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Abstract
Data efficiency in robotic skill acquisition is crucial for operating robots in varied small-batch as-
sembly settings. To operate in such environments, robots must have robust obstacle avoidance and
versatile goal conditioning acquired from only a few simple demonstrations. Existing approaches,
however, fall short of these requirements. Deep reinforcement learning (RL) enables a robot to learn
complex manipulation tasks but is often limited to small task spaces in the real world due to sample
inefficiency and safety concerns. Motion planning (MP) can generate collision-free paths in ob-
structed environments, but cannot solve complex manipulation tasks and requires goal states often
specified by a user or object-specific pose estimator. In this work, we propose a robust system for
efficient skill acquisition designed to address complex insertion tasks in obstructed environments.
Our system leverages an object-centric generative model (OCGM) for versatile goal identification
to specify a goal for MP combined with RL to solve complex manipulation tasks in obstructed en-
vironments. Particularly, OCGM enables one-shot target object identification and re-identification
in new scenes, allowing MP to guide the robot to the target object while avoiding obstacles. This is
combined with a skill transition network, which bridges the gap between terminal states of MP and
feasible start states of a sample-efficient RL policy. The experiments demonstrate that our OCGM-
based one-shot goal identification provides competitive accuracy to other baseline approaches and
that our modular framework outperforms competitive baselines, including a state-of-the-art RL al-
gorithm, by a significant margin for complex manipulation tasks in obstructed environments.
Keywords: Robotic Manipulation, Integrated Planning and Learning, Reinforcement Learning,
Motion Planning, Learning from Demonstration

1. Introduction

Teaching new skills to robots using limited supervision is essential for maximising the up-time and
productivity of robots, leading to faster return on investment. Small-batch manufacturing, where
there are a limited number of parts to be produced, is an exemplary environment that would greatly
benefit from efficient skill acquisition. In a small-batch setting, a robot must learn to manipulate
new objects while maintaining data efficiency in potentially arbitrarily obstructed environments.
However, existing methods for controlling a manipulator such as motion planning and reinforcement
learning individually struggle to satisfy such requirements.

Motion planning (MP) (Amato and Wu, 1996; LaValle, 1998) generates collision-free paths ca-
pable of guiding a robot safely in obstructed environments given an explicit state of the environment
and goal. However, MP is not designed to plan through complex manipulation tasks requiring envi-
ronmental interaction. Furthermore, MP necessitates the specification of a goal state in the robot’s
frame of reference, which is typically accomplished through manual engineering (Khodeir et al.,
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2021), template matching (Le et al., 2019), or an object-specific pose estimator (Lee et al., 2020)
trained on manually labelled supervised data.

Deep reinforcement learning (RL), on the other hand, has shown promising outcomes in learning
to control a robot for complex manipulation tasks such as grasping (Kalashnikov et al., 2018; Zhan
et al., 2020) and insertion (Luo et al., 2021). However, prior works often limit operation to simulated
environments (Haarnoja et al., 2018) or heavily restrict and regulate operating spaces by executing
with a short horizon without obstructions (Luo et al., 2021; Zhan et al., 2020) due to the sample
inefficiency and potential of executing unsafe policies.

Figure 1: Task setup. We solve complex
manipulation tasks within the entire oper-
ational space of a robot by leveraging an
OCGM for versatile and efficient goal acqui-
sition paired with MP and RL. Note that ob-
stacles and a socket are randomly placed on
the table.

Combining MP and RL has been investigated
by several prior works (Yamada et al., 2020; Lee
et al., 2020) and shows the potential of leveraging
the strengths of both methods to solve manipulation
tasks in obstructed environments. Yet, goal speci-
fication for MP in prior work has relied on either
sample-inefficient interaction with the environment
or an object-specific pose estimator, which needs re-
training for each new target object. Notably, MoPA-
RL (Yamada et al., 2020) attempts to solve similarly
complex manipulation tasks but requires more than
1M samples to train the RL policy from state-based
observations with fixed obstacle positions, limiting
the real-world application.

Inspired by the challenges faced in small-batch
manufacturing problems, we introduce a system that
builds upon existing MP and RL algorithms, inte-
grating them with an object-centric generative model
(OCGM) (Wu et al., 2021) to overcome the limitations of existing methods. We posit that the inte-
gration of an OCGM leads to versatile, one-shot goal identification and re-identification, allowing
for insertion tasks to be solved from a limited number of simple human demonstrations.

Specifically, we identify a target object from a single demonstration using an OCGM, pre-
trained on diverse synthetic scenes. Matching the target object’s object-centric representation to
those in new scenes leads to robust object re-identification. Using the object’s position as a goal, the
motion planner generates a collision-free path to the target object while avoiding obstacles before
a learned RL policy is executed to complete the insertion tasks. We train an RL policy for each
insertion skill from a sparse reward to eliminate the need for reward engineering using specialist
knowledge. We also leverage a handful of easy-to-collect demonstrations to guide exploration to
achieve efficient RL policy learning. To maximise performance, we also introduce a skill transition
network to reduce failures that occur when transitioning from MP to the learned RL policy.

The contributions of our work are fourfold: (1) we propose a system for efficient skill acqui-
sition in obstructed environments that leverages an OCGM for object-agnostic to overcome the
limitations of existing methods, one-shot goal specification, (2) we introduce a transition network
that smoothly interpolates between terminal states of motion planning and feasible start states of
a learned RL policy to significantly improve the successes rate of the approach, (3) we show that
our OCGM-based one-shot goal specification method achieves comparable accuracy against sev-
eral traditional and object-specific goal identification baselines, and (4) we demonstrate that our
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system performs significantly better in real-world environments compared to baselines, including a
state-of-the-art RL algorithm. In summary, our paper introduces a novel system that leverages prior
MP and RL methods while distinguishing itself by eliminating the need for prior knowledge such
as object geometry or object-specific detectors. We demonstrate the effectiveness of using unsu-
pervised OCGMs to combine MP and an RL policy, making our approach particularly valuable in
small-batch settings, which is our specific focus. While the individual building blocks exist, their
seamless integration in a real-world robot system remains a challenging and novel achievement.

2. Related Works

Recent success in deep RL (Kalashnikov et al., 2018; Haarnoja et al., 2018) enables a robot to learn
complex manipulation tasks such as grasping (Kalashnikov et al., 2018; Zhan et al., 2020) and in-
sertion (Luo et al., 2021; Vecerik et al., 2018; Lee et al., 2018; Davchev et al., 2022; Carvalho et al.,
2022) driven by a reward. To avoid the requirement of specialist knowledge for reward engineering,
several prior works have proposed sample-efficient RL methods that can learn complex manipula-
tion skills from a sparse reward by leveraging a small number of demonstrations for guided explo-
ration (Zhan et al., 2020; Luo et al., 2021; Vecerik et al., 2017, 2018). However, due to the sample
inefficiency of sparse rewards, studies have been primarily conducted in simulated environments or
within limited task spaces in the real world. Learning from demonstration (LfD) (Schaal, 1999; Bil-
lard et al., 2008; Groth et al., 2021) is an alternative method for a robot to learn manipulation tasks
by imitating behaviour in expert demonstrations collected by a human operator, but it often requires
a large number of demonstrations to acquire manipulation skills. While InsertionNet (Spector and
Di Castro, 2021) enables a robot to solve insertion tasks within the entire operational space of a
robot manipulator from a small number of demonstrations, it is evaluated in a clean environment
without obstruction. Successful insertion is also made possible by a small initiation set for the learnt
skill. Adaptive LfD for insertion has also been proposed (Wen et al., 2022), allowing a policy to
quickly adapt to new insertion objects from the same category seen in training using only a sin-
gle demonstration and the object mesh. However, such mesh information is not readily available,
limiting real-world applications. In our work, a manipulation skill is learnt using Framework for
Efficient Robot Learning (FERM)(Zhan et al., 2020).

Motion planning (MP) (Amato and Wu, 1996; Kavraki and Latombe, 1994; LaValle, 1998) can
effectively generate a collision-free path from a robot’s initial configuration to a goal pose using an
explicit model of the robot and environment. However, such a goal pose is often specified by a user
or object-specific pose estimator. Further, complex manipulation tasks such as insertion are out of
the scope of MP as MP does not model the dynamics of the surrounding environment or objects.

Several previous works (Yamada et al., 2020; Lee et al., 2020; Kuo et al., 2021) combine MP
and RL to leverage the benefits of both methods to solve manipulation tasks in unstructured envi-
ronments. However, these preceding works limit their real-world applicability by requiring a large
number of samples to learn a goal estimator (Yamada et al., 2020) or by retraining an object-specific
predictor for each new goal object (Lee et al., 2020). While MoPA-RL (Yamada et al., 2020) is most
closely related to our method in spirit, it requires more than 1M samples to train an RL policy from
state-based observations with fixed obstacle positions. Thus, the prior work is not directly compa-
rable to our work due to its sample inefficiency and the need for inaccessible state observations in
the real world.

3



YAMADA COLLINS POSNER

Figure 2: Our framework architecture. (a) We leverage an OCGM to re-identify a target object
such that its object-centric representation matches one extracted from a single demonstration. The
goal state is specified in the robot’s reference frame using an external RGB-D camera with calibrated
extrinsics. (b) Given the goal state acquired in (a), a motion planner generates a collision-free path
to the goal. (c) A skill transition network guides the arm from the terminal state of the motion
planning (MP) to the initiation set of the RL policy. (d) Given a wrist camera image Iwrist

t and
robot’s internal state xt, a learned RL policy executes the final interaction until task completion.

Our work leverages unsupervised OCGMs (Wu et al., 2021; Locatello et al., 2020; Lin et al.,
2020) to find a target object for MP, negating the need for object-specific goal estimators. OCGMs
learn structured representations of objects within complex scenes and provide a set of object-centric
embeddings useful for instance matching. In contrast to goal specification methods that require
human intervention or a large, object-specific datasets, i.e. template matching or object classifier,
OCGMs hold the promise of versatile target object identification. While several prior works (Kir-
illov et al., 2023; Xie et al., 2021) introduce instance segmentation methods for unseen objects, these
methods do not provide a dense description of objects suitable for instance matching. Specifically,
this work leverages APEX (Wu et al., 2021) an unsupervised model trained on a wide distribution
of simulated data to assist with generalisation to real-world environments.

3. Methodology

In this work, we present an efficient solution for solving insertion tasks in obstructed, real-world
environments by leveraging an OCGM. We demonstrate our system on several insertion tasks as
they require learning complex insertion skills and also require the identification of the target socket
to complete the tasks (see Figure 1 for our task setup). We break our method down into pre-training,
task-specific skill training and execution in the following subsections. The pre-training component
of our method is only completed once and can be reused for all future insertion tasks. Task-specific
skill training is required for each new insertion task and execution describes the process for au-
tonomous task execution after training.

3.1. Pre-training

Pre-training is required for APEX (Wu et al., 2021), our choice of unsupervised OCGM, to achieve
versatile one-shot target object acquisition, but it only needs to be done once as it is trained on
a diverse synthetic dataset collected in simulation to encourage generalisation to a variety of real-
world objects. APEX is formulated as a set of VAEs, and takes a video sequence I1:T as input. Each
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frame is decomposed into a set of latent representations for each discovered object j consisting of
object location zwhere

t,j , appearance zwhat
t,j , and presence zpret,j ∈ [0, 1], where T is the number of

frames in a video sequence. We train APEX on a synthetic dataset consisting of a set of trajectories
in which a robot interacts with a diverse set of primitive shapes of differing colour and size. In order
to successfully transfer APEX trained on synthetic data to the real world, we add a small amount of
noise to the camera pose for each trajectory, leading to variations in the images. As a result, APEX
is successfully applied to real-world scenes with similar background textures.

3.2. Task-Specific Skill Training

This section details the task-specific data and training required by our method. The data must
be collected for each new task that the robot is taught, however, the supervised component only
requires about 10 minutes to collect. First, a single demonstration, Dgoal = {(Iext

t ,xee
t ), . . . } con-

sisting of a sequence of images Iext from the third-person camera and robot end-effector posi-
tions xee

t , of a successful task completion from anywhere within the robot’s operational space
is collected for goal specification using the pre-trained APEX. Additionally, 25 demonstrations,
DRL = {(Iwrist

t ,xt,at), . . . }|25|, of the insertion skill for efficient RL training, are collected from
within a limited task space such that the connector is always within sight of the wrist camera, where
Iwrist
t , xt, at are wrist camera image, robot states including 3-dimensional Cartesian end-effector

velocity and F/T sensor data, and action at time step t.
We employ FERM (Zhan et al., 2020) to train the RL policy πθ along with a critic function

Qϕ parameterised by π to complete the insertion task. This takes between 60 to 90 minutes to
train on a desktop computer with an i7 processor and a Nvidia Titan X GPU. FERM is composed
of Soft Actor Critic (Haarnoja et al., 2018), contrastive learning (Laskin et al., 2020b), and image
augmentation (Laskin et al., 2020a). In addition to a gray-scale image from the wrist-mounted
camera (Iwrist[H×W ] where H and W are 64 pixels), the policy takes as input the end-effector
Cartesian velocity and F/T sensor data (see Figure 2 (d)) and outputs the desired 3-dimensional
Cartesian end-effector velocity for the robot. Because the policy takes as input local information, it
is able to generalise to any location in the robot’s operational space. The RL policy is trained using a
sparse reward rt = 1[s ∈ Sg] where Sg is a set of goal states defined as the average termination state
of the collected demonstrations within a 1cm tolerance. To accelerate training of the RL policy, we
leverage the task demonstrations DRL to initialise a replay buffer for guided exploration similar to
FERM and train the policy and critic asynchronously, as inspired by prior work (Luo et al., 2021).
We also limit the task space for this stage, such that the socket is always within sight of the wrist
camera for training, improving sample efficiency and reducing the chance of unsafe interactions.
The initial states of the policy are positioned above the socket, with a small random noise added to
their positions, sampled from a uniform distribution between −0.02cm and 0.02cm.

We also introduce a skill transition network, inspired by prior work (Johns, 2021), for each new
insertion task to improve the task success rate. The terminal state of the MP is not guaranteed to be
within the feasible start states of the RL policy, defined as the initiation set of the skill (represented
as a blue box in Figure 2 (c)), due to the error in estimating the MP goal state in 3D space, caused
by errors in camera extrinsics and noisy depth estimation from the RGB-D camera. To mitigate this
issue, a simple convolutional neural network (CNN) is trained on data collected in a self-supervised
manner to predict the Cartesian offset required to move the end-effector from the terminal states of
MP to the initiation set of the RL policy. The dataset is collected in less than 30 minutes by sampling
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Figure 3: Target object identification and re-identification using an OCGM. (a) We leverage a
pre-trained OCGM to extract an object-centric representation from a single task demonstration. The
target object is identified in the demonstration as the object mask closest to the robot end-effector
position at the end of the trajectory xee

T (see Eq 1). (b) Given a new scene, the OCGM is used to
acquire object-centric representations of all objects and compare these with the already identified
target object representation to re-identify the target object.

random Cartesian poses around the target object and recording the sequences of wrist camera images
Iwrist
t and offsets between the current end-effector pose and an initial pose used for RL training.

The collected data contains only local information conditioned on the wrist camera which allows
the transition network to generalise to unseen target positions. Crucially, while an RL policy could
be trained with a wider initial state distribution, this is well understood in literature (Yamada et al.,
2020; Lee et al., 2020; Nair et al., 2018), to be sample inefficient. Instead, we train a skill transition
network using a labelled dataset collected in a self-supervised fashion which is akin to Behaviour
Cloning (Zhang et al., 2018).

3.3. Execution

The execution of the task can be completed from anywhere within the robot’s operational space to
any goal location. Execution follows four steps (see Figure 2) that are completed autonomously: (i)
goal identification via OCGM, (ii) MP, (iii) skill transition network, and (iv) RL policy.

Goal Identification via OCGM As MP requires a goal pose to plan a collision-free path through
the scene, we leverage the pretrained OCGM to identify the target object from the single demon-
stration Dgoal and re-identify it in the current scene to specify the goal for MP. To identify the target
object from Dgoal, we first acquire a set of object-centric representations by encoding the first ex-
ternal camera image Iext

0 in the demonstration Dgoal (see Figure 3 (a)). We determine the target
object-centric representation zwhat

target such that the object is present at the beginning of the trajectory,
i.e. p(zpre0,j ) ≥ 0.5 and such that it is the closest to the robot end-effector position xee

T at the end
of the demonstration Dgoal. To calculate the 3D position of objects in the robot’s reference frame,
the centre of the object mask predicted by the OCGM is converted to Cartesian coordinates using
the RGB-D camera’s depth plane and the known camera extrinsics. The closest object to the robot
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end-effector position at the end of the demonstration Dgoal is calculated using L2 distance:

target = argmin
j,j=1..N

||xee
T − oj ||2 (1)

where oj is the 3D object positions in the robot reference frame and N is the number of objects dis-
covered by the OCGM in the scene Iext

0 . In order to re-identify the target object in the current scene
(see Figure 3 (b)), we compare the target object-centric representation zwhat

target with each object-
centric representation ẑwhat

j discovered in the new scene (see Figure 3 (b)) using the L2 distance
and choose the object that has the most similar representation:

ẑwhat
target = argmin

j=1..N
||zwhat

target − ẑwhat
j ||2 (2)

MP + Transition Policy + RL Policy Using the target object’s pose otarget in the robot’s reference
frame, we use an RRT-connect motion planner to guide the robot’s end-effector to the location of
the target object (see Figure 2 (b)). To avoid collisions during the MP phase, an occupancy map,
OctoMap (Hornung et al., 2013), is created using the point clouds captured by the calibrated external
camera. After the execution of MP, we leverage the trained skill transition network to guide the arm
into the initiation set of the skill (see Figure 2(c)) to maximise the outcomes of the RL policy.
Finally, the learned RL policy completes the manipulation task.

4. Experiments

Our experiments are designed to answer the following guiding questions: (1) does the use of an
OCGM achieve versatile and efficient target object identification for MP in the real world? (2) how
well does our system perform insertion tasks in obstructed environments? (3) does a skill transition
network increase task success rate?

4.1. Experimental Setup

Figure 4: Insertion tasks. We evaluate our
framework on four insertion tasks. Each socket
is attached to a mount of varying size and colour
to demonstrate the versatility and efficiency of our
one-shot goal specification using an OCGM.

Several insertion tasks, inspired by the NIST as-
sembly boards (Kimble et al., 2020), are used
within our experiments (see Figure 4). To ver-
ify the robustness of the target object identi-
fication using an OCGM, sockets and obsta-
cles with different colours and sizes are used.
In our experiments, we use a Franka Panda
robot (7-DOF robot arm) and rigidly attach
each connector to the robot’s end-effector simi-
lar to prior work (Luo et al., 2021). Each phase
of our framework uses different controllers: a
joint position controller to follow a trajectory
planned by the motion planner, a Cartesian pose controller for the skill transition network, and a
Cartesian velocity impedance controller for the RL policy. For each evaluation trial, the socket,
robot arm, and one or two obstacles are randomly placed in the robot’s operational space.

Given the pre-trained OCGM, for each insertion skill, our modular framework requires a total of
10 minutes of human-supervised demonstrations and a maximum of 130 minutes of unsupervised
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VGA RJ45 E-model USB-A #Data Intervention

Method Accuracy WSI Accuracy WSI Accuracy WSI Accuracy WSI
Template matching 70.0% 54.7/81.9% 35.0% 22.1/50.5% 87.5% 73.9/94.5% 55.0% 39.8/69.3% 1 yes
Feature-based matching 40.0% 26.3/55.4% 87.5% 73.9/94.5% 7.5% 2.6/19.9% 77.5% 62.5/87.7% 1 yes
Object-specific classifier 80.0% 65.2/89.5% 100.0% 91.2/100.0% 87.5% 73.9/94.5% 75.0% 59.8/85.8% 2.5K yes
OCGM identifier (Ours) 82.5% 68.0/91.3% 95.0% 83.5/98.6% 95.0% 83.5/98.6% 92.5% 80.1/97.4% 1 no

Table 1: Accuracy of target object identification. We evaluate our method and two baselines on
160 test scenes (40 scenes per connector), and report the accuracy, Lower Limit (LL) and Upper
Limit (UL) of the Wilson score interval (WSI) with confidence interval of 95%. While template
matching and object-specific classification requires human intervention, such as cropping a refer-
ence target object image and labelling training data, our OCGM identifier successfully identifies the
target object from only a single demonstration without such human intervention.

training comprising of: up to 90 minutes for RL policy training and 40 minutes for data collection
and training of the skill transition network.

4.2. Efficient and Versatile Target Object Identification

First, the OCGM identifier is evaluated against several baselines on 160 test scenes (40 for each of
the four sockets) with the target locations hand-labelled with bounding boxes for quantitative com-
parison. During testing, if the intersection of union (IoU) between a ground truth and the returned
bounding box from the tested algorithm is greater than 0.5, we count it as successful (Everingham
et al., 2015).

We evaluate our proposed goal identification approach against three baselines. Template match-
ing finds the target object in the current scene by calculating a correlation coefficient given a manu-
ally cropped target object reference image. Feature-based matching finds a pair of the best matched
keypoints between the manually cropped target object reference image and the current scene using
FLANN-based matching (Muja and Lowe, 2009) and SIFT descriptor (Lowe, 2004). Object-specific
classifier trained on a dataset of manually cropped object images with binary labels, is queried with
cropped images found using a region proposal method (Uijlings et al., 2013). Lastly, we evaluate
our method by retrieving the minimum bounding box of the target object mask predicted by the
OCGM.

Results. We report the accuracy of target object identification in Table 1. Our method achieves
commensurate or better performance compared to other baselines, whilst not requiring human inter-
vention or an object-specific dataset needing laborious manual data labelling. This result motivates
the use of OCGMs for efficient goal acquisition for MP. The occlusion of objects that are sometimes
considered as one object in APEX can lead to unsuccessful object-centric representation matching,
resulting in a failure to identify the target. Also, if the object shape and colour look similar in an
image, object-centric representation matching may fail. Template matching often struggles to find
a target object with high confidence, potentially due to the complex scene composition and slanted
third-person camera angle (see Fig. 1). Feature-based matching also shows a lower success rate
for several objects due to a lack of distinguishing features, especially for small objects in a scene.
The object-specific classifier, on the other hand, generally performs well because it is tailored to
a single object, and could be further improved by collecting more data. However, such classifiers
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Figure 5: Real-world industrial assembly tasks in obstructed environments. The OCGM is used
to specify a goal for MP, followed by a skill transition network and a learned RL policy. Our method
successfully solves complex manipulation tasks with a high success rate.

require re-training on a new dataset manually labelled for each new object, limiting the versatility
and efficiency of goal specification.

VGA RJ45 E-model USB-A

Method Success WSI Success WSI Success WSI Success WSI
SAC 0.0% 0.0/16.1% 0.0% 0.0/16.1% 0.0% 0.0/16.1% 0.0% 0.0/16.1%
MP + Demonstration Replay 3.3% 1.0/16.7% 0.0% 0.0%/16.1% 3.3% 1.0/16.7% 0.0% 0.0/16.1%
MP + BC 16.7% 7.3%/33.6% 16.7 7.3/33.6% 23.3% 11.8/40.9% 26.7% 14.2/44.5%
MP + Heuristic 10.0% 3.5/25.6% 16.7 7.3/33.6% 36.7% 21.9/54.5% 43.3% 27.4/60.8%
MP + RL w/o skill transition 73.3% 55.6/85.8% 46.7% 30.2/63.8% 80.0% 62.7/90.5% 70.0% 52.1/83.3%
MP + RL (our method) 86.7% 70.3/94.7% 83.3% 66.4/92.7% 93.3% 78.7/98.2% 96.7% 83.3/99.4%

Table 2: Real-world assembly results. We report the success rate, Lower Limit (LL) and Upper
Limit (UL) of the Wilson score interval (WSI) with confidence interval of 95% over 30 trials. Our
method outperforms, by a significant margin, all of the other methods including a state-of-the-art
RL method and several comparable instantiations of our method.

4.3. Insertion Tasks in Obstructed Environments

We evaluate our proposed system on several insertion tasks in obstructed environments against a
series of baselines composed of competing methods. All baselines that utilise MP make use of the
OCGM for target object identification. For each task, we conduct 30 trials and report the success rate
in Table 2. Figure 5 illustrates the execution of our method for each insertion task in the obstructed
environments.

We compare the performance of our approach against a state-of-the-art RL algorithm and four
comparable instantiations of our approach. Soft Actor-Critic (SAC) a state-of-the-art RL algorithm
that predicts the desired Cartesian velocity from sparse rewards, trained with the same number of
environmental interactions as our proposed method and similarly with 25 demonstrations preloaded
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into the replay buffer, following FERM (Zhan et al., 2020). MP+Demonstration Replay substitutes
replaying a single expert demonstration for the learned RL policy execution in our method, inspired
by previous work (Johns, 2021). MP+BC replaces the learned RL policy in our method with Be-
haviour Cloning (BC) (Zhang et al., 2018), trained from 25 demonstrations. MP+Heuristic uses a
manually designed heuristic policy (Luo et al., 2021) instead of the learned RL policy in our method
to solve the task. Lastly, we evaluate our method without a skill transition network (MP+RL w/o
skill transition) for comparison.

Results. As described in Table 2, our method (MP+RL) as outlined in Section 3 records the high-
est success rate for all tasks. The results for the SAC baseline show that it is unable to solve any
of the tasks, likely because it requires a large number of samples to train the policies in the robot’s
operational space with obstructions. MP+Demonstration Replay is the most data-efficient method,
however, it mostly fails to solve any of the tasks because it requires very accurate estimation of pose
offsets for the demonstration replay to be successful. MP+BC is another efficient skill acquisition
method because it does not require any additional interactions with the environments other than
the given demonstrations to learn manipulation skills. However, due to the narrow state coverage,
it struggles to solve the tasks. While MP+Heuristic is able to solve some insertion tasks, such as
USB-A and E-model, almost one-third of the time, it fails to solve the tasks the majority of the time
due to the need for accurate pose offset (the same reason for failure as MP+Demonstration Replay).
While our method achieves high success rate over 4 industrial insertion tasks, the main failure case
is caused by the misidentification of the target object by the OCGM. These failure modes can be
readily eliminated by extended and/or augmenting the OCGM training.

Examining whether the transition network is useful for our system to solve complex manipula-
tion tasks in obstructed environments (see Table 2), the results verify that using the skill transition
network results in higher success rates than without the skill transition policy. Due to errors caused
by the OCGM, camera extrinsics and estimation of the 3D goal poses, a terminal state of MP can
often be outside of the initiation set of the learned RL skill. Therefore, by introducing the skill
transition module to move the robot arm into the initiation set of the skill, we can mitigate these
issues and achieve better performance.

5. Conclusion

In this work, we propose a modular system that leverages an OCGM for one-shot goal identification
and re-identification as a vital component to combine MP and RL to solve complex manipulation
tasks in obstructed environments. Specifically, the OCGM extracts a target object from only a
single demonstration and re-identifies the object to determine a goal pose for MP without the need
of fine-tuning on an object-specific dataset. The experimental results show that our method for
goal specification using an OCGM achieves better versatility and comparable accuracy to other
tested baselines. In addition, our method successfully solves real-world insertion tasks in obstructed
environments from few demonstrations.

While the rotation around the z-axis of the sockets is consistent across all of the evaluation
trials, we can readily extend our system to accommodate cases where the socket is rotated. We leave
this extension to future work and anticipate overcoming the orientation misalignment by extending
the skill transition network to additionally predict a z-axis displacement, correctly orientating the
peg with respect to the socket. Any further small orientation errors could be overcome using an
impedance controller and an RL policy trained with small perturbations in the z-axis orientation.
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