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Abstract
Offline Reinforcement Learning (RL) is a variant of off-policy learning where an optimal policy
must be learned from a static dataset containing trajectories collected by an unknown behavior
policy. In the offline setting, standard off-policy algorithms will overestimate values of out-of-
distribution actions, and a policy trained naı̈vely in this way will perform poorly in the environment
due to distribution shift between the implied and real environment; this is especially likely when
modeling complex and multimodal data distributions. We propose Scaled-penalty Offline Learning
(SpOiLer), an offline reinforcement learning algorithm that reduces the value of out-of-distribution
actions relative to observed actions. The resultant pessimistic value function is a lower bound of
the true value function and manipulates the policy towards selecting actions present in the dataset.
Our method is a simple augmentation to the standard Bellman backup operator and implementation
requires around 15 additional lines of code over soft actor–critic. We provide theoretical insights
into how SpOiLer operates under the hood and show empirically that SpOiLer achieves remarkable
performance against prior methods on a range of tasks.
Keywords: off-policy reinforcement learning, offline reinforcement learning

1. Introduction

Reinforcement Learning (RL) is a field of machine learning that trains a policy to complete a task
via iterative improvement (Sutton and Barto, 2018; Arulkumaran et al., 2017). Typically, the RL
setting assumes online access to an environment enabling exploration and the ability to gather ex-
perience directly and improve using the current policy (on-policy) or a mixture of previous policies
(off-policy). However, online interaction can be impractical in many scenarios where it carries
substantial expense or risk (Garcıa and Fernández, 2015; Lange et al., 2012). In such situations, a
dataset of interactions produced by one or more, potentially suboptimal, behavioral policies (e.g. hu-
man demonstrations) may exist and can be used for learning instead(Lange et al., 2012); algorithms
that can learn using a static dataset are termed batch or offline reinforcement learning algorithms.

In online settings, a policy can explore the entire action space, relying on feedback from the
environment to evaluate the action and correct overestimated action-values. However, in offline
RL, only a subset of actions are explored and the lack of evaluation of out-of-distribution (OOD)
actions can result in extrapolation error (Fujimoto et al., 2019) and subsequent overestimation of
the value (Kumar et al., 2019, 2020). Therefore, offline RL algorithms must employ mechanisms to
conservatively estimate the values of OOD actions or constrain the support of actions (Arulkumaran
et al., 2017).

Policy regularization constitutes a large portion of the work in offline RL in which a learned
policy is constrained to produce actions similar to those in the dataset (Wu et al., 2019). This in-
volves either ensuring that the policy can only select actions with sufficient support under the dataset
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state-occupancy distribution (Fujimoto et al., 2019) or applying additional distribution matching ob-
jectives on the policy (Jaques et al., 2019; Kumar et al., 2019). Such approaches are usually straight-
forward to implement, but do not directly address how the critic treats OOD values. As a result, the
critic can still easily overestimate the values of OOD actions that subsequently dominate the policy
constraint (Kostrikov et al., 2021a). Alternative policy regularization approaches perform weighted
regression (Peng et al., 2019; Nair et al., 2020; Siegel et al., 2020; Wang et al., 2020, 2018).

Critic regularization methods are another offline RL paradigm which implicitly force the actor
to select in-distribution actions. The critic is encouraged to be pessimistic about OOD actions
(Kostrikov et al., 2021b) via additional objectives used to explicitly train the critic as an energy-
based model (Kumar et al., 2020; Kostrikov et al., 2021a) or by penalizing OOD actions (Gulcehre
et al., 2021; Li et al., 2022). The latter approach applies fixed penalties to OOD action-values that
do not take into account how different an OOD action is from the observed one.

Contributions In this work, we propose SpOiLer, an alternative approach to critic regular-
ization. We modify the standard soft Bellman backup operator to include the scaled log density of
the behavior policy in Section 3.1. This results in a proportional penalty that becomes more pes-
simistic further from the dataset-action support that effectively curtails value overestimation without
excessive pessimism. In Section 3.2 we show that our augmentation is equivalent to implicitly min-
imizing the Kullback–Leibler (KL) divergence between the learned policy and behavior policy and
we interpret this to yield additional insight into the inner workings of SpOiLer. In Section 4 we
evaluate SpOiLer on a range of offline tasks and datasets and compare it with previous approaches
to demonstrate its high performance on a range of tasks. We also perform additional experiments to
analyze empirical performance.

2. Related Work

A reinforcement learning task is a decision-making problem in an environment represented as a
Markov decision process (MDP) {S,A, p0(s), p(s

′|s, a), r(s, a), γ}, where S is the state-space, A
is the action-space, p0(s) is the initial state distribution, p(s′|s, a) is the state transition distribution,
r(s, a) is the reward function and γ ∈ [0, 1) is the discount factor. The objective in RL is to find a
policy π ∈ Π that maximizes the expected cumulative discounted return:

π∗ =argmax
π

Eπ[

∞∑
t=0

γtr(st, at)|s0 ∼ p0(·)

at ∼ π(·|st), st+1,∼ p(·|st, at)].

The optimal state-value (or Q) function Q∗(s, a) measures the expected return when taking
action a in state s, assuming that subsequent actions are from π∗. The optimal policy is obtained
through a greedy objective that selects the action such that π∗(s) = argmaxπ Q∗(s, a)∀s ∈ S .
Our work focuses on continuous action spaces with A ∈ Rd for some positive integer d.

The optimal Q function is learned using the Q-learning algorithm (Watkins and Dayan, 1992;
Hasselt, 2010) by repeated applications of the Bellman optimality operator defined as T Q(s, a) =
r(s, a) + γ maxπ Q(s′, a′). In continuous action spaces, the Q function can be learned iteratively
using a suitable function approximator Qθ(s, a). The parameters θ of the model are learned by
minimizing the mean-squared Bellman error on samples from a buffer that contains past trajectories,
and a target Q function (Mnih et al., 2015). When solving an RL task in a continuous action-space,
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the analytic maximum is intractable so a separate actor network πϕ is trained to maximize the value
function (Silver et al., 2014; Haarnoja et al., 2018; Lillicrap et al., 2015; Fujimoto et al., 2018).

Updating the Q function uses Temporal Difference (TD) learning with a target function Qθ̄ and
minimizes:

JQ(θ) = E(s,a,r,s′)∼D[Qθ(s, a)− (r + γQθ̄(s
′, πϕ(s)))]

2. (1)

The policy is updated by minimizing the negative estimated reward:

Jπ(ϕ) = Es∼D[−Qθ(s, πϕ(s))]. (2)

2.1. Offline Reinforcement Learning

In an offline setting, the agent cannot generate new experiences and instead learns from interactions
collected in a dataset D consisting of tuples {s, a, r, s′} produced by behavior policy rollouts, πβ ,
in the environment.

A key limitation facing offline RL is that the dataset does not provide complete coverage of all
possible state-action pairs. As only a subset of the full state-action space, S × A, is covered by
the dataset, standard off-policy reinforcement learning algorithms (Haarnoja et al., 2018; Lillicrap
et al., 2015; Fujimoto et al., 2018) will overestimate OOD action-values (Fujimoto et al., 2019;
Kumar et al., 2019) and the resulting learned policy may choose actions that fall outside the dataset
support. If the agent takes OOD actions to maximize its reward during training, applying the same
action to a real environment can lead to catastrophic error due to the distributional shift between the
(reward) environment implied by the Q function and the real environment.

Overcoming issues caused by extrapolation in offline RL involves: 1) policy regularization that
encourages the learned policy to select actions such that deviation from observed state-action pairs
is minimized; or 2) critic regularization that attempts to indirectly prevent selection of OOD actions
by decreasing the Q values for such actions. We discuss both kinds of regularization in turn.

Policy Regularization This subset of offline RL directly constrains the actor to select actions
present in the dataset. The simplest form adds a supervised component to the actor objective either
as a standalone component (Fujimoto and Gu, 2021) or as reward-weighted behavioral cloning (BC)
(Nair et al., 2020; Kostrikov et al., 2021b; Peng et al., 2019).

Constraints can be applied more firmly by (architecturally) limiting the action-space to lie within
a small neighborhood by training the policy as a deterministic model followed by a perturbation
model (Fujimoto et al., 2019; Kumar et al., 2019). These approaches train the deterministic model
as a variational autoencoder (Kingma and Welling, 2013; Fujimoto et al., 2019) that minimizes KL
divergence, or by minimizing the maximum mean discrepancy (MMD) (Gretton et al., 2012; Kumar
et al., 2019). The deterministic model is thus trained as a density model and is fitted to the offline
dataset. Actions from this model are passed to the perturbation model, which slightly adjusts the
action to maximize the Q value. This approach typically requires extensive sampling from both the
actor and critic models and may be too restrictive (Ghasemipour et al., 2021).

Wu et al. (2019) and Jaques et al. (2019) use a simpler critic with regularization applied as a
probability divergence minimizing task, such as the KL divergence.

Policy regularization approaches can be intuitive; however, they apply an additional artificial
constraint on the actor. The underlying problem of OOD state-action overestimation remains as the
Q function receives no corrective learning signal regarding OOD actions.

Critic Regularization In an offline setting where limited or no exploration is possible, the
Q function can overestimate values for OOD actions, resulting in poor real-world performance.

3



SRINIVASAN KNOTTENBELT

Consequently, regularizing the critic to be pessimistic about OOD actions can improve performance
without having to place explicit constraints on the actor. Nachum et al. (2019) and Kumar et al.
(2020) incorporate divergence-based regularization into the critic objective; Nachum et al. (2019)
introduce penalty terms to reduce the Q values for actions sampled from the policy and Kumar et al.
(2020) sample Q values and perform approximate numerical integration to train the Q function as
an energy-based model. Kostrikov et al. (2021a) follow a similar idea using the Fisher divergence
and demonstrate equivalence to Kumar et al. (2020).

Kostrikov et al. (2021b) train the value function to learn an expectile over returns and can be
tuned to learn a value function that lies between the conservatism of SARSA Sutton and Barto
(2018) and the greediness of Q-learning while remaining fully in-sample with respect to actions.
Rezaeifar et al. (2022) takes a two-pronged perspective on regularization, firstly, by minimizing
deviation from the dataset actions using a variational autoencoder-based actor model and secondly,
by applying a penalty term to the critic objective for OOD actions. This facilitates learning by
approximating a lower bound of Q∗. The actor is trained to maximize advantage with a reward-
weighted imitation objective.

Wu et al. (2021) build on BEAR (Kumar et al., 2019) to penalize the variance between OOD
estimates of Q functions, estimated using MC dropout (Gal and Ghahramani, 2016). Li et al. (2022)
extend CQL (Kumar et al., 2020) by considering the difference in values between successive states,
computing the mean and variance and using these to identify OOD actions and penalizing via a
meta-function.

3. SpOiLer

We now describe our approach to critic regularization in the offline RL setting. Our algorithm uses
a value penalization method that offers advantages over previous approaches, namely (1) computa-
tional efficiency even with sampling from the critic and (2) performing implicit KL regularization
with strong theoretical guarantees (Vieillard et al., 2020b,a). Furthermore, Kumar et al. (2020)
show that value penalization methods such as SpOiLer guarantee that the learned value function Q̂π

is a lower bound on the true value function Qπ and that conservative updates lead to safe policy
improvement J(πCQL) ≥ J(πβ)−O( 1

(1−γ)2
) (Kumar et al. (2020) Theorem 3.6).

3.1. Conceptual Derivation

In offline RL, the dataset consists of several state-action tuples (s, a) for which a Q value can be
learned by temporal difference learning. For the actor to avoid OOD actions, given the state s, all
OOD actions ad must have a lower action-value than the observed action a:

Q(s, a) > Q(s, ad), ad ∈ A, ad ̸= a (3)

Therefore Q(s, a) + δ = Q(s, ad), δ < 0 (4)

where δ is an offset that ensures the condition in Equation 3 is met.
The problem, however, is that when evaluating OOD actions, the Q function will overestimate

values leading to errors accumulating when bootstrapping estimates (Sutton and Barto, 2018). Ku-
mar et al. (2020) and Kostrikov et al. (2021a) address this by adding an additional critic objective;
the former relies on expensive sampling and numerical integration and the latter needs a gradient
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penalty to be computed; ultimately both implement an additional score-based objective independent
of Equation 1.

If an optimal policy π∗ is known, then the log density of the behavior policy (hereafter, referred
to as the log-policy) approaches −∞ at OOD actions. In offline RL, the action support is determined
by the samples in the dataset; hence, constraining using the behavioral policy will yield a policy that
performs at least as well as the behavioral policy. The behavior policy can be estimated (using a BC-
trained policy) and so the log-policy is a powerful tool we can use to penalize actions via a simple
augmentation to the TD update rule. Augmenting with the log-policy can act as a proportional
penalty for OOD actions such that their value is less than that of in-dataset actions.

We apply our approach to Soft Actor Critic (SAC) (Haarnoja et al., 2018) which optimizes a
stochastic policy in an off-policy way. SAC maximizes entropy using entropy regularization to
encourage exploration and uses clipped double Q learning (Hasselt, 2010) for added stability. Our
approach can be expressed as a modified Bellman backup operator:

T SQ(s, a)
∆
= yt + ατ log πβ(a|s) = r(s, a) + ατ log πβ(a|s) + Es′ [V (s′)] (5)

where the log-policy is highlighted with 0 ≤ α ≤ 1, V (s) = Ea∼π[Q(s, a) − log π(a|s)] is the
soft state-value function (Haarnoja et al., 2018) and yt = r(s, a)+Es′ [V (s′)] is the unmodified TD
target. πβ is the behavioral policy estimate learned using BC.

The SAC TD target, that is, the target produced by the soft Bellman backup operator, is given
as:

Q(s, a) = r(s, a) + γ
∑
a′∈A

π(a′|s′)(Q(s′, a′)− τ log π(a′|s′)) (6)

where τ is a temperature parameter that scales entropy. When presented with OOD actions, we want
to satisfy the inequality in Equation 3 to ensure that no OOD action achieves a higher action-value
than an observed action. We rewrite Equation 5 the TD target as follows:

Q(s, a) = r(s, a) + ατ log πβ(a|s) + γ
∑
a′∈A

π(a′|s′)(Q(s′, a′)− τ log π(a′|s′)). (7)

When α = 0 we recover the standard soft Bellman operator in Equation 6. The log-policy is
adjusted to be less than 0 for OOD actions which, with iteration, will drive down their action values.

3.2. Why does SpOiLer work?

We now demonstrate why SpOiLer works. We begin with the definition:

Q′(s, a)
∆
= Q(s, a)− ατ log πβ(a|s). (8)

Equation 7 can be written as:

Q(s, a)− ατ log πβ(a|s) = r(s, a) + γ
∑
a′∈A

π(a′|s′)(Q(s′, a′)− τ log π(a′|s′)) (9)

We can rearrange Equation 9 to show that adding the log-policy implicitly factors in the KL
divergence and entropy.
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Theorem 1 Equation 9 can be rewritten using the substitution of Equation 8 as:

Q′(s, a) = r(s, a)− γ(ατDKL(π||πβ) + (1− α)τH(π)) + γ
∑
a′∈A

π(s′, a′)Q′(s′, a′)). (10)

Proof We provide an outline:

Q′(s, a) = r(s, a) + γ
∑
a′∈A

π(a′|s′)(Q(s′, a′)− τ log π(a′|s′)− ατπβ(a
′|s′) + ατπβ(a

′|s′))

= r(s, a) + γ
∑
a′∈A

π(a′|s′)(Q′(s′, a′)− τ log π(a′|s′) + ατπβ(a
′|s′))

= r(s, a)− γτ(αDKL(π||πβ) + (1− α)H(π)) + γ
∑
a′∈A

π(a′|s′)Q′(s′, a′).

Similarly for the policy, the actor aims to maximize the reward and entropy:

π∗ = argmax
π,a∼π

Q(s, a) + τH(π). (11)

Applying the definition from Equation 8 and rearranging, we can show this implicitly operates
on both KL divergence and entropy.

Theorem 2 Equation 11 can be rewritten as:

π∗ = argmax
π,a∼π

Q′(s, a)− ατDKL(π(a|s)||πβ(a|s)) + (1− α)τH(π) (12)

Proof We begin with the policy objective in Equation 11 and use the substitution in 8:

π∗ = argmax
π,a∼π

Q(s, a)− τ
∑
a∈A

π(a|s) log π(a|s)

= argmax
π,a∼π

Q(s, a)−
∑
a∈A

π(a|s)(ατ log πβ(a|s)− ατ log πβ(a|s) + τ log π(a|s))

= argmax
π,a∼π

Q′(s, a)−
∑
a∈A

π(a|s)(ατ log π(a|s) + (1− α)τ log π(a|s)− ατ log πβ(a|s))

= argmax
π,a∼π

Q′(s, a)− ατDKL(π(a|s)||πβ(a|s)) + (1− α)τH(π)

From the critic perspective in Equation 10 it is clear that adding the log-policy is equivalent to
scaling the SAC target by the KL divergence and from Equation 12, we see that the actor will both
maximize the expected cumulative reward under the KL penalty weighted by a factor of ατ .

In SAC and related extensions to offline RL (Haarnoja et al., 2018; Kumar et al., 2020) the tem-
perature parameter that scales entropy regularization (τ ) is often automatically tuned via Lagrangian
dual gradient descent. In SpOiLer, we hold τ constant to ensure the scaling of the log-policy does
not change.
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Proposition 3 (SpOiLer lower bounds the true value function) We denote QSpOiLer as the unique
fixed point learned by repeatedly applying the operator T S . For any action a ∈ A we have
QSpOiLer ≤ Q∗ where Q∗ is the Q function of the optimal policy in the batch.

Proof For a ∈ Support(πβ) it is easy to show that QSpOiLer = Q∗(s, a). For a /∈ Support(πβ) we
follow a similar procedure:

QSpOiLer = T SQ(s, a) (13)

= r(s, a) + ατ log πβ(a|s) + γEs′ [max
a′

Q(s′, a′)] (14)

< r(s, a) + γEs′ [max
a′

Q(s′, a′)] (15)

= T Q(s, a) = Q∗(s, a). (16)

By carefully choosing the properties of the scaling function, it is possible to control the pes-
simism of SpOiLer.

Proposition 4 (SpOiLer is lower bounded by the value function of the behavior policy) We de-
note QSpOiLer to be the unique fixed point learned by repeatedly applying the operator T S . By con-
trolling the scaling function such that 0 ≤ −ατ log πβ ≤ γEs′ [maxa′ Q(s, a) − Ea′ [Q(s, a)]], for
any action a ∈ A we have QSpOiLer ≥ Qµ where Qµ is the Q function of the behavior policy.

Proof For a /∈ Support(πβ) and α, τ such that 0 ≤ −ατ log πβ ≤ γEs′ [maxa′ Q(s, a)−Ea′ [Q(s, a)]]:

QSpOiLer = T SQ(s, a) (17)

= r(s, a) + ατ log πβ(a|s) + γEs′ [max
a′

Q(s′, a′)] (18)

≥ r(s, a) + γEs′ [Ea′ [Q(s′, a′)]] (19)

= T µQ(s, a) = Qµ(s, a). (20)

Propositions 3 and 4 together show that SpOiLer will perform at least as well as the behavior
policy and that it approximates the optimal batch-constraint policy.

In the in-sample case the target yt in Equation 5 is known since the dataset contains the next
state s′. When sampling OOD actions using model-free algorithms, the next state is unknown and
we resort to an approximation of yt using an average over action-values estimated by the ensemble
of K Q functions: T̂sQ(s, aood) = ατ log πβ(a|s) + 1

K

∑K
k=1Q

k(s, aood) where gradients are not
propagated through the second term.

3.3. SpOiLer and M-DQN

Although on the surface, our approach performs a similar augmentation to Munchausen-DQN (M-
DQN) (Vieillard et al., 2020b), the learning algorithm and implementation differ greatly. M-DQN
is designed for discrete action-space tasks with the augmentation used to implicitly regularize be-
tween successive policies. SpOiLer uses augmentation to construct pseudo-targets for OOD actions
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that take into account how different an OOD action is from an observed one. Furthermore, SpOiLer
builds on soft actor–critic to learn in a continuous action space and requires sampling of OOD ac-
tions to regularize the critic. M-DQN performance in an offline setting has been empirically evalu-
ated (Liu et al., 2021) where it rarely outperforms BCQ, whereas SpOiLer consistently outperforms
BCQ.

3.4. Links to BRAC

From Equations 10 and 12, it is clear that setting α = 1 yields the primal form of BRAC/BRAC+
(Wu et al., 2019; Zhang et al., 2021) using KL divergence. BRAC uses either value or policy reg-
ularization, the latter of which is reminiscent of KL control policies (Jaques et al., 2019). BRAC’s
value regularization method augments the target with the explicit KL divergence of the next action,
which is distinctly different from SpOiLer which regularizes using the current action and behavior
policy only and in combination with entropy regularization, yields an implied KL divergence with
the next action.

We justify the constraint 0 ≤ α ≤ 1 as setting α = 0 recovers SAC (losing KL regularization)
and α = 1 yields BRAC (losing the benefits of entropy regularization (Eysenbach and Levine,
2021)). From Equations 10 and 12, it is clear that with α > 1 the actor will minimize entropy
and KL divergence leading to an increasingly deterministic policy. On the other hand, α < 0 will
maximize entropy and KL divergence.

3.5. Implementation

We instantiate the empirical behavior policy πβ as a Gaussian policy and train using supervised
learning for 500k steps prior to actor-critic training. Our assumptions at this stage are that the true
behavior policy is unimodal and the the estimated behavior policy is a good approximation of the
true policy.

Adding the scaled log-policy for continuous action spaces can cause numerical issues with high-
dimensional actions as the log-policy is unbounded. Limiting the log-policy using a scaling function
g(log πβ) can alleviate this. We instantiate g(·) as a function that firstly subtracts the log-policy of
the dataset action which upper bounds the penalty at 0 and clips the lower bound to be no lower than
-1 (Vieillard et al., 2020b). We find that α = 0.9 and τ = 0.1 perform well and use these parameters
for all experiments. We draw 10 samples from the policy and penalize their corresponding values
using SpOiLer’s log-policy augmentation penalty.

4. Experiments

In this section, we conduct experiments to evaluate SpOiLer on several D4RL (Fu et al., 2020) tasks.
Our evaluation focuses on continuous action space tasks from the MuJoCo, Maze, FrankaKitchen
(Gupta et al., 2019) and Adroit (Rajeswaran et al., 2017) domains.

We compare against: BEAR (Kumar et al., 2019), BRAC (Wu et al., 2019), CQL (Kumar et al.,
2020), BCQ (Fujimoto et al., 2019), IQL (Kostrikov et al., 2021b), TD3+BC (Fujimoto and Gu,
2021), TD3-CVAE (Rezaeifar et al., 2022), PessORL (Peng et al., 2019), SAW (Lyu et al., 2022),
and behavioral cloning (BC). Results for BEAR, BRAC, BC and CQL are reported from Fu et al.
(2020) and results for other algorithms are from their respective papers.
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Table 1: Normalized scores for SpOiLer and other methods in the Gym (top) and Adroit (bottom)
domains. For SpOiLer, we compute the average normalized score and standard deviation over 4
seeds. Top two scores are highlighted in bold.

Task BC BCQ BRAC BEAR CQL TD3+BC TD3+CVAE IQL PessORL SAW SpOiLer

halfcheetah-m 36.1 40.7 43.8 41.7 44.4 42.8 43.2 47.4 49.2 47.5 48.7 (0.3)
walker2d-m 6.6 53.1 81.1 59.1 79.2 79.7 68.2 78.3 75.6 74.8 79.8 (6.4)
hopper-m 29.0 54.5 32.7 52.1 58.0 99.5 55.9 66.3 76.4 95.4 52.0 (9.3)
halfcheetah-m-r 38.4 38.2 47.7 38.6 46.2 43.3 45.3 44.2 - 43.9 50.6 (0.5)
walker2d-m-r 11.3 15.0 0.9 19.2 26.7 25.2 15.4 73.9 - 58.0 42.6 (7.8)
hopper-m-r 11.8 33.1 0.6 33.7 48.6 31.4 46.7 94.7 - 97.3 66.9 (11.5)
halfcheetah-m-e 35.8 64.7 44.2 53.4 62.4 97.9 86.1 86.7 24.3 89.9 64.4 (15.8)
walker2d-m-e 6.4 57.5 81.6 40.1 111.0 101.1 84.9 109.6 89.7 107.2 112.5 (0.6)
hopper-m-e 111.9 110.9 1.9 96.3 98.7 112.2 111.6 91.5 112.8 90.0 106.0 (8.0)
halfcheetah-e 105.2 - 3.8 - 104.8 105.7 - 95.0 71.3 95.4 101.9 (5.9)
walker2d-e 56.0 - -0.2 - 109.9 105.7 - 109.4 109.4 103.5 112.1 (0.7)
hopper-e 111.5 - 6.6 - 103.9 112.2 - 109.9 110.7 102.6 106.4 (7.6)

pen-human 34.4 68.9 8.1 -1.0 37.5 - 59.2 71.5 63.1 - 93.0 (16.2)
hammer-human 1.5 0.5 0.3 0.3 4.4 - 0.2 1.4 4.2 - 9.7 (6.6)
door-human 0.5 -0.0 -0.3 -0.3 9.9 - 0.0 4.3 2.3 - 9.2 (6.7)
relocate-human 0.0 -0.1 -0.3 -0.3 0.2 - 0.0 0.1 0.3 - 0.2 (0.2)
pen-cloned 56.9 44.0 1.6 26.5 39.2 - 45.4 37.3 39.0 - 66.4 (18.4)
hammer-cloned 0.8 0.4 0.3 0.3 2.1 - 0.3 2.1 1.0 - 3.4 (2.2)
door-cloned -0.1 0.0 -0.1 -0.1 0.4 - 0.0 1.6 1.7 - 2.2 (0.5)
relocate-cloned -0.1 -0.3 -0.3 -0.3 -0.1 - -0.3 -0.2 -0.3 - -0.1 (0.1)

4.1. Results on Datasets

Gym In this domain, we evaluate SpOiLer on the locomotion environments in MuJoCo. Results
are summarized in Table 1 (top) with SpOiLer exhibiting strong performance across all datasets.
SpOiLer achieves the best, or near-best performance on the Walker2D and Halfcheetah tasks.
Adroit The adroit domain poses more challenging tasks where a simulated robotic hand with 24-
DoF must complete object manipulation tasks. In Table 1 (bottom) SpOiLer achieves the best per-
formance across all datasets, with large improvements over other methods in pen-human, hammer-
human and pen-cloned.
FrankaKitchen This environment consists of a robot with 9 DoF that must perform tasks in a
kitchen in a particular sequence to receive the full reward. In Table 2, SpOiLer outperforms all
models in the -partial and -mixed datasets and consistently completes over 50% of sub-tasks.

Table 2: Normalized scores for SpOiLer and
prior methods in FrankaKitchen. Top two
scores are highlighted in bold.

Algorithm -complete -partial -mixed

BC 33.8 33.8 47.5
BCQ 8.1 18.9 8.1
BRAC 0.0 0.0 0.0
BEAR 0.0 13.1 47.2
CQL 43.8 49.8 51.0
IQL 62.5 46.3 51.0
SpOiLer 52.5 50.1 56.2

Table 3: Normalized scores for SpOiLer and
prior methods in the Maze2D environment. Top
two scores are highlighted in bold.

Algorithm -umaze -medium -large

BC 3.8 30.3 5.0
BCQ 12.8 8.3 6.2
BRAC 4.7 33.8 40.6
BEAR 3.4 29.0 4.6
CQL 5.7 5.0 12.5
SpOiLer 15.6 10.7 11.8

Maze2D The Maze environment involves moving a ball in a maze. Actor constraint methods tend
to outperform critic-regularized methods. SpOiLer is able to make excellent progress on these tasks,
achieving the best performance in -umaze and doubling CQL’s performance in -medium.
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4.2. Ablations

We present ablations showing the effect of τ and α in Figure 1. Increasing τ increases the weighting
of the KL and entropy terms compared to the value objective and reduces performance. This also
highlights why we used a fixed α in SpOiLer; an automatically tuned, changing τ will change the
magnitude of penalty term during training leading to instability. Increasing α increases the relative
weighting of KL to entropy and generally improves performance.

Figure 1: The effect of τ and α on learning. Top: learning curves on walker2d-m-e and halfcheetah-
m-e for τ = {0.1, 0.5, 1.0}. Bottom: ablations for values of α and τ with ✕ marks at evaluated
values. Bottom left: scores for of α with τ = 0.1. Bottom right: scores for values of τ with α = 0.9.

4.3. Limitations

Our method relies on sampling to reduce the overestimation of OOD values. This adds computa-
tional cost compared to standard SAC, leading to marginally longer training times than the actor-
constraining IQL and TDC+BC. Compared to CQL, SpOiLer does not need to sample as exten-
sively; it avoids being excessively pessimistic about OOD actions while training significantly faster.
SpOiLer performs well on both mixed-policy and expert datasets. In the other domains with sparse
rewards, the performance advantage of all offline RL methods is diminished and closer to BC.

5. Conclusion

This paper presented SpOiLer, an algorithm that performs offline reinforcement learning using critic
regularization. Our algorithm is simple, requiring 10-15 lines of code on top of soft actor–critic to
prevent overestimation of values for out-of-distribution actions. We have shown that our method
implicitly minimizing KL divergence between the the current and behavior policies and that it lower
bounds the true value function. We have evaluated SpOiLer on various offline benchmark tasks and
show that our method is competitive with prior algorithms.
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