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Abstract
Synthesising verifiably correct controllers for dynamical systems is crucial for safety-critical prob-
lems. To achieve this, it is important to account for uncertainty in a robust manner, while at the same
time it is often of interest to avoid being overly conservative with the view of achieving a better
cost. We propose a method for verifiably safe policy synthesis for a class of finite state models, un-
der the presence of structural uncertainty. In particular, we consider uncertain parametric Markov
decision processes (upMDPs), a special class of Markov decision processes, with parameterised
transition functions, where such parameters are drawn from a (potentially) unknown distribution.
Our framework leverages recent advancements in the so-called scenario approach theory, where
we represent the uncertainty by means of scenarios, and provide guarantees on synthesised poli-
cies satisfying probabilistic computation tree logic (PCTL) formulae. We consider several common
benchmarks/problems and compare our work to recent developments for verifying upMDPs.
Keywords: Markov decision processes; Robust optimization; Verification; Scenario approach.

1. Introduction

Verifying the safety of complex dynamical systems is an important challenge (Knight, 2002), with
applications including unmanned aerial vehicles (UAVs) (Yu and Dimarogonas, 2021) and robotics
(Brunke et al., 2022). Ensuring a safety property may require verifying satisfaction of complex and
rich formal specifications in the process of uncertainty arising from, for example, inaccurate mod-
elling or process noise. A vital aspect of verification lies in finding abstractions that encompass this
uncertainty, whilst accurately modelling system dynamics to aid optimal control of such systems.

In this paper we do not consider how such an abstraction may be generated and focus solely
on learning a good controller/policy. There are a number of techniques for abstracting dynamical
systems, such as the widely celebrated counter-example guided abstraction/refinement approach
(Clarke et al., 2003). Alternatively, techniques make use of the so-called scenario approach in order
to develop their models (Badings et al., 2023; Rickard et al., 2023b).

One useful abstract model is that of parametric Markov decision processes (pMDPs) (Daws,
2004a; Hahn et al., 2011b; Junges et al., 2019), and particularly their probabilistic counterpart un-
certain pMDPs (upMDPs) (Badings et al., 2022; Scheftelowitsch et al., 2017). Parametric MDPs
extend MDPs by parameterising their transition function; any choice of parameters induces a stan-
dard MDP. Hence, a pMDP represents a family of MDPs, differing only in their transition function.
By drawing these parameters from a (possibly unknown) distribution, we define an uncertain para-
metric MDP. The parameterisation of the model allows for the introduction of some structure, thus
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avoiding overly conservative models. Here, we make no assumptions on the structure of the pa-
rameterisation, and could equivalently have a direct distribution over MDPs within an uncertain
set, hence arriving at a problem closely related to that of robust MDPs (Iyengar, 2005; Nilim and
Ghaoui, 2005; Wiesemann et al., 2013)

A useful tool for expressing specifications on (up)MDPs lies in temporal logic (Platzer, 2012),
a rich language for specifying behaviours of a system (Belta et al., 2017). One particular language
of interest is that of Probabilistic Computation Tree Logic (PCTL (Hansson and Jonsson, 1994)),
an extension of Computation Tree Logic which allows for probabilistic quantification of properties.
This language can be used to describe probabilistic specifications on system behaviour, with these
probabilities allowing for uncertainty. Often, it is of interest to learn a policy which ensures satis-
faction of the specification (Hahn et al., 2011a), even under different realisations of the uncertainty.

One common approach for verifying pMDPs is to solve the so-called parameter synthesis prob-
lem, finding parameter sets that satisfy the specification. Typically, only a single set of parameters
is of interest (Cubuktepe et al., 2022; Daws, 2004b; Meedeniya et al., 2014). Instead, we wish to
synthesise policies that are probabilistically robust to uncertainty over the entire parameter space.

In this paper, we investigate the following problem. Given a upMDP, with a possibly unknown
distribution over parameters, we aim at synthesising a policy, accompanied by a probabilistic cer-
tificate, such that, for an MDP defined with a randomly drawn parameter set, the probability that
the policy satisfies a given specification on that MDP is guaranteed by the computed certificate.
To solve this problem, we capitalize on advancements from the so-called scenario approach litera-
ture (Calafiore and Campi, 2006; Campi et al., 2009; Campi and Garatti, 2018; Garatti and Campi,
2022). We sample a finite number of parameter sets, and compute a policy that is robust to any
sample within that set. Then, by leveraging results from Garatti and Campi (2022) we provide
probably approximately correct (PAC) guarantees that the policy will be robust to a newly sampled
parameter set. Importantly, these techniques allow us to provide guarantees based only on finite
samples, without knowledge of the underlying distribution, and with no assumptions on the shape
of this distribution or the geometry of its support set.

Since we are optimising a policy for multiple MDPs, our work is similar to developments on
multiple environment MDPs (MEMDPs (Raskin and Sankur, 2014; van der Vegt et al., 2023)).
These techniques consider finding policies which are optimal for a finite set of MDPs. In contrast
to our approach, these methods assume to have complete knowledge of possible environments,
whereas we wish to be robust to new, unseen, environments. Previous work in this area typically
required overly conservative assumptions on the parameterisation, restricting to models where the
uncertainty is independent across different states (Puggelli et al., 2013), or across different state-
action pairs (Kozine and Utkin, 2002). In the robust MDP literature, such assumptions are referred
to as s-rectangular or (s, a)-rectangular ambiguity sets (Wiesemann et al., 2013). Some recent
approaches (Badings et al., 2022) have relaxed this assumption, but required full knowledge of the
parameter sets at runtime in order to apply a policy.

Our work makes no assumption on the parameterisation of the upMDP, and learns a single
policy which may be applied at runtime with no explicit parameter knowledge, whilst still offering
PAC-type guarantees. Our main contributions can be summarised as follows

1. We formally discuss different policy classes for an MDP, and investigate their associated proba-
bilistic guarantees. This policy classification is interesting per se as it clarifies subtle differences
among them.
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2. We propose a new gradient-based algorithm to learn an optimal robust policy for a given speci-
fication in an upMDP; we demonstrate the benefits of this scheme over more traditional solution
paradigms via extensive numerical investigation and set the basis for a theoretical convergence
analysis in future work.

3. We use recent advancements in scenario approach theory to accompany our learned policy with
non-trivial guarantees on the probability that newly sampled MDPs meet certain specifications.

2. Background

2.1. Markov Decision Processes

A Markov Decision Process (MDP) is a tupleM = (S,A, T, ρ, γ). Where S = {s0, . . . , sN} is a
finite set of states, with initial distribution ρ : S → (0, 1), A = {a0, . . . , aM} a finite set of actions,
T : S × A → Dist(S) is a probabilistic transition function, with Dist(S) the set of all probability
distributions over S (Baier and Katoen, 2008), and γ ∈ (0, 1) is some discount factor.

We call a tuple (s, a, s′) with probability T (s, a)(s′) > 0 a transition. By absorbing state,
we refer to a state s ∈ S in which all transitions return to that state with probability 1 so that
T (s, a)(s) = 1, for all a ∈ A, these typically being some goal or critical states. An infinite
trajectory of an MDP is a sampled sequence of states and actions ζ = sIa0s1a1 . . . , where actions
are chosen according to some policy, which we define in the sequel.

2.1.1. POLICY CLASSES

We consider three distinct classes of policy to determine actions in this MDP. Namely, deterministic
(also called pure), mixed (also called randomized), and behavioural policies. These policies are
denoted by πD ∈ ΠD, πM ∈ ΠM , πB ∈ ΠB , referring to a deterministic, mixed and behavioural
policy respectively. Specifically,

πD : S → A, πM = Dist(ΠD), πB : S → Dist(A). (1)

In other words, a deterministic policy shows which action to pick at each state; a mixed policy
provides directly a distribution over deterministic policies, so that we sample one policy at the start
of a trajectory and follow it throughout; a behavioural policy gives us a distribution over actions at
each state, so that we sample one action at each state of a trajectory. For MDPs, it can be shown
that deterministic policies suffice for optimality, but this doesn’t hold for more complex models.

We denote by πM (πD) the probability of choosing πD under the distribution defined for the
mixed policy, and by πB(s)(a) the probability of choosing action a in a state s, under the policy
defined by πB . Mixed and behavioural policies offer two semantically different options to resolve
the non-determinism in a probabilistic manner. For MDPs, there is a link between behavioural and
mixed policies through Kuhn’s theorem (Arrow et al., 1953). Further, for an MDP, it is always
possible to find memoryless behavioural policies that are realization-equivalent to mixed policies
(see (Rickard et al., 2023a, Appendix A) for a proof). In Uncertain Parametric MDPs (introduced
in the sequel) the link between behavioural and mixed policies may not be satisfied.

2.1.2. UNCERTAIN PARAMETRIC MDP

An Uncertain Parametric MDP (upMDP) is a tuple MP
v = (S,A,V, T ,P, ρ, γ). Similar to an

MDP, but the probabilistic transition function is now T : S × A× V ⇀ Dist(S), so that we denote
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by Tv(s, a)(s′) the probability of transitioning to state s′, given action a in s, with parameters
v ∈ V (i.e. the transition function is parameterised by v ∈ V), and with P defining a probability
distribution over the parameter space. Thus, when a set of parameters v is sampled, we extract a
concrete MDPM[v]. We do not impose any structure for this parameterisation, and only require
that M[v] be a well-defined MDP. To uncover a trajectory in this upMDP we first sample a set
of parameters v from P, and then follow a trajectory in the resulting MDP. We denote by PN the
product measure associated with N sampled parameter sets.

2.2. Probabilistic Computation Tree Logic

Probabilistic computation tree logic (PCTL) depends on the following syntax:

Φ ::= true | p | ¬Φ |Φ ∧ Φ |P∼λ(ψ) ψ ::= ΦUΦ. (2)

Here, ∼∈ {<,≤,≥, >} is a comparison operator and λ ∈ [0, 1] a probability threshold; PCTL
formulae Φ are state formulae, which can in particular depend on path formulae ψ. Informally, the
syntax consists of state labels p ∈ AP in a set of atomic propositions AP , propositional operators
negation ¬ and conjunction ∧, and temporal operator until U. The probabilistic operator P∼λ(ψ) re-
quires that paths generated from the initial distribution satisfy a path formula ψ with total probability
exceeding (or below, depending on ∼) some given threshold λ. We consider only infinite horizon
until, but note that extensions to include the finite time bounded-until operator can be achieved as
discussed in Osband et al. (2019).

The satisfaction relationM[v] |=π Φ defines whether a PCTL formula Φ holds true, when fol-
lowing policy π in the concrete MDP. Formal definitions for semantics and model checking are
provided in Hansson and Jonsson (1994); Baier and Katoen (2008).

2.2.1. PCTL SATISFACTION

This satisfaction relation defines slightly semantics depending on the class of policy. We now ex-
plore these semantics for the policy classes identified in Section 2.1.1, namely, deterministic, mixed
and behavioural, respectively.

M |=
πD

P≥λ(ψ) ⇐=
∑

{ζ : ζ |=ψ}

ρ(s0)T (s1 | s0, πD(s0))T (s2 | s1, πD(s1)) · · · ≥ λ (3)

=
∑

{ζ : ζ |=ψ}

PπD(ζ) ≥ λ,

M |=
πM

P≥λ(ψ) ⇐=
∑

πD∈ΠD

πM (πD) ·

 ∑
{ζ : ζ |=ψ}

PπD(ζ)

 ≥ λ, (4)

M |=
πB

P≥λ(ψ) ⇐=
∑

{ζ : ζ |=ψ}

ρ(s0)T (s1 | s0, a0)πB(a0 | s0)T (s2 | s1, a1)πB(a1 | s1) · · · ≥ λ

(5)

=
∑

{ζ : ζ |=ψ}

PπB (ζ) ≥ λ.

4



LEARNING POLICIES FOR UPMDPS

We use the Pπ(ζ) to refer to the probability of uncovering a trajectory when playing a given pol-
icy. Note that both eqs. (4) and (5) contain terms relating to the probability distributions introduced
in the policy classes. Instead, eq. (3) only considers uncertainty in the model itself.

2.3. Robust Policies

We are interested in synthesising robust policies for upMDPs. That is, policies that maximise the
probability of satisfying a PCTL formula ψ, within some given risk tolerance. Thus, we are inter-
ested in solving the chance-constrained optimisation program

max
π∈Π, λ∈[0,1]

λ subject to P
{
v ∈ V|M[v] |=

π
P≥λ(ψ)

}
≥ 1− ϵ. (6)

for some a priori chosen risk level ϵ ∈ (0, 1). There is an inherent tradeoff here between risk and
satisfaction probability: namely, for a small risk we might obtain a small satisfaction probability,
and vice versa. For brevity, we discuss only maximising λ, but note that the minimisation for
∼∈ {<,≤} can be obtained trivially. Note that here we optimise over policies π in a generic set Π;
the exact policy class from the ones of Section 2.1.1 will be specified in the sequel.

3. Robust Policy Synthesis

Problem 1 Given an upMDP MP
v , PCTL formula ψ and risk level ϵ, find a robust policy π and

maximum satisfaction probability λ, such that, with probability 1 − ϵ playing policy π on a newly
sampled MDP will satisfy the PCTL formula with satisfaction probability at least λ.

Due to the chance constraint on the parameter distribution P, this problem is a semi-infinite
optimization program (having a finite number of optimisation variables, but infinite constraints),
and is generally intractable. Further, we may not have access to an analytical form for P. Thus, we
turn to a sample based analogue to this problem. In Section 4, we investigate how solutions to this
problem can provide guarantees to the original chance-constrained problem.

Consider an upMDPMP
v andN i.i.d. sampled parameter sets (or scenarios) UN = {u1, . . . , uN}

sampled from P. In this section, we investigate how to learn a robust policy which maximises the
probability of satisfying a PCTL formula ψ, under the worst case realisation of the parameters, i.e.
we investigate the following scenario program associated to eq. (6)

max
π∈Π, λ≥0

λ subject to solπM(u;ψ) ≥ λ, ∀u ∈ UN . (7)

Where we use the notation solπM(u;ψ) to refer to the maximum probability of satisfying a formula
ψ, in the concrete MDPM[v], under policy π,

solπM(v;ψ) = argmax
λ∈[0,1]

M[v] |=
π
P≥λ(ψ). (8)

This scenario program problem coincides closely with the concept of Multiple Environment
MDPs (MEMDPs) (Raskin and Sankur, 2014), but differs in some key ways. When finding an op-
timal policy for MEMDPs, one wishes to find the policy that is optimal for the given environments.
Instead, our goal to find a policy that will be robust to an unseen environment. Furthermore, the
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concrete chance constrained problem we study is drastically different to MEMDPs since it involves
continuous parameters rather than a finite set of environments.

It is shown in Raskin and Sankur (2014) that infinite memory policies are required for optimal-
ity in MEMDPs. In our setting, infinite memory policies will indeed lead to optimal satisfaction
probabilities in the sample set, but suffer when generalising to new samples. This can be seen as a
problem of overfitting, and may also lead to a deterioration in our guarantees.

In the sequel, we provide different solution methodologies for eq. (7), where each methodology
is based on a different class of policies.

3.1. Solution by Interval MDPs (under deterministic policies)

A straightforward approach to solve this problem is to ignore the structure induced by the parameter-
isation, and to build instead an interval MDP, where each transition is only known up to an interval.
Each interval can be constructed by looking at each transition in turn and finding the minimum and
maximum probabilities from the sampled MDPs. Such techniques are examined further (generally
when no parameterisation is available) in Kozine and Utkin (2002) and are also closely aligned with
the concept of (s, a)-rectangularity (Wiesemann et al., 2013). The resulting policy is in general very
conservative, since it considers the worst case probability for every single transition. In reality, it is
likely to be the case that the worst case transitions are unlikely to co-occur (for example, in a UAV
motion planning problem like the one considered in Table 1 the wind may push us left or right into
an obstacle, but is unlikely to do both).

3.2. MaxMin Game (under mixed policies)

The problem in eq. (7) can be rewritten as a MaxMin problem maxπ∈Πminu∈UN
solπM(u;ψ),which

can be seen as a two player zero-sum game. In which we have a policy player, and the samples act as
an adversary. The policy player’s actions are the set of all deterministic policies ΠD for the upMDP,
providing a finite, but potentially very large O(|A||S|), action set. The sample adversary’s actions
are the set of samples. Given sample u and policy πD, the reward to the policy player is rp(πD, u) =
solπ

D

M (u;ψ). We may solve this as a Stackelberg game (Stackelberg, 1952; Yousefimanesh et al.,
2023), with the adversary as the leader, to obtain an optimal deterministic policy. Details on this
method, and associated results, are available in (Rickard et al., 2023a, Appendix E).

Alternatively, a mixed strategy set (sp, sσ), contains finite probability distributions over possible
actions of each player, respectively, and returns the reward rp(sp, sσ) =

∑
πD∈ΠD

∑
u∈UN

sp(π
D) ·

sσ(u) · solπDM (u;ψ), or in matrix form spRsσ, where matrix R ∈ R|ΠD|×N has elements Rπi
D,uj

=

solπ
i
D

M (uj ;ψ). Since the game consists of a finite number of players, each with a finite set of pure
strategies, then by allowing players to play mixed strategies, it can be shown that a Nash equilibrium
of the game will exist, and further, that all Nash equilibria have the same value. Note that the mixed
strategy defines a mixed policy sp = πM .

Theorem 1 (Nash Equilibrium Nash (1989); Frihauf et al. (2012)) For a two player zero-sum
game, there exists at least one mixed strategy profile s⋆ = (s⋆p, s

⋆
σ), such that

rp(s
⋆
p, s

⋆
σ) ≥ rp(sp, s⋆σ),∀sp ∈ Sp, rp(s

⋆
p, s

⋆
σ) ≤ rp(s⋆p, sσ),∀sσ ∈ Sσ. (9)

If both inequalities are strict, then there is a single unique Nash equilibrium, called a strict Nash
equilibrium. Otherwise, there is a set of Nash equilibria, all having equal value.
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Finding Nash equilibrium strategies in this game is relatively straightforward, and there are a
number of existing methods for solving the game (for example, the Porter-Nudelman-Shoham (PNS)
algorithm (Porter et al., 2008, Algorithm 1) or fictitious play methods (Heinrich et al., 2015)). Thus,
we can simply build the reward matrix R, by considering each determinsitic policy and sample in
turn, and pass this to one of these algorithms. Unfortunately, this method is computationally very
expensive, with the size of the reward matrix being RN×|S||A|

, and algorithms to solve such games
being exponential in the size of this matrix.

3.3. Subgradient Ascent (under behavioural policies)

Under the choice of behavioural policies, we propose an alternative method that avoids comput-
ing a full payoff matrix for every deterministic policy. Taking inspiration from Bhandari and Russo
(2019), we rewrite the solution function as solπ

B

M (u;ψ) =
∑

s∈S η
u
πB (s)

∑
a∈AQ

u
πB (s, a)π

B(s)(a),
whereQu

πB (s, a) is a Q-function, defined to model the PCTL requirement (Rickard et al., 2023a, Ap-
pendix B) and ηu

πB (s) is the discounted state-occupancy measure ηu
πB (s) = (1−γ)

∑∞
k=0 γkP

πB

k (s),
with P π

B

k (s) the probability of uncovering state s at time k. Intuitively, ηu
πB (s) defines the (dis-

counted) fraction of time the system spends in a given state. We fix ηu
πB and Qu

πB (as in policy
iteration (Foster, 1962)), and find the gradient (given analytically in Algorithm 1).

This provides us with a (sub)gradient for a single solution function, however, we are primarily
interested in the pointwise minimum amongst a set of solution functions. Hence, we turn to subdif-
ferentials (or subgradients) (Kiwiel, 2001; Aussel et al., 1995). One simple way of finding a valid
subdifferential is to find the gradient of one of the current minimum functions.

Algorithm 1: Projected Subgradient Ascent
Data: upMDPM, samples UN , formula ψ, step-size sequence {α0, α1, . . . }
Result: Optimal Policy π
k ← 0 πB0 ← uniform random
while not converged do
u⋆ ← random choice(argminu∈UN

solπ
B
k

M (u;ψ)) // Select worst case sample

∇k+1(s, a) = ηu
⋆

πB (s)Q
u⋆

πB (s, a) // Find gradient for worst case

πBk+1(s)(a)← proj∑πB(· | s)=1[π
B
k + αk∇k+1(s, a)] // Gradient step

fk+1
∗ = max{fk∗ , f(πBk+1)} // Store record objective
k ← k + 1

end

We initialise with a uniform random policy, select a minimising (worst-case) sample from the
set of minimisers (which may not be a singleton), then find the gradient for this sample, take a step in
this direction, and project onto the constraint set. We use a diminishing, non-summable step size αk,
typically employed in subgradient methods. We give numerical evidence that this algorithm exhibits
a convergent behaviour in Section 5, and further analysis in (Rickard et al., 2023a, Appendix D).

4. Guarantees

Once we have synthesised a policy using one of the methods above, we can accompany each of the
policies synthesized according to the aforementioned methodologies with PAC-type guarantees on
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the satisfaction of the PCTL property under consideration. To achieve this, we use the following
recent result in the scenario approach theory.

Given the solution to a scenario program, we are interested in quantifying the risk associated
with the solution (i.e. the probability that our solution violates a new sampled constraint). The
scenario approach provides us with the techniques to achieve this by considering the number of
support constraints. In an optimisation problem, if the removal of a constraint leads to a changed
solution, then this constraint is said to be a support constraint. Further, if a solution returned when
considering only the support constraints is the same as the solution obtained when employing all
samples, then the problem is a non-degenerate problem.

Theorem 2 (PAC Guarantees Garatti and Campi (2022)) Consider the optimisation problem in
eq. (7), with N sampled parameter sets. Given a confidence parameter β ∈ (0, 1), for any k =
0, 1, . . . , N , consider the polynomial equation in the variable t

ξk(t) =

{
1− β

6N

∑4N
i=N+1

(
i
k

)
ti−k, if k = N,(

N
k

)
tN−K − β

2N

∑N−1
i=k

(
i
k

)
ti−k − β

6N

∑4N
i=N+1

(
i
k

)
ti−k, otherwise.

(10)

Solving ξk(t) = 0 for t ∈ [0,+∞), for k = 0, 1, . . . , N − 1, we find exactly two solutions, which
we denote with t(k), t(k) with t(k) ≤ t(k). For k = N , we find a single solution, which we denote
by t(N), and define t(N) = 0. Let ϵ(k) := max{0, 1− t(k)} and ϵ(k) := 1− t(k).

Assume the problem is non-degenerate1, and has a unique solution. Let π∗N be the optimal
policy, λ∗N the optimal satisfaction probability, and s̃∗N is the number of support samples. Then, for
any P it holds that

PN{ϵ(s̃∗N ) ≤ P

{
v ∈ V :M[v] ̸|=

πM

P≥λ⋆(ψ)

}
≤ ϵ(s̃∗N )} ≥ 1− β, (11)

where P {v ∈ V :M[v] ̸|=πM P≥λ⋆(ψ)} is the risk (the probability that our solution violates the
specification for another sample v).

Note that in π∗N we do not specify the problem class; this is considered in the sequel when
we deploy this theorem for each solution methodology from the previous section. Moreover, to
determine the number of support samples s̃∗N , we exploit our problem’s structure and, based on the
solution methodology adopted, we discuss how an upper-bound on their number can be obtained.

To this end, we provide guarantees for the policy generated by each of the methods of Section
3. Consider first the case of the mixed policy determined using a Nash equilibrium solver as per the
developments of Section 3.2. In this case, finding the number of support samples consists of finding
samples which are included in the mixed strategy of the sampled adversary.

Corollary 3 (PAC Guarantees for Mixed Policies) Consider the MaxMin game of Section 3.2,
and let π∗N be the optimal mixed policy πM returned by a Nash equilibrium solver. The number
of support constraints may be found as s̃∗N = |{u ∈ UN : sσ(u) > 0}|, while the satisfaction
relationM[v] ̸|=πM P≥λ⋆(ψ) is as defined in eq. (4).

1. Non-degeneracy implies that solving the problem using only the samples that are of support results in the same
solution (policy in our case) had all the samples been employed. We say that a sample (which gives rise to a constraint
in eq. (7)) is of support, if removing only that sample results in a different solution. Repeating this procedure,
removing samples one-by-one allows identifying the support samples of a given problem.
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Consider now the case of a behavioural policy obtained using the subgradient methodology
(Section 3.3). We determine the number of support constraints by finding the active constraints (as
the problem is assumed to be non-degenerate, the active constraints are also the support constraints).

Corollary 4 (PAC Guarantees for Behavioural Policies) Consider the subgradient algorithm of
Section 3.2, and let π∗N be the optimal behavioural policy πB returned by Algorithm 1. The number
of support samples is given by the active constraints, which are in turn the ones for which the
obtained satisfaction probability λ⋆ is tight, i.e., s̃∗N = |{u ∈ UN : solπ

B

M (u;ψ) = λ⋆}|, while the
satisfaction relationM[v] ̸|=πB P≥λ⋆(ψ) is as defined in eq. (5).

Finally, consider the construction of an interval MDP under the class of deterministic policies.
In this case, our problem is degenerate, since it may be necessary to remove multiple constraints for
another policy to become optimal, thus prohibiting the use of Theorem 2. Therefore, we leverage
techniques from Campi et al. (2018) that do not require imposing a non-degeneracy assumption.

Corollary 5 (PAC Guarantees for iMDP Policies) Fix β ∈ (0, 1), and as in (Campi et al., 2018,
Theorem 1), define µ(N) := 1, and for s̃∗N < N let

µ(s̃∗N ) := 1− N−s̃∗N

√
β

N
(
N
s̃∗N

) . (12)

Support samples are those which define the intervals: s̃∗N = |{u ∈ UN : ∃(s, a, s′), Tu(s, a)(s′) ≤
Tv(s, a)(s

′) ∨ Tu(s, a)(s′) ≥ Tv(s, a)(s
′),∀v ∈ UN}|, i.e., those with at least one transition prob-

ability at an extremum of its interval. Then (with satisfaction relation defined in eq. (3)) we have

PN
{
P

{
v ∈ V :M[v] ̸|=

πD

P≥λ⋆(ψ)

}
≤ µ(s̃∗N )

}
≥ 1− β. (13)

5. Numerical Experiments

We implemented our techniques in Python and made use of the probabilistic model checker Storm
(Hensel et al., 2022) to verify PCTL formulae on MDPS, and PRISM (Kwiatkowska et al., 2011)
for iMDPs. Experiments were run on a server with 80 2.5 GHz CPUs and 125 GB of RAM. The
codebase is available at https://github.com/lukearcus/robust upMDP

We evaluate our techniques on a number of benchmark models available in the literature (Quat-
mann et al., 2016), as well as a few simpler examples, for a complete description see (Rickard et al.,
2023a, Appendix C). We compare our subgradient algorithm (Section 3.3) to existing techniques
from Badings et al. (2022) (column 1) and an implementation of the synthesis based on iMDP, as
in Kozine and Utkin (2002) (column 2). Unless otherwise stated, we use a numerical tolerance of
10−4, a confidence parameter of β = 10−5, take N = 200 parameter samples, and allow 1 hour of
computation time. We provide numerical values for the optimal satisfaction probability λ⋆, the the-
oretical risk upper bound ϵ, the runtimes, the empirical values of the risk ϵ̃, and the empirical values
of the risk without access to the true parameter set (if parameter access is needed to synthesise a
policy, we draw a sample v1 ∼ P for synthesis, but test on sample, v2 ∼ P). We highlight in grey
cases where we discuss next how the methodologies under comparison are compared/outperformed
by our proposed subgradient algorithm either in terms of the quality of their probabilistic guarantees
and/or the computational requirements, and use red text for empirical values which violate a bound.
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Badings et al. (2022) iMDP Solver Subgradient (Algorithm 1)
Model Instance |S| · |A| Sat.

Prob.
λ⋆

Risk
U.B.
ϵ

Time
(s)

Emp.
Risk
ϵ̃

Emp.
(no
pars)

Sat.
Prob.
λ⋆

Risk
U.B.
µ

Time
(s)

Emp.
Risk
µ̃

Emp.
(no
pars)

Sat.
Prob.
λ⋆

Risk
U.B.
ϵ

Time
(s)

Emp.
Risk
ϵ̃

Emp.
(no
pars)

consensus
(min)

(2,2) 306 .967 .056 1 .004 .008 .967 1 3 .007 .008 .967 .187 4 .009 .011
(2,32) 5 586 .996 .056 136 .000 .014 .996 1 76 .000 .000 .996 .516 202 .002 .000
(4,2) 90 624 - - TO - - .936 1 1887 .000 .000 - - TO - -

brp (max)(256,5) 42 064 - - TO - - .985 1 383 .001 .000 .985 1 923 .000 .001

sav
(min)

(6,2,2) 1516 .834 .056 4 .015 .112 .923 1 9 .002 .004 .884 .180 218 .013 .007
(6,2,2) 1516 .700 .056 5 .000 .017 .721 1 9 .017 .010 .720 .187 76 .011 .017

(10,3,3) 7400 .446 .056 51 .009 .120 .524 1 50 .017 .015 .526 .147 109 .021 .018

UAV
(max)

uniform 45 852 .301 .056 978 .003 .749 .065 1 238 .015 .013 .195 .245 857192.077 .089
x-neg 45 852 .198 .056 804 .002 .802 .012 1 210 .000 .000 .102 .440 58612 .068 .071
y-pos 45 852 .564 .056 811 .003 .755 .050 1 196 .001 .001 .444 .163 92440 .095 .101

Toy Model (max) 8 .326 .056 .11 .008 .106 .323 .155 1.47 .008 .094 .325 .366 8.95 .003 .098

Table 1: Experimental Results; the results for the case of the MaxMin Solution are discussed in the
text. TO indicates timed-out.

Our subgradient algorithm is less conservative than a naive iMDP solution, offering non-trivial
theoretical risk bounds (for the iMDP approach these bounds are often equal to one), and supe-
rior satisfaction probabilities (the iMDP approach considers the worst case probability for every
transition). By superior, we mean either higher or lower depending on the optimisation direction
(maximisation or minimisation, respectively, denoted by (max) and (min) in Table 1). The approach
in Badings et al. (2022) generally outperforms our methods in speed, risk bounds and satisfaction
probability. The difference on the theoretical risk bounds lies in the fact that our approach involves
solving a problem with a non-trivial number of support constraints, while in Badings et al. (2022)
they have only one support constraint. As such, it offers tighter guarantees, however, these refer to
an existential statement. To see this, note that Badings et al. (2022) compute a different policy per
sample, and provide guarantees only on the existence of a policy for a new sample. On the contrary,
we construct a policy that is robust with respect to all samples, and at the same time is accompanied
by guarantees on its feasibility properties for unseen samples. Moreover, Badings et al. (2022) re-
quire access to true parameters at runtime, and a non-trivial amount of online computation to solve
the MDP. Without this, their risk bounds may be violated (as seen in red).

Our mixed policy solution (Section 3.2), timed out on all but the toy model, for which the results
are: Sat. Prob: .325, Risk U.B.: .147, runtime: 0.75s Emp. risk: .003, Emp. risk (no pars): .101.

6. Concluding Remarks and Future Directions

We presented a novel method for learning a single robust policy for upMDPs, providing PAC guar-
antees on satisfaction of PCTL formulae. We have considered several policy classes, and provided
guarantees for each. Our experiments demonstrate the efficacy of our methods on a number of
benchmarks, and provide comparisons to previous methods.

One avenue for future work is discarding constraints (Campi and Garatti, 2011). Relatedly,
improving the runtimes of our algorithms (perhaps at the cost of guarantees) is of interest. Finally,
we leave a full technical analysis of the convergence of our subgradient method to later work.

2. For the UAV benchmark, we allowed up to 2 days of computation time.
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