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Abstract
Sequential optimization methods are often confronted with the curse of dimensionality in high-
dimensional spaces. Current approaches under the Gaussian process framework are still burdened
by the computational complexity of tracking Gaussian process posteriors and need to partition
the optimization problem into small regions to ensure exploration or assume an underlying low-
dimensional structure. With the idea of transiting the candidate points towards more promising
positions, we propose a new method based on Markov Chain Monte Carlo to efficiently sample
from an approximated posterior. We provide theoretical guarantees of its convergence in the Gaus-
sian process Thompson sampling setting. We also show experimentally that both the Metropolis-
Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods
in high-dimensional sequential optimization and reinforcement learning benchmarks.
Keywords: Bayesian Optimization, Markov Chain Monte Carlo, High Dimensional Optimization

1. Introduction

With broad applications in real-world engineering problems, black-box function optimization is an
essential task in machine learning (Snoek et al., 2012; Hernández-Lobato et al., 2017). These non-
convex sequential optimization problems often lack gradient information. Bayesian optimization
(BO) is a popular sampling-based online optimization approach for solving expensive optimization
problems. It has been successfully applied to problems such as online learning and sequential
decision-making. BO builds a surrogate model for modeling the objective function and optimizes
the acquisition function to propose new samples.

Similar to many other numerical problems, BO algorithms are also susceptible to the curse of
dimensionality. The search space would grow exponentially large as the function dimension in-
creases and become intractable under a limited computation budget. Common acquisition functions
also tend to over-explore the uncertainty boundary region and lack exploitation in high dimensional
input space (Oh et al., 2018). Recent developments in high dimensional BO include construct-
ing trust regions and space partitions to improve the probability of sampling in promising regions,
which effectively ameliorates the problem of over-exploration (Eriksson et al., 2019; Wang et al.,
2020). To evaluate the acquisition function on a continuous domain, these methods often discretize
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the search space using Sobolev sequence (Sobol’, 1967). However, this kind of discretization could
be inadequate in high dimensional space as the size of the discretization set is limited, hindering the
exploitation of potential good regions.

Figure 1: Illustration of MCMC-BO. The con-
tours are 2d Rastrigin function. (Left):
BO algorithms propose points to be
sampled. The optimization perfor-
mance is restricted by insufficient dis-
cretization. (Right): Points are ad-
justed by MCMC-BO , reaching re-
gions with higher value.

In our setting, we investigate proba-
bilistic acquisition such as Thompson sam-
pling (TS) for optimizing unknown func-
tion modeled with Gaussian processes (GP).
Yet, directly applying algorithms that perform
well in low-dimensional problems to high-
dimensional domains often suffers due to the
high-computation demand and the phenomenon
of over-exploration. Our proposed method
aims to improve optimization performance in
high-dimensional spaces by adapting to the
search domain and specifically discretizing it
in promising regions. To achieve this, we uti-
lize Markov Chain Monte Carlo (MCMC) for
BO, which is a widely-used technique known
for its ability to effectively sample from high-
dimensional posterior distributions. We intro-
duce MCMC-BO, a method that transitions
candidate points from their original positions
towards the approximated stationary distribu-
tion of TS. By only tracking a batch size
number of points during transitions, MCMC-
BO significantly reduces the storage requirements in comparison to an entire mesh while still main-
taining theoretical performance guarantees. It can be easily generalized to different scenarios with
few additional hyper-parameters. Based on the basic MH version of MCMC-BO . We also propose
the Langevin dynamics (LD) version which transits following the gradient of the log-likelihood.
Overall, MCMC-BO can serve as a versatile algorithm that can be linked to most existing BO
methods providing a posterior for any candidate points for continuous problems. We summarize
our contributions as follows:
• We propose MCMC-BO, a Bayesian optimization algorithm which performs adaptive local op-

timization in high-dimensional problems that achieves both time and space efficiency.
• We provide theoretical guarantees on the convergence of MCMC-BO. To our knowledge, this is

the first regret bound on high-dimensional Bayesian optimization problem which can deal with the
scaling of dimensions with limited candidate points per round and avoid the overuse of memory.

• We experimentally show that MCMC-BO , combined with both MH and LD, outperforms other
strong baselines on various high-dimensional tasks.

2. Related Work

The optimization of black-box functions has been broadly used in many scenarios, such as hyper-
parameter tuning and experimental design (Snoek et al., 2012; Hernández-Lobato et al., 2017).
Evolutionary algorithms are a class of methods with a long history and good performance to tackle
the black-box optimization problem. One representative is CMA-ES, which adaptively adjusts the
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covariance matrix to generate new samples (Hansen et al., 2003). These kinds of problems can also
be formalized under the Bayesian optimization framework (Shahriari et al., 2015; Frazier, 2018),
which is also more efficient. However, conventional BO algorithms are limited to low-dimensional
cases and a small number of observations. There are two major components in BO: modeling and
performing acquisition. To improve scalability and efficiency, various methods have been proposed
for these two aspects. Regarding modeling, there exist a large amount of works which scale BO
to higher dimensions via approximated GP (Hensman et al., 2013), dimension reduction (Nayebi
et al., 2019) or function decomposition (Wang et al., 2018). We leave the detailed discussion of this
part in the appendix.

In the acquisition phase, balancing the exploration-exploitation trade-off is important. High-
dimensional optimization problems often suffer from inadequate exploitation. To prevent over-
exploring uncertain points near the domain boundary, methods like strong priors, dimension dropout,
and cylindrical kernels have been proposed to allocate more sample points in the center region
(Eriksson and Jankowiak, 2021; Li et al., 2018; Oh et al., 2018). Full exploration in high-dimensional
space requires unrealistic computational resources and time. Therefore, adequate exploitation of
optimal points determines final performance. Previous algorithms for optimizing high-dimensional
spaces include TuRBO and LA-MCTS. TuRBO limits the candidate set to a small box around the
best points and adjusts the box based on later evaluations (Eriksson et al., 2019).LA-MCTS par-
titions the region with a constructed tree, recommending promising regions to improve algorithm
performance (Wang et al., 2020). Both methods focus on dividing promising regions, but maintain-
ing a high-precision discretized grid for such regions is costly and can limit computation storage.
The trade-off between regret and storage emphasizes the need for improvements in current methods.
Therefore, we propose attention to the ability to congregate candidate points around the optimum in
our algorithm.

Focusing on probabilistic acquisition, which involves using stochastic samples from the model
posterior, sampling from the posterior distribution can be a bottleneck, especially for problems
without a closed form expression for its posterior distribution. To address this, approximate sam-
pling techniques are commonly used to generate samples from posterior approximations (Chapelle
and Li, 2011; Lu and Van Roy, 2017). These approaches have shown effective practical perfor-
mance (Riquelme et al., 2018; Urteaga and Wiggins, 2017). However, maintaining performance
over arbitrary time horizons while using approximate sampling remains unclear. Recent works have
explored the application of LD, a stochastic sampling approach, in Multi-armed Bandit (MAB)
problems (Mazumdar et al., 2020; Xu et al., 2022). Instead of restricting to a parameterized utility
function and optimizing the parameter space, we directly employ LD on the continuous and infinite
action space. We believe this approach is more general and effective as it allows direct acquisition
of candidate points without the need for optimization in the high-dimensional space.

3. Background

3.1. Modeling with Gaussian processes

Black-box optimization under uncertainty aims to find

x∗ ∈ D such that f (x∗) ≥ f(x), ∀x ∈ D (1)

where f : D → R is an unknown function. In BO, the unknown objective f is viewed as a proba-
bility distribution, and GP emerges as an effective way to estimate the unknown function, maintain
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an uncertainty estimate, and can be sequentially updated with available information. A GP is char-
acterized by its mean function µ(·) and kernel k(·, ·). The prior distribution of f(x) is assumed
to be N (0, k(x, x)). Under this prior, the sample points AT := [x1, · · · , xT ] and the observations
[y1, · · · yT ] follows the multivariate distribution N (0,KT + σ2I), where KT = [k(x, x′)]x,x′∈AT

.
Denote kT (x) = [k(xi, x)]

T
i=1:T ∈ RT×1, the posterior distribution over f is thus Gaussian with

mean µT (x) and covariance kT (x, x′) that satisfy: µT (x) = kT (x)
T (KT + σ2I)−1yT , kT (x, x

′) =
k(x, x′)− kT (x)

T (KT + σ2I)−1kT (x
′)

3.2. Gaussian process and Thompson sampling

In online learning tasks where the actions xt have to be sequentially chosen at each time step t, a
common metric for measuring the performance is regret, which is defined using the optimal action
x∗ := arg maxx∈Df(x) such that rt := f(x∗)−f(xt) for the instantaneous regret at time t. The goal
of optimization is to minimize the sum of rt, which entails finding optimal points while effectively
exploring the sample space. To achieve this, we build upon ideas inspired by TS, which is to
select the best point using a stochastic sample from the most recent model. TS is a classical MAB
algorithm that can balance the exploitation-exploration trade-off. In every round, the algorithm
estimates the reward of each arm by sampling from their respective distributions and plays the arm
with the highest estimate. Thus, exploitation of optimal arms is achieved by heuristically playing the
optimal arm, while exploration is guaranteed by the intrinsic uncertainty of probabilistic sampling.
With an evolving GP, the algorithm first samples ft ∼ GP (µt(x), kt(x, x

′)) and selects xt :=
argmaxx∈Ωft(x) as the candidate points. Chowdhury and Gopalan gave a theoretical analysis for the
algorithm GP-TS, which combines GP and TS to optimize stochastic MAB problems (Chowdhury
and Gopalan, 2017).

3.3. Markov Chain Monte Carlo

Markov Chain Monte Carlo is used in GP modeling to approximate intractable probability distribu-
tions (Hensman et al., 2015). Similarly, we hope to utilize MCMC to sample from a distribution on
the action set corresponding to our acquisition approach.

Metropolis-Hastings (MH) is an MCMC sampling algorithm that can sample from a target dis-
tribution π(x), x ∈ X known up to a constant, i.e. when we have knowledge of πd(x) = c · π(x)
(Metropolis et al., 1953). With a given proposal distribution q(·, x), the algorithm samples a candi-
date point y ∈ X given the current value x according to q(y, x). Then the Markov Chain transitions
to y with acceptance probability α(x, y) = min

{
1, πd(y)q(y,x)

πd(x)q(x,y)

}
. This ratio yields a high accep-

tance probability when the proposed point is likely to be a better choice than the current point, so
the points transit towards regions with higher function values. The MH algorithm is guaranteed to
converge to a stationary distribution that is exactly π(·).

Langevin dynamics (LD), known to converge to the steady state distribution π(x), provides
another efficient iterative sampling procedure. From any arbitrary point x0 sampled from a prior
distribution, the update rule is given by xi+1 = xi + ϵ · ∇ log π(x) +

√
2ϵzi, zi ∼ N (0, I).

Directly applying these two MCMC algorithms is challenging, as we do not have access to the
complicated target distribution π(x) induced by our probabilistic acquisition approach. In Section 4,
we propose estimates for the acceptance probability α(x, y) and∇ log π(x) that allows us to sample
from the posterior distribution.

4



HIGH DIMENSIONAL BAYESIAN OPTIMIZATION WITH MCMC

4. Algorithm Design

We propose MCMC-BO, a novel algorithmic framework that combines MCMC methods with
GP to evaluate more points effectively while maintaining a dense, time-varying discretization near
promising regions for optimization.

The key idea of our algorithm is inspired by TS in which points with larger probability of be-
ing optimal are chosen next. However, probabilistic acquisition in this manner is computationally
demanding due to the required size of the discretization set and the complexity of the induced dis-
tribution. Coarse partitioning of the input domain naturally leads to regret, as the best possible point
in the mesh may still be far from the optimum. Consequently, a large number of points is necessary
to ensure a fine partition. In high-dimensional spaces, this need for numerous points can result in
large matrices for sampling in stochastic acquisition approaches and slow predictions.This presents
a dilemma: a coarse mesh leads to significant regret, while a fine mesh makes sampling unrealis-
tic. To efficiently sample from an intractable distribution and identify better candidate points, we
employ MCMC.

MCMC-BO offers great flexibility in choosing different MCMC algorithms to sample from the
GP posterior. We provide two MCMC subroutines using MH and LD. Our proposed method is com-
patible with any existing BO algorithms with probabilistic acquisition functions over a continuous
domain (see Appendix). The MH algorithm introduced in Section 3.3 can serve as a overarching
framework using various acceptance ratios, and we propose an acceptance ratio that approximates
the transition probability induced by the acquisition approach.

Algorithm 1: MCMC-BO
Input: Initial dataset D0, batch size m, MCMC transition number N , MCMC transition

parameter Θ
1 for t = 0, 1, · · · do
2 Update posterior distribution GP

(
µt(x), kt(x, x

′)
)

on f using Dt

3 Create discretized candidate points x0
t from continuous search domain

// MCMC transition start
4 for i = 0 to N − 1 do
5 for k = 0 to m− 1 do
6 Perform [MCMC routine] using GP

(
µt(x), kt(x, x

′)
)

on xitk with parameter Θ
7 end
8 end

// MCMC transition end
9 Observe yt = f(xNt )

10 Dt+1 ← Dt ∪ (xNt , yt)
11 end

TS implicitly induces a distribution on each candidate point x ∈ Dt, with the probability of
being selected as P(ft(x) ≥ ft(x

′)), ∀x′ ∈ Dt. Let xp, xo be two candidate points after n samples
denoted by history H = {(xt, yt)}nt=1. We can sample according to the distribution of TS using

MH with an acceptance rate α = min
{
1,

P(ft(xp)≥ft(x),∀x∈Dt)·q(xp|xo)
P(ft(xo)≥ft(x),∀x∈Dt)·q(xo|xp)

}
, where, Dt represents the

discretization set of the domain D at time t, and xp is determined by the transition kernel q(· | ·).
However, computing the probability involved in the ratio, P

(
ft(xp) ≥ ft(x), ∀x ∈ Dt

)
, requires
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marginalizing over the joint distribution of a high-dimensional multivariate normal distribution,
which is intractable. Therefore, we propose an alternative approach that captures a similar idea. We
define the acceptance probability as α = min

{
1,

P(ft(xp)≥ft(xo))q(xp|xo)
P(ft(xo)≥ft(xp))q(xo|xp)

}
. From GP regression,

we can view the surrogate function values yp = ft(xp), yo = ft(xo) associated to selected points
x := (xp, xo) as a Gaussian random vector with joint distribution as specified in Section 3.1. Using
linear transformations of a Gaussian random vector, let cT =

[
1 −1

]
, Kn = [k(x1:n, x1:n)] ∈

Rn×n, and kn(x) = [k(x1:n, xp), k(x1:n, xo)] ∈ Rn×2, we have that yp − yo ∼ N
(
cTµ, cTΣc

)
,

where cTµ =
(
k(xp, x1:n) − k(xo, x1:n)

)T
(Kn + σ2I)−1y1:n, c

TΣc =
(
k(xp, xp) + k(xo, xo) −

2k(xp, xo)
)
−
(
kn(x)c

)T
(Kn+σ2I)−1

(
kn(x)c

)
. Since cTµ, cTΣc ∈ R, we have that P (yp−yo >

0|H) = Φ
(

cTµ
cTΣc

)
(here Φ(·) denotes the CDF of the standard normal). Therefore, the acceptance

probability reduces to

α = min

1,
Φ
(

cTµ
cTΣc

)
q(xp|xo)

(1− Φ
(

cTµ
cTΣc

)
)q(xo|xp)

 . (2)

Algorithm 2: [MCMC routine] with
Metropolis-Hastings

Input: GP posterior GP
(
µt(x), kt(x, x

′)
)
,

point xo, proposal distribution
q(· | x) := N (0, σ) with parameter
Θ = {σ}.

1 Sample u ∼ Unif[0, 1]
2 Sample xp ∼ xo +N (0,Θ)

3 if u ≥ min

{
1,

P
(
ft(xp)≥ft(xo)

)
q(xp|xo)

P
(
ft(xo)≥ft(xp)

)
q(xo|xp)

}
then

4 xp ← xo // Reject the transition
5 end

A demonstration of MCMC-BO with
MH is shown in Algorithm 2. MCMC-
BO prepares a batch of m candidate points
xitk each round either from direct discretiza-
tion or points to be executed from other algo-
rithms, where t stands for the round number,
k = 1, 2, 3, · · · ,m, and i stands for transi-
tion times. Then with a proposed transition
kernel, often defined using Brownian motion
xi+1 − xi ∼ N (0, σ), we generate m pairs
of points xitk, xi+1

tk . We accept or decline the
transition with the ratio in Equation 2. The
random walk of Markov chain enables dense
discretization of continuous space on more
optimal regions, as illustrated in Fig 1.

Algorithm 3: [MCMC routine] with
Langevin dynamics

Input: GP posterior GP
(
µt(x), kt(x, x

′)
)
,

point x, Θ = {ϵ} as Langevin
transition step.

1 Sample z ∼ N (0, 1)
2 Estimate∇ log pt(x) using (3)
3 x← x+ ϵ · ∇ log pt(x) +

√
2ϵ · z

The generality of our framework also ex-
tends to other sampling methods such as LD,
where the samples transit following Equa-
tion ??. Previously, MH aims to sample
from the intractable distribution correspond-
ing to our acquisition approach by simpli-
fying the ratio between two discretization
points. Denoting the time-varying density
pt(x) ∝ P(ft(x) ≥ ft(x

′),∀x′ ∈ Dt),
LD updates requires computing ∇ log pt(x).
Similar to MH’s acceptance ratio, we propose a simple estimate using the derivative of the GP
posterior’s mean and covariance.

In our proposed simplification for MCMC-BO, we utilize MH to calculate the ratio between
the ”winning probabilities” of two discretization points (the probability of being argmax). This
calculation is done specifically with respect to the posterior distribution on those two points, rather
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than the entire domain. The term∇ log pt(x) easily incorporates this simplified ratio as: ∂ log pt(x)
∂xi

=
∂pt(x)
∂xi
pt(x)

= limh→0

pt(x+ei·h)−pt(x)

h
pt(x)

= limh→0
1
h

(pt(x+eih)
pt(x)

− 1
)
Thus, the approximation of the log-

likelihood in LD has the following equation:

∂ log pt(x)

∂xi
≈ lim

h→0

1

h

(P(ft(x+ eih) > ft(x)
)

P
(
ft(x) > ft(x+ eih)

) − 1
)
≈ 1

h

( pi(x, h)

1− pi(x, h)
− 1

)
, (3)

where pi(x, h) = P
(
ft(x + eih) > ft(x)

)
= Φ( cTµ√

cTΣc
). As in MH, this involves calculating

the cumulative distribution function (CDF) of a bivariate Gaussian, with the difference being that
xp ← x + eih and xo ← x. Using this numerical differentiation of the likelihood ratio, we obtain
the gradient of log pt(x) and the LD form of MCMC-BO.

Figure 2: The figures are constructed from a 50 × 50 discretization of D = [−1, 1]2. (a)(b) The
stationary distribution achieved by the MH and Langevin version of MCMC-BO, re-
spectively, and the congregated points obtained after convergence of the transition pro-
cess from current GP information. (c) TS distribution simulated using Monte Carlo. (d)
standard deviation of TS distribution over 10 trials of 106 samples. (e) GP posterior with
surfaces being µ and Σ on which MCMC-BO transitions are performed.

5. Convergence Guarantee

We provide convergence guarantees to our proposed algorithmic framework and derive the subse-
quent regret bounds. Our proposed algorithm removes the dependence on the size of the discretiza-
tion set; whereas the original GP-TS setting requires that to achieve the theoretical upper bound
on regret. As we only track a batch of m points at a time, the algorithm complexity for MCMC-
BO only depends on m and does not scale with the size of the discretization set |Dt|.

Notation and assumption. Let {xt}∞t=1 be an Rd-valued discrete-time stochastic process adapted
to filtration {Ft}∞t=0. Denote x∗ = argmaxx∈Df(x), then the cumulative regret over the horizon
T is RT =

∑T
t=1 rt, where rt = f(x∗) − f(xt). We also follow the convention and denote the

maximum information gain at time t as γt. Further notation is attached in Appendix B.
Leveraging the properties of Reproducing Kernel Hilbert Space(RKHS), we make a common

assumption as in Chowdhury and Gopalan (2017), that f is Lipschitz constant with constant B · L,
where L is a constant associated with Kernel k(·, ·).1 In our analysis, we work with a discretiza-
tion Dt where |Dt| is finite. We denote [x]t := argminx′∈Dt ∥x − x′∥2. For convex and compact
domain D ⊂ [0, r]d, the size constraint |Dt| =

(
BLrdt2

)d guarantees that for every x ∈ D,
|f(x)− f ([x]t)| ≤ ∥f∥kL ∥x− [x]t∥1 ≤ 1/t2. Note that the size of the discretization is only

1. Further detail of assumption can be seen in Appendix B
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needed in the theoretical analysis and influences the regret bound, but the algorithm complex-
ity is independent of it. Additionally, the transition kernel of MCMC is defined as P (x, y) =
Q(x, y)α(x, y), ∀x, y ∈ Dt, where Q is the proposed distribution and α is the acceptance rate.

5.1. Overview of Proof

First, we show that the proposed approximated ratio of TS has a stationary distribution. Both
MCMC algorithm (MH and LD) can converge to the stationary distribution with certain steps. Then
the stationary distribution, though deviated from that of Thompson sampling, still inherits its good
properties. Thus, by defining a benign set, we can prove that the probability that the sampling points
located in the benign set grows with O(1 − 1

T 2 ). An overview is presented here, and the detailed
proof is deferred to Appendix C.

Lemma 1 The proposed approximated posterior P (x, ·), according to Alg.2 and Equation.2 does
not yield a reversible Markov chain, but it still has a stationary distribution π(x).

In Fig 2 we demonstrate a 2D version of the stationary distribution of MCMC-BO . Note that
the acceptance probability our algorithm proposed is inspired by TS but does not lead to the same
exact stationary distribution of TS. Furthermore, we show that the approximated probability P (x, ·)
converges to the stationary distribution. In Sec 6 we also show that within a few hundred steps,
the effect is significant enough. To obtain a bound on the overall regret, we begin by decomposing
the instantaneous regret rt into two parts. From the choice of discretization sets Dt, rt depends on
[x⋆]t, which is the closest point to x⋆ in Dt. Therefore, we have that rt =

(
f (x⋆) − f ([x⋆]t)

)
+(

f ([x⋆]t) − f (xt)
)
, where the difference f (x⋆) − f ([x⋆]t) is bounded by 1/t2 by the regularity

assumption. We proceed to bound f ([x⋆]t)− f (xt), which depends on the selected action xt.
Regret increases when the approximation deviates from the underlying f . Thus, we hope that

the function values of selected points xt and the approximation at each time step t are not too far
away. We define an event Ef (t) and a benign set Gt in Appendix C for the convenience of Lemma 2.
The benign points set bound the difference between function value and at the t − 1’s round GP’s
mean value.

Lemma 2 For any filtration such that Ef (t) is true, the transition probability from [x∗]t to any
malignant point is bounded by

P ([x∗]t, x
′) ≤ exp(−(ct

2
− vt)

2)(1− t2), ∀x′ ∈ Dt\Gt (4)

Lemma 2 shows that transiting on the stationary distribution π(x), the probability of choosing a
malignant points is small. With Lemma 2, we can further show that the probability of playing any
action from Dt\Gt is small; the regret from undesirable action is then bounded with Theorem 5
in Appendix B. By giving the bound of the transition probability between the best point and the
malignant points, the total regret can then be bounded in terms of standard deviation of the chosen
actions σt−1(xt). With the information theoretic lemma (Lemma 3 in Appendix) we can then upper
bound

∑T
t=1 σt−1 (xt) with O

(√
TγT

)
. As the difference f ([x⋆]t) − f (xt) in the decomposition

of rt is dependent on σt−1(xt), we finally arrive at the regret bound.

Theorem 3 Let δ ∈ (0, 1), D ⊂ [0, r]d be compact and convex, ∥f∥k ≤ B,{εt}t a conditionally
R-sub-Gaussian sequence. For any T , we let N(T ) to be the transition number for each round.
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Running MCMC-BO on a function f lying in the RKHS Hk(D) for N(T ) transitions per round
and with decision sets Dt chosen as above, with probability at least 1 − δ, the regret of MCMC-
BO satisfies RT = O

(√
(γT + ln(2/δ)) d ln(BdT )

(√
TγT +B

√
T ln(2/δ)

))
.

6. Experiments

In this section, we show the superiority of MCMC-BO on both high-dimensional synthetic func-
tions and Mujoco tasks. We also provide the ablation study for the algorithm in Table ?? in Ap-
pendix. We further validate that our proposed method itself is an effective GP-based BO algo-
rithm as other MAB algorithms. We compare MCMC-BO to state-of-the-art baselines of high-
dimensional BO algorithms and EA algorithms.

For all BO algorithms, we utilize Thompson sampling to sample batches in each iteration and
employ a scrambled Sobolev sequence to discretize the continuous search domain. The performance
of MCMC-BO is evaluated against TuRBO and LA-MCTS, which serve as its BO components.
The performance figures illustrate the mean performance of the algorithms with one standard error.

Figure 3: Optimization over high-dimensional synthetic functions.
6.1. High-Dimensional Synthetic Functions

Figure 4: Mujoco locomotion tasks.

We selected two popular synthetic problems,
Ackley and Rastrigin, to optimize. For the
function dimension, we chose d = 200, 400,
and 800 to evaluate the performance in high-
dimensional problems. We set the transition
number to be the same as the function dimen-
sion. However, for the Langevin version of
MCMC-BO, we ran only the 200d functions
due to the lack of backward information for
the posterior in the Gpytorch framework. All
problems started with 200 initial points, and a
batch of 100 points was sampled in each iteration.

Fig 3 suggests that MCMC-BO consistently outperforms other baselines on all functions. In
higher dimensions d = 800, uniform discretization can not support good exploitation in such dimen-
sion, and TuRBO and LA-MCTS degenerate to the same level of performance as EA algorithms.
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MCMC-BO achieves the best performance in all selected dimensions by allocating limited action
points to more promising regions.

6.2. Mujoco Locomotion Task

Mujoco locomotion tasks are widely used benchmarks for reinforcement learning algorithms (Todorov
et al., 2012). In our evaluation, we focus on Hopper and Half-Cheetah task, which have state spaces
of dimensions 33 and 102, respectively. To assess the performance of the sampling-based algo-
rithms, we optimize a linear policy: a = Ws (Mania et al., 2018) , where the elements of the param-
eter matrix W are continuous and range from [−1, 1]. The reward is computed over 10 episodes for
each policy proposal. Both tasks start with 200 initial points and sample a batch of 50 points in each
iteration. We set the transition number to 200 on both tasks. Fig 6.1 shows the optimization per-
formance of all algorithms. In the Hopper task, MCMC-BOwith TuRBO-20 algorithm converges
faster than the original TuRBO-20. In higher dimensional Half-Cheetah task, MCMC-BO with
TuRBO-1 still outperforms other baselines.

6.3. Performance on low-dimensional problems

Figure 5: We demonstrate the convergence of
MCMC-BO compared with others on
1d and 2d functions.

We compare MCMC-BO with two popular
BO algorithms, GP-TS and GP-UCB, on 1-
2d synthetic functions. Figure 5 numerically
demonstrates the convergence of MCMC-
BO. We depict the distribution over the opti-
mal value encoded as a violin plot, with hori-
zontal bars 20% quantiles. GP-UCB only uti-
lizes the diagonal information of the covari-
ance matrix of f(xi), whereas TS uses the
complete matrix information at once. As a
compromise, MCMC-BO employs a divide-
and-conquer strategy by using a 2 × 2 sub-matrix at a time and still achieving an approximate
stationary distribution of TS.

7. Conclusion and Future Work

Sequential optimization in high-dimensional spaces has a profound impact on machine learning.
In this paper, we propose MCMC-BO as a solution to improve the sample efficiency of high-
dimensional BO. Our algorithm MCMC-BO offers versatile transitions to promising regions in-
stead of maintaining a huge candidate set. MCMC-BO can be viewed as a GP-based bandit al-
gorithm that yields an effective approximation for the induced TS distribution without the need to
invert matrices of thousands of dimensions. We derive the regret bound of MCMC-BO under high-
dimensional cases without memory overuse. We also conduct comprehensive evaluations to show
that MCMC-BO can improve on existing popular high-dimensional BO baselines.

In future research, we aim to develop parallel computation mechanisms to further enhance com-
putational speed. Additionally, implementing analytical backward computations holds the potential
for significant acceleration. It is worth noting that MCMC-BO can transit in different irregu-
lar spaces. We also look forward to combining MCMC-BO with more complex space partition
algorithms.
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