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Abstract

At the heart of power system operations, alternating current optimal power flow (ACOPF) studies
the generation of electric power in the most economical way under network-wide load requirement,
and can be formulated as a highly structured non-convex quadratically constrained quadratic pro-
gram (QCQP). Optimization-based solutions to ACOPF (such as ADMM or interior-point method),
as the classic approach, require large amount of computation and cannot meet the need to repeat-
edly solve the problem as load requirement frequently changes. On the other hand, learning-based
methods that directly predict the ACOPF solution given the load input incur little computational
cost but often generates infeasible solutions (i.e. violate the constraints of ACOPF). In this work,
we combine the best of both worlds – we propose an innovated framework for learning ACOPF,
where the input load is mapped to the ACOPF solution through a neural network in a computation-
ally efficient and reliable manner. Key to our innovation is a specific-purpose “activation function”
defined implicitly by a QCQP and a novel loss, which enforce constraint satisfaction. We show
through numerical simulations that our proposed method achieves superior feasibility rate and gen-
eration cost in situations where the existing learning-based approaches fail.
Keywords: Alternating current optimal power flow, differentiable convex programming, non-
convex quadratically constrained quadratic program

1. Introduction

As one of the most important problems in modern power system operations, the study of alternat-
ing current optimal power flow (ACOPF) focuses on finding the most economical power genera-
tion scheme under network-wide load requirement and physical transmission constraints. Mathe-
matically, ACOPF can be formulated as non-convex quadratically constrained quadratic program
(QCQP) problem with the number of decision variables and constraints scaling proportionally with
nodes and transmission lines in the power grid. The most common approach for reliably solving
the ACOPF problem is limited to classical nonlinear optimization algorithms, such as interior-point
method, which are highly computationally expensive for modern large-scale power systems involv-
ing at least thousands of nodes. Furthermore, the constant fluctuations of the loads and conditions of
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the transmission line in addition to the uncertainty of energy supplies of renewable energy resources
require the ACOPF problem to be solved repeatedly online, making the current optimization-based
methods limited in real life.

With the recent advances in deep learning infrastructure and the improved ability to collect and
store data, learning-based approaches have been proposed to solve complex optimization problems.
The first attempt to solve ACOPF with machine learning has been made in Guha et al. (2019), where
the authors employ a simple feed-forward neural network to parameterize the mapping from the
input to the output of the ACOPF problem. However, the special structure of the ACOPF problem
presents a peculiar challenge. The constraints define a nonlinear non-convex feasibility set around
the optimal solution; while the neural network can consistently generate outputs close to the optimal
solution in the Euclidean distance, they are not guaranteed to lie within the constraint set. In other
words, learning-based approaches often produce highly infeasible solutions that cannot be directly
deployed.

To address this issue, various methods have been proposed to encourage the output of the neural
network to obey ACOPF constraints (Pan et al., 2022; Donti et al., 2021). In these papers, they
recognize that the solution of an ACOPF problem can be divided into 1) independent variables
that control the power system operation and 2) dependent state variables that can be determined
from control variables by solving the power flow equations. They propose predicting the control
variables while leveraging additional loss functions to penalize constraint violation on the resulting
state variables. The constraint violation loss is not readily differentiable, and different approaches
such as zeroth order gradient or implicit function theorem are taken in these works to estimate/derive
its gradient.

Although Pan et al. (2022); Donti et al. (2021) significantly improves the constraint satisfaction,
they build on the assumption that for any given control variable produced by the neural network
they can always find a feasible solution (state variables) satisfying the power flow equations. This
assumption may not hold under high demand fluctuations, in which case the trained neural networks
may be unreliable and cannot provide a meaningful solution. To mitigate this issue, we solve a
relaxation of the power flow equations with a focus on minimizing the constraint violations of these
equations, which is also desirable for a reliable and robust operation of power systems.

To achieve this, we formulate our relaxation problem as a non-convex QCQP and integrate
the QCQP solver into the neural network as a differentiable activation function. We establish the
differentiability of the non-convex QCQP activation function by extending the sensitivity analysis
techniques in Amos and Kolter (2017), which only handles convex quadratic programs. Equipped
with properly designed loss functions, our proposed framework effectively deals with the infeasi-
bility issue observed in current learning-based approaches such as Pan et al. (2022) while showing
similar competitive performance in feasible cases. Similar to ours, Singh et al. (2021) has also
used sensitivity analysis results to approximate the Jacobian containing the derivatives of predic-
tions with respect to input changes by penalizing its mismatch in the loss function in addition to
prediction errors. However, their approach does not enforce constraint satisfaction while ours finds
a solution with least constraint violations by using our differentiable non-convex QCQP layer in the
neural network.
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1.1. Main Contributions

In this work, our goal is to design an accurate and reliable end-to-end neural network architec-
ture for predicting the solution of ACOPF while achieving high computational efficiency in both
training and inference phases. As the first main contribution of our work, we propose a systematic
pipeline and loss function for training a feed-forward neural network that maps the input load to
the independent variables of the ACOPF solution. The state variables are then produced from the
predicted independent variables by solving a relaxed variant of the power flow equations, which can
be expressed as a non-convex QCQP. The relaxed power flow equations, as we discuss in details
in Section 3, are an important innovation of this work and allow us to train the neural network in a
much more stable way when the control variables are imperfectly predicted.

We can regard the relaxed power flow equations from a different angle as a specific-purpose
activation function tailored to the ACOPF problem. As a second main contribution, we establish the
conditions under which this activation function is a differentiable mapping from the control variables
to the state variables, and derive closed-form expressions of the (sub)gradient. This ensures that the
downstream constraint violation loss on the state variables can be back-propagated. We name our
proposed architecture QCQP-Net and show its structure in Figure 1. We numerically evaluate the
performance of the proposed QCQP-Net on ACOPF problems of various scales in Section 5. The
results show that in large power systems with wide load variations where the existing approaches
fail to learn, QCQP-Net stably learns highly feasible solutions with low generation costs.

Figure 1: QCQP-Net Architecture. Computation path in red only taken in training phase.

1.2. Related Works

This paper presents a novel learning framework specifically designed for reliably and efficiently
solving ACOPF problems. It closely relates to the existing works that study ACOPF from both opti-
mization and deep learning perspectives, and is inspired by recent advances in differentiable convex
programming. We discuss the relevant literature in these domains to give context to our novelty.
ACOPF: From an optimization perspective, a large volume of works seek to design provably con-
vergent algorithms for ACOPF (Cvijic et al., 2012; Kar et al., 2017; Yuan and Hesamzadeh, 2019;
Sun and Sun, 2021; Wang et al., 2022) and to numerically accelerate classic nonlinear optimiza-
tion solver through massively parallelized computation (Roberge et al., 2016; Huang and Dinavahi,
2017; Araújo et al., 2019; Kim and Kim, 2022; Zhang et al., 2023). In the learning regime, two
main lines of work include 1) learning an end-to-end mapping from input of the ACOPF prob-
lem to the output (Singh et al., 2021; Donti et al., 2021; Nellikkath and Chatzivasileiadis, 2022; Pan
et al., 2022) and 2) learning parameters and/or sub-steps within an optimization solver (Baker, 2019;
Zhang and Zhang, 2022; Zeng et al., 2022; Sadat and Sahraei-Ardakani, 2021). While the former
approaches allow for much faster inference, it may suffer higher constraint violation risk than the
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latter (which makes it less reliable and suitable for solving safety-critical power system problems).
Our work is exactly motivated to address this issue.
Differentiable Convex Programming: Introduced in Amos and Kolter (2017) and later popular-
ized by Agrawal et al. (2019), differentiable convex programming treats a convex optimization prob-
lem as an implicit definition of a mapping from the parameters of the optimization problem to the
optimal solution. By carefully analyzing how a unit change in the parameters impacts the optimal
solution through the lens of KKT conditions, Amos and Kolter (2017); Agrawal et al. (2019) devise
an innovative method for computing the (sub)gradients of the mapping. Applications of differen-
tiable convex programming span neural network layer design (Amos and Kolter, 2017; Agrawal
et al., 2019; Wang et al., 2019), inverse problems (Liang et al., 2019; Mourya and Mota, 2023),
computer vision (Chen et al., 2020; Yeh et al., 2022), mechanism design (Curry et al., 2022; Zeng
et al., 2023), and many other domains. In this work we develop techniques to differentiable through
a QCQP with quadratic equality constraints, which is much more challenging to handle due to the
non-convexity. However, important pieces of our innovation are built upon Amos and Kolter (2017).

Outline of the paper. The rest of the paper is structured as follows. In Section 2, we present the
formulation of ACOPF and its important structure. In Section 3, we propose a novel loss function for
training an end-to-end prediction model for ACOPF by exploiting the problem structure. Evaluating
the gradient of the loss function requires differentiating through a non-convex QCQP with quadratic
equality constraint. We discuss how such differentiation can be performed in Section 4. Section 5
presents the numerical simulations that demonstrate the stable and effective training of our end-to-
end prediction model. Finally, we conclude in Section 6.

2. ACOPF Formulation

We consider a power system represented by a connected graph with a set (B,L) of buses and con-
nected lines, respectively. Each node i 2 B, also referred to as a bus, has a complex power demand
denoted as di = p

d
i + j ⇤ q

d
i for some p

d
i , q

d
i 2 R. The voltage of bus i is vi 2 C, and we use

ei and fi to denote the real and imaginary parts, i.e. vi = ei + j ⇤ fi. A subset of buses may
have a power generator attached, and we use BPV ✓ B to denote the set of nodes with at least one
generator attached. We use Gi to denote the collections of generators attached to bus i and define
G := [i2BGi. Each generator g 2 G can generate complex power with a real part pg 2 R and
imaginary part qg 2 R.

The edge of the graph, also referred to as a branch, represents a directed transmission line
between two buses. For each branch (i, j) 2 L from bus i to j, pij and qij denote the real and
imaginary power flow in the normal direction. Power may also flow in the reverse direction, and we
use pij and qij to denote the reverse power flow through branch (i, j) 2 L. It is worth noting that pji
and qji may not simply be the negative of pij and qij but are determined from the voltage at bus i and
j by solving a system of power flow equations (1d)-(1g), where parameters Bij , Gij , Bji, Gji 2 R
are dictated by the physical properties of the power system.

For any bus i, we use N from
i and N to

i to denote its (directed) neighbors, i.e. N from
i = {j :

(i, j) 2 L} and N to
i = {j : (j, i) 2 L}.

The objective of the ACOPF problem, formulated in (1), is to find the most economic set points
of generators that satisfy the power demand p

d
i , q

d
i at every node i under capacity limits and phys-

ical transmission laws. The generation cost function is quadratic in the real power output, where
c1,g, c2,g 2 R+ are non-negative constant parameters for all g 2 G. Eqs. (1b)-(1c) are known
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as power balance equations and encode the power transmission laws along with Eqs. (1d)-(1g).
Eqs. (1h) state that the power flow magnitude between bus i and j cannot exceed the limit sij .
Eq. (1i) restricts the voltage at a bus to lie within a tolerable range. Eqs. (1j) represent the capacity
of the power generators. The optimization problem can be expressed in a matrix form as a QCQP,
but is obviously non-convex due to the quadratic equality constraints in Eqs. (1b)-(1g).

min
pg ,qg ,fi,ei,pij ,qij ,pji,qji

X

g2G
(c2,gp

2
g + c1,gpg) (1a)

s.t. Gii(e
2
i + f

2
i ) +

X

j2N fr
i

pij +
X

j2N to
i

pji �
X

g2Gi

pg + p
d
i = 0, 8i 2 B (1b)

�Bii(e
2
i + f

2
i ) +

X

j2N fr
i

qij +
X

j2N to
i

qji �
X

g2Gi

qg + q
d
i = 0, 8i 2 B (1c)

pij = �Gij
�
e
2
i + f

2
i � eiej � fifj

�
�Bij (eifj � ejfi) , 8(i, j) 2 L (1d)

pji = �Gji
�
e
2
j + f

2
j � ejei � fjfi

�
�Bji (ejfi � eifj) , 8(i, j) 2 L (1e)

qij = Bij
�
e
2
i + f

2
i � eiej � fifj

�
�Gij (eifj � ejfi) , 8(i, j) 2 L (1f)

qji = Bji
�
e
2
j + f

2
j � ejei � fjfi

�
�Gji (ejfi � eifj) , 8(i, j) 2 L (1g)

p
2
ij + q

2
ij  s̄

2
ij , p

2
ji + q

2
ji  s̄

2
ij , 8(i, j) 2 L, (1h)

v
2
i  e

2
i + f

2
i  v̄

2
i , 8i 2 B (1i)

p
g
 pg  pg, q

g
 qg  qg, 8g 2 G, (1j)

The input to the optimization program is the power demands x = {pdi , qdi : i 2 B} 2 R2|B|.
The output is the decision variables pg, qg, ei, fi, which are heavily coupled. When real power pg
and voltage magnitude vi are given for all g 2 G, i 2 BPV, the rest of the decision variables can be
determined by the following system of power flow equations (if a solution exists):

(1b) � (1g), e
2
i + f

2
i = v

2
i , 8i 2 BPV. (2)

We name yc = ((pg)g2Gi , vi)i2BPV the control variables, as the specification of yc is sufficient
for controlling the operation of the power system. We denote by ys the other decision variables of
Eq. (1) and refer to them as state variables. Letting Y ✓ R|G|+|BPV| and S ✓ R|G|+2|B|+4|L| denote
the space of control and state variables, we define PF : Y⇥R2|B| ! S as the mapping from control
variables and input demands to the state variables as the solution of Eq. (2). Under this notation, we
can rewrite the ACOPF objective in Eq. (1) as

min
yc2Cc,ys2Cs

X

g2G
(c2,gp

2
g + c1,gpg) subject to ys 2 PF (yc, x) (3)

where Cc ✓ Y and Cs ✓ S represent the (convex) feasibility sets of control and state variables,
respectively, as follows:

Cc =
n
((pg)Gi , vi)i2BPV : p

g
 pg  pg, 8g 2 G, vi  vi  vi, 8i 2 BPV

o
,

Cs =
n
((qgi )i2Gi , ei, fi, pij , qij , pji, qji)i2B : v2i  e

2
i + f

2
i  v

2
i , 8i 2 B \ BPV,

q
g
 qg  qg, 8g 2 G, p

2
ij + q

2
ij  s

2
ij , p

2
ji + q

2
ji  s

2
ij , 8(i, j) 2 L

o
.
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Note that PF (yc, x) many have a unique solution, multiple solutions, or no solution for arbitrary
control variable yc and load x.

3. A Constrained Machine Learning Approach to ACOPF

The (non-convex) QCQP in (3) can be stably solved by various existing algorithms including the
interior-point method. However, as the size of power system scales up, the amount of computa-
tion required by an optimization solver becomes enormous. Considering the fact that the ACOPF
problem needs to be repeatedly solved in real-life power systems as the power demand constantly
changes, we are motivated to investigate alternative approaches that trade-off slight sub-optimality
of the solution for computational efficiency.

3.1. ML Approach for Control Prediction

Given a fixed power system, our aim is to design a data-driven learning-based method that leverages
samples of paired input and output of the ACOPF problem solved for the specific system under
varying loads. Suppose we have N sample pairs {(xn, yn) : n = 1, . . . , N} where x

n denotes
the power demands from the nth sample and y

n denotes the optimal solution of (1) under input
x
n, which we can split into control and state variables yn = (ync , y

n
s ). A straightforward supervised

learning framework for predicting the control variables ync from x
n looks for a mapping g : R2|B| !

Y that minimizes the data mismatch as follows: ming
PN

n=1 kg(xn)�y
n
c k2, where we parameterize

the mapping g by a feed-forward neural network.
Despite its simplicity, this objective does not enforce constraint satisfaction, especially on the

state variable. Specifically, PF
�
g(xn), xn

�
, the state variable resulting from the predicted control,

may not lie within the constraint set Cs. Such infeasible solutions require post-processing before
they can be deployed; even after post-processing, the solutions are not guaranteed to be feasible and
may degrade in generation cost.

To explicitly enforce the constraints to be satisfied, our work proposes a more sophisticated loss
function that penalizes both data mismatch and constraint violation. Our initial proposal is to solve

min
g

NX

n=1

⇣
kg(xn)� y

n
c k2 + w · rCs

�
PF (g(xn), xn)

�⌘
(4)

where w is a given weight value (e.g. 0.1 and 1.0 for our numerical experiment), and rCs is the
following penalty associated with the violation of constraint set Cs

rCs

⇣
(qg)g2G , (ei, fi)i2B, (pij , qij)ij2L, (pji, qji)ij2L

⌘
=
X

g2G

⇣
max{0, q

g
�qg}+max{0, qg � qg}

⌘

+
X

(i,j)2L

�
max{0, p2ij + q

2
ij � s

2
ij}+max{0, p2ji + q

2
ji � s

2
ij}

�
.

3.2. Infeasible Power Flow System

Training under the loss function in (4), however, may be unstable. The challenge comes from the
fact that we may not always find a feasible solution PF (g(xn), xn). This happens either because
PF (g(xn), xn) = ; under control prediction g(xn) and/or load sample x

n, or because a numerical
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method (e.g. Newton-Raphson) cannot find a solution due to the lack of convergence guarantee.
Training stagnates when this issue arises and the entire learning pipeline can be broken. To address
the issue and stabilize training, we introduce slack variables � 2 E2|B| that captures the the min-
imum gap in power demand satisfaction for the power flow equations to have a solution. Under
the control prediction g(xn) and demand load x

n, we find approximate state variables by solving
the following optimization program (which can be written as a non-convex QCQP after a simple
reformulation of the objective):

(byns , b�n) 2 argminys2S,�2R2|B| k�k1 subject to ys 2 PF (g(xn), xn + �), (5)

where ksigmak1 is reformulated and linearized with two nonnegative slack variables. To stably
learn a constrained ACOPF solution, we ultimately solve the bi-level optimization problem

min
g

L(g) ,
NX

n=1

�
kg(xn)� y

n
c k2 + w · rCs

�
byns

��
(6)

where byns is defined in the lower-level optimization problem (5). The loss function is tailored to the
learning of ACOPF solutions leveraging the structure of the problem and is novel in the literature
to the best of our knowledge. From a computational perspective, this loss, nevertheless, introduces
significant challenges. Since byns is a function of g(xn) only defined implicitly through (5), it is un-
clear how the gradient of rCs

�
byns

�
can be computed with respect to g, or even more fundamentally,

whether rCs
�
byns

�
is differentiable. In the next section, we provide an affirmative answer to the ques-

tion and present a systematic method for deriving the (sub)gradient of L with respect to g(xn) by
adapting and extending techniques from differentiable convex programming. Being able to evaluate
this (sub)gradient means that we can compute the rgL(g) through the chain rule, which allows us
to optimize L(g) using first-order algorithms.

4. Differentiable QCQP

In this section, we show that under the second-order sufficient condition any QCQP of the form

z
⇤ = arg min

z2Rk

1

2
z
>
P0z + q

>
0 z (7a)

s.t.
1

2
z
>
Piz + q

>
i z + ri  0 8i = 1, . . . ,mI , (7b)

1

2
z
>
Diz + h

>
i z + gi = 0 8i = 1, . . . ,mE (7c)

defines a differentiable mapping from the parameters P0 2 Rk⇥k
, q0 2 Rk

, {Pi 2 Rk⇥k}, {qi 2
Rk : i = 1, · · · ,mI}, {ri :2 R : i = 1, · · · ,mI}, {Di 2 Rk⇥k}, {hi 2 Rk : i = 1, · · · ,mE}, {gi :2
R : i = 1, · · · ,mE} to the optimal solution z

⇤. We derive the gradient of `(z⇤) with respect to these
parameters, where ` : Rk ! R can be any downstream loss function on z

⇤. When the second-order
sufficient condition does not hold, we derive the subgradients within the subdifferentials @P0`, @q0`,
etc, which allows subgradient descent/ascent to be performed on the downstream loss function. We
note that (7) is a more general problem that covers (5) as a special case.

Inspired by the literature on differentiable quadratic programming (Amos and Kolter, 2017) and
convex programming (Agrawal et al., 2019), we exploit a key structure to drive the innovation – the
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KKT equations of (7) are preserved at the optimal solution (z⇤, ⌫⇤,�⇤) under differential changes
in the parameters, where ⌫

⇤ 2 RmI and �
⇤ 2 RmE are the optimal dual variables associated

the inequality and equality constraints, respectively. More specifically, under differential changes
{dPi}, {dqi}, {dri}, {dDi}, {dhi}, {dgi}, we can find how dz

⇤ will change accordingly by solving
a linear system of equations of the form

M

h
(dz⇤)>, (d⌫⇤)>, (d�⇤)>

i>
= b

⇣
{dPi}, {dqi}, {dri}, {dDi}, {dhi}, {dgi}

⌘
, (8)

where we define in the appendix the matrix M 2 R(k+mI+mE)⇥(k+mI+mE), which only depends on
the parameters and optimal solution of (7), and the vector b({dPi}, {dqi}, {dri}, {dDi}, {dhi}, {dgi}) 2
Rk+mI+mE , which is a function of the differentials of parameters. Setting the differentials of the
parameters to appropriate identity matrices/tensors and solving this system of equations give the
partial derivatives @z⇤

@Pi
, @z⇤

@qi
, etc., by definition.

When z
⇤ is used to compute a differentiable downstream loss `(z⇤), we design a computation-

ally efficient method for propagating the gradient of the loss through the QCQP to all parameters.
We state the main results below and defer the detailed derivation to the appendix.

Theorem 1 Suppose that strict complementary slackness, linear constraint qualification and second-

order sufficient conditions hold at (x⇤, ⌫⇤,�⇤). Then, the matrix M is invertible and ` is a differen-

tiable function of the QCQP parameters. Given
@`
@z⇤ , we have

rP0` = z
⇤
d
>
z , rq0` = dz, rPi` = ⌫

⇤
i z

⇤
d
>
z +

1

2
⌫
⇤
i z

⇤(z⇤)>d⌫i , rqi` = ⌫
⇤
i dz + z

⇤
d⌫i

rri` = d⌫i , rDi` = �
⇤
i z

⇤
d
>
z +

1

2
d�iz

⇤(z⇤)>, rhi` = �
⇤
i dz + z

⇤
d�i , rgi` = d�i ,

(9)

where dz 2 Rk
, d⌫ 2 RmI , d� 2 RmE are the solutions to

h
d
>
z , d

>
⌫ , d

>
�

i>
= �M

�>
h� @`

@z⇤
�>

, · · · 0 · · · , · · · 0 · · ·
i>

.

In the theorem, we state a sufficient condition on the differentiability of the QCQP and provide
a systematic way of computing the gradients of the downstream loss on z

⇤ with respect to the
QCQP parameters. We note that when the assumptions of Theorem 1 do not hold, M may not be
invertible, and the QCQP in general is not differentiable. In that case, the expressions in (9) are the
subgradients where dz, d⌫ , d� are any solutions of the the under-determined system

�M
>
h
d
>
z , d

>
⌫ , d

>
�

i>
=

h� @`

@z⇤
�>

, · · · 0 · · · , · · · 0 · · ·
i>

. (10)

In our work, we take the solution with the smallest `2 norm.

5. Numerical Experiments

In this section, we demonstrate the performance of the proposed approach for ACOPF. We do not
assume that power flow has a solution. If no solution exists for the power flow, we find a solution
that minimizes the violation of the power balance constraints, as proposed in (5). We highlight that
our approach is capable of training the neural network model even with control prediction that can
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cause no solution of the power flow system (i.e., PF (g(xn), xn) = ;). Note that Newton-Rhapson
method fails to converge for such cases.

Our numerical experiments aim to demonstrate that the model can be successfully trained even
with a number of training and testing epochs with the samples of infeasible power flow system (i.e.,
no solution and thus positive slack values).

5.1. Experiment Settings

We generate the training and testing data sets by solving the problem with perturbation of the active
and reactive loads by random numbers uniformly generated from (�1, 1). We consider three IEEE
test instances, each of which has 30, 118, and 300 buses, taken from PGLib-OPF v21.07. Because
some problems can be infeasible with the random perturbations, we use the problem formulation
that penalizes the violation of the power balance constraints. Each sample s of the data set consists
of pds , qds , p⇤g, q⇤g , e⇤i , f

⇤
j , where p

⇤
g, q

⇤
g , e

⇤
i , f

⇤
j are local optimal solution obtained by Ipopt v3.14.12.

The training data set has 10,000 samples, and the testing data set has 2,500 samples.
We have implemented the proposed approach by using PyTorch v2.0.1, where the optimization

problem is modeled with Pyomo v6.7.0 and solved by Ipopt v3.14.12. The trainings were paral-
lelized with Horovod v0.28.1. All the experiments were run on a Linux workstation with 144 CPUs
of Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz.

We use the feed-forward neural network with two layers and the sigmoid function as output. We
use the same architectures proposed in (Pan et al., 2022). Detailed experiment settings are given in
Table 1. Recall that the input and output dimensions are |BPV|+ |G| and 2|B|, respectively. All the
models were trained by Adam optimizer with the learning rates given in the table.

IEEE Test System B BPV G L # parameter per layer w learning rate
30-bus 30 5 6 41 64, 32 1.0 10�4

118-bus 118 53 54 231 256, 128 1.0 10�4

300-bus 300 68 69 411 1024, 512 0.1 10�6

Table 1: Experiment setting for each IEEE test system

5.2. Small Test Cases

Figure 2 presents the training and testing performances of the proposed approach for the small test
networks: IEEE 30- and 118-bus network systems. The prediction loss and penalty loss values in
the figure measure the first and second terms of (6). The total loss measures L(g). The 100% test
accuracy (i.e., feasibility ratio) has been obtained within 10 epochs for both small systems; that is,
the control predictions g(xn) made from the trained models result in feasible state solutions with
respect to the power flow equations (2) for all 2,500 test samples. Our results are consistent to that
presented in Pan et al. (2022), where the power flow equations of (2) are solved as compared to the
optimization (5) in our approach.

5.3. Large Test Case with Infeasible Power Flow

We demonstrate that the neural network model can be successfully trained even when some control
prediction leads to infeasible power flow equations. In Figure 3 we report the training loss, the
number of infeasible power flow solves, and the accuracy of the model over the training epochs for
the IEEE 300-bus network data. Recall that (2) has no solution if the values of the slack variable �
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(a) 30-bus network (b) 118-bus network (c) Testing accuracy

Figure 2: Performances on small grid networks (IEEE 30- and 118-bus systems)

in (5) are positive. The model trained on IEEE 300-bus network system achieves a test accuracy of
92% after 200 epochs. In a number of training and testing epochs (Figure 3b), we observe that the
neural network predicts control variables that result in the infeasible state variables. While reducing
over the epochs as the neural network learns more accurate controls, a positive number of infeasible
power flow cases still appear in many of the later epochs. We observe that the training epochs with
such infeasible cases experience the spikes in the penalty loss value. We highlight that our approach
with the QCQP activation function (with slack variables) allows the neural network to still learn
and improve when such infeasible cases arise, while existing approaches relying on the power flow
equation solver (e.g. Pan et al. (2022)) do not.

(a) Training loss (b) Infeasible power flow (c) Testing accuracy

Figure 3: Training and testing performances on the IEEE 300-bus network

6. Concluding Remarks

Our work proposes a learning-based framework for solving the notoriously challenging ACOPF
problem with the aim of achieving computational efficiency and reliably generating high-quality
feasible solutions. We identify that a common issue of the existing approaches in this domain
Pan et al. (2022); Donti et al. (2021) lies in the assumption that the power flow equation admits a
solution for any neural-network-predicted control variables, which does not always hold. Training
gets disrupted when the power flow solver fails to produce a feasible solution. We address this
issue by modeling the power flow as a non-convex QCQP problem that minimizes the constraint
violation. By leveraging and generalizing techniques from differentiable convex programming, we
derive (sub)gradient of the state variables with respect to the control variables, which allows the loss
function on state variables to be properly back-propagated. We show through numerical simulations
that our proposed framework stably learns solutions with high feasibility rate and low generation in
large systems with wide load variations, in which existing approaches fail to train. Future work may
include the incorporation of minimizing the power flow violation into the training loss function,
which will train the model to predict a control solution while avoiding the power flow violation.

10



RELIABLY LEARNING FEASIBLE ACOPF SOLUTIONS UNDER CONSTRAINTS

Acknowledgement

This material is based upon work supported by Laboratory Directed Research and Development
(LDRD) funding from Argonne National Laboratory and Advanced Scientific Computing Research,
provided by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-
06CH11357. We gratefully acknowledge the computing resources provided on Swing, a high-
performance computing cluster operated by the Laboratory Computing Resource Center at Argonne
National Laboratory.

Disclaimer

This paper was prepared for informational purposes in part by the Artificial Intelligence Research
group of JP Morgan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Re-
search Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy or reliability of the information contained
herein. This document is not intended as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the merits of participating in any transac-
tion, and shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation
under such jurisdiction or to such person would be unlawful.

References

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Brandon Amos and J Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136–145. PMLR, 2017.
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