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Abstract
Certainty equivalence adaptive controllers are analysed using a “data-driven Riccati equation”, cor-
responding to the model-free Bellman equation used in Q-learning. The equation depends quadrat-
ically on data correlation matrices. This makes it possible to derive simple sufficient conditions for
stability and robustness to unmodeled dynamics in adaptive systems. The paper is concluded by
short remarks on how the bounds can be used to quantify the interplay between excitation levels
and robustness to unmodeled dynamics.
Keywords: dual control, adaptive control, online learning, linear quadratic control

1. Introduction

The history of adaptive control dates back at least to aircraft autopilot development in the 1950s.
Following the landmark paper Åström and Wittenmark (1973), a surge of research activity during
the 1970s derived conditions for convergence, stability, robustness and performance under various
assumptions. For example, Ljung (1977) analysed adaptive algorithms using averaging, Goodwin
et al. (1981) derived an algorithm that gives mean square stability with probability one, while Guo
(1995) gave conditions for the optimal asymptotic rate of convergence. On the other hand, condi-
tions that may cause instability were studied in Egardt (1979), Ioannou and Kokotovic (1984) and
Rohrs et al. (1985). Altogether, the subject has a rich history documented in numerous textbooks,
such as Åström and Wittenmark (2013), Goodwin and Sin (2014), and Sastry and Bodson (2011).

Recently, there has been a renewed interest in analysis of adaptive controllers, driven by progress
in statistical machine learning. See Tsiamis et al. (2023) for a review. In parallel, there is also a
rapidly developing literature on (off-line) data-driven control. De Persis and Tesi (2019); Markovsky
and Dörfler (2021); Berberich et al. (2020).

In this paper, the focus is on worst-case models for disturbances and uncertain parameters, as
discussed in Cusumano and Poolla (1988); Sun and Ioannou (1987); Vinnicombe (2004); Megretski
(2004) and more recently in Rantzer (2021); Cederberg et al. (2022); Kjellqvist and Rantzer (2022).
However, the disturbances in this paper are assumend to be bounded in terms of past states and
inputs. This causality constraint is different from above mentioned references.

2. Notation

The set of n × m matrices with real coefficients is denoted Rn×m. The transpose of a matrix A
is denoted A>. For a symmetric matrix A ∈ Rn×n, we write A � 0 to say that A is positive
definite, while A � 0 means positive semi-definite. Given x ∈ Rn and A ∈ Rn×n, the notation
|x|2A means x>Ax. The expression minK

[
I
K

]>
Q
[
I
K

]
is equivalent toQxx−Qxu(Quu)−1Qux when

Q =
[
Qxx Qxu

Qux Quu

]
� 0.
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3. A Data-driven Riccati Equation

Consider a linear quadratic optimal control problem:

Minimize
∞∑
t=0

(
|xt|2 + |ut|2

)
subject to xt+1 = Axt +But,

with x0 ∈ Rn given and ut ∈ Rm. Assuming that the system is stabilizable, the optimal value has
the form |x0|2P where P ∈ Rn×n can be obtained by solving the Riccati equation

P = min
K

[
I +K>K + (A+BK)>P (A+BK)

]
. (1)

Define Q := I +
[
A B

]>
P
[
A B

]
∈ R(n+m)×(n+m) . Then (1) can be written as

Q− I =
[
A B

]>
min
K

([
I
K

]>
Q

[
I
K

]) [
A B

]
(2)

or alternatively [
x
u

]>
(Q− I)

[
x
u

]
= x>+ min

K

([
I
K

]>
Q

[
I
K

])
x+ (3)

where x+ = Ax + Bu. The equation (3) is sometimes called model free, since it does not include
the model parameters (A,B). This makes it possible to collect data points (x, u, x+) and use
(3) to get information about Q. In fact, the total matrix Q can be computed from a trajectory
x0, u0, . . . , xt−1, ut−1, xt spanning all directions of (xt, ut), using the equation[
x0 . . . xt−1
u0 . . . ut−1

]>
(Q− I)

[
x0 . . . xt−1
u0 . . . ut−1

]
=
[
x1 . . . xt

]>
min
K

[
I
K

]>
Q

[
I
K

] [
x1 . . . xt

]
This is essentially equation (3) in Bradtke (1992) and (14) in Rizvi and Lin (2018). The fact that the
equation is over-determined for t > n+m makes it natural to multiply from the left and right by[

λtx0 λt−1x1 . . . xt−1
λtu0 λt−1u1 . . . ut−1

]
,

where λ ∈ (0, 1) is a forgetting factor. With notation

Σt =

[
Σxx
t Σxu

t

Σux
t Σuu

t

]
=

t−1∑
k=0

λt−1−k
[
xk
uk

] [
xk
uk

]>
+ λtΣ0 (4)

Σ̂t =

t−1∑
k=0

λt−1−kxk+1

[
xk
uk

]>
, (5)
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where we have added a regularization term λtΣ0 � 0 to make Σt intervible, this gives a data driven
Riccati equation

Σt (Qt − I) Σt = Σ̂>t min
K

([
I
K

]>
Qt

[
I
K

])
Σ̂t. (6)

The equation (6) makes it possible to estimate the optimal cost matrix Q directly from data. The
model-free aspect should not be over-emphasized, since an algebraically equivalent approach is
to first estimate A and B according to

[
Ât B̂t

]
:= Σ̂tΣ

−1
t and then solve the standard Riccati

equation

Pt = min
K

[
I +K>K + (Ât + B̂tK)>Pt(Ât + B̂tK)

]
in analogy with (1). Nevertheless, the fact that (6) is quadratic in the correlation matrices Σ̂t, Σt

makes it a good starting point for analysis of data-driven controllers.

4. Problem formulation

For the linear system

xt+1 = Axt +But + wt t ≥ 0 (7)

we will analyse controllers of the following form (See Figure 1):
Σt = λΣt−1 +

[
x>t−1 u>t−1

]> [
x>t−1 u>t−1

]
, Σ0 � 0

Σ̂t = λΣ̂t−1 + xt

[
x>t−1 u>t−1

]
, Σ̂0 = 0

ut = Ktxt + εt

(8)

where λ ∈ (0, 1) andKt is obtained from Σt and Σ̂t as the minimizing argument in a solution of (6)
and εt is added to provide excitation (exploration). In the adaptive control literature such controllers
are known as certainty equivalence controllers, since the main feedback term Ktxt can be obtained
by using the model estimate

[
Ât B̂t

]
:= Σ̂tΣ

−1
t for optimization, disregarding its uncertainty.

We will give conditions that guarantee stability and performance (in terms of
∑

t(|xt|2 + |ut|2))
for the closed loop system. Obviously, this cannot be done without some prior constraints on the
model (such as stabilizability). Many alternative formulations have been considered in the literature,
Konstantinov et al. (1993),(Mania et al., 2019, Assumption 2), but the following simple version will
be enough for our purposes. Given any β > 1, we restrict the model parameters to be in the setMβ

consisting of all pairs (A,B) such that the Riccati equation (2) has a solutionQ with I � Q � β2I .
We also need to put assumptions on the disturbance w. For this purpose, introduce the notation

[
Σwx
t Σwu

t

]
:=

t−1∑
k=0

λt−1−kwk
[
x>k u>k

]
− λt

[
A B

]
Σ0 (9)

and notice that
[
Σwx
t Σwu

t

]
= Σ̂t −

[
A B

]
Σt. In statistical system analysis, wt is often mod-

eled as white noise with fixed amplitude. In this paper, we will instead think of wt as unmodeled
dynamics, which makes it natural to bound Σwx

t and Σwu
t in terms of Σxx

t and Σuu
t .
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Figure 1: The system (7) is connected to a causal controller defined by (8). The disturbance w
could represent a combination of external disturbances and unmodeled dynamics.

5. Main Results

Our first and main theorem is quantifying the effect in a single time-step of using the feedback gain
Kt obtained from the data-driven Riccati equation instead of the optimal gain from the standard
Riccati equation:

Theorem 1 Consider β, ρ ∈ R+ with 2β2ρ(ρ+ 2) < 1, a matrix Σ̂t and a positive definite matrix
Σt. Let (A,B) ∈Mβ with P satisfying Riccati equation (1), while∥∥∥[A B

]
− Σ̂tΣ

−1
t

∥∥∥ ≤ ρ. (10)

Then (6) has a solution with minimizer Kt and

1

1− 2β2ρ(ρ+ 2)
P � I +K>t Kt + (A+BKt)

>P (A+BKt). (11)

Remark 1. In analysis of (7), the assumption (10) can be written as
∥∥ [Σwx

t Σwu
t

]
Σ−1t

∥∥ ≤ ρ.
This inequality tends to fail for small values of t, but proper choice of excitation and regularization
together with sufficiently small disturbances makes it valid after collection of enough data. �

Remark 2. Notice that the optimal control law K̄ from the standard Riccati equation satisfies

P = I + K̄>K̄ + (A+BK̄)>P (A+BK̄) (12)

while Kt from the data driven Riccati equation gives

Pt = I +K>t Kt + (Ât + B̂tKt)
>Pt(Ât + B̂tKt)
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The purpose of Theorem 1 is to show what happens to the storage function x>Px when we use
Kt instead of the optimal K̄ to control the system. As expected, the difference vanishes as ρ→ 0.
Larger values of β open up for systems that are harder to stabilizable, which means that ρ needs to
be smaller and more accurate data is needed. This is reflected in the left hand side of (11). �

The optimal closed loop system obtained with ut = K̄xt is stable, with the Lyapunov function
|xt|2P decays according to |xt+1|2P −|xt|2P ≤ −|xt|2−|K̄xt|2. The strict decay rate gives robustness
to deviations from optimality. Hence, as long as the difference between the left hand sides of (11)
and (12) is not larger than the identity matrix, stability is retained. This is exploited in to get the
following corollary.

Corollary 2 Consider (A,B) ∈ Mβ with P being a positive definite solution to the Riccati equa-
tion (1), while β, ρ, γ are positive numbers. Let

xt+1 = Axt +But + wt, ut = Ktxt + εt

and suppose that Σt, Σ̂t are defined by (4)-(5), while (10) holds for t ≥ t0. For each t, let Qt be a
solution of (6) with Kt being a minimizing argument. Define

α := β2 +
1

1− β2/γ2

(
1− β2

1− 2β2ρ(ρ+ 2)

)
.

If α > 0, then

T−1∑
t=t0

(
|xt|2 + |Ktxt|2

)
≤ α−1|xt0 |2P +

γ2

α

T−1∑
t=t0

|Bεt + wt|2. (13)

6. Concluding remarks

The results above are the first steps towards a proof that a properly designed certainty equivalence
controller can robustly stabilize the setMβ for arbitrarily large values of β. Here robustness means
tolerance to a certain amount of unmodeled dynamics. The argument, with further details given in
Rantzer (2023), has the following steps:

1. Pick any β > 1.

2. Select ρ > 0 small enough to make [1−2β2ρ(ρ+ 2)]−1 < 1 +β−2. Then Corollary 2 proves
finite gain from Bε+ w to x, provided that

∥∥ [Σwx
t Σwu

t

]
Σ−1t

∥∥ ≤ ρ.

3. Design the excitation term εt to bound the impact of Σ−1t .

4. Introduce a bound on wt to limit the size of
[
Σwx
t Σwu

t

]
.
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7. Appendix: Proofs

Lemma 3 Consider positive numbers β and ρ, matrices Σ̂, Σ̃ and positive semi-definite matrices
Σ, P , Q. Suppose that (Σ̂ − Σ̃)>P (Σ̂ − Σ̃) = Σ(Q − I)Σ and Σ̃>Σ̃ ≤ ρ2Σ2. If I � Q � β2I ,
then Σ̂>P Σ̂ � ΣQΣ +

(
β2ρ(ρ+ 2)− 1

)
Σ2.

Proof. For every z with appropriate dimension

|Σ̂z|2P ≤
(
|(Σ̂− Σ̃)z|P + |Σ̃z|P

)2
=
(
|Σz|Q−I + |Σ̃z|P

)2
≤ (|Σz|Q−I + βρ|Σz|)2

= |Σz|2Q−I + β2ρ2|Σz|2 + 2|Σz|Q−Iβρ|Σz|
≤ |Σz|2Q−I + β2ρ2|Σz|2 + 2β2ρ|Σz|2

= |Σz|2Q +
(
β2ρ(ρ+ 2)− 1

)
|Σz|2.

Here the first inequality is the triangle inequality, the second follows as P � β2I and Σ̃>Σ̃ � ρ2Σ2,
while the third inequality follows from the assumption I � Q � β2I . This completes the proof. �

Lemma 4 Consider matrices A,B, K̄ and Q̄ � I . Suppose

[
A B

]> [ I
K̄

]>
Q̄

[
I
K̄

] [
A B

]
� Q̄− I. (14)

Then there exists a unique Q with I � Q � Q̄ such that

[
A B

]>
min
K

([
I
K

]>
Q

[
I
K

]) [
A B

]
= Q− I. (15)

Proof. The matrix

P̄ :=
[
I K̄>

]
Q
[
I K̄>

]>
satisfies

P̄ = (A+BK̄)>P̄ (A+BK̄) + I + K̄>K̄,

so P0 = P̄ and the Riccati iteration

Pk+1 = min
K

[
(A+BK̄)>Pk(A+BK̄) + I + K̄>K̄

]
gives a decreasing sequence with limit P∞ � I . Setting

Q :=
[
A B

]>
P∞

[
A B

]
proves existence. Stabilizing solutions to the Riccati equation are unique (Brockett, 2015, Ch. 3),
so also Q must be unique. �
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Proof of Theorem 1. By definition, the assumption (A,B) ∈ M implies existence of Q satisfying
(2) and I � Q � β2I . Let K̄ be the corresponding minimizing argument in (2). Define

P :=
[
I K̄>

]
Q
[
I K̄>

]>
Σ̃ = Σ̂t −

[
A B

]
Σt.

Then (2) gives (Σ̂t − Σ̃t)
>P (Σ̂t − Σ̃t) = Σt(Q− I)Σt, so Lemma 3 implies

Σ̂>t P Σ̂t � Σt(Q− α̌I)Σt,

where α̌ := 1 − β2ρ(ρ + 2). It follows that (14) holds with Q̄ = α̌−1Q, so Lemma 4 proves
existence of Qt (and Kt) satisfying (6) and I � Qt � α̌−1Q.

Next define

Pt :=
[
I K>t

]
Q
[
I K>t

]>
Σ̄t :=

[
A B

]
Σt.

Then the inequalities (Σ̄t+Σ̃t)
>Pt(Σ̄t+Σ̃t) = Σt(Qt− I)Σt and Qt � α−1β2I allow application

of Lemma 3 to get

Σ̄>t PtΣ̄t = Σt(Qt − α̂I)Σt, (16)

with α̂ := 1− α̌−1β2ρ(ρ+ 2). It follows from Lemma 4 that Q � α̂−1Qt, so

(A+BKt)
>P (A+BKt)

=

[
I
Kt

]> [
A B

]> [ I
K̄

]>
Q

[
I
K̄

] [
A B

] [ I
Kt

]
=

[
I
Kt

]>
(Q− I)

[
I
Kt

]
�
[
I
Kt

]>
(α̂−1Qt − I)

[
I
Kt

]
= α̂−1Pt − (I +K>t Kt)

� α̂−1α̌−1P − (I +K>t Kt)

=
[
1− 2β2ρ(ρ+ 2)

]−1
P − (I +K>t Kt)

and the proof is complete. �
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Proof of Corollary 2.

max
wt

(
|xt+1|2P − γ2|Bεt + wt|2

)
= max

wt

(
|(A+BKt)xt + wt|2P − γ2|wt|2

)
= |(A+BKt)xt|2P (I−γ−2P )−1

≤
(
1− β2/γ2

)−1 |(A+BKt)xt|2P

≤ 1

1− β2/γ2

(
|xt|2P

1− 2β2ρ(ρ+ 2)
− |xt|2 − |Ktxt|2

)
≤ |xt|2P +

(
1

(1− β2/γ2)(1− 2β2ρ(ρ+ 2))
− 1

)
β2|xt|2 −

|xt|2 + |Ktxt|2

1− β2/γ2

≤ |xt|2P − α(|xt|2 + |Ktxt|2)

Summing over t0 ≤ t ≤ T − 1 gives the desired result. �
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