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Abstract
Surrogate rewards for linear temporal logic (LTL) objectives are commonly utilized in planning
problems for LTL objectives. In a widely-adopted surrogate reward approach, two discount factors
are used to ensure that the expected return approximates the satisfaction probability of the LTL
objective. The expected return then can be estimated by methods using the Bellman updates such
as reinforcement learning. However, the uniqueness of the solution to the Bellman equation with
two discount factors has not been explicitly discussed. We demonstrate with an example that when
one of the discount factors is set to one, as allowed in many previous works, the Bellman equation
may have multiple solutions, leading to inaccurate evaluation of the expected return. We then
propose a condition for the Bellman equation to have the expected return as the unique solution,
requiring the solutions for states inside a rejecting bottom strongly connected component (BSCC)
to be 0. We prove this condition is sufficient by showing that the solutions for the states with
discounting can be separated from those for the states without discounting under this condition.
Keywords: Markov Chain, Limit-Deterministic Büchi Automaton, Reachability, Büchi Condition

1. Introduction

Modern autonomous systems need to solve planning problems for complex rule-based tasks that
are usually expressible by linear temporal logic (LTL) (Pnueli, 1977). LTL is a symbolic language
that helps fully automate the design process with computer algorithms. When the planning environ-
ment can be modeled by Markov decision processes (MDPs), the planning problems of finding the
optimal policy to maximize the probability of achieving an LTL objective can be solved by model
checking techniques (Baier and Katoen, 2008; Fainekos et al., 2005; Kress-Gazit et al., 2009).

However, the utility of model checking is limited when the transition probabilities of the MDP
model are unknown. A promising solution, in such scenarios, is to deploy reinforcement learning
(RL) (Sutton and Barto, 2018) to find the optimal policy from sampling. Early efforts in this di-
rection have been confined to particular subsets of LTL (e.g. Li et al. (2017); Li and Belta (2019);
Cohen and Belta (2023)), relied restricted semantics (e.g. Littman et al. (2017)), or assumed prior
knowledge of the MDP’s topology (e.g. Fu and Topcu (2014)) — understanding the presence or ab-
sence of transitions between any two given states. Model-based RL methods have also been applied
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by first estimating all the transitions of the MDP and applying model checking with a considera-
tion on the estimation error (Brázdil et al., 2014). However, the computation complexity can be
unnecessarily high since not all transitions are equally relevant (Ashok et al., 2019).

Recent works have used model-free RL for LTL objectives on MDPs with unknown transition
probabilities (Sadigh et al., 2014; Hasanbeig et al., 2019; Hahn et al., 2020; Bozkurt et al., 2020).
These approaches are all based on constructing ω-regular automata for the LTL objectives and trans-
lating the LTL objective into surrogate rewards within the product of the MDP and the automaton.
The surrogate rewards yield the Bellman equations for the satisfaction probability of the LTL ob-
jective for a given policy, which can be solved through sampling by RL.

The first approach (Sadigh et al., 2014) employs Rabin automata to transform LTL objectives
into Rabin objectives, which are then translated into surrogate rewards, assigning constant posi-
tive rewards to certain “good” states and negative rewards to “bad” states. However, this surrogate
reward function is not technically correct, as demonstrated in (Hahn et al., 2019). The second ap-
proach (Hasanbeig et al., 2019) employs limit-deterministic Büchi automata to translate LTL objec-
tives into surrogate rewards that assign a constant reward for “good” states with a constant discount
factor. This approach is also technically flawed, as demonstrated by (Hahn et al., 2020). The third
method (Bozkurt et al., 2020) also utilizes limit-deterministic Büchi automata but introduces surro-
gate rewards featuring a constant reward for “good” states and two discount factors that converge to
1 throughout the training process.

In more recent works (Voloshin et al., 2023; Shao and Kwiatkowska, 2023; Cai et al., 2021;
Hasanbeig et al., 2023), the surrogate reward with two discount factors from (Bozkurt et al., 2020)
was used while allowing one discount factor to be equal to 1. We noticed that in this case, the
Bellman equation may have multiple solutions, as that discount factor of 1 does not provide con-
traction in many states for the Bellman operator. Consequently, the RL algorithm may not converge
or may converge to a solution that deviates from the satisfaction probabilities of the LTL objective,
leading to non-optimal policies. To illustrate this, we present a concrete example. To identify the
satisfaction probabilities from the multiple solutions, we propose a sufficient condition that requires
the solution of the Bellman equation to be 0 on all rejecting BSCCs, in which the discount factor is
always 1.

We show that, under this sufficient condition, the Bellman equation has a unique solution that
approximates the satisfaction probabilities for LTL objectives by the following procedure. When
one of the discount factors equals 1, we partition the state space into states with discounting and
states without discounting based on surrogate reward. In this case, we first characterize the relation-
ship between all states with discounting and show that their solution is unique since the Bellman
operator always has contractions in these states. Then, we show that the whole solution is unique
since the solution on states without discounting is uniquely determined by states with discounting.

2. Preliminaries

This section introduces preliminaries on labeled Markov decision processes, linear temporal logic,
and probabilistic model checking.

2.1. Labeled Markov Decision Processes

We use labeled Markov decision processes (LMDPs) to model planning problems where each deci-
sion has a potentially probabilistic outcome. LMDPs augment standard Markov decision processes
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(Baier and Katoen, 2008) with state labels, enabling assigning properties, such as safety and live-
ness, to a sequence of states.

Definition 1 A labeled Markov decision process is a tupleM = (S,A, P, sinit,Λ, L) where

• S is a finite set of states and sinit ∈ S is the initial state,

• A is a finite set of actions where A(s) denotes the set of allowed actions in the state s ∈ S,

• P : S ×A× S → [0, 1] is the transition probability function such that for all s ∈ S, we have

∑
s′∈S

P (s, a, s′) =

{
1, a ∈ A(s)

0, a /∈ A(s)
,

• Λ is a finite set of atomic propositions and L : S → 2Λ is a labeling function.

A path of the LMDPM is an infinite state sequence σ = s0s1s2 · · · such that for all i ≥ 0, there
exists ai ∈ A(s) and si, si+1 ∈ S with P (si, ai, si+1) > 0. We can construct a corresponding
semantic path as L(σ) = L(s0)L(s1) · · · by the labeling function L(s). Given a path σ, the ith
state is denoted by σ[i] = si. We denote the prefix by σ[:i] = s0s1 · · · si and suffix by σ[i+1:] =
si+1si+2 · · · .

2.2. Linear Temporal Logic and Limit-Deterministic Büchi Automata

In an LMDPM, whether a given semantic path L(σ) satisfies a property such as avoiding unsafe
states can be expressed using Linear Temporal Logic (LTL). LTL can specify the change of labels
along the path by connecting Boolean variables over the labels with two propositional operators,
negation (¬) and conjunction (∧), two temporal operators, next (©) and until (∪).

Definition 2 The LTL formula is defined by the syntax

ϕ ::= true |α |ϕ1 ∧ ϕ2 |¬ϕ | © ϕ |ϕ1 ∪ ϕ2, α ∈ Λ (1)

Satisfaction of an LTL formula ϕ on a path σ of an MDP (denoted by σ |= ϕ) is defined as, α ∈ Λ
is satisfied on σ if α ∈ L(σ[1]),©ϕ is satisfied on σ if ϕ is satisfied on σ[1:], ϕ1 ∪ ϕ2 is satisfied
on σ if there exists i such that σ[i:] |= ϕ2 and for all j < i, σ[j:] |= ϕ1.

Other propositional and temporal operators can be derived from previous operators, e.g., (or)
ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), (eventually) ♦ϕ := true ∪ ϕ and (always) �ϕ := ¬♦¬ϕ.

We can use Limit-Deterministic Büchi Automata (LDBA) to check the satisfaction of an LTL
formula on a path.

Definition 3 An LDBA is a tuple A = (Q,Σ, δ, q0, B) where Q is a finite set of automaton states,
Σ is a finite alphabet, δ : Q × (Σ ∪ {ε}) → 2Q is a (partial) transition function, q0 is an initial
state, and B is a set of accepting states, δ is total except for the ε-transitions (|δ(q, α)| = 1 for
all q ∈ Q, α ∈ Σ), and there exists a bipartition of Q to an initial and an accepting component
Qini ∪Qacc = Q such that

• there is no transition from Qacc to Qini, i.e., for any q ∈ Qacc, v ∈ Σ, δ(q, v) ⊆ Qacc,
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• all the accepting states are in Qacc, i.e., B ⊆ Qacc,

• Qacc does not have any outgoing ε-transitions, i.e., δ(q, ε) = ∅ for any q ∈ Qacc.

A run is an infinite automaton transition sequence ρ = (q0, w0, q1), (q1, w1, q2) · · · such that for all
i ≥ 0, qi+1 ∈ δ(qi, wi). The run ρ is accepted by the LDBA if it satisfies the Büchi condition, i.e.,
inf(ρ)∩B 6= ∅, where inf(ρ) denotes the set of automaton states visited by ρ infinitely many times.

A path σ = s0s1 . . . of an LMDP M is considered accepted by an LDBA A if the semantic
path L(σ) is the corresponding word w of an accepting run ρ after elimination of ε-transitions.

Lemma 4 (Sickert et al., 2016, Theorem 1) Given an LTL objective ϕ, we can construct an LDBA
Aϕ (with labels Σ = 2Λ) such that a path σ |= ϕ if and only if σ is accepted by the LDBA Aϕ.

2.3. Product MDP

Planning problems for LTL objectives typically requires a (history-dependent) policy, which deter-
mines the current action based on all previous state visits.

Definition 5 A policy π is a function π : S+ → A such that π(σ[:n]) ∈ A(σ[n]), where S+

stands for the set all non-empty finite sequences taken from S. A memoryless policy is a policy that
only depends on the current state π : S → A. Given a LMDP M = (S,A, P, s0,Λ, L) and a
memoryless policy π, a Markov chain (MC) induced by policy π is a tupleMπ = (S, Pπ, s0,Λ, L)
where Pπ(s, s′) = P (s, π(s), s′) for all s, s′ ∈ S.

Using the LDBA, we construct a product MDP that augments the MDP state space along with
the state space of the LDBA, such that the state of the product MDP encodes both the physical state
and the progression of the LTL objective. In this manner, we “lift” the planning problem to the
product MDP. Given that the state of the product MDP now encodes all the information necessary
for planning, the action can be determined by the current state of the product MDP, resulting in
history-independent policies Formally, the product MDP is defined as follows:

Definition 6 A product MDPM× = (S×, A×, P×, s×0 , B
×) of an LMDPM = (S,A, P, s0,Λ, L)

and an LDBA A = (Q,Σ, δ, q0, B) is defined by the set of states S× = S × Q, the set of actions
A× = A ∪ {εq|q ∈ Q}, the transition probability function

P×(〈s, q〉, a, 〈s′, q′〉) =


P (s, a, s′) q′ = δ(q, L(s)), a /∈ Aε

1 a = εq′ , q
′ ∈ δ(q, ε), s = s′

0 otherwise

,

the initial state s×0 = 〈s0, q0〉, and the set of accepting states B× = {〈s, q〉 ∈ S×|q ∈ B}. We say
a path σ satisfies the Büchi condition ϕB if inf(σ)∩B× 6= ∅. Here, inf(σ) denotes the set of states
visited infinitely many times on σ.

The transitions of the product MDPM× are derived by combining the transitions of the MDP
M and the LDBA A. Specifically, the multiple ε-transitions starting from the same states in the
LDBA are differentiated by their respective end states q and are denoted as εq. These ε-transitions in
the LDBA give rise to corresponding ε-actions in the product MDP, each occurring with a probability
of 1. The limit-deterministic nature of LDBAs ensures that the presence of these ε-actions within
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the product MDPs does not prevent the quantitative analysis of the MDPs for planning. In other
words, any optimal policy for a product MDP induces an optimal policy for the original MDP, as
formally stated below.

Lemma 7 (Sickert et al. (2016)) For given an LMDPM and an LTL objective ϕ, let Aϕ be the
LDBA derived from ϕ and letM× be the product MDP constructed fromM and Aϕ, with the set
of accepting states B×. Then, a memoryless policy π× that maximizes the probability of satisfying
the Büchi condition onM×, Pσ×

(
σ× |= �♦B×

)
where σ×∼M×

π× , induces a finite memory policy
π that maximizes the satisfaction probability Pσ∼Mπ

(
σ |= ϕ

)
onM.

3. Problem Formulation

In the previous section, we have shown LTL objectives on an LMDP can be converted into a Büchi
condition on the Product MDP. In this section, we focus on a common surrogate reward used for
Büchi condition proposed in (Bozkurt et al., 2020) and study the uniqueness of solution for the
Bellman equation of this surrogate reward, which has not been sufficiently discussed in previous
work (Voloshin et al., 2023; Hasanbeig et al., 2023; Shao and Kwiatkowska, 2023).

For simplicity, we drop× from the product MDP notation and define the satisfaction probability
for the Büchi condition as

P (s |= �♦B) := Pσ∼Mπ

(
σ |= �♦B | ∃t : σ[t] = s

)
. (2)

When the product MDP model is unknown, the traditional model-based method through graph
search (Baier and Katoen, 2008) is not applicable. Alternatively, we may use model-free reinforce-
ment learning with a two-discount-factor surrogate reward proposed by (Bozkurt et al., 2020) and
widely used in (Voloshin et al., 2023; Shao and Kwiatkowska, 2023; Cai et al., 2021; Hasanbeig
et al., 2023; Cai et al., 2023). It consists of a reward function R : S → R and a state-dependent
discount factor function Γ : S → (0, 1] with 0 < γB < γ ≤ 1,

R(s) :=

{
1− γB s ∈ B
0 s /∈ B

, Γ(s) :=

{
γB s ∈ B
γ s /∈ B

. (3)

A positive reward is collected only when an accepting state is visited along the path. Suppose
the discount factor γ = 1; then, the satisfaction of Büchi condition results in a summation of a
geometric series equal to one. The probability of whether a path satisfies the Büchi condition is
equal to how likely such a geometric series exists along a path.

For this surrogate reward, the K-step return (K ∈ N or K =∞) of a path from time t ∈ N is

Gt:K(σ) =

K∑
i=0

R(σ[t+ i]) ·
i−1∏
j=0

Γ(σ[t+ j]), Gt(σ) = lim
K→∞

Gt:K(σ). (4)

Accordingly, the value function Vπ(s) is the expected return conditional on the path starting at s
under the policy π. It approximates the satisfaction probability thus serves as a metric for policy.

Vπ(s) = Eπ[Gt(σ) |σ[t] = s]

= Eπ[Gt(σ) | σ[t] = s, σ |= �♦B] · P (s |= �♦B)

+ Eπ[Gt(σ) | σ[t] = s, σ 2 �♦B] · P (s 2 �♦B) (5)
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Given a policy, the value function satisfies the Bellman equation.1 The Bellman equation is
derived from the fact that the value of the current state is equal to the expectation of the current
reward plus the discounted value of the next state. For the surrogate reward in the equation (3), the
Bellman equation is given as follows:

Vπ(s) =

{
1− γB + γB

∑
s′∈S Pπ(s, s′)Vπ(s′) s ∈ B

γ
∑

s′∈S Pπ(s, s′)Vπ(s) s /∈ B
. (6)

Previous work (Voloshin et al., 2023; Hasanbeig et al., 2023; Shao and Kwiatkowska, 2023)
allows γ = 1. However, setting γ = 1 can cause multiple solutions to the Bellman equations,
raising concerns about applying model-free RL. This motivates us to study the following problem.

Problem Formulation: For given (product) MDP M from Definition 6 and the sur-
rogate reward from (3), and a policy π, find the sufficient conditions under which the
Bellman equation from (6) has a unique solution.

The following example shows the Bellman equation (6) has multiple solutions when γ = 1 (3). An
incorrect solution, different than the expected return from (5), hinders accurate policy evaluation
and restricts the application of RL and other optimization techniques.

Example 1 Consider a (product) MDP with three states S = {s1, s2, s3} where s1 is the initial
state and B = {s2} is the set of accepting states as shown in Figure 1. In s1, the action α leads
to s2 and the action β leads to s3. Since s2 is the only accepting state, α is the optimal action
that maximizing the expected return. However, there exists a solution to the corresponding Bellman
equation suggesting β is the optimal action, as follows:

a∗ := argmax
a∈{α,β}

{P (s, a, s′)V (s′)} = argmax
a∈{α,β}

{
V (s2) if a = α,

V (s3) if a = β,
(7)

where V (s2) and V (s3) can be computed using the Bellman equation (3) as the following:

V (s2) = 1− γB + γBV (s2), V (s3) = V (s3). (8)

yielding V (s2) = 1 and V (s3) = c where c ∈ R is an arbitrary constant. Suppose c = 2 is chosen
as the solution, then the optimal action will be incorrectly identified as β by (7).

Remark 8 The product MDP from Definition 6 is exactly an MDP in the general sense. The surro-
gate reward (3) and our result based on it work for the general MDPs with Büchi objectives.

4. Overview of Main Results

The Bellman equation provides a necessary condition for determining the value function. However,
it can have several solutions, with only one being the actual value function (for instance, the Bellman
equation for reachability (Baier and Katoen, 2008, P851)). It is crucial to identify conditions that
eliminate incorrect solutions since solving techniques like model-free RL may struggle to converge
or converge to an incorrect solution in the presence of multiple solutions.

1. We call Vπ(s) = R(s) + γ
∑
s′∈S Pπ(s, s

′)Vπ(s
′) as the Bellman equation and V ∗π (s) = maxa∈A(s){R(s) +

γ
∑
s′∈S P (s, a, s′)V ∗π (s

′)} as the Bellman optimality equation.
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s1 s2 s3

α

β

1 1

Figure 1: Example of a three-state Markov de-
cision process. The resulting Bell-
man equation (8) has multiple solutions
when γ = 1 in the surrogate reward
(3), which can mislead to the subopti-
mal actions.

In Example 1, for c = 0, the solution for
V (s3) is the value function equal to zero since
no reward will be collected on this self-loop
based on (3). Generally, the solution should be
zero for all states in the rejecting BSCCs, as de-
fined below.

Definition 9 A bottom strongly connected
component (BSCC) of an MC is a strongly con-
nected component without outgoing transitions.
A BSCC is rejecting2 if all states s /∈ B. Other-
wise, we call it an accepting BSCC.

By Definition 9, there will not be any ac-
cepting states visited on a path starting from a
state in the rejecting BSCCs. Thus, the value
function for all states in the rejecting BSCCs equals 0 based on (3). Setting the values for all states
within a rejecting BSCC to zero is a sufficient condition for the Bellman equation solution equaling
the value function, as stated below.

Theorem 10 The Bellman equation (6) has the value function as the unique solution, if and only
if i) the discount factor γ < 1 or ii) the discount factor γ = 1 and the solution for any state in a
rejecting BSCC is zero.

5. Methodology

We illustrate the proof of Theorem 10 in this section and provide detailed proofs in the extended
version (Xuan et al., 2023) . Specifically, we first prove it for the case of γ < 1 and then move to
the case of γ = 1. The surrogate reward (3) depends on whether a state is an accepting state or not.
Thus, we split the state space S by the accepting states B and rejecting states ¬B := S\B. The
Bellman equation can be rewritten in the following form,[

V B

V ¬B

]
= (1− γB)

[
Im
On

]
+

[
γBIm×m

γIn×n

]
︸ ︷︷ ︸

ΓB

[
Pπ,B→B Pπ,B→¬B
Pπ,¬B→B Pπ,¬B→¬B

]
︸ ︷︷ ︸

Pπ

[
V B

V ¬B

]
, (9)

where m = |B|, n = |¬B|, V B ∈ Rm, V ¬B ∈ Rn are the vectors listing the value function for all
s ∈ B and s ∈ ¬B, respectively. I and O are column vectors with all 1 and 0 elements, respectively.
Each of the matrices Pπ,B→B , Pπ,B→¬B , Pπ,¬B→B , Pπ,¬B→¬B contains the transition probability
from a set of states to a set of states, their combination is the transition matrix Pπ for the induced
MC. In the following, we assume a fixed policy π, leading us to omit the π subscript from most
notation when its implication is clear from the context.

2. Here we call a state s ∈ B as an accepting state, a state s /∈ B as a rejecting state. Notice that an accepting state
must not exist in a rejecting BSCC and a rejecting state may exist in an accepting BSCC.
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5.1. The case γ < 1

Proposition 11 If γ < 1 in the surrogate reward (3), then the Bellman equation (9) has the value
function as the unique solution.

As γ < 1, the invertibility of (I − ΓBPπ) can be shown by applying Gershgorin circle theorem
(Bell, 1965, Theorem 0). Any eigenvalue λ of ΓBPπ satisfies |λ| < 1 since each row sum of ΓBPπ
is strictly less than 1. Then, the solution for the Bellman equation (9) can be uniquely determined
as [

V B

V ¬B

]
= (1− γB)(Im+n − ΓBPπ)−1

[
Im
On

]
. (10)

5.2. The case γ = 1

For γ = 1, the matrix (I − ΓBPπ) may not be invertible, causing the Bellman equation (9) to
have multiple solutions. Since the solution may not be the value function here, we use UB ∈ Rm
and U¬B ∈ Rn to represent a solution on states in B and ¬B, respectively. In an induced MC, a
path starts in an initial state, travels finite steps among the transient states, and eventually enters a
BSCC. If the induced MC has only accepting BSCCs, the connection between all states in B can
be captured by a new transition matrix, and the Bellman operator is contractive on the states in B.
Thus, we can show the solution is unique in all the states in Section 5.2.1. In the general case where
rejecting BSCCs also exists in the MC, we introduce a sufficient condition of fixing all solutions
within rejecting BSCCs to zero. We demonstrate the uniqueness of the solution under this condition
first on UB and then on U¬B in Section 5.2.2.

5.2.1. WHEN THE MC ONLY HAS ACCEPTING BSCCS

This section focuses on proving that the Bellman equation (9) has a unique solution when there are
no rejecting BSCCs in the MC. The result is as follows,

Proposition 12 If the MC only has accepting BSCCs and γ = 1 in the surrogate reward (3), then
the Bellman equation (9) has a unique solution [UB

T
, U¬B

T
]T = I.

The intuition behind the proof is to capture the connection between all states B by a new transition
matrix PBπ , and using I − γBPBπ invertible to show the solutions UB is unique. Then, we show
U¬B is uniquely determined by UB .

We start with constructing a transition matrix PBπ for the states in B whose (i, j)th element,
denoted by (PBπ )ij , is the probability of visiting jth state in B without visiting any state in B after
leaving the ith state in B.

PBπ := Pπ,B→B + Pπ,B→¬B

∞∑
k=0

P kπ,¬B→¬BPπ,¬B→B. (11)

In (11), the matrix element (P kπ,¬B→¬B)ij represents the probability of a path leaving the state i
and visiting state j after k steps without travelling through any states in B. However, the absence of
rejecting BSCCs ensures that any path will visit a state in B in finite times with probability 1. Thus,
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for any i, j ∈ ¬B, limk→∞(P kπ,¬B→¬B)ij = 0. This limit implies any eigenvalue λ of Pπ,¬B→¬B
satisfies |λ| < 1 and therefore

∑∞
k=0 P

k
π,¬B→¬B can be replaced by (I − Pπ,¬B→¬B)−1 in (11),

PBπ = Pπ,B→B + Pπ,B→¬B(I − Pπ,¬B→¬B)−1Pπ,¬B→B. (12)

Since all the elements on the right-hand side are greater or equal to zero, for any i, j ∈ B, (PBπ )ij ≥
0. Since there are only accepting BSCCs in the MC, given a path starting from an arbitrary state
in B, the path will visit an accepting state in finite steps with probability one, ensuring that for
all i ∈ B,

∑
j∈S(PBπ )ij = 1. Thus, PBπ is a probability matrix that can be used to describe the

behaviour of an MC with the state space as B only.

Remark 13 For a given MC with only accepting BSCCsMπ = (S, Pπ, s0,Λ, L), we can construct
an MC consisting of the accepting states MB

π := (B,PBπ , µ,Λ, L). This new MC, referred to
as the accepting MC, has the state space defined as the set of accepting states B. The transition
probabilities PBπ (from (12)) are the transition probabilities between the accepting states inMπ.
The initial distribution µ is a distribution on B and determined by s0 as follows:

if s0 ∈ B, λ(s) =

{
1 s = s0

0 s 6= s0

, if s0 /∈ B, µ(s) = (Pinit)s0 s (13)

where Pinit := (I − Pπ,¬B→¬B)−1Pπ,¬B→B is a matrix. Each element (Pinit)ij represents the
probability of a path leaving the state i ∈ ¬B and visiting state j ∈ B without visiting any state in
B between the leave and visit. Since the absence of rejecting BSCC, we can construct an accepting
MC, and every state will have a reward of 1− γB and a discount factor of γB .

Lemma 14 Suppose there is no rejecting BSCC, for γ = 1 in (3), the Bellman equation (9) is
equivalent to the following form,[

UB

U¬B

]
= (1− γB)

[
Im
On

]
+

[
γBIm×m

In×n

] [
PBπ

Pπ,¬B→B Pπ,¬B→¬B

] [
UB

U¬B

]
. (14)

The equation (14) implies that the solution UB does not rely on the rejecting states ¬B. Subse-
quently, we leverage the fact that U¬B is uniquely determined by UB to establish the uniqueness of
the overall solution V .

Proposition 12 shows the solutions for the states inside an accepting BSCC have to be 1. All
states outside the BSCC cannot be reached from a state inside the BSCC, thus the solution for states
outside this BSCC is not involved in the solution for states inside the BSCC. By Lemma 14, the
Bellman equation for an accepting BSCC can be rewritten into the form of (14) where UB and U¬B
stands for the solution for accepting states and rejecting states inside this BSCC, and vector I is the
unique solution.

5.2.2. WHEN ACCEPTING AND REJECTING BSCC BOTH EXIST IN THE MC

Having established the uniqueness of solutions in the case of accepting BSCCs, we now shift our
focus to the general case involving rejecting BSCCs. We state in Proposition 12 that the solutions
for the states in the accepting BSCCs are unique and equal to I. We now demonstrate that setting
the solutions for the states in rejecting BSCCs to O ensures the uniqueness and correctness of the
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solutions for all states. We partition the state space further into {BA, BT ,¬BA,¬BR,¬BT }, where
BA is the set of accepting states in the BSCCs, BT := B\BA is the set of transient accepting states.
¬BA is the set of rejecting states in the accepting BSCCs, ¬BR is the set of rejecting states in the
rejecting BSCCs, and ¬BT := ¬B\(¬BA ∪ ¬BR) is set of transient rejecting states. We rewrite
the Bellman equation (9) in the following form,

UBT

UBA

U¬BT

U¬BA

U¬BR

 = (1− γB)

[
Im
On

]
+

[
γBIm×m

In×n

]


Pπ,BT→BT Pπ,BT→BA Pπ,BT→¬BT Pπ,BT→¬BA Pπ,BT→¬BR

Pπ,BA→BA Pπ,BA→¬BA Pπ,BA→¬BR
Pπ,¬BT→BT Pπ,¬BT→BA Pπ,¬BT→¬BT Pπ,¬BT→¬BA Pπ,¬BT→¬BR

Pπ,¬BA→BA Pπ,¬BA→¬BA Pπ,¬BA→¬BR
Pπ,¬BR→¬BR



UBT

UBA

U¬BT

U¬BA

U¬BR

 . (15)

The solution for states inside BSCCs has been fixed as [UBA
T
, U¬BA

T
]T = I and U¬BR = O. The

solution UBT and U¬BT for transient states remain to be shown as unique. We rewrite the Bellman
equation (15) into the following form (16) where UBT and U¬BT are the only variables,[

UBT

U¬BT

]
=

[
γBIm1×m1

In1×n1

] [
Pπ,BT→BT Pπ,BT→¬BT
Pπ,¬BT→BT Pπ,¬BT→¬BT

] [
UBT

U¬BT

]
+

[
B1

B2

]
(16)

here m1 = |UBT |, n1 = |U¬BT | and[
B1

B2

]
= (1− γB)

[
Im1

On1

]
+

[
γBIm1×m1

In1×n1

] [
Pπ,BT→BA Pπ,BT→¬BA
Pπ,¬BT→BA Pπ,¬BT→¬BA

] [
Im1

In1

]
.

Lemma 15 The equation (16) has a unique solution.

We demonstrate UBT does not rely on states in ¬BT and U¬BT is uniquely determined by UBT .
Then the uniqueness of UBT can be shown first, consequently, uniqueness of U¬BT can be shown.
Proof for Theorem 10 For the case γ = 1, we have shown that the equation (16) with surrogate
reward (3) has a unique solution in Lemma 15. In order to complete the proof for theorem 10, what
remains to be shown is the unique solution of the equation (16) is equal to the value function (5).

The solution to the equation (16) is unique. For all s ∈ ¬BR, the value function V (s) = 0, then
the value function is the unique solution for equation (16). Under the condition that the solution for
all rejecting BSCCs is zero, the Bellman equation (9) is equivalent to the equation (16). We can say
theorem 10 is true.

6. Conclusion

This work uncovers a challenge when using surrogate rewards with two discount factors for LTL
objectives, which has been unfortunately overlooked by many previous works. Specifically, we
show setting one of the discount factors to one can cause the Bellman equation to have multiple
solutions, hindering the derivation of the value function. We discuss the uniqueness of the solution
for the Bellman Equation with two discount factors and propose a condition to identify the value
function from the multiple solutions.
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