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Abstract
We consider the problem of function estimation by a multi-agent system consisting of two agents
and a fusion center. Each agent receives data comprising of samples of an independent variable
(input) and the corresponding values of the dependent variable (output). The data remains local and
is not shared with other members in the system. The objective of the system is to collaboratively
estimate the function from the input to the output. To this end, we present an iterative distributed
algorithm for this function estimation problem. Each agent solves a local estimation problem in a
Reproducing Kernel Hilbert Space (RKHS) and uploads the function to the fusion center. At the
fusion center, the functions are fused by first estimating the data points that would have generated
the uploaded functions and then subsequently solving a least squares estimation problem using
the estimated data from both functions. The fused function is downloaded by the agents and is
subsequently used for estimation at the next iteration along with incoming data. This procedure is
executed sequentially and stopped when the difference between consecutively estimated functions
becomes small enough. With respect to the algorithm, we prove existence of basis functions for
suitable representation of estimated functions and present closed form solutions to the estimation
problems at the agents and the fusion center.
Keywords: Distributed Regression, RKHS, Transfer Operators

1. Introduction

1.1. Motivation

Cyber-physical systems are integrations of computational and physical processes, Derler et al.
(2011). The sensors onboard such systems collect heterogeneous observations by measuring dif-
ferent aspects of the system and the environment. The observations or the data collected by them
can be used to learn complete (given partial models) or partial models of the system or the environ-
ment. The heterogeneity of the data motivates us to consider local processing of the data followed
by fusion of the models to obtain a model for the system or environment. In many scenarios, the
features defining the model are not precisely known. When the agents learn different models based
on different features and the final model is obtained through the fusion of the local models, the final
model is potentially robust to variations in features.

Consider the following example from distributed SLAM, see, Chellali et al. (2013), Tian et al.
(2022), Lajoie et al. (2020). There are two or more agents in an environment with different onboard
sensors whose individual aim during the learning phase is to find a mapping from their true position
to the sensor output. During the execution phase, this mapping could be utilized for planning and
completion of tasks. During the learning phase, each agent is restricted to survey a certain region of
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the environment they live in and are aware of the predominant features of the map from the position
to the sensor output. By gathering data their aim is to collaboratively find a map from position to
sensor output. An algorithm which solves the problem would ideally: (i) use local data to estimate
local maps from position to sensor output, maps can be viewed as partial models of the environment;
(ii) fuse partial models to obtain a global model of the environment (iii) be iterative with exchange
of “models” between the agents with sequential processing of data.

Distributed learning algorithms develop models where multiple instances of the same model are
trained using different subsets of the training data set or parallel paths of a single model are trained
at multiple nodes using the same or different data sets. Algorithms often focus on parallelizing
computing for efficient learning, e.g., Chan et al. (1993), Verbraeken et al. (2020), Peteiro-Barral
and Guijarro-Berdiñas (2013). For the fusion of the models, some algorithms use tools from meta-
learning. Federated learning has emerged as an efficient approach for distributed learning using
heterogeneous data and has found applications in IoT, healthcare etc, e.g. Liu et al. (2022), Nguyen
et al. (2021).

Multimodal learning algorithms use data sets obtained using multiple kinds of sensors for train-
ing models. For example, images and 3D depth scans can be used for edge detection,and, audio and
visual data for speech recognition, see, Baltrušaitis et al. (2018), Ngiam et al. (2011). Lanckriet et al.
(2004) study the problem of learning a kernel matrix using data, from the space of kernel matrices
generated by linear combinations of known kernel matrices. Following the same idea, multiple ker-
nel learning (MKL) algorithms have been investigated. Multimodal learning using kernel methods
has been applied to disease detection (Duan et al., 2012; Liu et al., 2013), sentiment analysis (Poria
et al., 2017), emotion recognition (Sikka et al., 2013), etc. Most of these algorithms are centralized,
i.e., data from sensors are collected and analyzed simultaneously at one location.

The desired algorithm mentioned above has some properties of existing algorithms in the dis-
tributed learning and some from multi-modal learning literature. However, algorithms from neither
solve the problem completely. In this paper, we use the term “model” and “knowledge” inter-
changeably with following reasoning. Formal approaches to study knowledge and its properties are
crucial for development of intelligent collaborative multi-agent systems (Rosenschein, 1985). (Dy-
namic) Epistemic logic is used as a formal language to describe knowledge and learning formally
(Van Ditmarsch et al., 2007). Knowledge can be viewed as mapping from the set of events to the
set {0, 1,∅}, i.e., if an event is true, false or its validity is unknown. Given input-output data, the
function estimated from it enables us to state which events of the form “input = x and output = y”
are true and which are false as long as (x, y) belongs to the domain of the estimated function. In
this spirit, we use the term Knowledge for the mapping learned and the term Knowledge Space for
the function space where the agent is learning.

1.2. Problem Considered

The problem considered in this paper is as follows. There are two agents, Agent 1 and Agent 2,
receiving data comprising of an independent variable and the corresponding value of a dependent
variable. The data is received sequentially, one sample at a time. There exists a fusion center that
can communicate with each agent. When an agent transmits to a fusion center, it is referred to as
upload operation. When the fusion center transmits to the an agent, it is referred to as download
operation. The data collected by the agents is private to the agents and is not shared with other
agents in the system. Agents are allowed to upload and download knowledge to and from the fusion
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Figure 1: The Learning Architecture

center. Our objective is to develop an iterative collaborative function estimation scheme which
eventually converges to an estimate of the mapping from the input to the output.

1.3. Contributions

Our contributions are as follows. The architecture of the learning scheme is as follows. The function
estimated at stage n by each agent is uploaded to the fusion center, Figure 1. At the fusion center,
the estimated functions are fused using a meta-learning method. The fused function is downloaded
by the agents which reflects their final estimate at stage n.

We propose the following learning algorithm for the problem. Given the downloaded function
at stage n − 1 and data point at stage n, each agent estimates the mapping from the input to the
output by solving a least-squares regression problem. The estimated functions are uploaded to the
fusion center. At the fusion center, the data received by the agents is estimated from the functions
received considering that the agents would have performed optimal estimation. Using the estimated
data points, a least-squares regression problem is solved to obtain the fused function. The fused
function is downloaded on to the knowledge space of each agent. n is incremented by 1 and the
sequence is repeated.

With respect to the above algorithm, we: (i) prove the existence of local basis functions used
to represent the uploaded and downloaded models; (ii) present closed form solutions to estimation
problems at the agents and the regression problem at the fusion center using the basis functions. For
the proof of consistency of the learning algorithm and an example demonstrating the same, we refer
to Raghavan and Johansson (2024a); these have not been included due to space restrictions. We
note that the architecture and the learning algorithm can be extended to any finite number of agents
with modifications to the fusion problem. We restrict ourselves to two agents as from conceptual
standpoint it is the same as considering more than two agents.

Note that, the data collected by the agents is transformed into the estimated functions and for-
gotten. At the fusion center, when the data that could have generated these functions is estimated,
it is relearned. Our previous work, Raghavan and Johansson (2023), is a special case of the work
presented here as in the former, we considered learning in the same knowledge space for the both
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agents, the estimation problem was a one shot problem and the fusion problem was an optimization
problem over linear combinations of the functions estimated by the agents.

1.4. Outline and Notation

The organization of the paper is as follows. In Section 2, we describe the learning architecture, the
estimation problems and the learning algorithm. In Section 3, we present the main results including
the solution to the estimation problems. We conclude with some comments and future work in
Section 4. Notation: for a function f ∈ V , V vector space, we use the notation f when it is treated
as a vector and the notation f(·) when it is treated as a function. The null element of a vector
space, V , is denoted by θV . The span of vectors {vj}j=n

j=1 ⊂ V is denoted as Span
(
{vj}j=n

j=1

)
. The

projection onto a subspaceM of a Hilbert space H is denoted by ΠM. The dual space of a vector
space is denoted by V ∗.

2. The Distributed Learning System

In this section, we describe the learning system. We begin with the description of the learning archi-
tecture, followed by the estimation and fusion problems, and finally present the learning algorithm.

2.1. The Learning Architecture

The learning system comprises of two agents, Agent 1 and Agent 2, and a fusion center. Let X ⊂
RI . The set of features for agent i is a set of continuous functions, {φi

j(·)}j∈Ii , where φi
j : X → R

and |Ii| < ∞. For agent i, we assume that the set of features are linearly independent. Let
Ki(x, y) =

∑
j∈Ii φi

j(x)φ
i
j(y) be the kernel for agent i and the corresponding RKHS generated

by it be (H i, ⟨·, ·⟩Hi , || · ||Hi). Then, the knowledge space constructed for Agent i is the RKHS,
H i, with kernel Ki, Figure 1. Given the knowledge spaces H1 and H2 with kernels K1 and K2 at
Agents 1 and 2 respectively, the fusion space is a RKHS with kernel K1 +K2, Theorem 6.

Given the downloaded function from iteration n−1, f̄ i
n−1 at Agent i and the data point (xin, y

i
n)

at iteration n, each agent solves an estimation problem (subsection 2.2) to arrive at the estimate f i
n.

The locally estimated functions, f1
n and f2

n are uploaded to the fusion space using the operators, L̂1

and L̂2 respectively, Corollary 7. The uploaded functions are fused in the fusion space (subsection
2.3) to obtain fn. The fused function is downloaded onto the KS of Agent i using the download
operator

√
L̄i ◦Π

N
(√

L̄i
)⊥ , Theorem 9, and is denoted as f̄n. f̄n is considered as the final estimate

at the agents at iteration n. The upload and download operators are refereed to as transfer operators.

2.2. Estimation at The Agents

In this subsection, we discuss the estimation problem at the agents. At iteration n, given the data
point (xin, y

i
n) and the downloaded function from iteration n−1, f̄ i

n−1, the objective of each agent is
to minimize the error square between the true output and the estimated output at the received input
data point while simultaneously minimizing the norm square between the downloaded function at
stage n − 1 and the current estimate. The latter term represents the complexity of the difference
between the two estimates. Thus, the estimation problem for agent i is,

(P1)in : min
f i
n∈Hi

Ci(f i
n), C(f i

n) = (yin − f i
n(x

i
n))

2 + ϱin||f i
n − f̄ i

n−1||2Hi
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The above optimization is a trade off between error (difference between estimated output and true
output) and complexity of the difference between the estimates at consecutive stages controlled by
the ρin parameter. When ρin is small the first term gets precedence and when ρin is large the latter
gets precedence.

Algorithm 1 Distributed Learning Algorithm in RKHS
1: Initialize f̄1

0 , f̄
2
0 , ϵ,max, kmax where max > ϵ

2: n← 0
3: while max ≥ ϵ do
4: n← n+ 1
5: Agent i collects sample (xin; y

i
n).

6: Agent i solves optimization problem (P1)in to find f i
n

7: Agent i uploads f i
n to fusion space.

8: Feasibility problem (P2)in is solved find to {(x̄ij ; ȳij)}mj=1, i = 1, 2.
9: Fusion problem (P3)n is solved to find fn.

10: fn is downloaded onto knowledge space of agent i, H i as f̄ i
n.

11: if n ≥ kmax then
12: j ← 1
13: while j ≤ kmax do
14: temp = ||f̄1

n−kmax+j − f̄1
n−kmax

||+ ||f̄2
n−kmax+j − f̄2

n−kmax
||

15: if temp > max then
16: max← temp
17: end if
18: j ← j + 1
19: end while
20: end if
21: end while

2.3. Fusion Problem

From Corollary 7, the function uploaded by Agent i to H is f i
n, with different norm. Invoking

Proposition 3, the function uploaded by agent i can be expressed as f i
n =

∑m
j=1 α

i
n,jK

i(·, x̄ij).
Given f1

n and f2
n, the first goal of the fusion center is to estimate the data points {(x̂in,j , ŷin,j)}mj=1

which under optimal estimation would result in the functions f1
n and f2

n being estimated. We for-
mulate the problem as a feasibility problem:

(P2)in : min
{(x̂i

n,j ,ŷ
i
n,j)}mj=1

c̄i s.t f i
n = argmin

gin∈Hi

m∑
j=1

(ŷin,j − gin(x̂
i
n,j))

2 + ϱn||gin||2

Given {(x̂1n,j , ŷ1n,j)}mj=1 ∪ {(x̂2n,j , ŷ2n,j)}mj=1, the fusion problem defined as,

(P3)n : min
fn∈H

C(fn), C(fn) =
∑
i=1,2

m∑
j=1

(ŷin,j − fn(x̂
i
n,j))

2 + ϱn||fn||2H ,

is a least squares regression problem. From Theorem 9, it follows that the downloaded function at
Agent i is

√
L̄i ◦ Π

N
(√

L̄i
)⊥(fn). From Proposition 3 it follows that, function downloaded can be
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expressed as f̄ i
n =

∑m
j=1 ᾱ

i
n,jK

i(·, x̄ij) which is useful in solving problem (P1)in as demonstrated
in Proposition 4.
2.4. The Learning Algorithm

The learning algorithm is described in Algorithm 1. Lines 1 − 10 of the algorithm have been
described while describing the learning architecture, in subsection 2.1. Lines 11 − 21, execute the
stopping criterion. Essentially, it is verified that the difference in norm between the downloaded
functions at any two iterations in [n − kmax, n] is upper bounded by 2ϵ. Consider n1, n2 ∈ [n −
kmax, n].

||f̄1
n1
− f̄1

n2
||H1 + ||f̄2

n1
− f̄2

n2
||H2 ≤

∑
i=1,2

||f̄ i
n1
− f̄ i

n−kmax
||+ ||f̄ i

n2
− f̄ i

n−kmax
|| < 2ϵ,

where the inequality follows from the triangle inequality of norm and Corollary 7. Thus, the stop-
ping criterion approximately verifies that the sequence is Cauchy in norm.

Assumption We assume that X is a closed, connected set with no isolated points. We assume that
the RKHS H1 and H2 are finite dimensional.

3. Main Results

We begin this section by finding basis functions in local knowledge space of each agent to represent
transferred models using the properties of the transfer operators specifically the download operators.
Then, we present solutions to the problems formulated in subsections 2.2 and 2.3.
3.1. Basis Functions from Transfer Operators

In this subsection, first we present a simple geometric result pertaining to preserving geometry of
Hilbert spaces under suitable transformations and then prove two algebraic results on basis functions
of RKHSs.

Proposition 1 Let V = V 1 ⊕ V 2 and U = U1 ⊕ U2 be Hilbert spaces with V 1 = V 2⊥ and
U1 = U2⊥ . If V is isomorphic to U and V 2 is isomorphic to U2 under the same isomorphism from
V to U , then V 1 is isomorphic to U1.

Proof Since V is isomorphic to U , there exits L : V → U such that L is a bijection, is lin-
ear, and, has a well defined inverse L−1 : U → V which is also linear. The subspace V 2 of
V is isomorphic to some subspace of U , however it is given that it is isomorphic to U2. Thus
L(V 2) = U2 and L−1(U2) = V 2. Let v ∈ V 1, i.e, ΠV 2(v) = θV . We claim that L(v) ∈ U1.
Suppose not. Then, ΠU2(L(v)) ̸= θU , which implies that L−1(L(v)) = L−1(ΠU1(L(v)) +
ΠU2(L(v))) = L−1(ΠU1(L(v))) + L−1(ΠU2(L(v))). Since L

∣∣
V 2 is an isomorphism from V 2

to U2, L−1(ΠU2(L(v))) = L−1
∣∣
U2(ΠU2(L(v))) ∈ V 2 ̸= θV . Hence, ΠV 2(L−1(ΠU2(L(v)))) =

L−1
∣∣
U2(ΠU2(L(v))). This implies that,

ΠV 2(v) = ΠV 2(L−1(L(v))) = ΠV 2(L−1(ΠU1(L(v)))) + L−1
∣∣
U2(ΠU2(L(v))).

There exists a unique u′ ∈ U, u′ ̸= θU , such that L−1(u′) + L−1(ΠU2(L(v))) = θV and u′ ∈ U2.
The only way ΠV 2(L−1(ΠU1(L(v))))+L−1(ΠU2(L(v))) = θV is, if ΠU1(L(v)) = u′+u′′ where
u′ ∈ U2 is defined as before and u′′ ∈ U1 is such that L−1(u′′) ∈ V 1. This is clearly not possible
as U1 ∩ U2 = θU and hence ΠV 2(v) ̸= θV which is clearly a contradiction. Thus, L maps every
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v ∈ V 1 to a unique u ∈ U1. Similarly, it can be shown that L
∣∣
V 1 is surjective. Since L and L−1 are

linear, V 1 and U1 are isomorphic under the morphism L.

Let H1 × H2 be the product space with inner product ⟨(f1, f2), (g1, g2)⟩H1×H2 = ⟨f1, g1⟩H1 +
⟨f2, g2⟩H2 . Let L : H1×H2 → H , where H is the fusion space (Theorem 6), be a operator defined
as L((f1, f2)) = f1+f2. L is a linear operator and its null space,N (L) = {(f1, f2) ∈ H1×H2 :
f1 + f2 = θ} is a closed subspace as it is finite dimensional. Thus, there exists a unique closed
subspaceM such that H1 ×H2 =M⊕N (L), whereM = N⊥. The mapping LM = L ◦ ΠM
(operator L restricted to subspaceM) is an isomorphism fromM to H . Let the dimension ofM be
m and the dimension ofN (L) be |I1|+ |I2| −m. The basis vectors, {φ1

j , θ
2}j∈I1 ∪{θ1, φ2

j}j∈I2 ,
for H1 ×H2 induce a isomorphism from H1 ×H2 to R|I1|+|I2|. Under this isomorphism, N (L)
is isomorphic to

N =
{(

α1,α2
)
∈ R|I1|+|I2| :

∑
j∈I1

α1
jφ

1
j +

∑
j∈I2

α2
jφ

2
j = θ,αi =

(
αi
1, . . . , α

i
|Ii|

)
, i = 1, 2

}
.

Proposition 2 There exists two sets of m elements each, {x̄ij}mj=1, i = 1, 2 such that (i) {x̄1j}mj=1 ∩
{x̄2j}mj=1 = ∅; (ii) {K(·, x̄1j )}mj=1 and {K(·, x̄2j )}mj=1, each form a basis for H . Thus, for any
function f ∈ H , ∃!{αi

j}mj=1 such that f(·) =
∑m

j=1 α
1
jK(·, x̄1j ) =

∑m
j=1 α

2
jK(·, x̄2j ).

Proof Let R|I1|+|I2| = M̄⊕N , where, M̄ = N⊥. From Proposition 1, under the isomorphism in-
duced by the basis vectors of H1×H2,M and M̄ are isomorphic. Let, φ(x) = [φ1

1(x), . . . ,φ
1
I1(x),

φ2
1(x), . . . , φ

2
I2(x)] ∈ R|I1|+|I2|, x ∈ X . Let M̂ be the span of {φ(x)}x∈X . From the definition

of N , it follows that N = M̂⊥. Since N is a closed subspace, N = N⊥⊥
= M̄⊥. Thus,

M̂⊥ = M̄⊥ which implies that M̂⊥⊥
= M̄⊥⊥

. Since M̂ and M̄ are finite dimensional sub-
spaces, they are closed, which implies that M̂ = M̂⊥⊥

= M̄⊥⊥
= M̄. Hence, M̂ = M̄.

Since H is isomorphic to M, it is isomorphic to M̄ and hence to M̂. We choose a basis for M̂
as follows. First, we choose x̄11 arbitrarily to obtain the first basis vector φ(x̄11). Let M̂ = M̂1

1 ⊕
Span

(
φ(x̄11)

)
. φ(x̄12) is chosen from M̂1

1 . This process is repeatedly iteratively where φ(x̄1j ) is cho-

sen from M̂1
j−1 with M̂ = M̂1

j−1 ⊕ Span
(
{φ(x̄1k)}

k=j−1
k=1

)
for j = 2, . . . ,m. Thus, {φ(x̄1j )}mj=1

spans M̂. Using the isomorphism induced by the basis vectors of H1 × H2 from M̂ to M, we
note that each φ(x̄1k) gets mapped to

(∑
j∈I1 φ1

j (x̄
1
k)(φ

1
j (·), θ2) +

∑
j∈I2 φ2

j (x̄
1
k)(θ

1, φ2
j (·))

)
=(∑

j∈I1 φ1
j (x̄

1
k)φ

1
j (·),

∑
j∈I2 φ2

j (x̄
1
k)φ

2
j (·)

)
. Invoking the isomorphism LM fromM to H , each

φ(x̄1k) gets mapped to
∑

j∈I1 φ1
j (x̄

1
k)φ

1
j (·)+

∑
j∈I2 φ2

j (x̄
1
k)φ

2
j (·) = K(·, x̄1k). Thus, {K(·, x̄1j )}mj=1

spans H . Let M̃ be the span of {φ(x)}x∈X∼{x̄1
j}mj=1

and Ñ be defined as,

Ñ =
{(

α1,α2
)
∈ R|I1|+|I2| :

∑
j∈I1

α1
jφ

1
j (x) +

∑
j∈I2

α2
jφ

2
j (x) = 0, ∀x ∈ X ∼ {x̄1j}mj=1

}
,

where, αi =
(
αi
1, . . . , α

i
|Ii|

)
, i = 1, 2. Clearly, N ⊂ Ñ . Since X is closed, connected subset of

Rd without isolated points. Let {xn} ⊂ X ∼ {x̄1j}mj=1 be a sequence such that it converges to one

of the x̄1j . Suppose
(
α1,α2

)
∈ Ñ . Then,∑

j∈I1

α1
jφ

1
j (xn) +

∑
j∈I2

α2
jφ

2
j (xn) = 0,∀n =⇒ lim

n→∞

∑
j∈I1

α1
jφ

1
j (xn) +

∑
j∈I2

α2
jφ

2
j (xn) = 0
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By continuity of the feature maps, the above implies,
∑

j∈I1 α1
jφ

1
j (x̄

1
j ) +

∑
j∈I2 α2

jφ
2
j (x̄

1
j ) = 0.

Since the same argument can be presented for all {x̄1j}mj=1, this implies that
(
α1,α2

)
∈ N . Thus,

N = Ñ and M̂ = M̃. Since there is no loss in dimensionality, {φ(x̄2j )}mj=1 can be chosen using
exactly the same procedure described to choose {φ(x̄1j )}mj=1, however using M̃ in the place of M̂
leading to the construction of {K(·, x̄2j )}mj=1 which spans H .

Proposition 3 The uploaded and downloaded function at Agent i can be expressed uniquely as a
linear combination of {Ki(·, x̄ij)}mj=1.

Proof Since L̄i is symmetric (Lemma 8), from the spectral theorem, it follows that (i) the eigen-
vectors of L̄i, {φ̄i

j}mj=1 are an orthonormal basis for H; (ii) the eigenvalues of L̄i, {λi
j}mj=1, are

real. The square root of operator L̄i, is defined as
√
L̄i
(
φ̄i
j

)
=

√
λi
jφ̄

i
j . Any f ∈ H , specif-

ically the fused function at stage n, fn is first expressed using the eigen vectors of L̄i as fn =∑m
k=1 b

i
n,kφ̄

i
k. Invoking Proposition 2, φ̄i

k =
∑m

j=1 a
i
k,jK(·, x̄ij). This implies that, L̄i

(
φ̄i
k

)
=∑m

j=1 a
i
k,jL̄

i
(
K(·, x̄ij)

)
=

∑m
j=1 a

i
k,jK

i(·, x̄ij). The last equality follows from definition in Lemma
8 and has been proved in Raghavan and Johansson (2024b). Since L̄i(φ̄i

k) = λi
kφ̄

i
k, it follows

that φ̄i
k = 1

λi
k

∑m
j=1 a

i
k,jK

i(·, x̄ij), λi
k ̸= 0. From Theorem 9, we note that, {φ̄i

j}λi
j ̸=0 spans H i.

Hence, any vector f i ∈ H i, f i =
∑

k:λi
j ̸=0

cik
∑m

j=1 a
i
k,jK

i(·, x̄ij), which implies that {Ki(·, x̄ij)}mj=1

spans H i. Thus, the uploaded function can be expressed uniquely as a linear combination of
{Ki(·, x̄ij)}mj=1. For λi

k ̸= 0,
√
L̄i
(
φ̄i
k

)
= 1√

λi
k

L̄i(φ̄i
k) = 1√

λi
k

(∑m
j=1 a

i
k,jK

i(·, x̄ij)
)

. From

Theorem 9, the function downloaded on to the knowledge space of the agent i at stage n, f̄ i
n, is√

L̄i ◦Π
N
(√

L̄i
)⊥(fn) = ∑

k:λi
k ̸=0

bin,k

√
L̄i
(
φ̄i
k

)
=

∑
k:λi

k ̸=0

bin,k√
λi
k

( m∑
j=1

aik,jK
i(·, x̄ij)

)
,

which is equal to
∑m

j=1

( ∑
k:λi

k ̸=0

bin,ka
i
k,j√

λi
k

)
Ki(·, x̄ij). Thus, downloading the fused function is equiv-

alent to the fusion center transmitting the vector
{ ∑
k:λi

k ̸=0

bin,ka
i
k,j√

λi
k

}m

j=1
to agent i.

To obtain the closed form expression for the downloaded function, we note that it is crucial to
express the fused function in terms of the eigenvectors of L̄i. If not, if fn is expressed directly using
the basis vectors {K(·, x̄ij)}mj=1, then computation of

√
L̄i
(
K(·, x̄ij)

)
is not straight forward and√

L̄i(f) = 1√
λ
L̄i(f) if only if f is an eigenvector of L̄i.

3.2. Estimation at The Agents

In this section, we present the solution to the estimation problem at the agents. We define and
study the asymptotic properties of the learning operator at the agents. For each agent i, let Ki =
(Ki(x̄ij , x̄

i
k))jk = (⟨Ki(·, x̄ik),Ki(·, x̄ij)⟩Hi). Since the inner product is symmetric, Ki ∈ Rm×m

is symmetric matrix. Let K̄i : X → Rm be defined as K̄i(·) = [Ki(·, x̄i1), . . . ,Ki(·, x̄im)]. For any
data point, K̄i(xin) = [Ki(xin, x̄

i
1); . . . ;K

i(xin, x̄
i
m)] is a column vector in Rm. Given vector αi =

[αi
1; . . . ;α

i
m] ∈ Rm, we use notation f i = αT K̄i(·) for the function f i =

∑m
j=1 α

i
jK(·, x̄ij) ∈ H i.
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Proposition 4 Let α1,∗
n =

(
ϱinK

i+K̄i(xin)K̄
iT(xin)

)−1(
K̄i(xin)y

i
n+ϱinK

iᾱ1
n−1

)
. Then, f i,∗

n =

α1,∗T

n K̄i(·) solves the optimization problem in problem (P1)in.

Proof Using the notation, f1
n = α1T

n K̄i(·), the cost function of the estimation problem in subsec-
tion 2.1 can be expressed as Ci(f i

n) = (y1n−α1
n
T
K̄i(xin))

2+ ϱin(α
1
n− ᾱ1

n−1)
TKi(α1

n− ᾱ1
n−1).

The gradient of Ci(f i
n) with respect to α1

n is,

∇α1
n
Ci(f i

n) = −2(y1n −α1
n
T
K̄i(xin))K̄

i(xin) + ϱinK
iT (α1

n − ᾱ1
n−1) + ϱinK

i(α1
n − ᾱ1

n−1).

It can be verified that,
(
α1

n
T
K̄i(xin)

)
K̄i(xin) = K̄i(xin)K̄

iT(xin)α
1
n. Thus,

∇α1
n
Ci(f i

n) = 2(ϱinK
i + K̄i(xin)K̄

iT(xin))α
1
n − 2(K̄i(xin)y

i
n + ϱinK

iᾱ1
n−1).

By setting the gradient to zero, we obtain the desired result.

3.3. The Fusion Problem

Let K = (K(x̄pj , x̄
q
k))jk = (⟨K(·, x̄qk),K(·, x̄pj )⟩H)j,k, p, q = 1, 2, j, k,= 1 . . .m be a symmetric

matrix in R2m×2m and K̂i
n = (Ki(x̂in,j , x̂

i
n,k))jk = (⟨Ki(·, x̂in,k),Ki(·, x̂in,j)⟩Hi)j,k ∈ Rm×m be a

symmetric matrix. Let K̄ : X → R2m be defined as K̄(·) =
[
K(·, x̄11); . . . ,K(·, x̄1m);K(·, x̄21); . . . ;

K(·, x̄2m)
]
. Let K̃i

n : X → Rm be defined as K̃i
n(·) = [K(·, x̂in,1), . . . ,K(·, x̂in,m)]. Let Ŷi

n =[
ŷin,1; . . . ; ŷ

i
n,m

]
∈ Rm and Ŷn =

[
Ŷ1

n; Ŷ
2
n

]
∈ R2m. Let Ǩi : X → Rm be defined as

Ǩi(·) =
[
K(·, x̄i1); . . . ,K(·, x̄im)

]
and K̆i = (K(x̄ij , x̄

i
k))jk = (⟨K(·, x̄ik),K(·, x̄ij)⟩H)j,k, i =

1, 2, j, k = 1 . . .m be a symmetric matrix in Rm×m. A function f i which belongs to H i and H can
be expressed as αiT K̄i(·) and α̂iT Ǩi(·). Indeed, since {K(·, x̄ij)}mj=1 is basis for H , ∃!{M i

kj}mk=1

such that Ki(·, x̄ij) =
∑m

k=1M
i
kjK(·, x̄ik), ∀j. Thus,

m∑
j=1

αi
jK

i(·, x̄ij) =
m∑
k=1

m∑
j=1

M i
kjα

i
jK(·, x̄ik) =

m∑
k=1

α̂kK(·, x̄ik),

which implies that α̂i = M iαi where M i = (Mkj)k,j ∈ Rm×m. In the following, we solve the
problems (P2)in and (P3)n.

Proposition 5 x̂in,j = x̄ij ∀n ∈ N, i = 1, 2, j = 1, . . . ,m and Ŷi
n =

(
Ki + ϱinIm

)
αi

n solve the

problem (P2)in, where f i
n = αiT

n K̄i(·). f∗
n = αT

nK̄(·), where αn =
(
KTK+ ϱnK

)−1(
KTŶn

)
solves (P3)n.

Proof If Agent i had received the data points {(x̂in,j , ŷin,j)}mj=1, by the Representer Theorem, Hof-
mann et al. (2008), the optimal solution for a least squares regression problem for Agent i is given

by gin = ᾱiT

n K̃i
n(·), where ᾱi

n =
(
K̂iT

n K̂i
n + ϱnK̂

i
n

)−1(
K̂iT

n Ŷi
n

)
. From Proposition 3, the up-

loaded function is of the form f i
n = αi

nK̄
i(·). The feasibility problem in (P2)in is solved if and

only if gin = f i
n. To achieve the same we let, K̃i

n(·) = K̄i(·), ∀n and ᾱi
n = αi

n, ∀n.
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If x̂in,j = x̄ij , then K̃i
n(·) = K̄i(·). This implies that K̂i

n = Ki. Using ᾱi
n = αi

n, Ŷi
n is

obtained as Ŷi
n = KiT

−1(
KiTKi + ϱnK

i
)
αi

n =
(
Ki + ϱnIm

)
αi

n. Given the gram matrix

generated from the kernel K at the fusion input data points, {x̄1j}mj=1 ∪ {x̄2j}mj=1, K, and the fusion
output data points Ŷn, the solution of the estimation problem, (P3)n, is given by the Representer

Theorem, f∗
n = αT

nK̄, where αn =
(
KTK+ ϱnK

)−1(
KTŶn

)
.

4. Conclusion and Future Work

To conclude, we presented a distributed algorithm for estimation of functions given data. Key as-
pects of the algorithm included use of heterogeneous data, use of different features by different
agents, fusion of models by estimating data which could have generated the models, and, the use
of uploading and downloading operators due to different agents learning in different spaces. Going
forward, we are interested in studying nonparametric estimation problems using the algorithm de-
veloped in this paper. We would like to investigate transform methods for the fusion problem, i.e,
the meta-learning problem in RKHS. Quantification and formal guarantees of transfer of knowledge
from one agent to another is also of interest.
5. Appendix: Knowledge Space, Fusion Space, Uploading and Downloading

Operator

The construction of the knowledge spaces for the individual agents and the fusion space has been
discussed in detail in Raghavan and Johansson (2024b). We mention the key results here which
have been referenced in the previous sections.

Theorem 6 If Ki(·, ·) is the reproducing kernel of Hilbert space H i, with norm || · ||Hi , then
K(x, y) = K1(x, y) +K2(x, y) is the reproducing kernel of the space H = {f |f = f1 + f2|f i ∈
H i} with the norm:

||f ||2H = min
f1+f2=f,
f i∈Hi

||f1||2H1 + ||f2||2H2 .

Corollary 7 The uploading operator from agent i’s knowledge space, H i, to the fusion space
H , L̂i : H i → H , is L̂(f) = f . L̂i(·), is linear and is bounded, ||L̂i|| = sup{||f ||H : f ∈
H i, ||f ||Hi = 1} ≤ 1.

Lemma 8 Given the RKHS, (H, ⟨·, ·⟩H), with kernel K(·, ·) and the kernels Ki(·, ·), i = 1, 2,
such that K(x, y) = K1(x, y) +K2(x, y), we define operators, L̄i : H → H , as

L̄i(f)(x) = ⟨f(·),Ki(·, x)⟩H , for, i = 1, 2.

Then, L̄i is linear, symmetric, positive and bounded, ||L̄i|| ≤ 1.

Theorem 9 The linear space H̄ i = {g : g =
√
L̄i(f), f ∈ H} is a RKHS with kernel Ki.

√
L̄i(·)

establishes an isometric isomorphism between N
(√

L̄i
)⊥ and H̄ i, and the norm, ||f ||H̄i = ||g||H ,

where f =
√
L̄ig, g ∈ N

(√
L̄i
)⊥. The downloading operator from the fusion space H to agent i’s

knowledge space, H i, is
√
L̄i ◦Π

N
(√

L̄i
)⊥ . The downloading operator is linear and bounded.

For the proofs of Theorem 6, Corollary 7, Lemma 8 and Theorem 9 we refer to Raghavan and
Johansson (2024b).
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