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Abstract
Driving is a complex task which requires synthesizing multiple senses, adapting to a constantly
changing environment, and safely reasoning about the behavior of others. Failures of human driver
models can become failures of vehicle safety technology or autonomous driving systems that rely
on their predictions. Although there has been a variety of work to model human drivers, it can be
challenging to determine to what extent they truly resemble the humans they attempt to mimic. The
development of improved human driver models can serve as a step towards better vehicle safety.
In order to better compare and develop driver models, we propose going beyond driving behavior
to examine how well these models reflect the cognitive activity of human drivers. In particular, we
compare features extracted from human driver models with brain activity as measured by functional
magnetic resonance imaging. We demonstrate this approach on three human driver models with
brain activity data from two human subjects. We find that model predictive control is a better fit for
driver brain activity than classic non-predictive models, which is in good agreement with previous
works that obtain better predictions of human driving behavior using model predictive control.
Keywords: Human Driver Modeling, Neuroscience, fMRI, Model Predictive Control

1. Introduction

Because autonomous vehicles often operate in dynamic environments with humans, it is important
for them to be able to understand and predict human motion. These predictions are safety-critical,
as their outputs inform potentially life-threatening decisions made by autonomous vehicles. As a
result, there have been substantial efforts to develop accurate human driver models (Brown et al.,
2020; Mozaffari et al., 2020; Leon and Gavrilescu, 2021). Additionally, while there exist increas-
ingly large driving datasets used to fit human driver models (Kang et al., 2019; Ettinger et al., 2021;
Houston et al., 2021), these datasets only include driving behavior, treating the driver as a black
box and providing no insight on the cognitive algorithms that output these behaviors. While models
fitted to such datasets may replicate human behavior to a certain extent, there is no guarantee they
use the same algorithms and as a result may not generalize to novel situations.
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In this work, we aim to open up this black box by examining the brain activity underlying driv-
ing behavior. We propose a novel framework for evaluating human driver models not only by their
ability to match the behavior of human drivers, but also their ability to match the algorithms used
by human drivers to produce those behaviors. Concretely, we use functional magnetic resonance
imaging (fMRI) to record brain activity during driving, and apply a data-driven regression-based
approach to evaluate how well the computations underlying human driver models matches those
performed by the brain. We provide a preliminary demonstration of this framework with a case
study that evaluates three human driver models.

Key Contribution. This paper proposes a novel framework for comparing algorithms used by hu-
man driver models with those used by humans while driving. It validates the framework by applying
it to three human driver models with brain activity from two human subjects.

2. Background and related work

Current models of human driving behavior generally fall into one of three categories: dynamics-
based, data-driven, and optimization-based (Rudenko et al., 2020). Dynamics-based models predict
driver behavior reactively based on current conditions, e.g. the distance to the car in front (Treiber
et al., 2000; Bando et al., 1995). Data-driven models base their predictions on what drivers have
been observed to do in similar situations in the past (Salzmann et al., 2020; Chen and Krähenbühl,
2022). Finally, optimization-based models predict that the driver will choose control actions that
optimize a reward function (Prokop, 2001; Guo et al., 2013; Sundaram et al., 2022). Models from
all classes have free parameters that can be tuned to better match the behavior in datasets of human
driving (Burnham et al., 1974; Bekey et al., 1977; Lee et al., 2022; Xu et al., 2022). However,
to date this fitting process have relied solely on drivers’ behavior, and it is unclear to what extent
these models accurately reflect the internal processes humans use to produce that behavior. This is
important because if the inferred features or reward functions are incorrect, the models will likely
fail to generalize appropriately to novel situations (Fu et al., 2017).

Fortunately, human drivers are not a “black box,” and there has been an increasing interest in
the neural basis of human driving behavior over the past two decades. Noninvasive brain recording
techniques such as electroencephalography, functional near-infrared spectroscopy, and magnetoen-
cephalography have all been investigated (Haghani et al., 2021), but functional magnetic resonance
imaging (fMRI) provides the highest spatial resolution and enables the localization of brain activ-
ity (Gross, 2019). Both Spiers and Maguire (2007) and Schweizer et al. (2013) have used fMRI
to examine brain activity from subjects performing simulated driving tasks. Navarro et al. (2018)
pooled these and seven other fMRI studies of driving to find characteristic patterns of brain activity
for low-level tasks such as turning, medium-level tasks such as planning to overtake, and high-level
tasks such as route planning, and related these patterns to conceptual (non-predictive) models of hu-
man driving. However, the analysis is hampered by contrast-based fMRI analysis methods that only
produce activation maps and provide little insight into the computations performed by the brain.

3. Approach

We propose a framework for evaluating human driver models that incorporates the brain. In this
framework, we first record (i) brain activity of drivers, (ii) the visual and auditory stimuli seen
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by drivers and the task performed by drivers, and (iii) the resulting behavior of drivers. Next, we
tune any free parameters in the human driver models to match the observed behavior. Finally, we
examine whether features derived from the human driver models are represented in the brain activity
of the drivers. To implement this framework, we used fMRI to collect brain activity from two drivers
performing a taxi-driver task in a virtual world. We then implemented three car-following human
driver models: the optimal velocity model (OVM), the intelligent driver model (IDM), and model
predictive control (MPC) (Bando et al., 1995; Treiber et al., 2000; Guo et al., 2013). We fit these
models to the behavior of the drivers. Finally, we used voxelwise modeling (Naselaris et al., 2011)
to investigate which human driver models use representations and algorithms most similarly to the
human brain. This framework enables us to select for human driver models that not only match
human behavior, but also use algorithms similar to those used by the brain.

Figure 1: An overview of the framework to evaluate human driver models with brain activity.
(a) Subjects used a custom MR-safe steering wheel and pedal set (left) to drive in a naturalistic vir-
tual world (right) while brain activity was recorded with fMRI. (b) A block diagram of the proposed
framework. First, subjects drive in a driving simulator while inside the MRI scanner. Trajectories of
driving behavior, stimulus and task data, and brain activity are simultaneously recorded. 34 feature
spaces are computed from the stimulus and task data. A human driver model to be evaluated is
tuned to match the observed behavior, then a feature space consisting of the driver model’s inputs,
intermediate computations, and outputs at each moment in time is gathered. Finally, voxelwise
modeling is used to evaluate the human driver model: features produced by the model, along with
the stimulus and task feature spaces, are regressed onto brain activity to produce encoding models.
The ability of the encoding models from different driver models to predict brain activity provides a
metric of the similarity of the human driver models to algorithms implemented by the brain.

3.1. Behavioral and brain data

In this work we used fMRI to record blood-oxygenation-level dependent (BOLD) (Ogawa et al.,
1990) activity from the brain while subjects drove in a large realistic virtual city. We used Unreal
Engine 4 and Carla (Dosovitskiy et al., 2017) to build a 2×3 km virtual city populated by dynamic
pedestrians and vehicles where participants drove a virtual car using an MR-compatible steering
wheel and pedals (figure 1). Prior to scanning, subjects learned the layout of the world. In the
scanner, subjects performed a taxi-driver task in which they were cued to navigate to particular
locations. Data were collected in 11-minute runs (180 minutes for subject 1 and 110 minutes for
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subject 2). The experimental procedures were approved by the Institutional Review Board at the
University of California, Berkeley, and written informed consent was obtained from all participants.

3.2. Human driver models

Figure 2: Visualization of the simplified human
driver modeling setup. (a) The subject’s vehi-
cle (in blue) following another vehicle (in red).
(b) A block diagram showing how each driver
model takes in the current state and outputs the
acceleration and a set of features consisting of
the model’s input, intermediate computations, and
output. This corresponds to the driver modeling
block in figure 1 (c).

We implemented three driver models: OVM,
IDM, and MPC. Each model has several free
parameters that can be tuned to affect their
predictions. At each time point we can extract
a given model’s input, intermediate computa-
tions, and output to obtain a set of features that
can be compared with brain activity. The output
of all three models is the predicted acceleration
along the road. We denote the longitudinal po-
sition of the subject’s vehicle as yego, the posi-
tion of the nearest vehicle in front of the subject
in their lane as yother, and the gap between them
as ∆y = yother − yego. The longitudinal ve-
locity of the subject’s vehicle is vego, the other
vehicle vother, the difference between these is
∆v = vother − vego. The vehicle length is l. The
modeling setup is visualized in figure 2. When
rolling out a model to evaluate its behavior, the
predicted acceleration is used to update the ve-
locity at the next time step in a closed loop. In comparison, when gathering features from the model
to compare to the brain activity the ground truth state at every timepoint serves as the model input.
If there is no vehicle in front, the features that rely on the other vehicle are set to 0.

Optimal velocity model. OVM models the acceleration along the road by setting a desired veloc-
ity as a function of the distance to the next vehicle V (∆y) and accelerating proportionally to the
velocity error (Bando et al., 1995, 1998). In discrete time, this can be written as

vego[k + 1] = vego[k] + a
[
V (∆y[k])− vego[k]

]
, V (∆y) = scale · (tanh(d(∆y)− e)) + shift

with 5 free parameters a, scale, d, e, and shift. The free parameter a scales how aggressively you ac-
celerate while the remaining parameters stretch and shift the desired velocity function. The features
representing this model, consisting of its inputs, intermediate computations, and outputs, are{

1∆y<∞,∆y, vego, V (∆y), a[V (∆y)− vego]
}

where 1A is 1 when A is true and 0 otherwise.

Intelligent driver model. IDM models the acceleration along the road by trying to maintain a
desired velocity v0 and minimum gap s∗(vego,∆v) with the form

s∗(vego,∆v) = s0 + Tvego +
vego∆v

2
√
ab
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for maximum acceleration a, comfortable braking deceleration b, and desired minimum spacing s0.
The gap between vehicles is s = ∆y − l. In discrete time the model is

vego[k + 1] = vego[k] + ∆T · ã[k], ã[k] = a

[
1−

(
vego[k]

v0

)δ

−
(
s∗(vego[k],∆v[k])

s[k]

)2
]

with 7 free parameters v0, s0, δ, T, a, b and l. The free parameter δ affects how deviations from
the desired velocity are responded to, and T is the desired time headway. To improve stability, the
acceleration is clipped to between −7m/s2 and a. The features are{

1∆y<∞,∆y, vego, vother,∆vego, (
vego

v0
)δ,

vego∆v

2
√
ab

, s∗(vego,∆v),
s∗

s
,

(
s∗

s

)2

, ã

}
Model predictive control. MPC models behavior by (i) finding an optimal sequence of actions
for the near future with respect to a cost function and (ii) applying the first action, then repeating
this process. The longitudinal positions yego and yother are modeled as double integrators and the
acceleration of the modeled vehicle is optimized at each moment while the acceleration of the other
vehicle is assumed to stay constant. The cost function penalizes being too close to the vehicle in
front, deviations from a desired velocity, and control effort. The joint state vector is defined as
x[k] :=

[
yego[k], vego[k], yother[k], vother[k]

]⊤. Let uego[k] be the subject vehicle’s acceleration and
uother[k] be the other vehicle’s acceleration. This results in linear longitudinal dynamics:

x[k + 1] = A · x[k] +Bego · uego[k] +Bother · uother[k]

where A, Bego, and Bother are discrete-time approximations of the dynamics. We let our cost func-
tion be

c(x[k], u[k]) := (ReLU(dsafe −∆y[k]))2 + θ1(vego[k]− v∗)2 + θ2(uego[k])
2

where ReLU represents the rectified linear unit activation function, θ1 scales the velocity error cost,
θ2 scales the control cost, and v∗ is the desired velocity. Our optimization problem is then

minimize
{x[k],uego[k]}Tk=0

T∑
k=0

c(x[k], uego[k])

subject to x[0] = x0

x[k + 1] = A · x[k] +Bego · uego[k] +Bother · uother[k], k = 0, . . . , T − 1

uego[k] ∈ [−1, 1], uother[k] = ufront, k = 0, . . . , T

dsafe[k] = dsafe0 + vego[k] · dsafe1 , k = 0, . . . , T

with 6 free parameters θ1, θ2, dsafe0 , dsafe1 , v
∗, and T . The free parameter dsafe0 is the comfortable

distance when not moving, dsafe1 is the rate of growth of the comfortable distance as vego grows, and
T is the time horizon. The features are

{vego[k], vother[k],∆y[k], dsafe[k]−∆y[k]}Tk=0∪{uego[k]}T−2
k=0 ∪{c(x[k], uego[k])}Tk=0∪{ufront} (1)

as well as several induced terms {(vother[k] − v∗)2,1dsafe−∆y[k]≤0, (dsafe − ∆y[k])2,ReLU(dsafe −
∆y[k]),ReLU(dsafe−∆y[k])2}Tk=0∪{uego[k]

2}T−2
k=0 ∪{

∑T
k=0 c(x[k], uego[k])}∪{1∆y≤∞}. If there

5



STRONG STOCKING LI ZHANG GALLANT TOMLIN

is no vehicle in front, then (3.2) is solved by dropping terms related to the front car.

Optimizing the behavior of human driver models. We focus on segments where the subject
is not turning to match the car-following scenario for which OVM and IDM are designed. The free
parameters for the models were tuned with three losses: a “full rollout” loss, where the model was
rolled out for a full straight segment and the loss is defined as the average squared position error;
a “subtrajectory loss” where the predictions were rolled out for 4 seconds starting at points spaced
evenly along the segment at 2 second intervals and the loss is defined as the average squared position
error across all rollouts; and an “acceleration loss,” where the loss equals the average squared error
between the predicted and actual accelerations, and where the prediction at each moment across the
segment is evaluated independently (the model is not rolled out in a closed loop). For each loss, we
tuned the human driver models via a grid search over the free model parameters.

3.3. Testing algorithmic similarity between human driver models and the brain

We applied the voxelwise modeling (VM; Naselaris et al. (2011); Nunez-Elizalde et al. (2019);
Dupré la Tour et al. (2022)) framework to the features generated from OVM, IDM, and MPC to
test whether these three human driver models used algorithms similar to those implemented by the
human brain. In VM, the stimulus and task are first nonlinearly transformed into feature spaces that
are hypothesized to capture some particular aspects of the stimulus and task. Then, the time series of
activity in each brain voxel is modeled as a linear combination of the feature time series. Models are
evaluated by predicting brain activity on a held-out dataset. High prediction performance suggests
that the brain represents information as parameterized by that feature space (Naselaris et al., 2011).
Intuitively, each feature space can be considered as a hypothesis of how information is represented
in the brain; the model’s prediction performance then tests the hypothesis and provides an estimate
of its effect size. VM has enabled new insights about brain activity while subjects listen to narrative
stories (Huth et al., 2016) and watch movies (Nishimoto et al., 2011; Huth et al., 2012).

We fit voxelwise encoding models separately for each of the three human driver models to ev-
ery voxel in each subject. In addition to the human driver models, 34 other feature spaces were
included to capture other aspects of the taxi-driver task such as the visual motion-energy content
of the scene or progression along a planned route (Zhang, 2021). The inclusion of these additional
feature spaces enables the regression procedure to accurately attribute variance to the representa-
tion of human driver model features, minimizing confounding effects due to correlation with other
stimulus or task variables. The hemodynamic response function for each voxel was modeled by
a finite impulse response (FIR) filter with five delays, where the shape of the filter varies across
features. Banded ridge regression (Nunez-Elizalde et al., 2019; Dupré la Tour et al., 2022) was
used to impose a different regularization parameter on each feature space for each voxel. The op-
timal feature weights, regularization parameters, and FIR filter shapes were empirically selected
by cross-validating over 9000 random samples. The overall model performance was quantified by
computing the R2 score (explained variance) between predicted and actual activity in each voxel on
a held-out test set. Individual model performances for each of the 35 feature spaces were determined
by partitioning the R2 between feature spaces (Pratt, 1987; Dupré la Tour et al., 2022). Since this
task is interactive and open-ended, no experimental conditions could be perfectly repeated twice,
precluding the calculation of a noise ceiling for encoding model performances.
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Table 1: The MPC human driver model performs comparably to IDM and better than OVM
at matching behavior. To test how well IDM, OVM, and MPC predict behavior, each model was
evaluated on a held-out test set. On the subtrajectory and acceleration losses, MPC was comparable
to IDM, while on the full rollout loss MPC performs inconsistently across subjects. With respect to
their behavioral outputs MPC and IDM are comparable and both are better than OVM.

Model Full Rollout Loss (m2) Subtrajectory Loss ((m/s2)2) Acceleration Loss (m2)
S1 | S2 S1 | S2 S1 | S2

OVM 502 | 1335 18.8 | 45.8 3.8 | 7.1
IDM 440 | 1179 13.9 | 43.3 3.2 | 6.8
MPC 621 | 1164 13.2 | 43.8 3.4 | 6.3

4. Results

In order to evaluate how closely human driver models match human drivers both behaviorally and
algorithmically, the proposed framework consists of three steps. The first is to acquire paired brain
activity and driving data. The second is to tune the human driver models and enumerate a set of
features for each. The third is to compare these features to the brain activity. Here, we demonstrate
this framework with fMRI data from two subjects driving in a realistic simulation. We chose the
OVM, IDM, and MPC human driver models and used the voxelwise modeling framework to test the
algorithmic similarity of these models to human drivers. The free parameters for each model were
tuned to match the behavior of the two participants using the subtrajectory, acceleration, and full
rollout losses described in section 3.2. Table 1 shows the performance of each model on a held-out
test set for each subject. MPC and IDM perform comparably, and both outperform OVM.

While both MPC and IDM match driver behavior to a similar degree, they use different algo-
rithms to do so. Figure 3 shows voxelwise modeling results from human driver models fit to the
subtrajectory loss. Models fit using the subtrajectory loss were chosen as this loss represents a
balance between immediate action and longer horizon planning. The MPC model explains more
variance in brain activity than the OVM and IDM models, particularly in the intraparietal sulcus
(IPS), frontal eye field (FEF), and the supplementary motor area (SMA). Histograms of the vari-
ance explained (R2) scores are shown in figure 3 (b). These results suggest that while MPC and
IDM can behaviorally match human drivers equally well, the representations and algorithms used
by MPC are more similar to those implemented by the human brain. As a result, of the three human
driver models tested, MPC best captures human drivers’ cognitive activity.

5. Discussion

Behaviorally, MPC and IDM captured human drivers comparably, and both outperformed OVM.
However, the MPC encoding model explains more variance in the brain than the IDM or OVM
models, suggesting that the computations of the MPC model better reflect those used by the hu-
man brain. While previous work has shown advantages of MPC over IDM in empirically matching
observed behavior (Guo and Jia, 2019), here we provide fundamentally novel evidence for the ad-
vantage of MPC over IDM: by including brain activity, we support MPC being more closely aligned
at an algorithmic level with how humans drive. Including brain activity enabled us to distinguish
models with similar predictive performances of behavior.
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Figure 3

(a)

(b)
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Figure 3: The MPC human driver model explains much more variance in brain activity than
IDM or OVM. To test whether the OVM, IDM, and MPC human driver models use algorithms
similar to that used by the human brain, we used the inputs, internal representations, and outputs
of each of the three human driver models to create voxelwise encoding models of brain activity.
We then observed which models better predict brain activity. In (a) we show the performance of
voxelwise models for subtrajectory loss optimized OVM, IDM, and MPC on the flattened cortical
surfaces of both subjects (inflated views are shown for reference). The first row shows the MPC
model performance in subject 1, and the second row shows the OVM and IDM model performances
in subject 1. The third and fourth rows follow the same format for subject 2. Brighter voxels are
better predicted. In (b) we show the performance of these same models through histograms of the
R2 scores for each voxel. We find that the MPC model explains much more variance in brain activity
than the IDM or OVM models, and this is consistent across subjects. Well-predicted regions include
the IPS, FEF, and SMA, all of which have previously been implicated in visuomotor control; the
model additionally predicts brain activity in the primary foot motor area, which controls the action
of the subject. The ability of the MPC encoding model to explain brain activity in known visuomotor
control regions suggests that MPC implements a more human-like algorithm than IDM or OVM.

The MPC encoding model was able to explain brain activity in multiple functional regions, in-
cluding visual attention regions such as the intraparietal sulcus (IPS) and the frontal eye field (FEF),
and motor planning regions such as the supplementary motor area (SMA). The IPS is associated
with visuomotor tasks and coordinate transforms (Grefkes et al., 2004; Grefkes and Fink, 2005), the
FEF is associated with eye movement and attention (Crowne, 1983; Paus, 1996), and the SMA is
associated with motor planning (Tanji and Shima, 1994; Gerloff et al., 1997; Hoshi and Tanji, 2004;
Nachev et al., 2008). Both the SMA and IPS have previously been shown to have significant activity
during driving (Navarro et al., 2018), but their representational properties for driving have not been
well-characterized. Additionally, the MPC encoding model explains brain activity in many areas
outside known functional regions, particularly in the prefrontal cortex. The MPC encoding model
does not predict as well in visual regions, such as the human middle temporal cortex (hMT+), that
had previously been implicated in driving (Navarro et al., 2018). However, this difference in fact
provides further evidence that MPC is a good human driver model. While vision is necessary for
driving, the visual system likely does not perform the underlying computations for control. Previous
analyses may have been confounded by the co-activation of vision and control during driving. Here,
the specificity of MPC only to the control algorithms of the brain likely enabled its encoding models
to be decorrelated from vision.

Thus, the brain data provides two targets against which to optimize human driver models: max-
imize encoding model performance in known motor control regions, such as SMA, IPS, and the
motor cortex, and minimize spurious predictions in co-activated regions, such as the visual cortex.
These results provide instructive examples of how the voxelwise modeling framework allows us to
examine human driver models with finer granularity than possible when using behavior alone.

One potential concern is that this work includes data from only two subjects, while previous
fMRI studies of human driving have upwards of 20 (Spiers and Maguire, 2007). However, we note
that while previous studies had a much larger number of subjects, they collected very few data in
each individual subject (20-30 minutes each). Because fMRI is a noisy modality, this small amount
of data is insufficient to provide detailed descriptions of brain activity in individual subjects. To
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ameliorate this, previous studies have projected individual subject data into a common space, and
averaged across subjects. However, because there are significant individual differences in both
structural and functional neuroanatomy, this averaging loses significant amounts of information
about individual subjects. On the other hand, here we have collected a large amount of data for
each subject, roughly 2 hours driving and 4-6 hours of localizers and anatomical data. This enables
us to fit accurate encoding models that have detailed descriptions of brain function in individual
subjects. Another concern could be that although all driver models had a similar number of free
parameters for tuning their behavior (5, 7, and 6), MPC generates about an order of magnitude more
features than IDM and OVM. This results in more weights being fit for the MPC feature space in the
encoding model as well. This difference in the number of features is part of the different hypotheses
that these models provide about visuomotor control during driving. We plan to further explore the
role of the number of features in the future.

Figure 4: The importance of the cost feature over time displays regional patterns. We analyze
the weights of the MPC cost feature (c(x[t], u[t]) in equation (1)) over the MPC prediction horizon
and across the brain. The principal components (PCs) of the weight matrix represent common
patterns in these weights while the component scores represent how present that pattern is in each
voxel. The left image displays the top PC for the cost feature, which explains 86.5% of the variance
and the right image shows its scores. We observe contiguous regions of blue and red, suggesting
different regions have different relationships to immediate versus distant predictions.

6. Conclusion

In this work we provided a framework for comparing human driver models to the algorithms used by
human drivers. By integrating this framework into the human driver model design process, we hope
to facilitate the search for better models, which could in turn lead to safer behavior in autonomous
driving systems. Additionally, we hope this framework can provide insights to those aiming to
understand how the brain engages with complex tasks. There are several directions for future work.
First, we will apply our framework to additional subjects and driver models, especially data-driven
and strategic models. Second, we will continue exploring new ways to analyze how the brain can
aid in understanding driver models and vice versa. For example, figure 4 demonstrates the potential
for analysis of the regression weights to examine how the brain may represent predictions. Lastly,
we hypothesize that human driver models that represent information more similarly to the brain will
have better generalization performance. Future work will be necessary to validate this hypothesis.
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