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Abstract
We propose a novel perspective to integrate control theoretical results with reinforcement learning
(RL) for control stability, robustness, and policy transfer: deploying contraction theory for modu-
lar architecture design. We leverage the modularity of contraction theory to design the coordinate
transformation that can simplify the nonlinear constraints for stability into algebraically solvable
ones, yielding linear constraints on the input gradients of control networks. These constraints can
be implemented in the control architecture and hence the learning framework remains unchanged,
a minimally invasive way to guarantee control stability. We also derive the corresponding theo-
rems to characterize robustness. To mitigate limitations and requirements of dynamic models, we
propose a modular control architecture including the coordinate transformation, composite vari-
ables, and task space controllers, which is arguably easy to be integrated with hierarchical RL for
robot manipulation in unknown environments and improves its performance. We demonstrate our
results in two simulated manipulation scenarios. This work suggests the potential of formulating
architecture design problems into creating Riemannian spaces paired with contraction metrics.
Keywords: modularity, contraction theory, reinforcement learning, control stability

1. Introduction

Control theoretical results have been deployed in reinforcement learning (RL) to improve control
stability, robustness, and generalization for real-world robotic applications, in the way of formu-
lating control theoretical results into optimization problems (Berkenkamp et al., 2017; Moos et al.,
2022), incorporating the results in statistical techniques (Mandlekar et al., 2017; Cheng et al., 2019),
reducing the gaps between simulation and the real world (Singh et al., 2018), etc. Here we propose
a novel perspective: deploying control theoretical results for modular architecture design.

RL targets at the control problems involving variations, uncertainties, unknowns, and non-
convexities. It characterizes physical systems with transition functions and formulates optimal
control as decision making for Markov Decision Processes (MDPs).

We start with examining the stability of a control policy for an MDP, focusing on the case
that the MDP accurately describes a task involving dynamic parameter variations. The parameter
distributions in training and testing are identical.

We consider the type of nonlinear system stability known as contraction (Lohmiller and Slotine,
1998). Similar to but distinct from the region of attraction, in a region of contraction, convergence
occurs not with respect to a system equilibrium but to a trajectory. Intuitively, all possible states
in the region of contraction, including the unseen ones in training, evolve towards some consistent
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behaviors, as illustrated in Fig. 1 (a). This implies RL agents can optimize the trajectories, while
forcing all possible trajectories to converge to each other.

In our parallel paper Song et al., 2023, we show that there exists stability boundaries, the nec-
essary and sufficient conditions for contraction, varying along dynamic parameters. When an RL
agent ignores those boundaries, it allows the (local) optimal policy to produce a small fraction of un-
stable trajectories, possibly small enough to be ignored in empirical studies. Those instabilities can
manifest themselves when the dynamic parameters shift, preventing robustness and policy transfer.

This raises the concern for real-world applications, as stability analysis is often omitted from
empirical studies and most RL algorithms do not provide theoretical guarantees. On the other hand,
concerns persist regarding whether stability guarantees should restrict learning due to conservatism.

This paper investigates how we may deploy control theoretical results to solve the above con-
cerns, addressing the instabilities in control that prevent policy transfer and robustness.

Deploying control-theoretical results is intrinsically difficult for tasks with large parameter vari-
ations. For example, to extend the neural certificates (Dawson et al., 2022) to RL, it requires to
understand the interplay between the bounds on the generalization error for the certificates (Boffi
et al., 2021), the exploration for value estimation, and task parameter distributions. This interplay
has been seldomly investigated in current methods that combine neural certificates with RL, whether
through direct approaches like weighted sum of objectives (Qin et al., 2021) and alternative updates
(Luo and Ma, 2021), or through mathematically rigorous approaches like unifying the objective
functions into a multi-timescale min-max-min optimization problem (Ma et al., 2022). Expertise in
both nonlinear control and RL is likely required for the empirical certificate loss design as well as
task-specific hyperparameter tuning.

Considering practical examples that involve parameter variations such as contact-rich manipula-
tion and flying in strong winds, learning those skills seems easy and natural to animals. Modularity
is believed to be the key in both machine learning (Reed et al., 2022) and nonlinear control, particu-
larly contraction theory (Slotine and Lohmiller, 2001), although the definitions of modularity differ
slightly. More than functional specialization, the modularity from contraction theory ensures that
combining stable subsystems can automatically preserve the stability (Slotine, 2003).

Seeing the controller synthesis as the combination of designing the control architecture and op-
timizing neural control policies via RL, we leverage contraction theory to build modular control
architectures to guarantee control stability. Firstly, we use coordinate transformation to deconstruct
the dynamics by creating an auxiliary space, within which the controlled signals are coupled in a
modular structure. We provide one explicit solution of the coordinate transformation that yields
hierarchical combinations of subsystems in the auxiliary space, as illustrated in Fig. 1 (b) and (c).
Leveraging the modularity of contraction, we simplify the nonlinear constraints into linear ones
that can be implemented in the control architecture, yielding a minimally invasive way to guaran-
tee control stability for RL. We also provide theorems to characterize the robustness. Secondly,
we use function composition to mitigate the limitations and requirements of dynamics models in
deconstructing the dynamics.

Because the learning framework remains unchanged, our approach allows arguably easy integra-
tion into the modular architectures in machine learning, in particular, hierarchical RL, and improves
its performance by providing consistent low-level dynamic behaviors. Integration with hierarchical
RL is also expected to mitigate the concern of conservativeness. Results are demonstrated in two
simulated manipulation scenarios. We also briefly include the robustness test of proximal policy
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Figure 1: Stable modular control. (a) When a control policy ensures contraction, all possible states,
including the unseen ones in training like xNEW at ti, evolve toward some learned con-
sistent behaviors, the convergence of trajectories. (b) Considering controller synthesis
as designing a control architecture (red) and optimizing control policies via RL (blue),
the coordinate transformation Ty and Ta creates an auxiliary space, within which the dy-
namics can be seen as subsystems combined in a modular pattern. (c) The hierarchical
type of modularity refers to the combination of subsystems that the lower level affects the
higher level in sequence and hence the subsystems converge recursively following their
hierarchies, conceptually similar to a robot arm from the base joint to the end effector.

optimization (PPO) (Schulman et al., 2017) in the parallel paper Song et al., 2023. Proofs are in the
arXiv preprint at https://arxiv.org/pdf/2311.03669.pdf.

Contributions. Our main contribution is the new perspective that guarantees control stability for
RL via control architecture design. In particular, we leverage the modularity of contraction theory
to design the coordinate transformation that can simplify the nonlinear constraints for stability into
algebraically solvable ones, yielding linear constraints on the input gradients of control networks.
To our best knowledge, this perspective—constructing modular control architectures via control
theoretical results for stability, robustness, and generalization—is new to RL. It is also novel in
the control field to design the modular architectures of neural control systems by deconstructing
dynamics. This work implies the potential of formulating architecture design problems into creating
Riemannian spaces paired with contraction metrics.

Other technical contributions include (i) a modular control architecture that is arguably easy to
be integrated in hierarchical RL for robot manipulation in unknown environments and (ii) theorems
that characterize the robustness.

2. Related work

Contraction theory in data-driven methodologies. Contraction theory has been used in data-
driven methods for robust control (Tsukamoto et al., 2020), adaptive control (Tsukamoto et al.,
2021a), motion planning (Tsukamoto and Chung, 2021), and system identification (Singh et al.,
2021). Compared with Lyapunov theory, contraction theory analyzes nonlinear systems via their
differential dynamics without specifying a system equilibrium, an advantage to analyze the nonlin-
ear systems with uncertain dynamic parameters that shifts the equilibrium (Aylward et al., 2008). A
brief comparison of different types of stability can be found in Tsukamoto et al., 2021b.
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Safe learning. Brunke et al., 2022 provides an extensive survey on the safe learning. By investi-
gating the stability of a control policy for an MDP, our work focuses on the concern from the fact
that shifts in stability boundaries, brought by dynamic parameter variations, can transition a stable
policy that is transferable to unseen states into a dangerous one. The results of constraining the
input gradients of control networks for stability are in line with Jin and Lavaei, 2020, which focuses
on L2 stability of linear systems with added nonlinearity. In terms of methodology, to guarantee
control stability usually involves Step (i) finding a Lyapunov function or a contraction metric and
Step (ii) satisfy the nonlinear constraints. Existing methods usually solve Step (i) via searching or
learning (Dawson et al., 2022; Sun et al., 2020) and solve Step (ii) by formulating the constraints
into optimization problems (Ma et al., 2022; Lale et al., 2022), similarly for approaches deploying
control Lyapunov functions (Sontag, 1983) and Control Contraction Metrics (Manchester and Slo-
tine, 2017), the extensions of Lyapunov theory and contraction theory respectively. One interesting
direction for RL is leveraging the connection between Lyapunov functions and value functions (Lee
and Sutton, 2021; Han et al., 2020; Berkenkamp et al., 2017), as there is a connection between Lya-
punov functions and Hamilton-Jacobi-Bellman equations. Here we propose a new perspective that
connects contraction metric and control architecture. We design the metric to deconstruct the dy-
namics. The metric is “implemented” via the coordinate transformation in the architecture to create
an auxiliary space, resulting in simplified constraints that can be implemented in control networks.

Modularity Besides motor primitives (Thoroughman and Shadmehr, 2000) and synergies (San-
tello et al., 2016), modularity can be applied to motion generation in control theory, that is, Rie-
mannian motion policies (Ratliff et al., 2018) pairing different Riemannian metrics to the subsets
of the state space defined by different mappings from states to the desired acceleration. Our work
shares the spirit in the way that we design the Riemannian metrics to create an auxiliary space for
dynamic deconstruction. We also deploy function composition in the architecture, yielding an extra
layer of closed-loop control of the latent signals in the latent space. Our work suggests the potential
to formulate architecture design problems into creating different Riemannian spaces paired with
contraction metrics. In machine learning, modularity (Pfeiffer et al., 2023) is formulated from the
perspective of information theory and decision making for functional specialization. The modular-
ity of contraction theory studies how the overall system stability can be automatically guaranteed
when combining stable subsystems. Another distinct feature is that contraction theory analyzes the
system with differential dynamics. The resulting linear form highly simplifies the analysis.

Related work in robustness and policy transfer. Our parallel paper Song et al., 2023 illustrates
that the shifts in stability boundaries, brought by dynamic parameter variations, can transition a sta-
ble policy that is transferable to unseen states into a dangerous one, by proving that there exists the
stability boundaries varying along dynamic parameters from the necessary and sufficient condition
for contraction. It is infeasible to apply the necessary and sufficient condition for stability guaran-
tees, either via contraction theory or Lyapunov-based methodologies. This paper presents how to
apply a sufficient condition to deal with the concerns. An extensive discussion on related work in
generalization and robustness can be found in Song et al., 2023.

3. Dynamic deconstruction in auxiliary space

We illustrate the general approach and then present the theorem of the explicit solution for the
hierarchical type of modularity, followed by the assumptions, limitations, and implementation.
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3.1. General approach

Given a nonlinear system ẏ = f(y,u), we apply the coordinate transformation layers, z = Tyy and
u = Taa, and the neural control policy a = π(s1, s2) where s1 = z and s2 =

∫
zdt. We include∫

zdt in the RL state to force the system equilibrium at the goal for goal tasks, proved in Song et al.,
2023. Note that results in this paper hold without

∫
zdt and the theorems can be similarly derived by

removing the related terms. This yields the following differential dynamics in the auxiliary space:[
δż
δȧ

]
=

[
A B
C D

] [
δz
δa

]
(1)

where

A = [Ṫy + Ty
∂f

∂y
]T−1

y , B = Ty
∂f

∂u
Ta, C =

∂π

∂s1
(Ṫy + Ty

∂f

∂y
)T−1

y +
∂π

∂s2
, D =

∂π

∂s1
Ty

∂f

∂u
Ta

(2)
Without losing generality, we use z ∈ R2 for simplicity.

Each dimension is considered as a subsystem, i.e., subsystems of (zi, ai). Rearranging the
equations of Eq. 1 by grouping zi and ai yields their differential dynamics:[

δż1
δȧ1

]
= F11

[
δz1
δa1

]
+ F12

[
δz2
δa2

]
,

[
δż2
δȧ2

]
= F22

[
δz2
δa2

]
+ F21

[
δz1
δa1

]
(3)

where Fij denotes the weight matrices rearranged from Eq. (2). These two subsystems are coupled
via the weight matrices F12 and F21. The self-feedbacks are F11 and F12.

Contraction theory Slotine, 2003 provides and proves the basic types of couplings (combina-
tions) that ensure the overall system preserves the stability, provided each self-feedback is stable.
For example, the hierarchical type refers to F12 = 0 and bounded F21. Intuitively, for the hierar-
chical type of stability, if each self-feedback loop is stable and the couplings between subsystems
are bounded, the subsystems converge recursively following their hierarchies from the lowest to
the highest, because the lower subsystem i is always independent from the higher subsystem j for
∀j > i, conceptually similar to moving a robot arm from the base joint to the end effector.

To realize a specific type of couplings, one can specify the Fij where i ̸= j and solve for Ty and
Ta from Eq. (2). The existence of Ty and Ta needs further study. Intuitively, take the hierarchical-
type modularity as an example. There are 2n2 unknown variables, i.e., the scalar elements of Ty

and Ta, to satisfy 2(n2 − n) equations from specifying the coupling matrices, which implies there
always exists a solution. Note that the above discussions are with the assumption that Ṫy can be
ignored (see Appendix C of the arXiv preprint).

To achieve stable self-feedbacks, one can solve the characteristic equations of those weight
matrices Fij where i = j for negative eigenvalues, yielding linear constraints on the input gradients
of control networks for stability.

3.2. Stability theorem for the hierarchical-type modularity

Stability theorem (contraction). For a general nonlinear system ẏ = f(y,u) with diagonalizable
∂f/∂y, given a control policy π, and two transformation layers Ty and Ta that (i) the control
commands u = Taπ(Tyy), and (ii) T T

y Ty and (T−1
a )TT−1

a are uniformly positive definite, if there
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exists α > 0 in a region such that ∀x, ∀t > 0,

∂πi

∂s1i
Rii + Λii < −α,

∂πi

∂s2i
Rii < −α (4)

where Rii and Λii are the ith diagonal components of R = Ty
∂f
∂uTa and Λ = Ty

∂f
∂yT

−1
y respectively,

s1 = Tyy and s2 =
∫
Tyydt, the neural control system is contracting in the region, provided that

• Ty is the eigenvector matrix from eigenvalue decomposition of diagonalizable ∂f/∂y,

• Ta = (PQT )−1, where Q is the left matrix from the QR decomposition of PTy∂f/∂u and P
is the permutation matrix with all ones at the skew diagonal,

• each subsystem is controlled by an independent neural network, π = [π1, · · · , πn],

• there exists N ∈ R+, ∀t ≥ N , Ṫy = 0, and ∀t < N , the dynamics are bounded.

3.3. Robustness

Robustness is the direct outcome of contraction. Considering a task with f ∈ F, we can realize
contraction for all possible f by using the inner bounds of the constraints from Eq. (4). This also
implies zero-shot policy transfer in terms of a stable controller, while the optimality may be com-
promised. We provide a theorem to examine the contraction at the presence of model errors in the
arXiv preprint. The following is robustness to disturbances. Proofs are also in the arXiv preprint.

Robustness to unknown deterministic perturbation. Considering the perturbed system ẏ =
f(y,u, t) + d(y,u, t) with u = Taπ(Tyy, ∫ Tyydt), where d represents unknown, bounded, and
deterministic disturbances, we rewrite the system with respect to ȳ = [yT ,uT ]T , yielding the
˙̄y = f̄(ȳ, t) + d̄ where d̄ contains all the terms involving d(y,u, t). Let ξ0 denote a trajectory of
the contracting ˙̄y = f̄(ȳ, t) with the convergence rate β, and ξ1 a trajectory of the perturbed system
˙̄y = f̄(ȳ, t) + d̄. The distance between the trajectories of the contracting system and its perturbed
dynamics is converging to a bounded error ball:

∥ξ0(t)− ξ1(t)∥ ≤ C1e
−βt + C2 sup

y,u,t
∥ΘM d̄∥1− e−βt

β
(5)

where ΘM is the diagonal block matrix with Ty and T−1
a on the diagonal, and Ci’s are constants

determined by the initial conditions ξi(0)’s and the bounds of M = ΘT
MΘM , Ta, Ty, ∂π/∂s1.

3.4. Assumptions, limitation, and implementation

We assume, for the dynamics ẏ = f(y,u), that (i) the locally linearized model, ∂f/∂x and ∂f/∂u,
is known and (ii) the y and u have the same dimensions.

One limitation is that Ty and Ta needs to be updated step-wise by solving eigenvalue decom-
position problems, which can be computational expensive when y has large dimensions. The other
limitation is the conservativeness, coming from two sources. The contraction metric is designed to
create modularity instead of minimizing possible conservativeness and the inner bounds of the con-
straints for all possible dynamic parameters are applied. We expect that integration with hierarchical
RL can mitigate the conservativeness, while further studies are needed.
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Above assumptions and limitation can be possibly mitigated via creating the latent space by
function composition and existing control techniques, illustrated in the next section, the control
architecture for hierarchical RL.

Implementation of the stability theorem includes (i) adding two layers Ty and Ta in the control
framework, the values of which are updated time-stepwise, and (ii) limiting the network Jacobians
∂πi/∂si (i = 1, 2, · · · ,m) with the estimated inner bounds of the linear inequality constraints in
Eq. (4). We have the following remarks. If ∂f/∂x has negative eigenvalues, that is, Λii < 0, the
constraints become switching signs according to Rii. For robotics, negative eigenvalues can be real-
ized by existing controllers and the neural control policy adds an extra layer of closed-loop control
(see next section). Further studies are needed to understand the physical implications of Rii and
evaluate if and when frequent switching may happen, which likely causes problems. In our experi-
ments, we do not observe any concerns. The stability theorem is derived with continuous dynamic
models which applies to low-level control in practice that has fast enough control frequencies. If
considering discretization like for high-level planning, the input gradients are likely bounded from
two sides. Although the stability theorem does not make any assumptions about the NN architec-
ture, to further simplify the constraints, one can use the activation functions with nonnegative first
derivatives. Further simplification can be found in Section V. B. of the arXiv preprint.

4. Modular Control architecture for Hierarchical RL

We propose the modular control architecture in Fig. 2. Besides the coordinate transformation, we
introduce a controller G(x,xd) embedded in robots ẋ = ftask(x, G(x,xd),u) and a composite
variable y = g(x,xd) into the architecture. The high-level planning running with a lower frequency
reads the robot state and plans the desired state over some horizon. The low-level control applies to
the composite variable y within the latent space, the dynamics of which results from the embedded
G and g. By doing so, we can leverage control theoretical results to design the embedded controller
and the composite variable in the way to mitigate limitations and requirements of dynamic models.

We propose an example using task space controllers (Nakanishi et al., 2008) and composite
variables (Slotine, 2003) for robot manipulation in unknown environments. As for the resulting
ẏ = f(y,u), its dynamic parameters are made of the weights of the task space controller and the
composite variables with a diagonal ∂f/∂x. Details are in the arXiv preprint.

The low-level neural policy adds an extra layer of closed-loop control in the way to regulate
the composite variable, i.e., the latent signal y. The latent state y = g(x,xd) converges towards
g(xd,xd) and the robot state x converges to xd. The robot manipulation experiment shows that this
extra layer improves the performance of hierarchical RL.

RL 
Agents

!!"#!, !$%&High-level Planning Low-level Control

!̇ = $!"#$(!, ' !, !% , () * = +(!, !%)
Robot Task Composite Variable

*̇ = $	(*, ()
Latent Space

!
!% ( = -&./ = -'*

#, #', $!"#! #, #'
%, &, $$%& %, '(#', #')

Figure 2: Modular Control architecture for Hierarchical RL.
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Considering the auxiliary space, there exists a differential relationship δz = Ty
∂g
∂xδx+Ty

∂g
∂xd

δxd,
suggesting that for the state space, there exists a contraction metric made of g, Ty, and Ta. This
raises an interesting question if there exists a general connection between contraction metrics and
the architecture design techniques, e.g., function composition and coordinate transformation. Can
we formulate the architecture design problem into creating different spaces paired with contraction
metrics? Another interesting question is that how we may apply this framework to high-dimensional
systems using learned latent signals in machine learning. Even more general, this work suggests the
potential to design learning system architectures via contraction theory.

5. Example I: Necessity for robustness and generalization

This section briefly presents the robustness and generalization test in the parallel paper Song et al.,
2023. The environment approximately simulates a 2D stiff robot (peg-like) touching elastic surfaces
(the sketch in Fig. 3), the dynamics of which are described by the following equations

τxẋ+ x = ux, τz ż + z = uz, f = Ksmin (z − g(x), 0), g(x) = K1 sinx+K2 cosx (6)

where x and z denotes the position, f represents the force following the Hooke’s law, and g(x) is
the surface profile along the z-axis. Based on those continuous equations, we built the simulator
using the Euler method for discretization with a sampling period T . The task is to move this 2D
“peg” to touch a surface at randomly sampled desired position xd with the desired force fd by PPO.

Both PPO and the constrained PPO (C-PPO) can learn the tasks with high accuracy, with stable
learning curves at similar return levels. Examining 8000 trajectories, we observed 8 oscillating ones,
a small fraction ∼ 0.01% of instabilities from PPO. In the robustness test with a larger range of
dynamic parameters, the performance of PPO is obviously deteriorated, while C-PPO the preserves
the tracking accuracy, better than PPO by two orders of magnitude, illustrated in Fig. 3.
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Figure 3: Necessity for robustness and generalization. Policies are tested for 8000 trajectories,
with new task parameters with 50% differences in τi (i = x, z), 100% in Ksur and 50%
in Ki (i = 1, 2). In training, the PPO policy produces ∼ 0.01% of trajectories that are
oscillating with ∥e∥ > 0.4 and the largest error is around 1. The middle figure plots the
results in testing. The amount of trajectories with ∥e∥ > 0.4 is increased from 8 to 163
and most of them have the tracking error around 2. C-PPO policy preserves the tracking
accuracy, better than PPO by two orders of magnitude.
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6. Example II: Manipulation learning via hierarchical RL

To implement the modular control architecture for hierarchical RL, we modified the hierarchical
learning framework from HIRO (Nachum et al., 2018) in Tensorflow Model Garden. HIRO has
outperformed other methods on ant push and ant maze with added relabeling processes to alleviate
the non-stationary issue, particularly in data efficiency (Nachum et al., 2018). We extracted the
2-level learning framework using two TD3 agents, removed the relabeling process in HIRO, used
the task space instead of the joint space for planning and tracking, added the composite errors, task
space controllers, and the coordinate transformation for the low-level control in the architecture.

To evaluate our method, we created peg-maze and peg-push tasks following the concepts of ant
maze and ant push. A Franka Panda robot is used to move the peg. The experiments are in Mujoco
simulation. Denoting our approach as TD3/C-TD3, we compare our TD3/C-TD3 and HIRO on
the easier peg-maze task. With the more difficult peg-push task, an ablation study is performed to
evaluate the effect from neural controllers and from stability constraints. We compare our TD3/C-
TD3 with (i) one-level learning with non-neural control: TD3/Control and PPO/Control, and (ii)
hierarchical RL without stability constraints: TD3/TD3.

Peg maze: TD3/C-TD3 vs. HIRO. The task is to reach a goal in the green zone through the
unstructured environment with fixed obstacles (Fig. 4(a)). Robot’s motion is limited by a hood.
Particularly, the vertical limit forces the peg going through the unstructured zone. Both HIRO and
TD3/C-TD3 can find the path with high success rates and with high data efficiency given the initial
exploration in the direction of the maze. To evaluate the safety in exploration, we tested policies
across the learning curves and compare the distribution of contact forces, plotted in Fig. 4(c). In
TD3/C-TD3, 99.93% steps are with less-than-1 N contacts, including 64.24% steps without con-
tacts. In HIRO, 65.88% steps are with less-than-1 N contacts, including 6.22% zero contacts. This
shows that TD3/C-TD3 can explore through the obstacles with soft touches, i.e., small contact
forces. Besides consistent low-level behaviors, TD3/C-TD3 also benefits from an easier high-level
problem, finding a path, compared to planning joint positions in HIRO. Hyperparameters and task
paramters are listed in Appendix G of the arXiv preprint.

Peg push: ablation study. The peg-push task is to reach a hidden goal in a box (Fig. 4(b)) that
requires interactions with moving objects. We firstly tuned the task space controller, the high-level
action range, the low-level horizon, and the fixed trajectory length to make sure that the robot can
stably explore the entire environment. The average learning curve from 5 seeds are presented in
Fig. 4(d). Only TD3/C-TD3 is able to learn the task (expected return in [−400,−200]), and 2
trials have converged after 3M experiment steps. This causes the large variance around 3M to 6M
in the averaged learning curve. Other methods fail to learn the task (returns ≈ −700). Close
examination of the trajectories shows that TD3/control and PPO/control can learn stable trajectories
but haven’t figured out the entire path to the goal within 12M steps. Without stability constraints,
TD3/TD3 learns unstable trajectories passing by the goal. There still exists one question: whether
the soft contact model highly simplifies the task as we observed penetration (the penetration issue
discussed in (Parmar et al., 2021)). Further study will focus on evaluation of the neural controller
for complex contact stiffness that varies across different surface materials and changes along with
relative motions. Appendix H of the arXiv preprint lists the geometry and contact settings of the
Mujoco environment, controller gains, RL hyperparameters, etc.
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(a) Peg maze task.

Front View Top View

(b) Peg push task.
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(c) Maze: Contact force distributions and the success rates. (d) Push: learning curves.

Figure 4: Effectiveness in manipulation learning. (a) Peg maze is a goal reaching task with fixed ob-
stacles and limited workspace. (b) Peg push is a goal reaching task that requires opening
a sliding lid box, inserting into a deep slot, and pushing away the green obstacle to reach
the small red spot underneath. (c) Both TD3/C-TD3 and HIRO can quickly learn the
task, ∼1M and 2M steps respectively. The contact force distribution are estimated from
policies at 10k, 200k, 400k, 600k, 800k, and 1M steps for TD3/C-TD3, and at 10k, 500k,
1M, 1.5M, 2M, and 2.3M steps for HIRO, the success rates of which are plotted in the top
right figure. The distribution shows improvements in safe exploration that in TD3/C-TD3,
99.93% are with less than 1 N, and 65.88% with HIRO. (d) Learning curves are plotted.
Only TD3/C-TD3 successfully learn the task within 12 M steps, with 2 trials learned
the task around 3 M steps causing the large variation. TD3/control and PPO/control
can learn stable trajectories but haven’t figured out the entire path to the goal. With-
out stability constraints, TD3/TD3 learns unstable trajectories passing by the goal. Tra-
jectory examples are at https://www.youtube.com/watch?v=nFLHwVfPIJw
and https://www.youtube.com/watch?v=RpGzpZPifUw.

7. Concluding Remarks

We propose modular control architectures to improve the control stability, robustness, and policy
transfer of RL. This paper illustrates how to leverage the modularity of contraction theory to design
the coordinate transformation that makes the signals in an auxiliary space combined in a modular
pattern, deconstructing the nonlinear constraints into linear ones. We build a modular control ar-
chitecture via coordinate transformation, composite variables, and task space controllers for robot
manipulation in unknown environments, which is arguably easy to be integrated with hierarchical
RL and improves its performance. This work suggests the potential to formulate architecture design
into creating Riemannian spaces paired with contraction metrics.
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