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Abstract
Recent reinforcement learning approaches have shown surprisingly strong capabilities of bang-
bang policies for solving continuous control benchmarks. The underlying coarse action space
discretizations often yield favorable exploration characteristics, while final performance does not
visibly suffer in the absence of action penalization in line with optimal control theory. In robotics
applications, smooth control signals are commonly preferred to reduce system wear and improve
energy efficiency, while regularization via action costs can be detrimental to exploration. Our work
aims to bridge this performance gap by growing discrete action spaces from coarse to fine control
resolution. We take advantage of recent results in decoupled Q-learning to scale our approach to
high-dimensional action spaces up to dim(A) = 38. Our work indicates that an adaptive con-
trol resolution in combination with value decomposition yields simple critic-only algorithms that
enable surprisingly strong performance on continuous control tasks.
Keywords: Continuous Control; Q-learning; Value Decomposition; Growing resolution

1. Introduction

Reinforcement learning for continuous control applications commonly leverages policies param-
eterized via continuous distributions. Recent works have shown surprisingly strong performance
of discrete policies in the actor-critic and critic-only setting (Tang and Agrawal, 2020; Tavakoli
et al., 2021; Seyde et al., 2021). While discrete critic-only methods promise simpler controller
designs than their continuous actor-critic counterparts, applications such as robot control tend to
favor smooth control signals to maintain stability and prevent system wear (Hodel, 2018). It has
previously been noted that coarse action discretization can provide exploration benefits early during
training (Czarnecki et al., 2018; Farquhar et al., 2020), while converged policies should increasingly
prioritize controller smoothness (Bohez et al., 2019).

Our work aims to bridge the gap between these two objectives while maintaining algorithm
simplicity. We introduce Growing Q-Networks (GQN), a simple discrete critic-only agent that
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combines the scalability benefits of fully decoupled Q-learning (Seyde et al., 2022b) with the ex-
ploration benefits of dynamic control resolution (Czarnecki et al., 2018; Farquhar et al., 2020).
Introducing an adaptive action masking mechanism into a value-decomposed Q-Network, the agent
can autonomously decide when to increase control resolution. This approach enhances learning effi-
ciency and balances the exploration-exploitation trade-off more effectively, improving convergence
speed and solution smoothness. The primary contributions of this paper are threefold:

• A framework for adaptive control resolution: we grow control resolution from coarse to
fine within decoupled Q-learning. This reconciles coarse exploration during early training
with smooth control at convergence, retaining the scaling properties of decoupled control.

• Insights into the scalability of discretized control: our research provides valuable insights
into overcoming exploration challenges in soft-contrained continuous control settings via sim-
ple discrete Q-learning methods, studying applicability in challenging control scenarios.

• Comprehensive experimental validation: we validate the effectiveness of our GQN algo-
rithm on a diverse set of continuous control tasks, highlighting the benefits of adaptive control
resolution over static DQN variations and recent continuous actor-critic methods.

The remainder of the paper is organized as follows: Section 2 reviews related work, Section 3
introduces preliminaries, Section 4 details the proposed GQN methodology, Section 5 presents ex-
perimental results, and Section 6 concludes with a discussion on future research directions.

2. Related Works

In the following, we discuss several key related works grouped by their primary research thrust.

Discretized Control Learning continuous control tasks commonly relies on policies with con-
tinuous support, primarily Gaussians with diagonal covariance matrices (Schulman et al., 2017;
Haarnoja et al., 2018; Abdolmaleki et al., 2018a; Hafner et al., 2020; Wulfmeier et al., 2020). Recent
works have shown that competitive performance is often attainable via discrete policies (Tavakoli
et al., 2018; Neunert et al., 2020; Tang and Agrawal, 2020; Seyde et al., 2022a) with bang-bang
control at the extreme (Seyde et al., 2021). Bang-bang controllers have been extensively investi-
gated in optimal control research (Sonneborn and Van Vleck, 1964; Bellman et al., 1956; LaSalle,
1959; Maurer et al., 2005) as well as early works in reinforcement learning (Waltz and Fu, 1965;
Lambert and Levine, 1970; Anderson, 1988), while the extreme switching behavior was often ob-
served to naturally emerge even under continuous policy distributions (Huang et al., 2019; Novati
and Koumoutsakos, 2019; Thuruthel et al., 2019). The direct application of discrete action-space
algorithms then harbors potential benefits for reducing model complexity (Metz et al., 2017; Sharma
et al., 2017; Tavakoli, 2021; Watkins and Dayan, 1992), although control resolution trade-offs and
scalability may require computational overhead (Van de Wiele et al., 2020).

Scalability The scalability of Q-learning approaches has been studied extensively in the context
of mitigating coordination challenges and system non-stationarity (Tan, 1993; Claus and Boutilier,
1998; Matignon et al., 2012; Lauer and Riedmiller, 2000; Matignon et al., 2007; Foerster et al.,
2017; Busoniu et al., 2006; Böhmer et al., 2019). Exponential coupling can be avoided by information-
sharing (Schneider et al., 1999; Russell and Zimdars, 2003; Yang et al., 2018), composition of local
utility functions (Sunehag et al., 2017; Rashid et al., 2018; Son et al., 2019; Wang et al., 2020; Su
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et al., 2021; Peng et al., 2021), and considering different levels of interaction (Guestrin et al., 2002;
Kok and Vlassis, 2006). Centralization can further be facilitated via high degrees of parameter-
sharing (Gupta et al., 2017; Böhmer et al., 2020; Christianos et al., 2021; Van Seijen et al., 2017;
Chu and Ye, 2017)). Decoupled control via Q-learning was proposed for Atari (Sharma et al., 2017)
and extended to mixing across higher-order action subspaces (Tavakoli et al., 2021), with decoupled
bang-bang control displaying strong performance on continuous control tasks (Seyde et al., 2022b).
While coarse discretization can benefit exploration, particularly in the presence of action penalties,
it may also reduce steady-state performance. Conversely, fine discretization can exacerbate coordi-
nation challenges (Seyde et al., 2022b; Ireland and Montana, 2024). Here, we consider adapting the
control resolution over the course of training to achieve the best of both worlds.

Expanding Action Spaces Smith et al. (2023) present an adaptive policy regularization approach
that introduces soft constraints on feasible action regions, growing continuous regions linearly over
the course of training with adjustments based on dynamics uncertainty. They focus on learning
quadrupedal locomotion on hardware and expand locally around joint angles of a stable initial pose.
In discrete action spaces, one can instead leverage iterative resolution refinement. Czarnecki et al.
(2018) consider DeepMind Lab navigation tasks (Beattie et al., 2016) with a natively discrete action
space that avoids reasoning about system dynamics stability. Their policy-based method formulates
a mixture policy optimized under a distillation objective to facilitate knowledge transfer, adjust-
ing the mixing weights via Population Based Training (PBT) (Jaderberg et al., 2017). Similarly,
Synnaeve et al. (2019) consider multi-agent coordination in StarCraft and adjust spatial command
resolution via PBT. Farquhar et al. (2020) grow action resolution under a linear growth schedule
while showing limited application to simple continuous control tasks, as they enumerate the action
space and do not consider decoupled optimization. Beyond control applications, Yang et al. (2023)
demonstrate adaptive mesh refinement strategies that reduce the errors in finite element simulations.
Their refinement policy recursively adds finer elements, expanding the action space.

Constrained Optimization Reward-optimal bang-bang policies may not be desirable for real-
world applications as they can be less energy efficient and increase wear and tear on physical sys-
tems, e.g., Hodel (2018). In the past, this behavior was generally avoided by employing penalty
functions as soft constraints at the cost of potentially hindering exploration or enabling reward hack-
ing (Skalse et al., 2022). The rewards and costs are automatically re-balanced to combat this issue
in Bohez et al. (2019). Similarly, undesirable behaviors are avoided by automatically balancing soft
chance constraints with the primary rewards in Roy et al. (2021). Here, we do not assume access to
explicit penalty terms and efficiently learn controllers directly based on environment reward.

3. Preliminaries

We formulate the learning control problem as a Markov Decision Process (MDP) described by the
tuple {S,A, T ,R, γ}, where S ⊂ RN and A ⊂ RM denote the state and action space, respectively,
T : S ×A → S the transition distribution, R : S ×A → R the reward function, and γ ∈ [0, 1) the
discount factor. Let st and at denote the state and action at time t, where actions are sampled from
policy π(at|st). We define the discounted infinite horizon return as Gt =

∑∞
τ=t γ

τ−tR(sτ , aτ ),
where st+1 ∼ T (·|st, at) and at ∼ π(·|st). Our objective is to learn the optimal policy that max-
imizes the expected infinite horizon return E[Gt] under unknown dynamics and reward mappings.
Conventional algorithms for continuous control settings leverage actor-critic designs with a con-
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tinuous policy πϕ(at|st) maximizing expected returns from a value estimator Qθ(st, at) or Vθ(st).
Recent studies have shown strong results with simpler methods employing discretized actors (Tang
and Agrawal, 2020; Seyde et al., 2021) or critic-only formulations (Tavakoli et al., 2018, 2021;
Seyde et al., 2022b). Here, we focus on the light-weight critic-only setting and increase control
resolution over the course of training to bridge the gap between discrete and continuous control.

3.1. Deep Q-Networks

We consider the general framework of Deep Q-Networks (DQN) (Mnih et al., 2013), where the
state-action value function Qθ(st, at) is represented by a neural network with parameters θ. The
parameters are updated to minimize the temporal-difference (TD) error, where we leverage sev-
eral performance enhancements based on the Rainbow agent (Hessel et al., 2018). These include
target networks to improve stability in combination with double Q-learning to mitigate overesti-
mation (Mnih et al., 2015; Van Hasselt et al., 2016), prioritized experience replay (PER) to focus
sampling on more informative transitions (Schaul et al., 2015), and multi-step returns to improve
stability of Bellman backups (Sutton and Barto, 2018). The resulting objective function is given by

L(θ) =
B∑
b=1

Lδ(yt −Qθ(st, at)), (1)

where action evaluation employs the target yt =
∑n−1

j=0 γ
jr(st+j , at+j) + γnQθ−

(
st+n, a

∗
t+n

)
,

action selection uses a∗t+1 = argmaxaQθ(st+1, a), Lδ(·) is the Huber loss and the batch size is B.
Here, we leverage a target network with parameters Qθ− to further enhance learning stability.

3.2. Decoupled Q-Networks

Traditional DQN-based agents enumerate the entire action space and do not scale well to high di-
mensional control problems. Decoupled representations address scalability issues by treating sub-
sets of action dimensions as separate agents and coordinating joint behavior in expectation (Sharma
et al., 2017; Sunehag et al., 2017; Rashid et al., 2018; Tavakoli et al., 2021; Seyde et al., 2022b). The
Decoupled Q-Networks (DecQN) agent introduced in Seyde et al. (2022b) employs a complete de-
composition with the critic predicting univariate utilities for each action dimension aj conditioned
on the global state s. The corresponding state-action value function is recovered as

Qθ(st,at) =
M∑
j=1

Qj
θ(st, a

j
t )

M
, (2)

where the objective is analogous to Eq. 1, enabling centralized training with decentralized execution.

4. Growing Q-Networks

Discrete control algorithms have demonstrated competitive performance on continuous control bench-
marks (Tang and Agrawal, 2020; Tavakoli et al., 2018; Seyde et al., 2021). One potential benefit of
these methods is the intrinsic coarse exploration that can accelerate the generation of informative
environment feedback. Robot control applications favor smooth controllers at convergence to limit
hardware stress. We aim to bridge the gap between coarse exploration capabilities and smooth con-
trol performance while retaining sample-efficient learning. We leverage insights from the growing
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Figure 1: Schematic of a GQN agent with decoupled 5-bin discretization and 3-bin active subspace.
The available actions are highlighted in green while the masked actions are depicted in
gray. The predicted state-action values Q(s, a0, ..., aM ) are computed via linear com-
position of the univariate utilities Q(s, aj) by selecting one action per dimension (red).
We consider a homogeneous discretization across action dimensions for simplicity, but
heterogeneous discretization are feasible as well.

action space literature (Czarnecki et al., 2018; Farquhar et al., 2020) and consider a decoupled critic
that increases its control resolution over the course of training. To this end, we define the discrete
action sub-space at iteration g as Ag ⊂ A and modify the TD target to yield

yt =

n−1∑
j=0

γjr(st+j , at+j) + γn
M∑
j=1

max
ajt+1∈Ag

Qj
θ−(st+n, a

j
t+n)

M
, (3)

where ϵ-greedy action sampling is constrained to Ag. The network architecture accommodates the
full discretized action space from the start and constrains the active set via action masking, enabling
masked action combinations to profit from information propagation in the shared torso (Van Seijen
et al., 2017). A schematic of a decoupled agent with 5-bin discretization and active 3-bin subspace is
provided in Figure 1. In order to deploy such an agent, we require a schedule for when to expand the
active action space Ag → Ag+1. Here, we consider two simple variations to limit engineering effort.
First, we consider a linear schedule that doubles control resolution every 1

N+1 of training episodes,
where N indicates the number of subspaces Ag. Second, we formulate an adaptive schedule based
on an upper confidence bound inspired threshold over the moving average returns

Gthreshold,t =
(
1.00− 0.05 sgnµG

MA,t−1

)
µG

MA,t−1 + 0.90σG
MA,t−1, (4)

where µMA and σMA are the moving average mean and standard deviation of the evaluation returns,
respectively. The objective underestimates the mean by 5% and expands the action space whenever
the current mean return falls below the threshold µG

t < Gthreshold,t, signifying performance stagna-
tion. This parameterization can avoid pre-mature expansion when exploring under sparse rewards,
but alternative formulations are also applicable. A qualitative example of our approach is provided
in Figure 2, where we visualize the state-action value function over the course of training on a pen-
dulum swing-up task. We consider a GQN agent with discretization 2 → 9 (meaning {2, 3, 5, 9})
and provide learned values for each action bin starting at initialization and adding a row every time
the action space is grown (top to bottom). The active bins are framed in green, where we observe
the accurate representation of the state-action value function for active bins, while the inactive bins
still provide structured output due to the high degree of weight sharing provided by our architecture.

In the following section, we provide quantitative results on a range of challenging continuous
control tasks. We use the same set of hyperparameters throughout all experiments, unless otherwise
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Figure 2: State-action values for a pendulum swing-up task over the course of training (top to bot-
tom). The active bins are outlined in green. The value predictions transition from random
at initialization to structured upon activation. Inactive bins profit from the emergent struc-
ture within the shared network torso to warm-start their optimization.

indicated, following the general parameterization of Seyde et al. (2022b) with a simple multi-layer
perceptron architecture and dimensionality [512, 512]. We evaluate mean performance with stan-
dard deviation across 4 seeds and 10 evaluation episodes for each task. Our implementation builds
on the codebase of Seyde et al. (2022b)1 and we provide hyperparameter in Table 1 of the Appendix.

5. Experiments

We evaluate our approach on a selection of tasks from the DeepMind Control Suite (Tunyasuvu-
nakool et al., 2020), MetaWorld (Yu et al., 2020), and MyoSuite (Vittorio et al., 2022). The former
two benchmarks generally do not consider action penalties and have previously been solved with
bang-bang control (Seyde et al., 2022b). Therefore, we focus on action-penalized task variations to
encourage smooth control and highlight exploration challenges in the presence of penalty terms.

We first evaluate performance on tasks from the DeepMind Control Suite with action dimen-
sionality up to dim(A) = 38. We consider 2 penalty weights ca ∈ {0.1, 0.5}, such that rewards are
computed as rt = rot−ca

∑M
j=1 a

j
t

2
/M from original reward rot . We consider GQN agents that grow

their action space discretization from 2 to 9 bins in each action dimension, where we evaluate both

1. Corresponding code available at https://github.com/tseyde/decqn
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Figure 3: Performance on tasks from the DeepMind Control Suite with action penalty −0.1|a|2.
Our GQN agent grows its action space resolution via a 2 → 3 → 5 → 9 bin sequence,
where the linear and adaptive expansion schedules yield similar results. The GQN agent
performs competitive to the discrete DecQN as well as the continuous D4PG and DMPO
baselines, achieving noticeable improvements on the Humanoid Stand and Walk tasks.

the linear and adaptive growing schedules discussed in Section 4. We compare performance against
the state-of-the-art continuous control D4PG (Barth-Maron et al., 2018) and DMPO (Abdolmaleki
et al., 2018b) agents while providing two discrete control DecQN agents with stationary action space
discretization of 2 or 9 for reference. The results in Figures 3 and 4 indicate the strong performance
of GQN agents, with the adaptive schedule improving upon the linear schedule in terms of con-
vergence rate and variance. Growing control resolution further provides a clear advantage over the
stationary DecQN agents both in terms of final performance (vs. DecQN 2) and exploration abilities
(vs. DecQN 9). These observations mirror findings by Czarnecki et al. (2018), where coarse control
resolution was beneficial for early exploration, a characteristic amplified by action penalties. We
further observe strong performance of discrete GQN agents compared to the continuous D4PG and
DMPO agents. The non-stationary optimization objective inherent to GQN may not be necessary
on simpler tasks with limited exploration requirements such as Cartpole Swinup or Reacher Hard,
while it significantly improves performance on complex domains such as Humanoid or Dog.

In order to provide additional quantitative motivation for the presence of action penalties, we
compare the smoothness of the converged policies in Figure 5. We consider the adaptive GQN
agent with action penalties ca ∈ {0.1, 0.5} and the continuous D4PG agent with action penalty
ca = 0.5. The metrics we consider are original non-penalized task performance, R, incurred action
penalty, P , action magnitude, |a|, instantaneous action change, |∆a|, and the Fast Fourier Transform
(FFT) based smoothness metric from Mysore et al. (2021), SM. All metrics are normalized by the
corresponding value achieved by the unconstrained GQN agent with ca = 0.0. The results indicate
that increasing the action penalty yields noticeably smoother control signals while only having a
minor impact on the original task performance as measured by the unconstrained reward, R. We
further find that smoothness of the discrete GQN agent is at least as good as for the continuous D4PG
agent on the tasks considered (note that D4PG is unable to solve the Humanoid tasks, R ≈ 0).
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Figure 4: Performance on tasks from the DeepMind Control Suite with action penalty −0.5|a|2.
Our GQN agent grows its action space resolution via a 2 → 3 → 5 → 9 bin sequence,
where we observe benefits of the adaptive variant over the linear schedule. GQN yields
performance improvements over the discrete DecQN as well as the continuous D4PG and
DMPO baselines, with particularly strong deltas on the Humanoid and Finger tasks.

Figure 5: Comparison of control smoothness and reward performance, relative to GQN without
action penalties. Increasing the action penalty coefficient yields smoother control while
only having a minor impact on the original task performance as measured by uncon-
strained reward R. The discrete GQN further improves upon the continuous D4PG agent.

Next, we extend our study to velocity-level control tasks for the Sawyer robot in MetaWorld.
While acceleration-level control often provides sufficient filtering to interact favorably with highly
discretized bang-bang exploration, velocity-level control tends to require more fine-grained inputs.
We investigate the scalability of growing action spaces within decoupled Q-learning representa-
tions. To this end, we consider GQN agents with 2 → 9 and 9 → 65 (meaning {9, 17, 33, 65})
discretization as well as a stationary DecQN agent with 9 bins. The results in Figure 6 indicate
that initial bang-bang action selection is not well-suited for generating velocity-level actions, with
the agent achieving good performance once transitioning to more fine-grained discretization (GQN
2 → 9). Interestingly, considering a larger growing action space with GQN 9 → 65 can surpass
the performance of a stationary DecQN 9 agent, despite the non-stationary optimization objective
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Figure 6: Performance on manipulation tasks from MetaWorld with action penalty −0.5|a|2. These
tasks require control at the velocity level and are therefore more challenging to solve
with extremely coarse discretization. We therefore investigate the scalability of our GQN
agent and consider growing discretizations via a 9 → 17 → 33 → 65 bin sequence. The
resulting policy achieves stable learning and performs competitively with the continuous
D4PG baseline while improving on the stationary 9 bins DecQN agent.

Figure 7: Performance for controlling biomechanical models from the MyoSuite as measured by
task success at termination. These continuous control tasks stress test growing decoupled
discrete action spaces, due to their dimensionality and inherent complexity. Increasing
the network capacity and adjusting the discount factor to mitigate overestimation, we
observe strong performance for growing action spaces up to a discretization of 65 bins.

induced by the addition of finer action discretizations over the course of training. The performance
of GQN 9 → 65 is furthermore competitive with the continuous D4PG agent on average.

Lastly, we stress-test our approach by considering a selection of tasks from the MyoSuite bench-
mark. The tasks require control of biomechanical models that aim to be physiologically accurate
with dim(A) = 39 and up to dim(O) = 115 and should constrain the applicability of simple
decoupled Q-learning approaches such as GQN. Indeed, we find that the agent capacity becomes a
limiting factor yielding overestimation errors further exacerbated by the large magnitude reward sig-
nals. We therefore extend the network capacity to [512, 512] → [2048, 2048] and lower the discount
factor γ = 0.99 → 0.95 (alternatively, increasing multi-step returns 3 → 5 worked similarly well).
With these parameter adjustments, we observe good performance as measured by task success at the
final step of an episode, comparing favorably to the continuous D4PG agent. This further underlines
the surprising effectiveness that decoupled discrete control can yield in continuous control settings
and the benefit of adaptive control resolution change over the course of training.
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6. Conclusion

This work investigates the application of growing action spaces within decoupled Q-learning to
efficiently solve continuous control tasks. Our Growing Q-Networks (GQN) agent leverages a lin-
ear value decomposition along actuators to retain scalability in high-dimensional action spaces and
adaptively increases control resolution over the course of training. This enables coarse exploration
early during training without reduced control smoothness and accuracy at convergence. The result-
ing agent is robust and performs well even for very fine control resolutions despite inherent non-
smoothness in the optimization objective arising at the transition between resolution levels. While
GQN as a critic-only method displays very strong performance compared to recent continuous actor-
critic methods on the tasks considered, we also investigate scenarios that prove challenging for
decoupled discrete controllers as exemplified by velocity-level control of simulated manipulators
or applications to control of biomechanical models. Interesting avenues for future work include
addressing coordination challenges in increasingly high-dimensional action spaces and mitigating
overestimation bias. Generally, GQN provides a simple yet capable agent that efficiently bridges
the gap between coarse exploration and solution smoothness through adaptive control resolution
refinement.
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Appendix

Table 1: GQN hyperparameters.

Parameter Value

Optimizer Adam
Learning rate 1× 10−4

n-step returns 3
Action repeat 1
Discount γ 0.99
Batch size 256
Gradient clipping 40
Target update period 100
Imp. sampling exponent 0.2
Priority exponent 0.6
Exploration ϵ 0.1
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Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

R. Bellman, I. Glicksberg, and O. Gross. On the “bang-bang” control problem. Quarterly of Applied
Mathematics, 14(1), 1956.

Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and Raia Had-
sell. Value constrained model-free continuous control. arXiv preprint arXiv:1902.04623, 2019.
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