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Abstract
We develop a self-supervised learning method that predicts the decision boundary between safe

and unsafe high-level waypoints for robot navigation given the first-person view in the form of an
RGB image, and the current speed of the robot, without knowledge of the map of the environment.
To provide the theoretical basis for such predictions, we use Hamilton-Jacobi reachability analysis,
a formal verification method, as the oracle for labeling training datasets. Given the labeled data, our
neural network learns the coefficients of the decision boundary via a soft-margin Support Vector
Machine loss function. We experimentally show that our method is generalizable to the real world
and generates safety decision boundaries in unseen indoor environments without knowledge of the
obstacle map. Our method’s advantages are its explainability and accurate safety prediction, which
are important as an aid to human operators in semi-autonomous systems. Finally, we demonstrate
our method’s ability to transfer to the real-world without additional training.

1. Introduction

Navigating robots through intricate and congested environments poses considerable challenges.
Robots can be classified into three main categories concerning navigation: fully autonomous,
semi-autonomous, and tele-operated. Despite advancements, fully autonomous vehicles have not
yet attained the required sophistication to navigate our complex world independently while ensuring
the safety of both the vehicle and humans Murphy (2004), most notably in challenging environments
with clutter, poor illumination, and narrow paths Bruemmer et al. (2004). Consequently, human
involvement remains indispensable for the operation of such vehicles. Semi-autonomous robots
have found applications in myriad scenarios, from search and rescue Doroodgar et al. (2014) to
assistive robots Yousefi et al. (2022) and flight control Eraslan et al. (2020). Such robots allow
humans and robots to cooperate to achieve a desired goal within a shared autonomy framework.
Alternatively, tele-operated robots require one or more human operators to pilot them Casper
and Murphy (2003); Burke and Murphy (2004). This requires the operators to react swiftly
to audio-visual or haptic feedback and can be physically and mentally taxing, especially in
mission-critical scenarios, increasing the possibility of failure.

In the wake of the success of deep learning, visual navigation has gained prominence, even
in safety-critical robotic scenarios. Visual navigation boasts advantages such as affordability,
lightweight hardware, and ubiquity. Within the research community focused on learning, robot
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navigation is typically investigated in the context of an agent exploring an environment that is
also deemed unknown. In this context, a system is designed to acquire policies that directly
correlate onboard sensor readings with control commands through an end-to-end approach.
Such methodologies offer various advantages, enabling the learning of policies without a prior
understanding of the specific system or environment the robot will navigate. The fundamental
concept involves training a model based on convolutional neural networks (CNNs) utilizing
high-level policies. These policies leverage current RGB image observations to generate a sequence
of intermediate states, referred to as “waypoints”. Ultimately, these waypoints guide the robot along
a collision-free path to its desired destination in environments that were previously unexplored.
Waypoints define the path that a robotic system follows on a map, marking each step of its trajectory.
In this paper, we propose a deep learning-based method to identify safe sets of waypoints for robot
navigation. More specifically, we can envision our approach benefits in three scenarios: enhancing
mobile robot operation for novice robot operators in crowded environments through co-navigation;
facilitating teleoperation in remote environments with limited human peripheral vision, where an
interface aids in collision avoidance and provides guidance; and filtering for more generalizable
waypoint-based policies such as Li et al. (2020).

Our model is trained using data generated through optimal control and a support vector machine
(SVM) loss function. Our primary contributions are as follows: 1) A reachability-based framework
for aiding navigation in unknown static environments; 2) an explainable algorithm for computing
an explicit decision boundary in the robot’s state space to obtain a safe set of waypoints online
based only on sensor measurements without an a priori map as the robot navigates, learned
through minimizing the soft-margin support vector machine loss during training, which improves
interpretability in classifying safe and unsafe waypoints; and 3) a hardware demonstration of our
approach, showcasing zero-shot transfer of the learned safe decision boundary estimation based on
monocular RGB images and current linear speed.

2. Related Works

Navigation generally involves metric maps and classical path planning. Obtaining such maps can be
challenging in many scenarios. Numerous research endeavors have explored deep learning-based
monocular vision solutions to tackle autonomous robot navigation without using metric maps Li
et al. (2020); Bansal et al. (2019); Kang et al. (2019); Gandhi et al. (2017); Kahn et al. (2017);
Sadeghi and Levine (2016). The direct perception paradigm, as outlined in Chen et al. (2019),
involves translating input images into key indicators, such as the robot’s angle relative to the
route, distance from lane markings, and proximity to surrounding robots. After direct perception,
end-to-end approaches, exemplified by Rill et al. (Rill and Faragó (2021)), directly map input
images to actuator actions.

Despite recent advances in autonomous navigation through monocular vision, limitations
remain. The focus often lies on training networks to learn steering angles, with the occasional
inclusion of speed as an input, and evaluations commonly take place in simulated environments,
neglecting real-world driving complexities. This raises concerns, especially for collision avoidance
in everyday traffic scenarios (Aichinger et al. (2016); Phillips et al. (2019); Wulfe et al. (2018)),
making the application of learning-based approaches impractical in such situations.

While some systems can identify critical situations using GPS/motion sensor data along
with a priori maps (Aichinger et al. (2016)), an effective safety system should engage in
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real-time environmental monitoring, issuing warnings or taking preemptive actions. Hence, a
subset of research leverages monocular vision for collision avoidance. Studies focusing on
collision avoidance through single-camera images often estimate time-to-collision (TTC) as a
risk metric (Rill and Faragó (2021)). While previous studies focus on implementing collision
avoidance policies through lower-level control, our research examines learning higher-level actions
(waypoints). Our approach introduces a novel perspective, considering a Hamilton-Jacobi (HJ)
reachability-based value function that directly defines safety.

While end-to-end deep learning-based approaches have achieved impressive results in limited
scenarios, they lack data efficiency and robustness in wide-ranging conditions. Similar to our
method, a hybrid of deep learning and optimal control/path planning (Wabersich et al. (2023); Li
et al. (2020); Richter et al. (2018); Borquez et al. (2023); Jung et al. (2018); Loquercio et al. (2018);
Müller et al. (2018); Meng et al. (2019); Bansal et al. (2019); Bajcsy et al. (2019)) also seek to
address these challenges.

3. Problem Setup

The hardware configuration of our robot includes a monocular RGB camera mounted at a fixed
height, with a fixed pitch and forward-facing orientation. The overview of our system is shown
in Fig. 1. At each time step t, our learning architecture takes an RGB image It representing the
first-person view of the robot, along with the robot velocity vt, as input, and generates a decision
boundary that separates safe and unsafe waypoints in the robot’s ego frame. The robot state and
decision boundary are in a 4-dimensional (4D) space (x(t), y(t), θ(t), v(t)) where (x(t), y(t)) is
the robot position and θ(t) is the robot orientation at time t. A projection of this decision boundary
overlaid on the first-person view of a robot is shown in the right photo of Fig. 1.

Figure 1: Overview of the system components

3.1. Dynamics Modeling

We model our robot as a 4D extended Dubins car with the following dynamics that
can approximately describe systems that travel in the direction of their heading in a
curvature-constrained motion such as differential drive robots and fixed-wing aircraft.

ẋ = v cos(θ) + dx ẏ = v sin(θ) + dy θ̇ = ω + dθ v̇ = a (1)
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v ∈ [0, v̄] is the linear velocity, a is the linear acceleration, and ω is the angular velocity.
z := (x, y, θ, v) is the system‘s state, and the system input (control) u is represented as u := (a, ω)
. Let d := (dx, dy, dθ) be the disturbance that accounts for the error in the system modeling. Note
that we assume that the disturbance follows an non-anticipative strategy that react to the control
input based on the state as described in Chen and Tomlin (2018). In addition, we impose constraints
on our control inputs and disturbances as follows:

a ∈ [−ā, ā], ω ∈ [−ω̄, ω̄], d2x + d2y ≤ d̄2xy, dθ ∈ [−d̄θ, d̄θ] (2)

3.2. Differential Flatness

The dynamics in Eq. (1) are differentially flat, so trajectory path planning can be computed
efficiently as trajectories can be represented in simple functional forms such as splines. This
simplification facilitates real-time feasibility in trajectory planning Koo and Sastry (1999);
Mellinger and Kumar (2011). In this section, we present the differential flatness of the extended
Dubins Car system.

Using Eq. 1, we have θ = arctan
(
ẏ
ẋ

)
and v =

√
ẋ2 + ẏ2. From there we can express the

control input as follows:

ω = θ̇ =
d

dt
arctan

(
ẏ

ẋ

)
=

ÿẋ− ẍẏ

ẏ2 + ẋ2
and a = v̇ =

d

dt

√
ẋ2 + ẏ2 =

1

2v
(2ÿẏ + 2ẍẋ) (3)

Based on Eq. (3), one can follow Walambe et al. (2016), which is fully explained in
the Appendix 1 section, to compute a trajectory z(·) given initial state zinit, final state zfinal,
and trajectory duration T ′. Abstracting away this process into a function S, we write z(·) =
S(zinit, zfinal, T

′).

3.3. Hamilton-Jacobi Reachability Analysis

A natural question to ask is how to decide when the planning is safe and what learning objective
can be used so that safe learning of high-level planning is encouraged during training. To answer
those, we utilize a powerful theoretical tool used in the formal verification of dynamic systems,
Hamilton-Jacobi (HJ) reachability analysis. Given the system dynamics and a target set T ⊆ R4,
we compute a set of states where collision is inevitable, called minimal Backward Reachable Tube
(BRT) which is defined as follows:

Ā = {z : ∃γ ∈ Γ(t), ∀u(·) ∈ U,∃s ∈ [t, 0], ζ(s; z, t, u(·), γ[u](·)) ∈ T } (4)

where ζ(s; z, t, u(·), γ[u](·)) is the system trajectory over time, γ[u](·) is the disturbance, with
d(·) = γ[u](·) lying in Γ(t), the set of non-anticipative disturbances that satisfy disturbance
constraints. The minimal BRT is the set of states where no matter what the control function is there
exists a disturbance function that leads the system to a target set T representing collision. Typically,
the target set can be represented by an implicit surface function V0(z) as T = {z : V0(z) ≤ 0}.
Then the BRT is the zero sublevel set of a value function V (z, t) defined as follows:

V (z, t) = inf
γ[u](·)∈Γ(t)

sup
u(·)∈U

min
s∈[t,0]

V0(ζ(s; z, t, u(·), γ[u](·))) (5)

1. Appendix link
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Given the system dynamics and target set T representing an obstacle map in the system’s state
space, we can obtain the BRT through computing value functions V (z, t) as the viscosity solution
to the following HJI PDE (Chen and Tomlin (2018)):

min{DsV (z, s) +H

(
z,

∂V (z, s)

∂z

)
, V (z, 0)− V (z, s)} = 0

V (z, 0) = V0(z), s ∈ [t, 0]

H

(
z,

∂V (z, s)

∂z

)
= max

u
min
d

∂V (z, s)

∂z

⊤
f(z, u, d)

(6)

where f(z, u, d) is the system dynamics described by Eq. 1. In addition, we also define Forward
Reachable Tubes (FRTs) as the set of dynamically feasible states the robot can arrive within time T
seconds starting at a state z0; we don’t consider disturbance in this case.

F(T, z0) = {z : ∃u(·), such that z(·) satisfies f(z, u), z(0) = z0; z(τ) = z for τ ∈ [0, T ]} (7)

We compute BRTs to convergence, resulting in the infinite horizon BRT represented by the
converged value function V∞(z) := limt→∞ V (z, t). All BRTs and FRTs are computed using the
OptimizedDP toolbox Bui et al. (2022), which implements dynamic programming-based algorithms
in optimal control on a multidimensional grids for obtaining numerically convergent (globally)
optimal solutions. The toolbox parallelizes the computation for fast training data generation.

4. Method

We employ a HJ Reachability-based framework, briefly introduced in Section 3.3, to generate data
(Section 4.1). HJ value functions accurately quantify the safety of waypoints by taking into account
the worst-case disturbances; we invite readers to refer to Chen and Tomlin (2018); Bansal et al.
(2017) for a more in-depth discussion of HJ reachability. A waypoint is an intermediate state
representing a short-term navigational goal within our framework, which serve as a link between
perception and control. In section 4.2, we explain how we train our model to learn a decision
boundary between safe and unsafe waypoints using an RGB image and current robot velocity.
Differing from the work of Bui et al. (2021), the safe/unsafe boundary is predicted using only RGB
images as input and can be computed efficiently onboard.

4.1. Data Generation

As shown in Fig. 2, we spawn a robot at a random state in simulation to collect training data. We
follow Alg. 1 to generate data by sampling sets of waypoints from the FRT for the state (Line 2-4).
For each waypoint, the system’s dynamics, as outlined in Eq. (1) is used to compute dynamically
feasible trajectories as third-order spline using z(·) = S(zinit, zfinal, T

′). This leads to a smooth,
dynamically feasible, and computationally efficient trajectory to the waypoint. We evaluate each of
these trajectories on the value function representing the BRT, by taking the minimum over time of
its value function (Lines 6-8).

Note that we consider the values over the trajectory instead of just the value on the waypoint
because a robot may enter an unsafe region on the way to a safe waypoint; this consideration
is especially important as we have a limited camera field of view (FoV) and do not have depth
information. A positive minimum value signifies a safe waypoint (lk = 1), indicating that the
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Figure 2: Overview of training data generation pipeline. Given a map and simulator, we first capture
an RGB image at the camera pose, which is determined by the robot’s position and heading (pose).
Then, using our precomputed FRT, we sample possible waypoints the robot can arrive at the next T
seconds. For each waypoint, we can compute the trajectory toward that waypoint. Any trajectories
that pass by the precomputed BRT will be labeled as unsafe and safe otherwise.

Algorithm 1 Data Generation for Learning Vision-based Decision Boundary Estimation

Require: System dynamics: Eq. (1), FRT and value function representing BRT corresponding to
given map, t current time and T ′ time horizon

1: for i = 1 to N do
2: Sample an initial state zi : (xi, yi, θi, vi)
3: Render current image Ii
4: Sample K waypoints using relative FRT Ŵi := (xri,k, y

r
i,k, θ

r
i,k, v

r
i,k){k=1:K}

5: Convert the relative waypoints Ŵi into absolute states
6: for ŵi,k ∈ Ŵi do
7: {z, u}t:t+T = S(zi, ŵk, T )

8: Vmin ← min

(
V BRT
∞ (z(t)), . . . , V BRT

∞ (z(t+ T ′))

)
9: if Vmin > ϵ then

10: li,k ← 1
11: else
12: li,k ← −1
13: end if
14: D ← D ∪ {(Ii, vi,k, ŵi,k), li,k}
15: end for
16: end for
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trajectory from the present state will avoid collisions. Conversely, a minimum value that drops
below zero implies an unsafe waypoint (lk = −1), suggesting that the trajectory might lead to
collisions (Lines 9-12). We repeat the above procedure for different initial states until sufficient
data-label pairs are obtained for the training dataset represented as D, where K is the number of
waypoints per image/initial state (Line 14). The entire data set is written as: {qi}i∈{1,...,M} and
qi = (Ii, vi,k, {wi,k}, {li,k}), where k ∈ {1, . . . ,K} for each i.

4.2. Training

As shown in Fig. 1, we use ResNet-50 as our CNN backbone for the perception module. Our system
is agnostic to the choice of the backbone network. We choose ResNet-50 because of its reasonable
size and training time. At the last convolution layer, the image features obtained are concatenated
with the current linear speed before passing them to the fully connected layers, which generates the
weights for the decision boundary, denoted by ŷψ. The product ŷ⊤ψϕ(wk), where ϕ(wk) is a feature
of wk (chosen to be a degree 3 polynomial), gives the logit scores of the waypoint being unsafe2.
These are used to calculate the soft-margin SVM-based hinge loss on a set of waypoints. Applying
sigmoid on the logit scores gives us the probabilities in range [0, 1], and by applying a threshold on
the probabilities, we can classify waypoints to safe and unsafe classes.

For every set of waypoints, we also compute the optimal soft-margin SVM parameters ysvmi

based on ground truth labels; these parameters are incorporated into our overall loss function in
Eq. (8), which combines three terms (with relative weights λ1, λ2): hinge loss, which maximizes
the margin between the labels and the predicted decision boundary; cosine distance loss to
minimize the angle difference between ŷψi

and ysvmi ; and the SVM weights regularization term to
alleviate overfitting. Once trained, the neural network can robustly transfer to novel and unknown
environments without finetuning, as we demonstrate in our hardware experiments.

L = Lhinge + λ1Lreg + λ2Lcosine distance, where (8)

Lhinge =
∑K

k=1max (0, 1− lkŷ
⊤
ψϕ(wk)), Lreg = 1

2∥ŷψ∥
2, Lcosine distance = 1−

ŷ⊤ψ ysvm

∥ŷψ∥2 ∥ysvm∥2

5. Summary of Simulation Results

Dataset: We use the photorealistic Stanford’s large-scale 3D Indoor Spaces Dataset as described in
Armeni et al. (2016). As described in Sec. 4.1, we spawn a robot at many different random states,
whereby the robot’s onboard camera captures a 224 × 224 pixel RGB image, denoted as It. We set
v̄ = 0.6 m/s, ω̄ = 1.1 rad/s, and ā = 0.4 m/s2 to align with the specifications of the Turtlebot 2
employed in the hardware experiments (Sec. 6). We choose d̄xy = 0.05 m/s and d̄θ = 0.15 rad/s.
The FoV of the camera is set to 62.1° and the time horizon T for trajectory generation is 6 seconds.
The perception module takes It and the linear speed vt as input and outputs the parameters for the
decision boundary. We train our model using dataset available in simulation and test in an arbitrary
real-world environment without a a priori map.

Implementation details: Using a pre-trained ResNet-50 He et al. (2016) model, we further
train the network with N = 175, 000 data points from the reachability expert. To optimize the loss

2. ϕ(·) represents the waypoint feature, as opposed to θ, which represents the heading of the robot.
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function, we employ the Adaptive Moment Estimation (ADAM) algorithm with a learning rate of
10−5 and loss weights λ1 = λ2 = 10−2 for cosine distance loss and SVM regularization loss.

Figure 3: Plots for different speeds. From left to right: top-down view, first-person view, and
decision boundary from our model

In Fig. 3, the plot on the top left illustrates a top-down view of the map, with obstacles and free
areas depicted in yellow and blue, respectively. The robot is positioned at the bottom center, with the
forward direction pointing upwards. A subset of trajectories leading to waypoints is then overlaid
onto the scene. A slice of the sub-zero level set of the value function V representing the BRT sliced
at the current robot heading and speed are displayed as the dashed cyan line. The BRT is computed
using the obstacles, shown as the solid black lines as the target set T . The waypoints depicted as
red crosses are unsafe, while green ones are safe, plus headings are shown with the arrows.

We can discern differences between obstacles and the sub-zero level set, especially at higher
speeds (bottom left), because the BRT considers both robot dynamics and disturbance to determine
the waypoints’ labels. This validates our choice to assess trajectories using the value function
derived from BRT. Note that the set of waypoints are different in the two rows because they are
sampled from FRT for each initial speed. The second column of plots shows the projection of
viewpoints onto first-person view images at the ground plane. Safe and unsafe waypoints are
again differentiated by green and red colors, respectively. The third column of plot delineates
the decision boundary generated by our model, highlighting safe and unsafe areas. Our model
reveals larger unsafe regions at higher speeds (bottom row), aligning with our expectations based
on system dynamics: it is harder to avoid nearby obstacles at a higher speed. Fig. 4 depicts a similar
concept at a different position. This shows our model accounts for the robot velocity, unlike object
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segmentation methods. The labels of waypoints stem from trajectories rooted in dynamic equations,
an attribute unattainable by image segmentation models.

Figure 4: Plots for different speeds. From left to right: top-down view, first-person view, and
decision boundary from our model

Metrics: For quantitative evaluation, we use accuracy, precision, recall, and F1-score as our
metrics, with the unsafe label being the positive class.

Baseline: We compare our approach against a straightforward classification model with hinge
loss. The model takes image, velocity, and waypoint as input and predicts corresponding labels as
output. A ResNet-50 is used to extract a feature vector from the image, which is concatenated with
the velocity and waypoint and fed to an MLP to obtain the label for the waypoint. This baseline
does not predict the explicit decision boundary.

Table 1 illustrates a comparative analysis of metrics between learning the decision boundary
through our model (with and without the cosine distance loss as our ablation study) and the more
straightforward classification model as our baseline. The lack of improvement in performance with
cosine distance loss can be attributed to the fact that the SVM decision boundary does not take
into account the characteristics of the images, making it prone to misclassification. Our model
demonstrates comparable metrics, with fewer parameters but with enhanced user interpretability
compared to the baseline.

5.1. Testing

We evaluated the model on the Turtlebot 2 without further training or fine-tuning at various indoor
locations at Simon Fraser University, which did not appear in the training dataset.

9
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Metrics
Model Accuracy precision recall F1-score
Ours 85.7 86.7 91.2 88.9

Ours w/o cosine distance loss 85.5 87.6 89.4 88.5
Baseline 86.0 85.8 93.8 89.6

Table 1: Comparison of classification metrics for our method and baseline in simulation

6. Hardware Experiments

Figure 5: We present two scenarios: a and b. In each pair, left image is the snapshots of the real
robot in third-person view and the right is the decision boundary in first-person view

We conduct tests on our framework using a Turtlebot 2 robot hardware testbed, as shown in the
left images of Fig. 5a and Fig. 5b. The tests utilize an onboard StereoLabs ZED2 camera to
capture RGB images and wheel encoders to obtain robot velocity to support navigation. For these
experiments, we tele-operate the robot and compute decision boundaries for each image frame,
shown in the right images of Fig. 5a and Fig. 5b. The decision boundary is expressed in a
closed form polynomial, which makes computation faster than evaluating safety for each waypoint
individually. The presented images showcase tests conducted in both simulation and real-world
environments, providing quantitative evaluations for the former and qualitative assessments for
the latter. Video footage of all experiments can be found at: https://www.youtube.com/
watch?v=3ySt0V79FYE&list=PLUBop1d3Zm2sdaiYb0Gme9PxJGqpKvVPB

7. Conclusion

In conclusion, our research has addressed safe robot navigation in novel environments by evaluating
safety boundary of the system’s state space via Hamilton-Jacobi reachability analysis and support
vector machine. Other techniques, such as control barrier functions, can also be used; however,
we chose to use grid-based HJ reachability computations as they are especially convenient when
applied to large, arbitrary obstacle maps. Even though HJ reachability analysis is computationally
expensive, recent advances in decomposition methods Chen et al. (2018) make safety analysis
of more high-dimensional systems feasible. Since our method is deep-learning based, safety
guaranteed of our method will be further investigated. In future work, we can consider concrete
downstream applications of this work, such as a semi-autonomous navigation system.
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