [b, c] → Rd be two paths. Then,

S(X ∗ Y )a,c = S(X)a,b ⊗ S(Y )b,c,

where ∗ denotes the concatenation operation (we shift the starting time of path when necessary).

3.2. Dynamical systems and path tracking

Since we are interested in cost definitions over the entire path and not limited to the form of the
cumulative cost over a trajectory with fixed time interval (or integral along continuous time), Markov
Decision Processes (MDPs; Bellman (1957)) are no longer the most suitable representation. Instead,
we assume that the system dynamics of an agent is described by a stochastic dynamical system Φ
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(SDS; in other fields the term is also known as Random Dynamical System (RDS) (Arnold, 1998)).
We defer the mathematical definition to supplementary materials. In particular, let π be a policy
in a space Π which defines the SDS Φπ (it does not have to be a map from a state to an action).
Examples of stochastic dynamical systems include Markov chains, stochastic differential equations,
and additive-noise (zero-mean i.i.d.) systems.

Our main problem of interest is path tracking which we formally define below:

Definition 2 (Path tracking) Let Γ : Σ×Σ → R≥0 be a cost function on the product of the spaces
of paths over the nonnegative real number, satisfying:

∀σ ∈ Σ : Γ(σ, σ) = 0; ∀σ∗ ∈ Σ, ∀σ ∈ Σ s.t. σ ̸≡σ σ∗ : Γ(σ, σ∗) > 0,

where ≡σ is any equivalence relation of path in Σ. Given a reference path σ∗ ∈ Σ and a cost, the
goal of path tracking is to find a policy π∗ ∈ Π such that a path σπ generated by the SDS Φπ satisfies

π∗ ∈ argmin
π∈Π

Γ(σπ, σ
∗).

With these definitions we can now present a novel control framework, namely, signature control.

4. Signature control

An SDS creates a discrete or continuous path T ∩ [0, T ] → X . One may transform the obtained path
onto Σ as appropriate (see supplementary materials for detailed description and procedures). Our
signature control problem is described as follows:

4.1. Problem formulation

Problem 3 (signature control) Let T ∈ [0,∞) be a horizon. The signature control problem reads

Find π∗ s.t. π∗ ∈ argmin
π∈Π

c (EΩ [S (σπ (x0, T, ω))]) , (4.1)

where c : T ((X )) → R≥0 is a cost function over the space of signatures. σπ(x0, T, ω) is the
(transformed) path for the SDS Φπ associated with a policy π, x0 is the initial state and ω is the
realization for the noise model.

This problem subsumes the MDP as we shall see in Section 4.2. The given formulation covers both
discrete-time (i.e., T is N) and continuous-time cases through interpolation over time. To simplify
notation, we omit the details of probability space (e.g., realization ω and sample space Ω) in the
rest of the paper with a slight sacrifice of rigor (see supplementary materials for details). Given
a reference σ∗, when c(S(σ)) = Γ(σ, σ∗) and ≡σ denotes tree-like equivalence, signature control
becomes the path tracking Problem 2. To effectively solve it we exploit DP in the next section.

4.2. Dynamic programming over signatures

Path-to-go: Let a ∈ A be an action which basically constrains the realizations of path up to time
ta (actions studied in MDPs constrain the one-step dynamics from a given state). Given T ∈ T,
path-to-go, or the future path generated by π, refers to Pπ defined by

Pπ(x, t) = σπ(x, T − t), ∀t ∈ [0, T ].
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It follows that each realization of the path assumed to be constrained by an action a can be
written by

Pπ(x, t) = Pπ
a (x, t) ∗ Pπ(x+, ta + t), Pπ

a (x, t) := σπ(x,min{T − t, ta}),

where x+ is the state reached after ta from x (see Figure 1 Right). Under Markov assumption (see
supplementary materials), the path generation after ta does not depend on action a. To express this
in the signature form, we exploit the Chen’s identity, and define the signature-to-go function (or in
short S-function):

Sπ(a, x, t) := E [S(Pπ(x, t))|a] . (4.2)

Using the Chen’s identity, the law of total expectation, the Markov assumption, the properties of
tensor product and the path transformation, we obtain the update rule:

Theorem 4 (Signature Dynamic Programming for Decision Making) Let the function S be de-
fined by (4.2). Under the Markov assumption, it follows that

Sπ(a, x, t) = E
[
S(Pπ

a (x, t))⊗ ESπ(x+, t+ ta)|a
]

where the expected S-function ESπ is defined by taking expectation over actions as below:

ESπ(x, t) := E [Sπ(a, x, t)] .

Truncated signature formulation: For the mth-depth truncated signature (note that m = ∞ for
signature with no truncation), we obtain,

(S(X)⊗ S(Y ))m = (S(X)m ⊗ S(Y )m)m =: S(X)m ⊗m S(Y )m. (4.3)

Therefore, when the cost only depends on the first mth-depth signatures, keeping track of the first
mth-depth S-function Sπ

m(a, x, t) suffices, and the cost function c can be efficiently computed as

c(Sπ
m(a, x, t)) = c

(
E
[
Sm(Pπ

a (x, t))⊗m ESπ
m(x+, t+ ta)|a

])
.

Reduction to the Bellman equation: Recall that the Bellman expectation equation w.r.t. action-
value function or Q-function is given by

Qπ(a, x, t) = E
[
r(a, x) + γV π(x+, t+ 1)

∣∣a] , (4.4)

where V π(x, t) = E[Qπ(a, x, t)] for all t ∈ N, where γ ∈ (0, 1] is a discount factor. We briefly show
how this equation can be described by a S-function formulation. Here, the action a is the typical
action input considered in MDPs. We suppose discrete-time system (T = N), and that the state is
augmented by reward and time, and suppose ta = 1 for all a ∈ A. Let the depth of signatures to keep
be m = 2. Then, by properly defining (see supplementary materials for details) the interpolation and
transformation, we obtain the path illustrated in Figure 2 Left over the time index and immediate
reward. For this two dimensional path, note a signature element of depth two represents the surface
surrounded by the path (colored by yellow in the figure), which is equivalent to the value-to-go. As
such, define the cost c : T 2(X ) → R≥0 by c(s) = −s1,2, and Chen equation becomes

c(Sπ
2 (a, x, t)) = c

(
E
[
S2(Pπ

a (x, t))⊗2 ESπ
2 (x

+, t+ 1)|a
])

= E
[
−S1,2(Pπ

a (x, t)) + c
(
ESπ

2 (x
+, t+ 1)

)
|a
]
.

Now, it reduces to the Bellman expectation equation (4.4) because

c (Sπ
2 (a, x, t)) = −γtQπ(a, x, t), c (ESπ

2 (x, t)) = −γtV π(x, t), S1,2(Pπ
a (x, t)) = γtr(a, x).
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Figure 2: Left: how a cumulative (discounted) reward is represented by our path formulation by an
interpolation for representing the value as surface and by a transportation for discounting
and concatenations of paths. Right: an error of approximated one-step dynamics propagates
through time steps; while an error on signature has less effect over horizon.

Algorithm 1 Signature MPC

Input: initial state x0; signature depth m; initial signature of past path s0 = 1; # actions for rollout
N ; surrogate cost ℓ and regularizer ℓreg; terminal S-function T Sm; simulation model Φ̂
while not task finished do

Observe the current state xt.
Update the signature of past path: st = st−1 ⊗m Sm(σ(xt−1, xt)), where Sm(σ(xt−1, xt)) is
the signature transform of the subpath traversed since the last update from t− 1 to t.
Compute the N optimal future actions a∗ := (a0, a1, . . . , aN−1) using a simulation model Φ̂
that minimize the cost of the signature of the entire path (See Equation (5.1)).
Run the first action a0 for the associated duration ta0 .

end

5. Signature MPC

We discuss an effective cost formulation over signatures for flexible and robust MPC, followed by
additional numerical properties of signatures that benefit signature control.

Signature model predictive control: We present an application of Chen equation to MPC control–
an iterative, finite-horizon optimization framework for control. In our signature MPC formulation,
the optimization cost is defined for the signature of the full path being tracked, i.e., the previous path
seen so far and the future path generated by the optimized control inputs (e.g., distance from the
reference path signature for path tracking problem). Our algorithm, given in Algorithm 1, works in
the receding-horizon manner and computes a fixed number of actions (the execution time for the full
path can vary as each action may have a different time scale; i.e., each action is taken effect up to
optimized (or fixed) time ta ∈ T).

Given the signature st of transformed past path (depth m) and the current state xt at time t, the
actions are selected by minimizing a two-part objective which is the sum of the surrogate cost ℓ and
some regularizer ℓreg:

J =


ℓ

(
st ⊗m E [Sm(σa(xt))⊗m T Sm(x0, st, σa(xt))]

)
surrogate cost

+ ℓreg

(
E [T Sm(x0, st, σa(xt))]

)
regularizer

(5.1)
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where the path σa(xt) is traced by the optimization variable a := (a0, a1, . . . aN−1), and T Sm :
X ×Tm(X )×Σ → Tm(X ) is the terminal S-function that may be defined arbitrarily (as an analogy
to terminal value in Bellman equation based MPC; see supplementary materials).

Terminal S-function returns the signature of the terminal path-to-go. For the tracking problems
studied in this work, we define the terminal subpath (path-to-go) as the final portion of the reference
path starting from the closest point to the end-point of roll-out. This choice optimizes for actions up
until the horizon anticipating that the reference path can be tracked afterward. We observed that this
choice worked the best for simple classical examples analyzed in this work.

Error explosion along time steps: We consider robustness against misspecification of dynamics.
Figure 2 Right shows an example where the dashed red line is the ground truth trajectory with the
true dynamics. When there is an approximation error on the one-step dynamics being modeled, the
trajectory deviates significantly (black dashed line). On the other hand, when the same amount of
error is added to each term of signature, the recovered path (blue solid line) is less erroneous. This is
because signatures capture the entire trajectory globally (see supplementary materials for details).

Computations of signatures: We compute the signatures through the kernel computations using
an approach in (Salvi et al., 2021). We emphasize that the discrete points we use for computing
the signatures of (past/future) trajectories are not regarded as waypoints, and their placement has
negligible effects on the signatures as long as they sufficiently maintain the “shape” of the trajectories.

6. Experimental results

We conduct experiments on both simple classical examples and simulated robotic tasks. We also
present the relation of a specific instance of signature control to the classical integral control to show
its robustness against disturbance. For more experiment details, see supplementary materials.

Simple point-mass: We use double-integrator point-mass as a simple example to demonstrate our
approach (as shown in Figure 1 Left). In this task, a point-mass is controlled to reach a goal position
while avoiding the obstacle in the scene. We first generate a collision-free path via RRT* (Karaman
and Frazzoli, 2011) which is suboptimal in terms of tracking speed (taking 72 seconds). We then
employ our signature MPC to follow this reference by producing the actions (i.e. accelerations),
resulting in a better tracking speed (taking around 30 seconds) while matching the trajectory shape.

Two-mass, spring, damper system: To view the integral control (Khalil, 2002) within the scope
of our proposed signature control formulation, recall a second depth signature term corresponding to
the surface surrounded by the time axis, each of the state dimension, and the path, represents each
dimension of the integrated error. In addition, a first depth signature term with the initial state x0
represents the immediate error, and the cost c may be a weighted sum of these two. To test this,
we consider two-mass, spring, damper system; the disturbance is assumed zero for planning, but is
0.03 for executions. We compare signature MPC where the cost is the squared Euclidean distance
between the signatures of the reference and the generated paths with truncation upto the first and the
second depth. The results of position evolutions of the two masses are plotted in Figure 3 Top. As
expected, the black line (first depth) does not converge to zero error state while the blue line (second
depth) does (see supplementary materials). If we further include other signature terms, signature
control effectively becomes a generalization of integral controls, which we will see for robotic arm
experiments later.
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Table 1: Selected results on path following with an ant robot model. Comparing signature control,
and baseline MPC and SAC RL with equally assigned waypoints. “Slow” means it uses
more time steps than our signature control for reaching the goal.

Deviation (distance) from reference

Mean (10−2m) Variance (10−2m) # waypoints reaching goal

signature control 21.266 6.568 N/A success
baseline MPC 102.877 182.988 880 fail

SAC RL 446.242 281.412 880 fail

baseline MPC (slow) 10.718 5.616 1500 success
baseline MPC (slower) 1.866 0.026 2500 success

Ant path tracking: In this task, an Ant robot is controlled to follow a “2”-shape reference path. The
action being optimized is the torque applied to each joint actuator. We test the tracking performances
of signature control and baseline standard MPC on this problem. Also, we run soft actor-critic
(SAC) (Haarnoja et al., 2018) RL algorithm where the state is augmented with time index to manage
waypoints and the reward (negative cost) is the same as that of the baseline MPC. For the baseline
MPC and SAC, we equally distribute 880 waypoints to be tracked along the path and time stamp
is determined by equally dividing the total tracking time achieved by signature control. Table
1 compares the mean/variance of deviation (measured by distance in meter) from the closest of
2000 points over the reference, and Figure 3 (Bottom Left) shows the resulting behaviors of MPCs,
showing significant advantages of our method in terms of tracking accuracy. The performance of
SAC RL is insufficient as we have no access to sophisticated waypoints over joints (see Peng et al.
(2018) for the discussion). When more time steps are used, baseline MPC becomes a bit better. Note
our method can tune the trade-off between accuracy and progress through regularizer.

Robotic manipulator path tracking: In this task, a robotic manipulator is controlled to track
an end-effector reference path. Similar to the Ant task, 270 waypoints are equally sampled along
the reference path for the baseline MPC method and SAC RL to track. To show robustness of
signature control against unknown disturbance (torque: N ·m), we test different scales of disturbance
force applied to each joint of the arm. The means/variances of the tracking deviation of the three
approaches for selected cases are reported in Table 2 and the tracking paths are visualized in Figure 3
(Bottom Right). For all cases, our signature control outperforms the baseline MPC and SAC RL,
especially the difference becomes much clearer when the disturbance becomes larger. This is because
the signature MPC is insensitive to waypoint designs but rather depends on the “distance” between
the target and the rollout paths in the signature space, making the tracking speed adaptive.

7. Discussions

This work presented signature control, a novel framework that generalizes value-based dynamic
programming to reason over entire paths through Chen equation. There are many promising avenues
for future work (which is relevant to the current limitations of our work), such as developing a more
complete theoretical understanding of guarantees provided by the signature control framework, and
developing additional RL algorithms that inherit the benefits of our signature control framework.
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Table 2: Results on path tracking with a robotic manipulator end-effector. Comparing signature
control, and baseline MPC and SAC RL with equally assigned waypoints under unknown
fixed disturbance.

Deviation (distance) from reference

Disturbance (N ·m) Mean (10−2m) Variance (10−2m)

+30 1.674 0.002
signature control ±0 0.458 0.001

−30 1.255 0.002

+30 2.648 0.015
baseline MPC ±0 0.612 0.007

−30 5.803 0.209

+30 15.669 0.405
SAC RL ±0 3.853 0.052

−30 16.019 0.743

Figure 3: Top (two-mass spring, damper system): the plots show the evolutions of positions of
two masses for signature MPC with/without second depth signature terms, showing how
signature MPC reduces to integral control. Down: (Left two; Ant) tracking behaviors
of signature control (left) and baseline MPC (right) for the same reaching time, where
green lines are the executed trajectories. (Right two; Robotic arm): tracking behaviors of
signature control (left) and baseline MPC (right) under disturbance −30.

While we emphasize that the run times of MPC algorithms used in this work for signature control
and baseline are almost the same, adopting some of the state-of-the-art MPC algorithm running in
real-time to our signature MPC is an important future work.
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