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Abstract
This paper addresses the stability analysis of a discrete-time (DT) Lurie system featuring a static
repeated ReLU nonlinearity. Such systems often arise in the analysis of recurrent neural networks
and other neural feedback loops. Custom quadratic constraints, satisfied by the repeated ReLU, are
employed to strengthen the standard DT Circle and DT Popov Criteria for this specific Lurie sys-
tem. The criteria can be expressed as a set of linear matrix inequalities (LMIs) with less restrictive
conditions on the matrix variables. It is further shown that if the Lurie system under consideration
has a unique equilibrium point at the origin, then this equilibrium point is in fact globally stable
or unstable, meaning that local stability analysis will provide no additional benefit. Numerical
examples demonstrate that the strengthened criteria achieve a desirable balance between reduced
conservatism and complexity when compared to existing criteria.

Keywords: Lyapunov methods, neural networks, semi-definite programming, stability of nonlinear
systems

1. Introduction

This paper considers the dichotomy between model-based and learning-based control design and
analysis. Model-based approaches use white box system models and control policies which ac-
commodate performance certificates. Learning-based methods, like reinforcement learning, use
expressive black box models and control policies which are more challenging to verify performance
certificates for, making them unsuitable for safety critical systems. To bridge this gap, the paper
focuses on stability analysis for systems with neural network (NN) involvement. This approach cer-
tifies the performance of systems using learning-based NN models and control policies, combining
the strengths of both paradigms: performance certification from model-based methods as well as
expressive models and policies from learning-based methods.
Literature: Numerous systems incorporating NNs can be modelled as discrete-time (DT) Lurie
systems, Figure 1. In this context, the nonlinearity, Φ(·), is a vector function that encompasses all
the individual scalar NN activation functions. For instance, a DT linear time-invariant (LTI) sys-
tem interconnected with a feed-forward NN Pauli et al. (2021) and the discretised counterpart to
the rate-based recurrent neural network (RNN), introduced in Wilson and Cowan (1972) and more
recently studied in Kozachkov et al. (2022). To ensure the stability of a DT Lurie system, one can
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employ various absolute stability criteria, including the classical DT Circle and DT Popov1 Criteria
Haddad and Bernstein (1994), alternative Lyapunov-based criteria Kapila and Haddad (1996); Park
et al. (2019); Drummond and Valmorbida (2023), and Zames-Falb multipliers Turner and Drum-
mond (2021); Ahmad et al. (2014); Carrasco et al. (2019). These criteria vary in their approach to
balancing computational complexity and conservatism. The DT Circle and DT Popov Criteria offer
lower complexity, while Park and Zames-Falb multipliers have higher complexity, but tend to be
less conservative.

P (z)

Φ(·)

yu

Figure 1: DT Lurie system

The absolute stability criteria mentioned earlier can all be for-
mulated as semi-definite programming (SDP) problems involving
linear matrix inequalities (LMIs) Boyd et al. (1994). Efficient so-
lutions to these problems can be achieved in polynomial time using
tools like MOSEK and the LMI toolbox Andersen and Andersen
(2000); Balas et al. (2007). Consequently, recent research has uti-
lized the absolute stability framework and associated SDP tools to
address various challenges in NN analysis. This includes tasks such
as estimating the region of attraction Yin et al. (2021a); Hashemi
et al. (2021); Wang et al. (2023), synthesizing NN controllers Yin
et al. (2021b); Junnarkar et al. (2022), and conducting robustness
analysis Pauli et al. (2022); Fazlyab et al. (2021, 2020); Newton
and Papachristodoulou (2023). The primary challenge in NN analysis lies in the typically large
number of activation functions, denoted by m. This leads to increased computational complexity
in absolute stability problems compared to cases with a small m. Some less conservative tools,
like Zames-Falb multiplier analysis, exhibit poor scalability with m, resulting in computational is-
sues. Conversely, simpler tools like the DT Circle Criterion become overly conservative for large
m, limiting their utility in NN analysis. Few articles have tackled this problem; in continuous-time
Richardson et al. (2023) enhanced the low complexity Circle and Popov Criteria for the Lurie sys-
tem with repeated ReLU nonlinearity and Yin et al. (2021a) narrowed down the stability analysis
scope to a local region, leveraging local properties of the nonlinearity to reduce conservatism.
Contribution: This paper focuses on the specialised DT Lurie system, where the nonlinearity is the
repeated ReLU, commonly used in deep learning. The first contribution confronts the challenge of
balancing conservatism and computational complexity in absolute stability problems encountered
in NN analysis. It achieves this by enhancing the low complexity DT Circle and DT Popov Criteria
tailored for this specialised Lurie system (Theorem 12 and Theorem 14). The second contribution is
the remarkable discovery that, under certain conditions, local stability at the origin of the specialised
DT Lurie system is equivalent to global stability (Theorem 19). The consequence of this is that, if
global stability is not provable, then attempts to prove local stability will be similarly futile.

2. Preliminaries

2.1. Notation

The sets of non-negative real numbers, m-dimensional vectors with non-negative elements, and
square m-dimensional matrices with non-negative elements are, respectively, denoted by ℜ≥0, ℜm

≥0,
and ℜm×m

≥0 . The set of square m-dimensional symmetric positive definite matrices is represented
by Sm

+ , with the diagonal subset Dm
+ ⊂ Sm

+ . The set of square m-dimensional matrices with non-
positive off-diagonal elements is denoted by Zm ⊂ ℜm×m: these are known as Z-matrices. A

1. Several versions of the DT Popov Criterion exist. When the DT Popov Criterion is referenced in this article, we
always mean the version presented in (Haddad and Bernstein, 1994, Theorem 4.3).

2



STABILITY ANALYSIS OF LURIE SYSTEMS INVOLVING RELU NEURAL NETWORKS

matrix M of elements mij is sometimes expressed as M = [mij ], a negative definite matrix is
denoted by M ≺ 0 and He(M) := M +M ′. The space of real rational transfer function matrices,
analytic in the open unit disk, is represented by RH∞.

2.2. Mean Value Theorem (MVT)

Theorem 1 (MVT) If ϕ : ℜ → ℜ is continuous on [a, b], there is a point ϵ ∈ (a, b) such that:∫ b

a
ϕ(σ)dσ = (b− a)ϕ(ϵ) (1)

Proof: (Wrede and Spiegel, 2010, Page 100). □

Theorem 2 (MVT for slope-restricted functions) If ϕ : ℜ → ℜ is continuous on [a, b] and slope-
restricted on [0, µ], then the following inequality must hold:∫ b

a
ϕ(σ)dσ ≤ µ(b− a)2 + ϕ(a)(b− a) (2)

Proof: If ϵ ∈ (a, b) and ϕ(·) is slope-restricted on the same domain, then (3) must hold since
0 < ϵ− a < b− a. Subbing (3) into (1) results in Theorem 2.

0 ≤ ϕ(ϵ)− ϕ(a)

ϵ− a
≤ µ =⇒ ϕ(a) ≤ ϕ(ϵ) ≤ µ(b− a) + ϕ(a) (3)

□

2.3. Properties of the ReLU function

The global stability analysis results are constructed on the observation that the ReLU function satis-
fies a number of properties (see Richardson et al. (2023) for more details); the properties relevant to
this paper are summarised in Table 1. Although the slope-restricted property holds for many static
nonlinearities, the first four properties are much less typical. In fact, the complementarity property
holds for few activation functions other than ReLU.

Definition 3 (Repeated ReLU) The ReLU function ϕ(·) : ℜ → ℜ≥0 is defined in (4) and illus-
trated in Figure 2. As a consequence, the repeated ReLU Φ(·) : ℜm → ℜm

≥0 is defined by (5).

ϕ(v) :=

{
v v ≥ 0

0 v < 0
(4)

0

0

Figure 2: ReLU function

Φ(·) :=

ϕ(·)...
ϕ(·)

 (5)

Fact 4 The repeated ReLU Φ(·) : ℜm → ℜm
≥0 can be expressed by (6) where u(·) is the unit step

function and U(v) = diag(u(v1) . . . u(vm)).

Φ(v) = U(v)v (6)

Proof : ϕ(vi) = u(vi)vi. Expressing this in vector form results in Fact 4. □

3



STABILITY ANALYSIS OF LURIE SYSTEMS INVOLVING RELU NEURAL NETWORKS

Table 1: Properties of the ReLU function
ϕ(v) ≥ 0 ∀v ∈ ℜ Positive
ϕ(v)− v ≥ 0 ∀v ∈ ℜ Positive complement
ϕ(v)(v − ϕ(v)) = 0 ∀v ∈ ℜ Complementarity
ϕ(αv) = αϕ(v) ∀v ∈ ℜ, α ∈ ℜ≥0 Positive homogeneity
0 ≤ ϕ(ṽ)−ϕ(v)

ṽ−v ≤ 1 ∀ṽ, v ̸= ṽ ∈ ℜ Slope-restricted

2.4. Positively homogenous functions

A key property of the ReLU function, and the repeated ReLU by extension, which enables one to
prove the remarkable results in Section 4 is positive homogeneity. Several facts about positively
homogenous functions (Table 1) are introduced below.

Fact 5 If θ(·) : ℜm → ℜm is bijective and positively homogenous, then θ−1(·) : ℜm → ℜm is
positively homogenous too.

Proof : Assume that θ−1(·) exists and is not positively homogenous, that is αθ−1(v) ̸= θ−1(αv).
However, because θ(·) is positively homogenous and bijective, it follows that for all α ∈ ℜ≥0:

z = θ−1
( 1

α
θ(αz)

)
(7)

Now, by the assumption that θ−1(·) is not positively homogenous, this means that:

z ̸= 1

α
θ−1 ◦ θ(αz) = z (8)

Clearly this is a contradiction and hence θ−1(·) must be positively homogenous. □

Fact 6 Let θ(·) : ℜm → ℜm be defined by θ(v) := v − DΦ(v) for some matrix D ∈ ℜm×m. If
Φ(·) : ℜm → ℜm is positively homogenous, then so is θ(·).

Proof : αθ(v) = αv −DαΦ(v) = αv −DΦ(αv) = θ(αv) for all α ∈ ℜ≥0. □

2.5. Quadratic constraints satisfied by the Repeated ReLU

Using the properties from Table 1, novel or less restrictive quadratic constraints (QCs) were con-
structed in (Richardson et al., 2023, Section 3) which are satisfied by the repeated ReLU. The same
QCs are leveraged in Section 3 of this work, so are restated without proof in Facts 7-8. In summary,
Fact 7 leverages the positive, positive complement and complementarity properties to derive a less
restrictive variation of the sector-bounded QC and Fact 8 uses the positive property to derive a novel
QC. Fact 9 is the well known slope-restricted QC which is also satisfied by the Repeated ReLU; the
proof of this can also be found in (Richardson et al., 2023, Section 3).

Fact 7 (Sector-like QC) Let Φ(·) : ℜm → ℜm
≥0 be the repeated ReLU. If V ∈ Zm then the

following QC holds:
Φ(v)′V

(
v − Φ(v)

)
≥ 0 ∀ v ∈ ℜm (9)
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Fact 8 (Positivity QC) Let Φ(·) : ℜm → ℜm
≥0 be the repeated ReLU. If Q11 ∈ ℜm×m

≥0 then the
following QC holds:

Φ(v)′Q11Φ(ṽ) ≥ 0 ∀ v, ṽ ∈ ℜm (10)

Note that (10) also holds for the special case ṽ = v.

Fact 9 (Slope-restricted QC) Let Φ(·) : ℜm → ℜm
≥0 be the repeated ReLU and Ψ(ṽ, v) :=

Φ(ṽ)− Φ(v). If W ∈ Dm
+ then the following QC is satisfied:

Ψ(ṽ, v)′W
(
ṽ − v −Ψ(ṽ, v)

)
≥ 0 ∀ ṽ, v ∈ ℜm (11)

2.6. Problem setup

Consider the DT Lurie system in Figure 1, where P (z) ∈ RH∞ is a finite dimensional DT LTI
system with state space realisation (A,B,C,D) and the static nonlinearity Φ(·) is the repeated
ReLU. The Lurie system is modelled by (12) with A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜm×n and
D ∈ ℜm×m. As the repeated ReLU satisfies Φ(0) = 0, the origin is an equilibrium point of (12).

xk+1 = Axk +BΦ(yk) yk = Cxk +DΦ(yk) (12)

Assumption 10 (Well-posedness) System (12) with Φ(·) being the repeated ReLU is well-posed.

Well-posedness is equivalent to the existence of a unique solution to the state space equations (12).
Since Φ(·) is globally Lipschitz (and differentiable almost everywhere), this is ensured if there exists
a unique solution yk = θ−1(Cxk) to θ(yk) := yk −DΦ(yk) = Cxk. A sufficient condition for this
is given by Lemma 11, adapted from (Valmorbida et al., 2018, Section II).

Lemma 11 (Well-posedness) Assumption 10 holds if there exists V ∈ Dm
+ such that:

2V −VD −D′V ≻ 0 (13)

In many absolute stability results (e.g., DT Circle Criterion) this LMI (13) is an intrinsic part of
the stability conditions, so well-posedness is guaranteed. For instance, for the zero order hold
(ZOH) discretisation of the rate-based RNN Wilson and Cowan (1972), system (12) has the form
A = e−τI , B =

∫ τ
0 e−τIWdτ , C = I , D = 0 and hence is, trivially, well-posed. A comprehensive

examination of well-posedness is outside the paper’s scope; it is enough to state that numerous DT
systems incorporating NNs inherently exhibit well-posedness. Refer to Richardson et al. (2023) for
more discussion of this.

Throughout the remainder of the paper, Assumption 10 is assumed to hold. This implies a
solution yk = θ−1(Cxk) exists to (12); furthermore the solution is positively homogenous by Fact
5 and Fact 6, which relies on the positive homogeneity of the repeated ReLU.

3. Global stability analysis

This section applies the DT counterpart of the Barbashin-Krasovskii Theorem Khalil (2002) to de-
rive two LMIs which verify the origin of the specialised Lurie system (12) is globally asymptotically
stable (GAS). The main results are constructed using quadratic and Lurie-type Lyapunov candidates,
as is respectively the case in the DT Circle and DT Popov Criteria. The QCs introduced in Section
2.5 are leveraged within the proofs.
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Theorem 12 (DT Circle-like Criterion) Consider the DT Lurie system (12) with Φ(·) the re-
peated ReLU. Let Assumption 10 be satisfied. If there exists P ∈ Sn

+, V ∈ Zm, and Q11 ∈ ℜm×m
≥0

such that: [
A′PA−P A′PB + C ′V′

⋆ B′PB +He
(
Q11 −V(I −D)

)] ≺ 0 (14)

then the origin of (12) is GAS.

Proof: Choosing a quadratic Lyapunov candidate Vcl(x) = x′Px with P ∈ Sn
+ and looking at the

difference along the trajectories of system (12) gives:

∆Vcl =
(
Axk +BΦk

)′
P
(
Axk +BΦk

)
− x′kPxk

= x′k(A
′PA−P)xk + x′kA

′PBΦk +Φ′
kB

′PAxk +Φ′
kB

′PBΦk

(15)

where ∆Vcl := Vcl(xk+1) − Vcl(xk) and Φk := Φ(yk). Appending the sector-like QC (9) and the
positivity QC (10) for the special case ỹk = yk, leads to:

∆Vcl ≤ x′k(A
′PA−P)xk + x′kA

′PBΦk +Φ′
kB

′PAxk +Φ′
kB

′PBΦk

+ 2Φ′
kV

(
yk − Φk

)
+ 2Φ′

kQ11Φk (16)

The right hand side of (16) is guaranteed to be negative definite if Theorem 12 is satisfied. This can
be seen by subbing (12) in for yk, then putting (16) into quadratic form. □

Remark 13 Theorem 12 strengthens the DT Circle Criterion when Φ(·) is the repeated ReLU. One
expects Theorem 12 to verify GAS for a larger space of (A,B,C,D) matrices since the DT Circle
Criterion has more restrictions on the LMI variables: V ∈ Dm

+ and Q11 = 0.

Theorem 14 (DT Popov-like Criterion) Consider the Lurie system (12) with Φ(·) the repeated
ReLU and let D = 0. If there exists P ∈ Sn

+; H ∈ ℜm×m; Λ,W ∈ Dm
+ ; V ∈ Zm; Q̃11,Q11 ∈

ℜm×m
≥0 such that: X11 X12 (A− I)′C ′H′Λ+ C ′(H− I)′W

⋆ X22 B′C ′H′Λ+ Q̃11

⋆ ⋆ −2W

 ≺ 0 (17)

X11 = A′PA−P+He
(
(A− I)′C ′H′ΛHC(A− I)

)
X12 = A′PB + C ′V′ + (A− I)′C ′H′Λ+ 2(A− I)′C ′H′ΛHCB

X22 = B′PB +He
(
Q11 −V +ΛHCB +B′C ′H′ΛHCB + Q̃11

)
then the origin of (12) is GAS.

Proof: A generalised Lurie-type Lyapunov candidate (Richardson et al., 2023, Section 4) Vpl(x) =

x′Px + 2
∫Hyk
0 ΛΦ(σ) · dσ with P ∈ Sn

+, H ∈ ℜm×m and Λ ∈ Dm
+ was selected. Due to the

integral term in the generalised Lurie-type Lyapunov candidate, Theorem 14 may only be applied
to systems with D = 0, as is the case with the DT Popov Criterion. Now, looking at the difference
along the trajectories of system (12) results in:

∆Vpl = 2

∫ Hyk+1

0
ΛΦ(σ) · dσ − 2

∫ Hyk

0
ΛΦ(σ) · dσ

+ (Axk +BΦk)
′P(Axk +BΦk)− x′kPxk︸ ︷︷ ︸

=∆Vcl

(18)
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where ∆Vpl := Vpl(xk+1)−Vpl(xk) and Φk := Φ(yk). Since the line integrals are path independent
(see (Richardson et al., 2023, Section 4)), assume the system follows a trajectory which begins at
the origin, passes through Hyk and ends at Hyk+1, without loss of generality. As a result:

∆Vpl = ∆Vcl + 2

∫ ỹk+1

ỹk

ΛΦ(σ) · dσ (19)

where ỹk := Hyk. As Λ = diag(λ1 . . . λm), we may express the line integral as:∫ ỹk+1

ỹk

ΛΦ(σ) · dσ =
m∑
i=1

λi

∫ ỹk+1,i

ỹk,i

ϕ(σi)dσi (20)

The ReLU function, ϕ(·), is slope-restricted on [0, 1]; hence, Theorem 2 can be applied with a =
ỹk,i, b = ỹk+1,i and µ = 1. Expressing the resulting summation in quadratic form and subbing into
(19) leads to:

∆Vpl ≤ ∆Vcl + 2Φ̃′
kΛ

(
ỹk+1 − ỹk

)
+ 2

(
ỹk+1 − ỹk

)′
Λ
(
ỹk+1 − ỹk

)
(21)

where Φ̃k := Φk(ỹk). Appending the sector-like QC (9), both cases of the positivity QC (10) and
the slope-restricted QC (11) gives:

∆Vpl ≤ 2Φ̃′
kΛ

(
ỹk+1 − ỹk

)
+ 2

(
ỹk+1 − ỹk

)′
Λ
(
ỹk+1 − ỹk

)
+∆Vcl + 2Φ′

kV
(
yk − Φk

)
+ 2Φ′

kQ11Φk︸ ︷︷ ︸
(14) when D=0

+2Φ′
kQ̃11Φ̃k + 2Ψ′

kW
(
ỹk − yk −Ψk

)
(22)

where Ψk := Ψ(ỹk, yk) = Φ̃k − Φk. Now, substituting Φ̃k = Ψk + Φk and replacing ỹk+1, ỹk, yk
with the respective functions of xk gives:

∆Vpl ≤ 2
(
Ψk +Φk

)′
ΛHC

(
(A− I)xk +BΦk

)
+ 2Φ′

kQ̃11

(
Ψk +Φk

)
+ 2

(
(A− I)xk +BΦk

)′
C ′H′ΛHC

(
(A− I)xk +BΦk

)
+ 2Ψ′

kW
(
(H− I)Cxk −Ψk

)
+∆Vcl + 2Φ′

kV
(
yk − Φk

)
+ 2Φ′

kQ11Φk︸ ︷︷ ︸
(14) when D=0

(23)

The right hand side of (23) is guaranteed to be negative definite if Theorem 14 is satisfied. This
can be seen by substituting the associated quadratic form of LMI (14) into (23) when D = 0, then
manipulating the full expression into quadratic form. □

Remark 15 Theorem 14 contains matrix variable products which prevents the matrix inequality
from being linear. Setting H = I is one convex relaxation which reduces (17) to an LMI. Further-
more, this relaxation forces Ψ(ỹk, yk) ≡ 0, hence (17) collapses to the (2× 2) block matrix:[
A′PA−P+He

(
(A−I)′C ′ΛC(A−I)

)
A′PB+C ′V′+(A−I)′C ′Λ+2(A−I)′C ′ΛCB

⋆ B′PB+He
(
Q11−V+ΛCB+B′C ′ΛCB+Q̃11

)] ≺ 0

(24)

Remark 16 Remark 15 strengthens the DT Popov Criterion when Φ(·) is the repeated ReLU. One
expects Remark 15 to verify GAS for a larger space of (A,B,C) matrices since the DT Popov
Criterion has more restrictions on the LMI variables: V ∈ Dm

+ and Q11 = Q̃11 = 0.
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4. Local stability is equivalent to global stability

As many properties of the ReLU function hold globally, limiting the scope of the stability analysis
to a local region did not seem promising, unlike in Yin et al. (2021a). For this reason, conditions
which ensured an asymptotically stable equilibrium point was, in fact, GAS were investigated.

Theorem 17 System (12) has a unique equilibrium point at the origin if all matrices in the set D
are full rank where:

D =
{
A− I +BU(I −DU)−1C | U ∈ U

}
(25)

and the 2m possible permutations of U are captured by the set:

U = {diag(u1, . . . ,um) | ui ∈ 0, 1 and i ∈ 1 , 2 , . . . ,m} (26)

Proof : Any equilibrium point, xeq, of (12) must satisfy xk+1 − xk = 0. This is equivalent to:

0 = (A− I)xk,eq +BΦ(yk,eq) yk,eq = Cxk,eq +DΦ(yk,eq) (27)

Using Fact 4, the output equation of (27) may equivalently be expressed as:(
I −DU(yk,eq)

)
yk,eq = Cxk,eq ⇔ yk,eq =

(
I −DU(yk,eq)

)−1
C︸ ︷︷ ︸

:=K(yk,eq)

xk,eq (28)

Equation (28) does not provide the general solution to the output equation, but instead a relationship
between an equilibrium state and the corresponding system output. Using Fact 4 and subbing (28)
into the state equation of (27) results in a single equation which any equilibrium point must satisfy.

0 = (A−I)xk,eq+BU(yk,eq)yk,eq =
(
A−I+BU(yk,eq)K(yk,eq)

)
xk,eq =: Ǎ(yk,eq)xk,eq (29)

Since U(yk,eq) ∈ U , then the matrices Ǎ(yk,eq) ∈ D. Therefore, if all matrices in D have full rank,
the only solution to equation (29) is xk,eq = 0. This condition is sufficient, but may be conservative
as the state equations may only allow U(yk) to enter a subset of the 2m possible permutations. □

Remark 18 As a square matrix is only full rank if it is also invertible, Theorem 17 can be verified
by computing the determinant for each matrix in the set D. If all are non-zero, the set D is full rank.

Theorem 19 (LAS ≡ GAS for a DT Lurie system with repeated ReLU nonlinearity) If the ori-
gin of (12) is a unique equilibrium point and a ball of any radius rx can be established as a region
of attraction Brx = {x : ||x|| ≤ rx} then, the origin is actually a GAS equilibrium point.

Proof : Under Assumption 10, system (12) can be expressed as:

xk+1 = Axk +BΦ ◦ θ−1(Cxk) (30)

where θ(yk) := yk −DΦ(yk) = Cxk. Now assume Theorem 17 is satisfied, which guarantees the
origin is a unique equilibrium point of (30). Furthermore, assume it can be established the origin of
(30) has a region of attraction given by Brx := {x : ||x|| ≤ rx}. Now, define a positively scaled
initial state z0 := αx0 where α > 0. The initial state z0 will follow the trajectory:

zk(z0) = αxk(x0) (31)

8
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which is an instance of the general solution to the scaled system:

zk+1 = αxk+1 = αAxk + αBΦ ◦ θ−1(Cxk)

= A(αxk) +BΦ ◦ θ−1
(
C(αxk)

)
(See Fact 5 and Fact 6)

= Azk +BΦ ◦ θ−1(Czk)

(32)

As the scaled system (32) is of the same form as (30), a region of attraction Brz = {z : ||z|| ≤
rz} must exist around the origin of (32). Using (31), a relationship between Brx and Brz can be
established. First, Brx may equivalently be expressed in terms of z:

Brx = {x : ||x|| ≤ rx} = { 1
α
z :

1

α
||z|| ≤ rx} (33)

A new set may then be defined which contains the unscaled vectors, z, satisfying (33):

Brz = {z : ||z|| ≤ αrx} (34)

This is the region of attraction, where we have found rz = αrx. As α can represent any positive
scalar, one may set Brz = ℜn. Thus, if it can be shown the origin of (30) has a region of attraction,
it implies the origin of (30) is actually GAS, since (30) and (32) are equivalent. □

Remark 20 The implications of Theorem 19 are profound: provided the origin is a unqiue equilib-
rium of system (30), then if global stability cannot be established, it is futile to attempt to establish
local stability. This is somewhat counterintuitive as typically in absolute stability analysis if one
cannot establish global stability, one attempts a local stability analysis. Theorem 19 implies that,
for ReLU problems, this will not be fruitful.

5. Numerical examples

The maximum series gain was used to compare the conservatism of the criteria developed in this
paper against criteria with low (DT Circle and DT Popov Haddad and Bernstein (1994)) and high
(Park et al. (2019)) complexity. Matlab employs the Projective method Gahinet and Nemirovski
(1997) to solve the stability criteria posed as SDP problems with LMIs. The complexity of the
criteria was assessed by comparing the total number of decision variables, N , given the number of
floating-point operations per iteration is proportional to N3.

5.1. Experimental setup

The configuration entailed substituting Φ(yk) → αΦ(yk) in (12) with α ∈ ℜ≥0 , which is equivalent
to replacing B → αB and D → αD in the LMIs of each criterion. The maximum series gain
represents the highest value of α for which each criterion can verify the origin of (12) is GAS. The
Nyquist gain provides an upper bound on this quantity.

Table 2 gives a list of the examples and values of (n,m) where x ∈ ℜn and Φ(·) : ℜm → ℜm.
Each example features a distinct state space model (A,B,C,D) from the literature. The examples
were the same as in Richardson et al. (2023), but were discretised using the ZOH method with a
sampling period of Ts ∈ {10−2, 10−4} seconds. Each state space model set D = 0 to facilitate
comparison with the DT Popov and DT Popov-like Criteria. Consult the related code2 to see the
specific examples. Finally, as the DT Popov-like Criterion was a BMI, the convex relaxation stated
in Remark 15 was deployed, to avoid losing the benefits of framing problems as SDP with LMIs.

2. https://github.com/CR-Richardson/DT-Max-Series-Gain
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Table 2: Maximum series gain and the number of decision variables for various criteria.

Maximum series gain (left) and number of decision variables (right) Nyquist
Ex n m DT Circle Theorem 12 DT Popov Remark 15 Park gain
1 9 3 20.8659 48 39.4281 63 411.5889 51 3310.3797 66 450.4463 579 6666.6651
2 3 3 89.9000 9 89.9000 24 89.9000 12 89.9000 27 89.9000 159 89.9000
3 3 4 0.5236 10 0.6818 38 0.5236 14 0.6818 42 0.5236 207 0.6983
4 8 4 0.0010 40 0.0012 68 0.0010 44 0.0015 72 0.0010 572 0.0020
5 6 4 0.0813 25 0.0814 53 0.0824 29 0.0829 57 0.0845 402 0.0869
6 6 4 0.1951 25 0.3916 53 0.1951 29 0.5007 57 0.2272 402 0.8212
7 8 4 0.0967 40 0.1234 68 0.0969 44 0.1450 72 0.1037 572 0.2008
8 5 5 2.0221 20 2.0221 65 2.0221 25 2.0221 70 2.0221 395 2.0221

5.2. Discussion

Theorem 12 and Remark 15 were of similar complexity. Both had slightly higher complexity than
the DT Circle and DT Popov Criteria, but significantly lower than the Park Criterion. Example
8 demonstrates a positive system wherein the multivariable Aizerman Conjecture is valid for the
continuous time counterpart Drummond et al. (2022). In this scenario, all approaches attained the
linear upper limit on α. In 7 out of 8 examples, Remark 15 exhibits conservatism that is either
equal to or less than that of all existing criteria. In 6 out of 8 examples, Theorem 12 demonstrates
conservatism that is either equal to or less than all existing criteria, albeit remaining inferior to
Remark 15 in 5 out of 8 instances. However, one notable advantage of Theorem 12 is its applicability
when D ̸= 0. Finally, each system with α set less than the Nyquist gain has a unique equilibrium
point. By Theorem 19, it will be futile to attempt a local stability analysis on such systems.

The limitation of these results is that m ≤ 5: while absolute stability analysis deems this a high-
dimensional nonlinearity, it does not align with the perspective in the NN literature. Nonetheless,
the confidence in the performance of the strengthened criteria increases, given that both Theorem 12
and Remark 15 are less conservative than existing criteria in the majority of examples. This suggests
that the enhanced criteria should fare well even in scenarios where m could be significantly larger.
Additionally, both criteria exhibit superior scalability compared to Park’s approach.

6. Conclusion

This work incorporates the flexibility of learning-based control within a model-based framework.
The DT Circle and DT Popov Criteria are strengthened for analysing DT Lurie systems with the
repeated ReLU nonlinearity. These refined criteria offer the potential for significantly lower conser-
vatism levels compared to the standard DT Circle and DT Popov Criteria whilst maintaining their
computational efficiency. Numerical examples demonstrate reduced conservatism without the high
computational overhead associated with methods like the Park Criterion. Local stability was also
investigated, but this resulted in conditions which show that if the Lurie system under consideration
has a unique equilibrium point at the origin, then this equilibrium point is in fact globally stable
or unstable, meaning that local stability analysis will provide no additional benefit. The main defi-
ciency of the new results is their limitation to the ReLU nonlinearity. Despite this, it is hoped that
these results may help bring NN based control into the domain of safety critical systems. Future
work will extend these results to account for biases within the neural network and by incorporating
a notion of robustness to model uncertainty. This will allow our method to account for more expres-
sive neural networks and leverage the flexibility of learning-based approaches whilst reducing the
reliance on an accurate physical model, an inherent problem of model-based control.
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