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Abstract
We investigate the problem of learning linear quadratic regulators (LQR) in a multi-task, het-

erogeneous, and model-free setting. We characterize the stability and personalization guarantees of
a policy gradient-based (PG) model-agnostic meta-learning (MAML) (Finn et al., 2017) approach
for the LQR problem under different task-heterogeneity settings. We show that our MAML-LQR
algorithm produces a stabilizing controller close to each task-specific optimal controller up to a
task-heterogeneity bias in both model-based and model-free learning scenarios. Moreover, in the
model-based setting, we show that such a controller is achieved with a linear convergence rate,
which improves upon sub-linear rates from existing work. Our theoretical guarantees demonstrate
that the learned controller can efficiently adapt to unseen LQR tasks.
Keywords: Linear Quadratic Regulator; Model-Agnostic Meta-Learning; Model-free Learning

1. Introduction
One of the main successes of reinforcement learning (RL) (for example, in the context of robotics)
is its ability to learn control policies that rapidly adapt to different agents and environments (Wang
et al., 2016; Duan et al., 2016; Rothfuss et al., 2018). This idea of learning a control policy that
efficiently adapts to unseen RL tasks is referred to as meta-learning, or learning to learn. The most
popular approach is the model-agnostic meta-learning (MAML) (Finn et al., 2017, 2019). In the
context of RL, the role of MAML is to exploit task diversity of RL tasks drawn from a common
task distribution to learn a control policy in a multi-task and heterogeneous setting that is only a few
policy gradient (PG) steps away from an unseen task’s optimal policy.

Despite its success in image classification and RL, more needs to be understood about the the-
oretical convergence guarantees of MAML for both model-based and model-free learning. This is
due to the fact that, in general, the MAML objective is non-convex and requires a careful analy-
sis depending on the considered task-setting (e.g., classification and regression (Fallah et al., 2020;
Johnson and Mitra, 2011; Abbas et al., 2022; Ji et al., 2022; Zhan and Anderson, 2024), RL (Fallah
et al., 2021; Liu et al., 2022; Beck et al., 2023)). There is a recent body of work on multi-task/agent
learning for estimation (Zhang et al., 2023; Wang et al., 2023a; Zhang et al., 2024; Toso et al.,
2023a; Chen et al., 2023) and control (Wang et al., 2023b; Tang et al., 2023; Wang et al., 2023c;
Toso et al., 2024a), where theoretical guarantees are provided for different learning techniques in a
variety of control settings. Therefore, to characterize the personalization guarantees of MAML for
a baseline and well-established control setting, we consider the model-free MAML-LQR problem.
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In the optimal control domain, a highly desired feature is the fast adaptation of a designed
controller to unseen situations during deployment, for example, in the setting where a manufacturer
(of e.g., robots or drones) is responsible for designing optimal controllers for individual systems’
objectives. Designing such controllers from scratch is sample-inefficient since it requires a large
amount of trajectory data and several PG steps. Since manufacturers utilize production lines with
the purpose of producing nearly identical systems, a controller should not need to be designed from
scratch for every system. As such, the MAML-LQR approach exploits this similarity amongst
systems within the same fabrication slot to design an LQR controller that adapts to fresh new slots
of systems. This significantly reduces the amount of trajectory data required since it relies now on
a simple fine-tuning step of the learned MAML-LQR controller to suit each system’s objective.

Even for a simple discrete-time control setting, provably guaranteeing that a MAML-LQR ap-
proach produces a controller that adapts to unseen LQR tasks is not an easy endeavor and requires
careful handling of the task heterogeneity and the stability of the sampled tasks under the learned
controller. As well-established in the literature of PG methods for the LQR problem (Fazel et al.,
2018; Malik et al., 2019; Gravell et al., 2020; Mohammadi et al., 2019; Hu et al., 2023), some prop-
erties of the LQR objective (e.g., gradient dominance and local smoothness) are crucial to derive
global convergence guarantees. Although tempting, we cannot simply extend these guarantees to
the MAML-LQR approach since those properties of the LQR cost are no longer valid for the meta
learning objective (Molybog and Lavaei, 2021; Musavi and Dullerud, 2023).

In contrast to Molybog and Lavaei (2021); Musavi and Dullerud (2023), this work establishes
personalization guarantees for the MAML-LQR problem in both model-based and model-free set-
tings. In particular, Molybog and Lavaei (2021) only characterizes the convergence of the model-
based learning for the single-task setting. Here, we consider the multi-task and heterogeneous
setting. Musavi and Dullerud (2023) establish convergence to a stationary point (i.e., local conver-
gence analysis). It is not clear in their results how the heterogeneity across the tasks may impact
the convergence of the MAML approach and how efficiently the learned controller adapts to un-
seen tasks. Therefore, in this work, we address these points and provide meaningful personalization
guarantees that support the ability of the learned controller to adapt to unseen LQR tasks under
different task-heterogeneity settings. It is also worth emphasizing that our MAML-LQR setting is
different from the one considered in Richards et al. (2023), where a control-oriented meta-learning
approach is proposed to design adaptive control laws for the nonlinear feedback control problem.

Contributions: Toward this end, our main contributions are summarized as follows:

• This is the first work to provide personalization guarantees for both model-based and model-
free learning settings (Theorems 12 and 13). Our convergence bounds characterize the dis-
tance between the learned and MAML-LQR optimal controller to each task-specific optimal
controller and reveal the ultimate goal of the MAML-LQR approach, i.e., the quick adaptation
to unseen tasks. In the model-based setting, we show that the learned controller is achieved
with a linear convergence rate that improves upon sub-linear rates in the existing work.

• This is the first work to establish stability (Theorem 11) and convergence guarantees (Theo-
rem 13) for the MAML-LQR approach in the model-free setting. Our convergence guarantees
demonstrate that the learned controller stabilizes and is close to each task-specific optimal
controller up to a task-heterogeneity bias. Furthermore, our analysis underscores the impact
of different heterogeneity settings (i.e., system heterogeneity, cost heterogeneity, system, and
cost heterogeneity) on the convergence of the MAML-LQR.
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2. Model Agnostic Meta-Learning (MAML) for the LQR problem

Consider M discrete-time and linear time-invariant (LTI) dynamical systems

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t , t = 0, 1, 2, . . . , (1)

where A(i) ∈ Rnx×nx , B(i) ∈ Rnx×nu , with nx ≥ nu. The initial state of (1) is drawn from an
arbitrary distribution X0 that satisfies1 E[x(i)0 ] = 0 and E[x(i)0 x

(i)⊤
0 ] ≻ µInx , for some µ > 0,

for all i ∈ [M ].2 The objective of the LQR problem is to design an optimal control sequence
u
(i)
t := −K⋆

i x
(i)
t that minimizes a quadratic cost in both states x(i)t and input u(i)t . The optimal

controllers K⋆
i solve

K⋆
i := argmin

K∈K(i)

{
J (i)(K) := E

[ ∞∑
t=0

x
(i)⊤
t

(
Q(i) +K⊤R(i)K

)
x
(i)
t

]}
, s.t (1), (2)

where Q(i) ∈ Snx
≻0, R(i) ∈ Snu

≻0, and K(i) := {K | ρ(A(i) − B(i)K) < 1} denotes the set of
stabilizing controllers of the ith system, and ρ(·) denotes the spectral radius.

Definition 1 The LQR task is a tuple T (i) := (A(i), B(i), Q(i), R(i)) equipped with the objective of
designing K⋆

i that minimizes the LQR cost J (i)(K).

Consider a distribution of LQR tasks denoted by p(T ) from which a collection of M LQR tasks
T := {T (i)}Mi=1 are sampled. The objective of the MAML approach for the LQR problem is to
design a controller K⋆

ML based only on the tasks in T that can efficiently adapt to any unseen LQR
task originating from p(T ), i.e., we aim to find a controller that is only a few PG iterations away
from any unseen task-specific optimal controller. Precisely, K⋆

ML solve

K⋆
ML := argmin

K∈K̄

JML(K) :=
1

M

M∑
i=1

J (i)
(
K − ηl∇J (i)(K)

)
︸ ︷︷ ︸

single-step PG

 , s.t (1) ∀i ∈ [M ], (3)

where K̄ := ∩i∈[M ]K(i) is the MAML stabilizing set and ηl denotes some positive step-size. To
solve (3), we exploit a PG-based approach where the update rule is described as follows:

K ← K − η∇JML(K), where∇JML(K) :=
1

M

M∑
i=1

H(i)(K)∇J (i)(K − ηl∇J (i)(K)), (4)

with H(i)(K) := Inu − ηl∇2J (i)(K), and η being some positive (possibly time-varying) step-size.
Next, we define the task-specific and MAML stabilizing sub-level sets.

Definition 2 (Stabilizing sub-level set) The task-specific and MAML stabilizing sub-level sets are
defined as follows:

1. The expectation is with respect to x
(i)
0 ∼ X0.

2. This assumption is standard in PG methods for the LQR problem (Fazel et al., 2018; Malik et al., 2019). It guarantees
that all stationary solutions are global optima.
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• Given a task T (i), the task-specific sub-level set S(i) ⊆ K(i) is

S(i) :=
{
K | J (i)(K)− J (i)(K⋆

i ) ≤ γi∆
(i)
0

}
, with ∆

(i)
0 = J (i)(K0)− J (i)(K⋆

i ).

where K0 denotes an initial controller and γi being any positive constant.

• The MAML-LQR stabilizing sub-level set SML ⊆ K̄ is defined as the intersection between
each task-specific stabilizing sub-level set, i.e., SML := ∩i∈[M ]S(i).

Remark 3 Observe that, if K ∈ SML, i.e., K stabilizes all LQR tasks in T , one may select a step-
size ηl, such that K̄ = K − ηl∇J (i)(K) also stabilizes all the LQR tasks in T , i.e., K̄ ∈ SML. We
prove this fact and provide the condition on ηl to satisfy it in the stability analysis in Theorem 10.

Assumption 1 We have access to an initial stabilizing controller K0 ∈ SML.

Remark 4 The above assumption is standard in PG methods for the LQR problem (Fazel et al.,
2018; Gravell et al., 2020; Wang et al., 2023b; Toso et al., 2023b). If the initial controllerK0 fails to
stabilize (1), ∀i ∈ [M ], the MAML-LQR update in (4) cannot produce a stabilizing controller, since
∇J (i)(K0), ∇2J (i)(K0) are both undefined for the corresponding unstabilized tasks. Perdomo
et al. (2021) and Ozaslan et al. (2022) detail how to find an initial stabilizing controller for the
single LQR instance. Moreover, it is worth emphasizing that although K0 stabilizes (1), ∀i ∈ [M ],
it may provide a sub-optimal performance, i.e., J (i)(K0) ≥ J (i)(K⋆

i ).

As well-established in the literature of PG-LQR, J (i)(K) is, in general, non-convex with respect
to K. However, by leveraging some properties of the LQR cost (e.g., gradient domination and local
smoothness), Fazel et al. (2018) provide global convergence guarantees of PG methods for both
model-based and model-free LQR settings. Although tempting, these properties of the LQR cost
cannot simply be extended to the MAML-LQR objective when dealing with task heterogeneity as
discussed in Molybog and Lavaei (2021).

In the sequel, we proceed as follows: We first provide conditions on the problem parameters to
ensure that given any stabilizing controller K ∈ SML, K − η∇JML(K) is also MAML stabilizing,
i.e., K − η∇JML(K) ∈ SML. In contrast to Musavi and Dullerud (2023), which guarantees that
a model-based MAML-LQR approach finds a stationary solution, we derive global convergence
bounds for model-based and model-free learning. In particular, our convergence guarantees under-
score the impact of different task-heterogeneity settings on the closeness of the learned controller
and each task-specific optimal controller and demonstrate its adaptation to unseen tasks.

2.1. Model-based LQR

In the model-based LQR setting, we assume to have access to the tuple T (i) = (A(i), B(i), Q(i), R(i)).
With the ground-truth model in hand, we have closed-form expressions to compute both gradient
∇J (i)(K) and Hessian∇2J (i)(K) of the LQR cost:

• Gradient of the LQR cost ∇J (i)(K) (Fazel et al., 2018): Given T (i) and a stabilizing con-
troller K ∈ SML, the gradient is given by∇J (i)(K) := 2E

(i)
K Σ

(i)
K , where

E
(i)
K := R(i)K −B(i)⊤P

(i)
K (A(i) −B(i)K), and Σ

(i)
K := E

∞∑
t=0

x
(i)
t x

(i)⊤
t ,
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POLICY GRADIENT-BASED MAML FOR MODEL-FREE LQR

with x(i)t subject to the system dynamics in (1), and P (i)
K ∈ Snx

≻0 denoting the solution of the
Lyapunov equation P (i)

K := Q(i) +K⊤R(i)K + (A(i) −B(i)K)⊤P
(i)
K (A(i) −B(i)K).

• Hessian of the LQR cost∇2J (i)(K) (Bu et al., 2019): Given T (i) and a stabilizing controller
K ∈ SML, the Hessian operator at K acting on some X ∈ Rnu×nx , is given by

∇2J (i)(K)[X] := 2
(
R(i) +B(i)⊤P

(i)
K B(i)

)
XΣ

(i)
K − 4B(i)⊤P̃

(i)
K [X](A(i) −B(i)K)Σ

(i)
K ,

with P̃ (i)
K [X] := (A(i) −B(i)K)⊤P̃

(i)
K [X](A(i) −B(i)K) +X⊤E

(i)
K + E

(i)⊤
K X .

Hence, we can exploit these closed-form expressions in order to update the controller (see step 4
in MAMl-LQR, Algorithm 1) for the model-based MAML-LQR. In step 4, our algorithm computes a
one-step inner gradient descent iteration on Kn and H(i)(Kn) = Inu − η∇2J (i)(Kn), for each task
i ∈ [M ] and iteration n. These quantities are then used to update the controller Kn+1 in step 6. By
repeating these steps for N iterations, Algorithm 1 returns KN . We further prove that KN is close
to each task-specific optimal controller K⋆

i , which in turn is proved to be close to the MAML-LQR
optimal controller K⋆

ML. To demonstrate this, we revisit some properties of the LQR cost function.

Lemma 5 (Uniform bounds) Given T (i) and a stabilizing controller K ∈ SML, the gradient
∇J (i)(K), Hessian∇2J (i)(K), and controller K are bounded as follows:

∥∇J (i)(K)∥F ≤ hG(K), ∥∇2J (i)(K)∥F ≤ hH(K), and ∥K∥F ≤ hc(K),

where hG(K), hH(K), and hc(K) are functions of the problem parameters.

Lemma 6 (Local smoothness) Given T (i) and two stabilizing controllers K,K ′ ∈ SML such that
∥∆∥ := ∥K ′ −K∥ ≤ h∆(K) <∞. The LQR cost, gradient and Hessian satisfy:∣∣∣J (i)

(
K ′)− J (i)(K)

∣∣∣ ≤ hcost(K)J (i)(K)∥∆∥F ,∥∥∥∇J (i)
(
K ′)−∇J (i)(K)

∥∥∥
F
≤ hgrad(K)∥∆∥F ,∥∥∥∇2J (i)

(
K ′)−∇2J (i)(K)

∥∥∥
F
≤ hhess (K)∥∆∥F

where h∆(K), hcost(K), hhess (K) and hgrad(K) are functions of the problem parameters.

Lemma 7 (Gradient Domination) Given T (i) and a stabilizing controller K ∈ SML. Let K⋆
i be

the optimal controller of task T (i). Then, it holds that

J (i)(K)− J (i) (K⋆
i ) ≤

1

λi
∥∇J (i)(K)∥2F

where λi := 4µ2σmin(R
(i))/

∥∥ΣK⋆
i

∥∥.

The uniform bounds of ∥∇J (i)(K)∥F and ∥K∥F , and the gradient domination property are
proved in Fazel et al. (2018); Wang et al. (2023a). The uniform bound of ∥∇2J (i)(K)∥F can
be found in (Bu et al., 2019, Lemma 7.9). In addition, the proofs for the local smoothness of
the cost and gradient are detailed in (Wang et al., 2023b, Appendix F), the local smoothness of
the Hessian is proved in (Musavi and Dullerud, 2023, Appendix B). The explicit expressions of
hG(K), hc(K), hH(K), h∆(K), hcost(K), and hgrad(K) are given in our technical report Toso
et al. (2024b). Throughout the paper, we use h̄ := supK∈SML

h(K) and h := infK∈SML h(K) to
denote the supremum and infimum of a function h(K) over the set of stabilizing controllers SML.

5



TOSO ZHAN ANDERSON WANG

Algorithm 1 MAML-LQR: Model-Agnostic Meta-Learning for LQR tasks (Model-based)
1: Input: initial stabilizing controller K0, inner and outer step-sizes ηl, η
2: for n = 0, . . . , N − 1 do
3: for each task i ∈ [M ] in T compute
4: K̄

(i)
n = Kn − ηl∇J (i)(Kn), and H(i)(Kn) = Inu − ηl∇2J (i)(Kn)

5: end for
6: Kn+1 = Kn − η

M

∑M
i=1H

(i)(Kn)∇J (i)(K̄
(i)
n )

7: end for
8: Output: KN

2.2. Task Heterogeneity
In contrast to Musavi and Dullerud (2023), we consider the MAML-LQR problem in a variety of
heterogeneity settings. Our goal is to determine precisely how task heterogeneity impacts conver-
gence of MAML-LQR – in model-based setting (Algorithm 1) and the model-free setting (described
later). We consider a task-heterogeneity setting characterized by the combination of system and cost
heterogeneity. That is, we assume that there exist positive scalars ϵ1, ϵ2, ϵ3 and ϵ4, such that

max
i ̸=j
∥A(i)−A(j)∥ ≤ ϵ1,max

i ̸=j
∥B(i)−B(j)∥ ≤ ϵ2,max

i ̸=j
∥Q(i)−Q(j)∥ ≤ ϵ3,max

i ̸=j
∥R(i)−R(j)∥ ≤ ϵ4.

Observe that this setting spans three different types of task heterogeneity: 1) system heterogene-
ity, with ϵ3 = ϵ4 = 0, i.e., Q(i) = Q, R(i) = R, ∀i ∈ [M ]. 2) cost heterogeneity, with ϵ1 = ϵ2 = 0,
i.e., A(i) = A, B(i) = B, ∀i ∈ [M ]. 3) system and cost heterogeneity, where ϵ1, ϵ2, ϵ3 and ϵ4 are
non-zero. Next, we bound the norm of the gradient difference between two distinct tasks.

Lemma 8 (Gradient heterogeneity) For any two distinct LQR tasks T (i) and T (j), and stabilizing
controller K ∈ SML. It holds that,

∥∇J (i)(K)−∇J (i)(K)∥ ≤ fz(ϵ̄) := ϵ1h
1
het(K) + ϵ2h

2
het(K) + ϵ3h

3
het(K) + ϵ4h

4
het(K), (5)

for any i ̸= j ∈ [M ], where z ∈ {1, 2, 3},3 and ϵ̄ = {ϵ1, ϵ2, ϵ3, ϵ4}, where h1het(K), h2het(K), h3het(K),
and h4het(K) are positive polynomials that depend on the problem parameters.

The proof and explicit expressions of h1het(K), h2het(K), h3het(K), and h4het(K), are detailed
in Toso et al. (2024b). We observe that as long as the heterogeneity level ϵ1, ϵ2, ϵ3, ϵ4 is small,
the gradient descent direction of task T (i) (4) is close to the one of task T (j). Moreover, by com-
bining (5) along with the uniform bound of the Hessian (Lemma 5), we observe that ∇JML(K) is
also close to ∇J (i)(K). This is a crucial step we use in our stability and convergence analysis for
both model-based and model-free settings.

2.3. Model-free LQR

We now consider the setting where the tuple T (i) = (A(i), B(i), Q(i), R(i)) is unknown. There-
fore, computing the gradient and Hessian through closed-form expressions is no longer possible.
This forces us to resort to methods that approximate such quantities. Following numerous work in
the literature of model-free PG-LQR (Fazel et al., 2018; Malik et al., 2019; Gravell et al., 2020;
Mohammadi et al., 2019; Wang et al., 2023b), we focus on zeroth-order methods to estimate the

3. z = 1 refers to the system heterogeneity, z = 2 to cost heterogeneity and z = 3 to system and cost heterogeneity.

6



POLICY GRADIENT-BASED MAML FOR MODEL-FREE LQR

gradient and Hessian of the LQR cost. In particular, we consider a two-point estimation scheme
since it has a lower estimation variance compared to its one-point counterpart (Malik et al., 2019).

Zeroth-order methods with two-point estimation solely rely on querying cost values at symmet-
ric perturbed controllers to construct a biased estimation of both the gradient and Hessian. In par-
ticular, zeroth-order estimation is a Gaussian smoothing approach (Nesterov and Spokoiny, 2017)
based on Stein’s identity (Stein, 1972) that relates gradient and Hessian to cost queries.

Algorithm 2 ZO2P: Zeroth-order with two-point estimation
1: Input: controller K, number of samples m and smoothing radius r,
2: for l = 1, . . . ,m do
3: Sample controllersK1

l = K+Ul andK2
l = K−Ul, where Ul is drawn uniformly at random

over matrices with Frobenius norm r. A cost oracle provides J(K1), J(K2) and J(K)
4: end for
5: ∇̂J(K) = nxnu

2r2m

∑m
l=1(J(K

1
l )− J(K2

l ))Ul

6: ∇̂2J(K) = n2
u

r2m

∑m
l=1(J(K

1
l )− J(K))(UlU

⊤
l − Inu)

7: Return ∇̂J(K), ∇̂2J(K)

Algorithm 2 describes the zeroth-order estimation of the gradient and Hessian of the LQR cost.
First, a pair of symmetric perturbations to the controller K are sampled according to K1 = K +U ,
K2 = K−U whereU ∼ Sr. Here Sr denotes a distribution of nu×nx real matrices with ∥U∥F = r,
where r is the smoothing radius. The gradient is estimated via the first-order Gaussian Stein’s iden-
tity, E

[
∇J (i)(K)

]
= E

[
nxnu
2r2

(J (i)(K1)− J (i)(K2))U
]

(Mohammadi et al., 2020), and the Hes-

sian with its second-order counterpart, E
[
∇2J (i)(K)

]
= E

[
n2
u
r2
(J (i)(K1)− J (i)(K))(UU⊤ − Inu)

]
,

(Balasubramanian and Ghadimi, 2022), both with m samples.

Remark 9 (Cost oracle) For simplicity, we assume that the true cost is provided by an oracle, as
in Malik et al. (2019); Toso et al. (2023b). We emphasize that our work can be readily extended
to the setting where only a finite-horizon approximation of the cost is available. That is the case
since any finite-horizon approximation of the true cost is upper-bounded by its true value, with the
approximation error controlled by the horizon length (Gravell et al., 2020, Appendix B).

With the gradient and Hessian zeroth-order estimators in hand, Algorithm 3 follows the same
structure as Algorithm 1. The key differences are steps 4 and 7 where the gradient and Hessian
computations are replaced by a zeroth-order estimation. Despite the estimation error in the zeroth-
order method, we show that this error can be controlled so it does not impact the convergence of our
MAML-LQR approach for both model-based and model-free settings.

3. Theoretical Guarantees

We now provide the theoretical guarantees for the stability and convergence of the MAML-LQR for
both model-based and model-free settings, i.e., Algorithms 1 and 3.

3.1. Stability Analysis

The objective of the stability analysis is to provide the conditions on the step-sizes ηl, η, hetero-
geneity f̄z(ϵ̄), and zeroth-order estimation parameters m and r, such that for every iteration of
Algorithms 1 and 3, the currently obtained controller is MAML stabilizing, i.e., Kn ∈ SML, ∀n.
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Algorithm 3 MAML-LQR: Model-Agnostic Meta-Learning for LQR tasks (Model-free)
1: Input: initial stabilizing controller K0, inner and outer step-sizes ηl, η, smoothing radius r,

number of samples m.
2: for n = 0, . . . , N − 1 do
3: for each task i ∈ [M ] in T compute
4:

[
∇̂J (i)(Kn), ∇̂2J (i)(Kn)

]
= ZO2P(Kn,m, r)

5: K̂
(i)
n = Kn − ηl∇̂J (i)(Kn), and Ĥ(i)(Kn) = Inu − ηl∇̂2J (i)(Kn)

6: end for
7: ∇̂J (i)(K̂

(i)
n ) = ZO2P(K̂

(i)
n ,m, r), Kn+1 = Kn − η

M

∑M
i=1 Ĥ

(i)(Kn)∇̂J (i)(K̂
(i)
n )

8: end for
9: Output: KN

Theorem 10 (Model-based) Given an initial stabilizing controller K0 ∈ SML, suppose that the

step-sizes and heterogeneity satisfy ηl ≤ min

{
nu√
2hH

, 1√
2h̄grad

, 1√
12(12h̄2gradn

2
u+h̄

2
H)

}
, η ≤ 1

4h̄grad
and

f̄z(ϵ̄) ≤
√
mini

λi∆
(i)
0

288n3
u

, respectively. Then, K̄(i)
n ,Kn ∈ SML, for every iteration of Algorithm 1.

Theorem 11 (Model-free) Given an initial stabilizing controller K0 ∈ SML and scalar δ ∈ (0, 1),

suppose that the step-sizes satisfy ηl ≤ min

{
1
h̄G
, nu

h̄H
, 1
h̄grad

, 1√
20(12h̄2gradn

2
u+h̄

2
H)
, 12

}
, η ≤ 1

8h̄grad
. In

addition, the heterogeneity, smoothing radius and number of samples satisfy f̄z(ϵ̄) ≤
√
mini

λi∆
(i)
0

480n3
u

,

r ≤ min

{
h1r

(√
ψ(i)

2

)
, h2r

(√
ψ(i)

2

)}
, and m ≥ max

{
h̄1m

(√
ψ(i)

2 , δ

)
, h̄2m

(√
ψ(i)

2 , δ

)}
4, with

ψ(i) :=
λi∆

(i)
0

1296 . Then, with probability, 1− δ, K̄(i)
n ,Kn ∈ SML, for every iteration of Algorithm 3.

The proof of Theorems 10 and 11 are detailed in Toso et al. (2024b). The proof strategy
follows from an induction argument where the base case is the first iteration. We combine the
local smoothness of each task-specific LQR cost (Lemma 6) along with the gradient heterogene-
ity bound (Lemma 8) and the definition of the MAML-LQR stabilizing sub-level set to show that
J (i)(K1) ≤ J (i)(K0) for any i ∈ [M ]. These results provide the conditions for which the learned
controller KN is MAML stabilizing. This is essential to guarantee that the learned controller KN

in Algorithms 1 and 3 can be promptly utilized to stabilize an unseen LQR task drawn from p(T ).

3.2. Convergence Analysis

We now provide the conditions on the step-sizes ηl, η and zeroth-order estimation parametersm, and
r, such that we can ensure that the learned MAML-LQR controller KN is sufficiently close to each
task-specific optimal controller K⋆

i and to the optimal MAML controller K⋆
ML. For this purpose,

we study the closeness ofKN andK⋆
i by bounding J (i)(KN )−J (i)(K⋆

i ) and the closeness ofK⋆
ML

with J (i)(K⋆
ML)− J (i)(K⋆

i ).

4. The expressions of the positive polynomials h1
r(·), h

2
r(·), h̄

1
m(·) and h̄2

m(·) are deferred to our technical report.
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Theorem 12 (Model-based) Given an initial stabilizing controller K0 ∈ SML, suppose that the

step-sizes and number of iterations satisfy ηl ≤ min

{
nu√
2h̄H

, 1√
2h̄grad

, 1√
12(12h̄2gradn

2
u+h

2
H)

}
, and η ≤

1
4h̄grad

, N ≥ 8
ηλi

log

(
∆

(i)
0
ϵ′

)
, respectively, for some small tolerance ϵ′ ∈ (0, 1). Then, it holds that,

J (i)(KN )− J (i)(K⋆
i ) ≤ ϵ′ +

144n3uf̄
2
z (ϵ̄)

λi
, (6)

J (i)(K⋆
ML)− J (i)(K⋆

i ) ≤
96J̄maxn

3
uf

2
z (ϵ̄)

µ2mini σmin(R(i))mini σmin(Q(i))
, (7)

with J̄max := maxi J
(i)(K0).

Theorem 13 (Model-free) Given an initial stabilizing controller K0 ∈ SML and scalar δ ∈ (0, 1),

suppose that the step-sizes satisfy ηl ≤ min

{
1
h̄G
, nu

h̄H
, 1
h̄grad

, 1√
20(12h̄2gradn

2
u+h

2
H)
, 12

}
and η ≤ 1

8h̄grad
,

and the smoothing radius satisfies r ≤ min
{
h1r

(
ϵ′λi
1296

)
, h2r

(
ϵ′λi
1296

)}
. Moreover, suppose that the

number of samples is selected according to m ≥ max
{
h̄1m

(
ϵ′λi
1296 , δ

)
, h̄2m

(
ϵ′λi
1296 , δ

)}
, and the

number of iterations satisfies N ≥ 8
ηλi

log

(
2∆

(i)
0
ϵ′

)
, for some small tolerance ϵ′ ∈ (0, 1). Then,

with probability 1− δ, it holds that,

J (i)(KN )− J (i)(K⋆
i ) ≤ ϵ′ +

240n3uf̄
2
z (ϵ̄)

λi
, and (7). (8)

The proofs of Theorems 12 and 13 are deferred to Toso et al. (2024b). The proof strategy
follows from the local smoothness of the LQR cost (Lemma 6), gradient domination (Lemma 7), and
the gradient heterogeneity bound (Lemma 8). The model-free setting also involves controlling the
estimation error through a matrix Bernstein-type of inequality (Tropp, 2012; Gravell et al., 2020).

These results characterize the convergence of the MAML-LQR for both model-based and model-
free settings. We emphasize that both Algorithms 1 and 3 produce a controller KN that is provably
close to each task-specific optimal controller K⋆

i up to a heterogeneity bias. This indicates that
under a low heterogeneity regime, KN will serve as a good initialization for any unseen task that is
also drawn from p(T ) (i.e., an unseen task that satisfies the same task-heterogeneity level as the ones
used in the MAML-LQR learning process). Moreover, in contrast to Musavi and Dullerud (2023),
our convergence bounds (6), (7) and (8) emphasize the impact of task heterogeneity on the conver-
gence of Algorithms 1 and 3. In a low heterogeneity regime, where KN and K⋆

i , and K⋆
ML and K⋆

i

are close, one may conclude that KN and K⋆
ML are also sufficiently close. We also emphasize that,

in the model-based setting, the learned controller KN is achieved with a linear convergence rate on
the iteration count, which improves upon the sub-linear rate in Musavi and Dullerud (2023).

4. Experimental Results

Numerical results5 are now provided to illustrate and assess the convergence and personalization
of the model-free MAML-LQR approach. In particular, we show that initializing from the learned

5. Code can be downloaded from: https://github.com/jd-anderson/MAML-LQR.
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Figure 1: Cost gap between the learned the task-specific optimal controller with respect to iteration.
(left) Convergence of the MAML-LQR. (middle) MAML-LQR, ϵ̄1 = (1.2, 1.1, 1.4, 1.2)× 10−3, ϵ̄2 =
(1.3, 1.1, 1.4, 1.2)× 10−2, ϵ̄3 = (1.7, 1.8, 1.9, 1.7)× 10−2. (right) PG-LQR (Fazel et al., 2018).

MAML-LQR controller (i.e., K0,PG = KN ) enables a model-free PG-LQR approach (Fazel et al.,
2018, Section 4.2) to be close to the task-specific optimal controller within just a few PG iterations,
for an unseen task. To illustrate this, we consider an unstable modification of the Boeing system
from Hong et al. (2021) as the nominal LQR task. The nominal task is then used to generate multiple
tasks. The technical details on the experimental setup are deferred to Toso et al. (2024b).

Figure 1 (left and middle) depicts the cost gap between the current learned controller and the
nominal task (i.e., T (1)) optimal controller with respect to iterations of Algorithm 3. In alignment
with Theorem 13, Figure 1-(left) shows that the learned controller closely converges to the nominal
task’s optimal controller up to a slight bias characterized by ϵ̄ = (1.2, 1.1, 1.4, 1.2)× 10−3. More-
over, Figure 1-(middle) shows that the learned MAML-LQR controller drastically deviates from
the nominal task’s optimal controller when it faces a significant heterogeneity level. This aligns
with Theorem 13, which demonstrates that the learned MAML-LQR controller is close to each
task-specific optimal controller up to a heterogeneity bias, where the bias increases with ϵ̄.

Figure 1-(right) illustrates the adaptation of the learned MAML-LQR controller to an unseen
task drawn from p(T ) (i.e., the same task distribution used in the MAML-LQR learning process).
With unseen tasks 1, 2 and 3, this figure shows that, by initializing the PG-LQR approach (Fazel
et al., 2018) from the MAML-LQR learned controller, it takes only a few PG iterations to achieve
a controller that is sufficiently close to the unseen tasks’ optimal, which is significantly fewer than
initializing from a randomly sampled initial stabilizing controller K0,PG. This aligns with Theorem
13, showing that the learned controller is close to each task-specific optimal controller.

5. Conclusions and Future Work

We investigated the problem of meta-learning linear quadratic regulators in a heterogeneous and
model-free setting, characterizing the stability and convergence of a MAML-LQR approach. We
provided theoretical guarantees to ensure task-specific stability under the learned controller for both
model-based and model-free settings. We established gradient heterogeneity bounds for three differ-
ent task heterogeneity cases and offered convergence guarantees showing that the learned controller
is close to each task-specific optimal controller up to a task-heterogeneity bias, emphasizing its
ability to adapt to unseen tasks. Numerical experiments demonstrated the effect of task heterogene-
ity on the MAML-LQR approach’s convergence and assessed the learned controller’s adaptation to
unseen tasks. Future work may explore variance-reduced approaches to reduce the variance of the
zeroth-order gradient and Hessian estimation to improve the model-free sample complexity further.
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