
Proceedings of Machine Learning Research vol 242:1343–1356, 2024 6th Annual Conference on Learning for Dynamics and Control

Multi-Modal Conformal Prediction Regions with Simple Structures by
Optimizing Convex Shape Templates

Renukanandan Tumu∗1 NANDANT@SEAS.UPENN.EDU

Matthew Cleaveland∗1 MCLEAV@SEAS.UPENN.EDU

George J. Pappas1 PAPPASG@SEAS.UPENN.EDU

Rahul Mangharam1 RAHULM@SEAS.UPENN.EDU

Lars Lindemann2 LLINDEMA@USC.EDU

∗ Indicates equal contribution
1 Department of Electrical & Systems Engineering, University of Pennsylvania
2 Thomas Lord Department of Computer Science, University of Southern California

Editors: A. Abate, M. Cannon, K. Margellos, A. Papachristodoulou

Abstract
Conformal prediction is a statistical tool for producing prediction regions for machine learning mod-
els that are valid with high probability. A key component of conformal prediction algorithms is a
non-conformity score function that quantifies how different a model’s prediction is from the unknown
ground truth value. Essentially, these functions determine the shape and the size of the conformal
prediction regions. While prior work has gone into creating score functions that produce multi-model
prediction regions, such regions are generally too complex for use in downstream planning and
control problems. We propose a method that optimizes parameterized shape template functions over
calibration data, which results in non-conformity score functions that produce prediction regions
with minimum volume. Our approach results in prediction regions that are multi-modal, so they can
properly capture residuals of distributions that have multiple modes, and practical, so each region
is convex and can be easily incorporated into downstream tasks, such as a motion planner using
conformal prediction regions. Our method applies to general supervised learning tasks, while we
illustrate its use in time-series prediction. We provide a toolbox and present illustrative case studies
of F16 fighter jets and autonomous vehicles, showing an up to 68% reduction in prediction region
area compared to a circular baseline region.

1. Introduction

Conformal prediction (CP) has emerged as a popular method for statistical uncertainty quantification
Shafer and Vovk (2008); Vovk et al. (2005). It aims to construct regions around a predictor’s output,
called prediction regions, that contain the true but unknown quantity of interest with a user-defined
probability. CP only requires relatively weak assumptions of the data or the predictor itself, and instead
one only needs a calibration dataset. This means that CP can be applied to learning-enabled predictors,
such as neural networks Angelopoulos et al. (2023).

Conformal prediction regions often take the form {y|R(y,ŷ)≤C}, where ŷ is a prediction and
R(y,ŷ)∈R is a non-conformity score function. This function quantifies the difference between the
ground truth y and the prediction ŷ, while C∈R is a bound produced by the CP procedure. The choice
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Figure 1: Vehicle Trajectory Prediction regions, SCP , plotted alongside benchmark prediction regions
Sbenchmark, which are based on the 2-norm of the residual. All methods achieve the target 90% coverage
rate. The Convex Hull, Hyperrectangle, and Ellipsoid Regions are 68.92%, 59.43%, and 66.92%
smaller respectively.

of non-conformity score function plays a vital role as it defines what shape and size the prediction re-
gions take. For example, using the L2 norm on the error between y and ŷ ensures that the CP regions will
be circles or hyperspheres depending on the dimension of y. However, if the distribution of errors from
the predictor does not resemble a sphere, e.g., when there are dependencies across dimensions, then the
L2 norm is not the right choice as it will result in unnecessarily large prediction regions. While there
is initial work towards the design of non-conformity scores for robotic planning and control, see e.g.,
Tumu et al. (2023) and Cleaveland et al. (2024), a systematic approach to generate non-conservative
conformal prediction regions for these applications is missing. Additionally, using the L2 norm as
a non-conformity score function does not allow for disjoint prediction regions. This further leads to
overly large prediction regions when prediction errors have multi-modal distributions, such as when
predicting which way a vehicle will turn at an intersection, as shown by the dotted red circles in Figure 1.
To address this issue, Zecchin et al. (2023) and Wang et al. (2023b) build prediction regions using mul-
tiple predictions. Feldman et al. (2023) generate prediction regions in a latent space and then transform
the region into the original domain to get non-convex regions. Lei et al. (2011); Smith et al. (2014) em-
ploy kernel density estimators (KDEs) which can capture disjoint prediction regions. However, density
based prediction regions are mathematically difficult to handle and not suitable for real-time decision
making. Izbicki et al. (2022); Han et al. (2022) use conditional probability predictors to generate effi-
cient prediction regions, but these shapes can be too complex to use in downstream tasks. For example,
Lindemann et al. (2023a); Dixit et al. (2023) use conformal prediction regions for model predictive con-
trol which cannot handle prediction regions from KDEs efficiently. With this in mind, we also seek to
produce conformal prediction regions that are practical, in the sense that they have simple convex struc-
ture. In pursuit of practicality, we will optimize over template shapes under suitable optimality criteria.

Contributions. To address the conservatism from improper choices of non-conformity score functions,
this paper proposes using optimization to create non-conformity score functions that produce non-
conservative conformal prediction regions that are multi-modal and practical. Our main idea is to use
an extra calibration dataset to i) cluster the residuals of this calibration data to identify different modes
in the error distribution, ii) define parameterized shape generating functions which specify template
shapes, iii) solve an optimization problem to fit parameterized shape functions for each cluster over the
calibration data while minimizing the volume of the shape template, and iv) use the resulting set of shape
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template functions to define a non-conformity score function. Finally, we use a separate calibration
dataset to apply CP using the new non-conformity score function. Our contributions are as follows:

• We propose a framework for generating non-conformity score functions that result in non-
conservative conformal prediction regions that are multi-modal and practical for downstream
tasks. We capture multi-modality using clustering algorithms and obtain non-conservative
convex regions by fitting parameterized shape template functions to each cluster.

• We provide a python toolbox of our method that can readily be used. We further demonstrate
that our method produces non-conservative conformal prediction regions on case studies of F16
fighter jets and autonomous vehicles, showing an up to 68% reduction in prediction region area
compared to an L2 norm region.

Related Work. The original conformal prediction approach, introduced by Vovk et al. (2005); Shafer
and Vovk (2008) to quantify uncertainty of prediction models, required training one prediction model
per training datapoint, which is computationally intractable for complex predictors. To alleviate this
issue, Papadopoulos (2008) introduce inductive conformal prediction, which can also be referred
to as split conformal prediction. This method employs a calibration dataset for applying conformal
prediction. Split conformal prediction has been extended to allow for quantile regression Romano
et al. (2019), to provide conditional statistical guarantees Vovk (2012), and to handle distribution
shifts Tibshirani et al. (2019); Fannjiang et al. (2022). Applications of split conformal prediction
include out-of-distribution detection Kaur et al. (2022, 2023b), guaranteeing safety in autonomous
systems Luo et al. (2022), performing reachability analysis and system verification Hashemi et al.
(2023); Lindemann et al. (2023b), and bounding errors in F1/10 car predictions Tumu et al. (2023).
Additionally, prior works have constructed probably approximately correct prediction sets around
conformal prediction regions Vovk (2012); Angelopoulos et al. (2024).

However, the aforementioned methods use non-conformity score functions that may not fit the
residuals of their predictors well, which could result in unnecessarily large prediction regions. Previous
works have addressed this limitation by employing density estimators as non-conformity score func-
tions. In Lei et al. (2011, 2013); Lei and Wasserman (2014); Smith et al. (2014) the authors use kernel
density estimators (KDEs) to produce conformal prediction regions. Another work uses conditional
density estimators, which estimate the conditional distribution of the data p(Y |X), where Y is the
predicted variable, and X is the input variable, to produce non-conformity scores Izbicki et al. (2022).
Han et al. (2022) partitions the input space and employs KDEs over the partitions to compute density
estimates, which allow for conditional coverage guarantees. In Stutz et al. (2022), the authors encode
the width of the generated prediction sets directly into the loss function of a neural network while
training. While these approaches can produce small prediction regions, they may not have analytical
forms that are easy for downstream tasks to make use of. In a different vein, Bai et al. (2022) uses
parameterized conformal prediction sets and expected risk minimization to produce small prediction
regions. Some work has also gone into producing multi-modal prediction regions. These works use
set based predictors to compute multiple predictions and conformalize around these sets of predictions
Wang et al. (2023a); Zecchin et al. (2023); Parente et al. (2023). Our work on the other hand, does not
require a set of predictions to generate multi-modal regions.
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2. Preliminaries: Conformal Prediction Regions

Split Conformal Prediction. Conformal prediction was introduced in Vovk et al. (2005); Shafer and
Vovk (2008) to obtain valid prediction regions, e.g., for complex predictive models such as neural
networks. Split conformal prediction, proposed in Papadopoulos (2008), is a computationally tractable
variant of conformal prediction where a calibration dataset is available that has not been used to
train the predictor. Let R0,R1 ...,Rn be n+1 exchangeable random variables1, usually referred to
as the nonconformity scores. Here, R0 can be viewed as a test datapoint, and Ri with i∈ {1,...,n}
as a set of calibration data. The nonconformity scores are often defined as R := ∥Y −h(X)∥ and
Ri :=∥Yi−h(Xi)∥ where h is a predictor that attempts to predict the output from the input. Our goal
is now to obtain a probabilistic bound for R0 based on R1,...,Rn. Formally, given a failure probability
δ∈(0,1), we want to compute a constant C so that2

Prob(R0≤C)≥1−δ. (1)

In conformal prediction, we compute C := Quantile({R1,...,Rn,∞},1−δ) which is the (1−δ)th
quantile of the empirical distribution of the values R1,...,Rn and ∞. Alternatively, by assuming that
R1,...,Rn are sorted in non-decreasing order and by adding Rn+1 :=∞, we can obtain C=Rp where
p := ⌈(n+1)(1−δ)⌉ with ⌈·⌉ being the ceiling function, i.e., C is the pth smallest nonconformity
score. By a quantile argument, see (Tibshirani et al., 2019, Lemma 1), one can prove that this choice
of C satisfies Equation (1). Note that n≥⌈(n+1)(1−δ)⌉ is required to hold to obtain meaningful,
i.e., bounded, prediction regions.
Existing Choices for Non-Conformity Score Functions. The guarantees from (1) bound the non-
conformity scores, and we need to convert this bound into prediction regions. Specifically, let (X,Y )
and (Xi,Yi) with i∈ {1,...,n} be test and calibration data, respectively, drawn from a distribution
D, with X,Xi ∈X ⊆Rl and Y,Yi ∈Y ⊆Rp. Assume also that we are given a predictor h :X →Y .
First, we define a non-conformity score function R, which maps outputs and predicted outputs to the
non-conformity scores from the previous section as R :Y×Y→R.

Then, for a non-conformity score R(Y,Ŷ ) with prediction Ŷ := h(X) and a constant C that
satisfies (1), e.g., obtained from calibration dataR(Yi,Ŷi)with Ŷi :=h(Xi) using conformal prediction,
we define the prediction region SCP as the set of values in Y that result in a non-conformity score not
greater than C, i.e., such that

SCP :={y∈Y|R(y,Ŷ )≤C}. (2)

The choice of the score function R greatly affects the shape and size of the prediction region SCP .
For example, if we use the L2 norm as R(Y,Ŷ ) :=∥Y −Ŷ ∥2, then the conformal prediction regions
will be hyper-spheres (circles in two dimensions). However, the errors of the predictor h may have
asymmetric, e.g., more accurate in certain dimensions, and multi-modal distributions, which will result
in unnecessarily conservative prediction regions. We are interested in constructing non-conservative
and multi-modal prediction regions, e.g., as shown in Figure 1.

Often non-conformity score functions are fixed a-priori, e.g., as the aforementioned L2 norm
distance Lindemann et al. (2023a) or by using softmax functions for classification tasks Angelopoulos

1. Exchangeability is a weaker assumption than being independent and identically distributed (i.i.d.).
2. More formally, we would have to write C(R1,...,Rn) as the prediction region C is a function of R1,...,Rn, e.g., the

probability measure Prob(·) is defined over the product measure of R0,R1...,Rn.
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et al. (2023). More tailored functions were presented in Tumu et al. (2023) for F1/10 racing applica-
tions, in Kaur et al. (2023a) for predictor equivariance, and in Cleaveland et al. (2024) for multi-step
prediction regions of time series.

Data-driven techniques instead compute non-conformity scores from data. Existing techniques
generally rely on density estimation techniques which aim to estimate the conditional distribution
p(Y |X), see Lei et al. (2011). Let p̂(Y |X) denote an estimate ofp(Y |X). One can then use the estimate
p̂(Y |X) to define the non-conformity score as R(Y,X) :=−p̂(Y |X). For this non-conformity score
function, one can apply the conformal prediction to get a boundC which results in the prediction region
SCP ={y|p̂(y|X)≤C}. These regions can take any shape and potentially be multi-modal. However,
these regions are difficult to work with in downstream decision making tasks, especially if the model
used to form p̂(Y |X) is complex (e.g. a deep neural network), as SCP can be difficult to recover.
Problem Formulation. In this work, we present a combination of a data-driven technique with pa-
rameterized template non-conformity score functions. As a result, we obtain parameterized conformal
prediction regions which we denote as SCP,θ :={y∈Y|Rθ(y,Ŷ )≤C} where θ is a set of parameters.
Our high level problem is now to find values for θ that minimize the size of SCP,θ while still achieving
the desired coverage level 1−δ.

Problem 1 Let (X,Y )∼D be a random variable, Dcal :={(X1,Y1),...,(Xn,Yn)} be a calibration
set of random variables exchangeably drawn from D, h :X →Y be a predictor, and δ ∈ (0,1) be a
failure probability. Define parameterized template non-conformity score functions Rθ(Y,h(X)) for
parameters θ that result in convex multi-modal prediction regions SCP,θ, and use the calibration set
Dcal to solve the optimization problem:

min
θ

Volume(SCP,θ) (3a)

s.t. Prob(Y ∈SCP,θ)≥1−δ (3b)

3. Computing Convex Multi-Modal Conformal Prediction Regions

To enable multi-modal prediction regions, we first cluster the residuals Y −Ŷ over a subset Dcal,1 of
our calibration data Dcal, i.e., Dcal,1⊂Dcal. More specifically, we perform a density estimation step
by using Kernel Density Estimation (KDE) to find high-density modes of residuals in Dcal,1. We then
perform a clustering step by using Mean Shift Clustering to identify multi-modality in the high-density
modes of the KDE. We next perform a shape construction step by defining parameterized shape tem-
plate functions and by fitting a separate shape template function to each cluster. These shape template
functions generate convex approximations of the identified clusters. We then perform a conformal
prediction step where we combine all shape template functions into a single non-conformity score
function. Finally, we apply conformal prediction to this non-conformity score over the calibration
data Dcal,2 :=Dcal\Dcal,1. The use of a separate calibration set Dcal,2 guarantees the validity of our
method. We explain each of these steps now in detail.

Density Estimation Let us define the residuals Zi :=Yi−Ŷi with Ŷi :=h(Xi) for each calibration
point (Xi,Yi)∈Dcal,1. We then define the set of residuals Z :={Z1,...,Zn1} where n1 := |Dcal,1|. We
seek to understand the distribution of these residuals to build multi-modal prediction regions. For this
purpose, we perform Kernel Density Estimation (KDE) over the residuals Z of Dcal,1. Note that we
can use any other density estimation method here. In doing so, we will be able to capture high-density
modes of the residual distribution.
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KDE is an approach for estimating the probability density function of a variable from data Parzen
(1962); Rosenblatt (1956). The estimated density function using KDE takes the form

p̂(z|K̄,b,Z1,...,Zn1)=
1

n1b

n1∑
i=1

K̄

(
z−Zi

b

)
(4)

whereZ1,...,Zn1 are the residuals fromDcal,1, K̄ is a kernel function, and b is the bandwidth parameter.
The kernel K̄ must be a non-negative, real-valued function. In this work, we use the Gaussian kernel
K̄(z) := 1√

2π
exp(−z2/2), which is the density of the standard normal distribution. The bandwidth

parameter b controls how much the density estimates spread out from each residual Zi, with larger
values causing the density estimates to spread out less. We use Silverman’s rule of thumb Silverman
(1986) to select the value of b. Using a combination of KDE with Silverman’s rule of thumb yields a
parameter-free method of estimating the probability density of a given variable.

We use the KDE p̂ to find a set L̄⊆Y that covers a 1−δ portion of the residuals, i.e., we want to
compute L̄ such that 1−δ≤

∫
L̄p̂(z|K̄,b,Z1,...,Zn1)dz. As L̄ is difficult to compute in practice, our

algorithm first grids the Z domain. The density of the grid can be set based on the density of the data,
and is a key driver of the runtime of the algorithm. A high density grid can result in smoother, smaller
regions, at the expense of memory and runtime. This gridding approach can be expensive when Z is
of high dimension. Let J be the number of grid cells and let gj⊆Y denote the jth grid cell. Next, we
compute p̂(zcj |K̄,b,Z1,...,Zn1) for a single point zcj ∈gj of each grid cell (e.g., its center) and multiply
p̂(zcj |K̄,b,Z1,...,Zn1) by the volume of the grid cell to obtain its probability density. Finally, we sort
the probability densities of all grid cells in decreasing order and add grid cells (start from high-density
cells) to L̄ until the cumulative sum of probability densities in L̄ is greater than 1−δ. Having computed
high density modes in L̄, we construct the discrete set L :={zc1,...,zcJ}. We note that we will get valid
prediction regions despite this discretization.

Clustering In the next step, we identify clusters of points within L toward obtaining multi-modal
prediction regions. To accomplish this, we use the Mean Shift algorithm Comaniciu and Meer (2002)
since it does not require a pre-specified number of clusters. The algorithm attempts to find local
maxima of the probability density p̂ within L. The algorithm requires a single bandwidth parameter,
which we estimate from data using the bandwidth estimator package in Pedregosa et al. (2011). Due to
space limitations, we direct the reader to Comaniciu and Meer (2002) for more details. Once the local
maxima are found, we group all of the points within L according to their nearest maxima, resulting
in the set L=:{L1,...,LK}, where K denotes the number of clusters.

Shape Construction For each cluster Lk ∈ L, we now construct convex over-approximations.
Our approximations are defined by parameterized shape template functions fθk and take the form
Sθk ={z|fθk(z)≤0}. We specifically consider shape template functions for ellipsoid, convex hulls,
and hyperrectangles (details are provided below). Given a cluster of points Lk and a parameterized
template function fθk , we find the parameters θk that minimize the volume of Sθk while covering all
of the points in Lk. This is formulated as the following optimization problem:

min
θk

Volume(Sθk) (5a)

s.t. Sθk ={z|fθk(z)≤0} (5b)

z∈Sθk ∀z∈Lk. (5c)
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After solving this optimization problem for each cluster Lk ∈ L, we get the set of shapes Sc :=
{Sθ1 ,...,Sθk}. Below, we provide our three choices of template shapes. The choice of shape template
is a hyperparameter of our algorithm.

Ellipsoid: The definition for an ellipsoid in Rp parameterized by θk :={Q≻0∈Rp×p,c∈Rp}
is Ellθk :={z∈Rp|(z−c)TQ(z−c)≤1}. The shape template function for an ellipsoid is

fθk(z) :=(z−c)TQ(z−c)−1. (6)

We solve the problem in Equation (5) for θk (consisting of Q and c) under this parameterization by
using CMA-ES, a genetic algorithm Hansen et al. (2003, 2023).

Convex Hull: The definition for a Convex Hull in Rp parameterized by θk :={A∈Rr×p,b∈Rr}
is CXHθk :={z∈Rp|Az−b≤0}, where r is the number of facets in the Convex Hull. This way, the
shape template function for a convex hull is

fθk(z) := max
j∈{1,...,r}

Ajz−bj (7)

where Aj and bj denote the jth row of A and b, respectively. We solve the problem in Equation (5) for
θk (consisting of A and b) under this parameterization by using the Quickhull Algorithm from Barber
et al. (1996). This algorithm generates a convex polytope that contains every point in Lk.

Hyper-Rectangle: The definition for a (non-rotated) hyper-rectangle parameterized by θk :=
{bmin∈Rp,bmax∈Rp} is HypRectθk :={z∈Rp|bmin≤z≤bmax}. Consequently, the shape template
function for a hyper-rectangle is

fθk(z) := max
j∈{1,...,p}

max{bmin,j−zj ,zj−bmax,j} (8)

We solve the problem in Equation (5) for θk (consisting of bmin and bmax) under this parameterization
by computing the element-wise minimum and maximum of the datapoints in Lk.

Conformalization Note that the set Sc = {Sθ1 , ... ,Sθk}, while capturing information about the
underlying distribution of residuals, may not be a valid prediction region. To obtain valid prediction
regions, we define a new nonconformity score based on the shape template functions {fθ1 ,...,fθk}
to which we then apply conformal prediction over the second dataset Dcal,2. To account for scaling
differences in fθk , which each describe different regions, we normalize first. Specifically, we compute
a normalization constant αk for each fθk as

Rk :={fθk(z)|z∈Dcal,1}
αk :=1/(Quantile(Rk,1−δ)−min(Rk)) (9)

We then define the non-conformity score for each shape as the normalized shape template function

Rθk(z) :=αkfθk(z). (10)

Finally, we define the joint non-conformity score over all shapes using the smallest normalized
non-conformity score as

RSc(z) :=min(Rθ1(z),...,RθK (z)) (11)

We remark here that we take the minimum because we only need the residual point z to lie within one
shape. We can then apply conformal prediction to this non-conformity score function over the second
dataset Dcal,2 to obtain a valid multi-modal prediction region. The next result follows immediately
by (Tibshirani et al., 2019, Lemma 1) and since we split Dcal into Dcal,1 and Dcal,2.
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Theorem 1 Let the conditions from Problem 1 hold. Let RSc be the non-conformity score function
according to equation (11) where the parameters θ1,...,θK are obtained by solving Equation (5). Define
R :=RSc(Y −Ŷ ) for the random variable (X,Y )∼D and Ri :=RSc(Yi−Ŷi) for the calibration data
(Xi,Yi)∈Dcal,2 with i∈{n1+1,...,n}. Then, it holds that

Prob(R≤C)≥1−δ (12)

where C :=Quantile({Rn1+1,...,Rn,∞},1−δ).

To convert the probabilistic guarantee in equation (12) into valid prediction regions, we note that

R=min(Rθ1(Z),...,RθK (Z))≤C ⇐⇒∃k∈{1,...,K}s.t.fθk(Z)≤C/αk. (13)

For a prediction Ŷ , this means in essence that a valid prediction region is defined by

SCP :={y|∃k∈{1,...,K}s.t.fθk(y−Ŷ )≤C/αk}=∪K
k=1{y|fθk(y−Ŷ )≤C/αk} (14)

Intuitively, the conformal prediction region SCP is the union of the prediction regions around each
shape in Sc which illustrates its multi-modality. We summarize our results as a Corollary.

Corollary 2 Let the conditions of Theorem 1 hold. Then, it holds that Prob(Y ∈SCP )≥1−δ.

Dealing with Time-Series Data Let us now illustrate how we can handle time series data. Assume
that P0,P1,...,PT ∈Rp(T+1) is a time series of length T that follows the distribution D. At time t>0,
we observe the inputs X := (P0,...,Pt) and want to predict the outputs Y := (Pt+1,...,PT ) with a
trajectory predictor h, e.g., a recurrent neural network. Our calibration dataset Dcal,1 consists of pairs
(X,Y )∼D where X=(P0,...,Pt) and Y =(Pt+1,...,PT ) and the residuals are Zτ =Pτ−h(X)τ for
τ= t+1,...,T . Now, our desired prediction region should contain every future value of the time series,
Pt+1,...,PT , with probability 1−δ. To achieve this in a computationally efficient manner, we follow
the previously proposed optimization procedure for each future time τ ∈{t+1,...,T} independently
again with a desired coverage of 1−δ. As a result, we get a non-conformity score Rτ

Sc
for each time τ ,

similarly to Equation (11). We normalize these scores over the future times, obtaining normalization
constants βτ , as in Equation (15). Finally, we need to compute the joint non-conformity score over
all future times as in Equation (16).

R̄τ :=
{
Rτ

Sc
(Zτ )

∣∣Zτ ∈Dcal,1

}
βτ :=1/

(
Quantile(R̄τ ,1−δ)−min(R̄τ )

)
(15)

RSc(Z) := max
τ∈{t+1,...,T}

βτR
τ
Sc
(Zτ ) (16)

Note here that we take the maximum, as inspired by our prior work Cleaveland et al. (2024), to obtain
valid coverage over all future times. We can now apply conformal prediction to RSc in the same way
as in Theorem 1 to obtain valid prediction regions for time series.

4. Simulations

The toolbox and all experiments below are available on Github. We evaluate our approach using case
studies on simulations of an F16 fighter jet performing ground avoidance maneuvers and a vehicle tra-
jectory prediction scenario. Our method can be applied in two simple function calls after initialization.

pcr = ConformityOptimizer("kde", "meanshift", "convexhull", 0.90)
pcr.fit(Z_cal_one)
pcr.conformalize(Z_cal_two)

8
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4.1. F16

In this case study, we analyze an F16 fighter jet performing ground avoidance maneuvers using the
open source simulator from Heidlauf et al. (2018). We use an LSTM to predict the altitude and pitch
angle of the F16 up to 2.5 seconds into the future at a rate of 10 Hz (25 predictions in total) with the
altitude and pitch from the previous 2.5 seconds as input. The LSTM architecture consists of two
layers of width 25 and a final linear layer. We used 1500 trajectories to train the network.

Figure 2: (a) Shows the coverage rates over 1,000 random splits of Dcal,2 and Dval for the F16
example. (b) Shows fit conformal regions for the F16 example. (c) Shows the coverage rates over
10,000 random splits of Dcal,2 and Dval for the car example. (d) Shows an example of the prediction
regions shown on an actual prediction of the trajectories.

For calibration and validation, we collect a dataset of 1,900 trajectories all with length 5 seconds.
We randomly select 627 trajectories for Dcal,1, 627 for Dcal,2, and 646 for Dval. To account for the
spread of the data, the bandwidth estimate was adjusted by a factor of 0.2. Shapes were fit using
the procedure described above, using a target coverage of 1−δ=0.9. The density estimation took
0.2949s on average and the clustering took 7.4222s on average. The average shape fitting times were
1.19s for the ellipse, 0.0030s for the convex hull, and 0.00086s for the hyperrectangle. Plots of the
computed regions are shown in Figure 2(b) and coverage over 1000 random splits of Dcal,2 and Dval

are shown in Figure 2(a). The L2 norm benchmark region has a volume of 0.205. Our regions provide a
31.7−60.9% decrease in the area of the region, depending on the shape template used. In this example,
differing units in each dimension are better compensated for in our approach.

4.2. Vehicle Trajectory Prediction

In this example application, we apply our method to the prediction of a vehicle’s trajectory. The vehicle
is governed according to kinematic dynamics, which are given by Equation (17). The vehicle state
contains its 2D position x,y, yaw θ, and velocity v. The control inputs are the acceleration a and
steering angle ω. For simplicity, we assume no acceleration commands (so a=0).

ẋ=vcos(θ), ẏ=vsin(θ), θ̇=vtan(ω)/L, v̇=a; s=[x,y,θ,v], u=[ω,a] (17)

We use a physics-based, Constant Turn Rate and Velocity (CTRV) method to predict the trajectories
of the car. The predictor takes as input the previous 0.5 seconds of the state of the car (sampled at
10Hz). It then estimates θ̇ by computing the average rate of change of θ over the inputs, and uses this
estimate along with the current state of the car to predict the future position of the car up to 5 seconds
into the future at a rate of 10Hz (50 predictions total) using (17).
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The predictor is evaluated on a scenario which represents an intersection. The vehicle proceeds
straight for 0.5 seconds, then either proceeds forward, turns left, or turns right for 5 seconds, all with
equal probability. The predictor makes its predictions at the end of the 0.5 straight period. 10000
samples were generated, and split, with 3333 samples in eachDcal,1 andDcal,2, and 3334 in the test set.

First, we fit shapes for just the last timestep of the scenario, 5 seconds into the prediction window,
using the procedure described above with a target coverage of 1−δ=0.9. To account for the spread of
the data, the bandwidth estimation was adjusted by a factor of 0.2. We evaluated our approach on 10000
random splits of the data in Dcal,1 and Dtest. Computing the density estimate took 0.832s on average
and the clusters took 0.856s on average. Fitting the shape templates took an average of 0.002s for the
Convex Hull and Hyperrectangle and 3.760s for the Ellipse. The online portion, evaluating region mem-
bership, took 0.0029s on average for 3334 points for all shapes. For each of the shape templates, we
show that the mean coverage is close to our target coverage of 90% in Figure 2(c). The figure is shown in
Figure 2(d), and can be compared to the baseline circular region. Our method provides a68.9% improve-
ment in the prediction region area while still providing the desired coverage. This figure also showcases
the multi-modal capabilities of our approach, where each of the three behaviors has its own shape.

Figure 3: This figure shows the size of conformal prediction regions created for a time series prediction
of vehicle motion over fifty timesteps. We generate a prediction region for only the timesteps shown,
using the method in Cleaveland et al. (2024), labeled the LCP region. We also generate conformal
prediction regions using our method, which are shown in black. Each figure includes the area of the
regions shown, and all methods achieve the desired coverage.

Finally, we computed regions over multiple timesteps. Figure 3 shows the size and shape of
the regions designed to achieve 90% coverage over 5 timesteps. This prediction region takes 28s to
compute, and 0.008s to compute region membership. The total volume of the prediction region is
68.17% smaller than the benchmark approach from Cleaveland et al. (2024).

5. Conclusion

In this paper, we have presented a method for generating practical, multi-modal conformal prediction
regions. Our approach uses an extra calibration dataset to find parameters of shape template func-
tions over clusters of the calibration data. These shape template functions then get converted into a
non-conformity score function, which we can use alongside standard inductive conformal prediction
to get valid prediction regions. We demonstrate the approach on case studies of F16 fighter jets and
autonomous vehicles, showing an up to 68% reduction in prediction region area.
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