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Abstract
Sample efficiency is crucial in optimization, particularly in high-dimensional black-box scenar-
ios characterized by expensive evaluations and zeroth-order feedback. When computing resources
are plentiful, Bayesian optimization is often favored over evolution strategies with this criterion.
In this paper, we introduce a fully invariant evolution strategies algorithm, derived from its corre-
sponding framework, that effectively rivals the leading Bayesian optimization method. Specifically,
we first build the framework INVIGO that has proper computational costs, incorporates complete
historical information, and is fully invariant. We then exemplify INVIGO on multi-dimensional
Gaussian, which gives an invariant and scalable optimizer SYNCMA . The theoretical behavior
and advantages of our algorithm over other Gaussian-based evolution strategies are further ana-
lyzed. Finally, We benchmark SYNCMA against leading algorithms in Bayesian optimization and
evolution strategies on various high dimension tasks, including Mujoco locomotion tasks, rover
planning task and synthetic functions. In all scenarios, SYNCMA demonstrates great competence,
if not dominance, over other algorithms in sample efficiency, showing the underdeveloped potential
of property oriented evolution strategies.
Keywords: Invariant optimizer, Information geometry, Evolution strategies, Bayesian optimization

1. Introduction

Many real-world continuous-space optimization problems do not have access to gradient informa-
tion, and can only rely on zeroth-order evaluations. Moreover, these function evaluations are often
costly and become less useful over time as the environment changes. Such tasks are then usually
approached as online optimization problems with zeroth-order feedback and an ignorant initial.
An ideal optimizer, to this end, should have high sample efficiency with reasonable computational
complexity.

Bayesian optimization, with this criterion, is often the favored choice because it has empiri-
cally better sample efficiency in various machine learning scenarios (Shahriari et al., 2015; Frazier,
2018). Initially, this success is limited to low-dimensional problems due to its cubic computational
complexity of the surrogate model (Rasmussen, 2003). Versatile scalable variants of Bayesian opti-
mization have been developed recently (Eriksson et al., 2019; Binois and Wycoff, 2022), extending
the dominance dimension of Bayesian optimization up to hundreds. In this paper, we use the name
of high-dimension to denote dimensions ranging from dozens to hundreds, and the name of online
optimization to include both Bayesian optimization and evolution strategies.
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Evolution strategies usually has its computational complexity independent from sample size,
which makes it a general method to apply. Over years of development, some theoretical frame-
works and guidance are developed (Akimoto et al., 2012, 2014), through which covariance ma-
trix adaptation evolution strategies (CMA-ES) (Hansen, 2016) and its variants (Abdolmaleki et al.,
2017; Akimoto and Hansen, 2020) stand out. They are the current leading family of algorithms
and achieve a balance between sample efficiency and computational cost. However, the lack of
a solid theoretical foundation greatly hinders their development despite of many efforts invested
(Arnold and Hansen, 2010; Brockhoff et al., 2012; Ba et al., 2016; Akimoto and Hansen, 2016;
Shirakawa et al., 2018; Nishida and Akimoto, 2018). The potential of CMA family and even evo-
lution strategies seem to be far from being explored. And we aim at exploring this potential from
a property oriented perspective instead of developing a solid theory. In specific, we wonder, can a
fully invariant evolution strategies algorithm have great competence against Bayesian optimization
in high-dimensional tasks?

The invariant orientation is motivated by general optimization problems where gradient infor-
mation is available. In this scenario, it is widely known that the performance of leading first-order
optimizers such as AdaGrad (Duchi et al., 2011) and Adam (Kingma and Ba, 2014) are highly
dependent on the curvature of the optimization objective. Since the curvature depends on the pa-
rameterization of the model, parameterization invariant optimizers are thus considered as promising
ways when curvature is unknown. In achieving invariant optimizer, natural gradient (Amari, 1998)
and further efforts (Transtrum and Sethna, 2012; Song et al., 2018) that concentrate on exploiting
first or higher order structure in parameter space, are probably the most effective thread of research,
yet less has been made. When gradient information is not available, sampling is used in informa-
tion geometric optimization (IGO) (Ollivier et al., 2017) to estimate the natural gradient for specific
parametric distributions. Similarly, geodesic modification is also explored (Bensadon, 2015) but the
practical invariant capability is limited as in the general case.

Our contribution. We build the first invariant optimizer framework INVIGO for online optimiza-
tion with ignorant initial and zeroth-order feedback, which adopts an approximation to the objective
in IGO to allow everywhere differentiability, and a line search strategy to completely and scal-
ably incorporate historical information. When further exemplified with multi-dimensional Gaussian
that CMA optimizers built upon, the derived practical optimizer SYNCMA inherits all properties
of INVIGO and has the same computation costs as CMA-ES. It is also the first time that histori-
cal information is stably incorporated for both mean and covariance parameters. In experiments
that benchmark on high dimensional realistic tasks, where Bayesian optimizers usually dominant,
and synthetic tasks, SYNCMA demonstrates great competence over other optimizers in sample effi-
ciency.

2. Background

We study the optimization problem where a black-box function f needs to be optimized, and the
optimizer is initially ignorant with only zeroth-order feedback available,

x∗ = argminx∈Rn f(x). (1)

To get rid of the potential complex nature of f , a global parametric sample distribution θ 7→ pθ
over the domain of x and a substitutional fitness function gf,θ(x) are often considered. The relaxed
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problem then becomes :
θ∗ = argminθ∈Θ Epθ [gf,θ(x)], (2)

where fitness function g is manually selected to approximate f while maintaining good properties,
such as integrable. Ideally, given g, θ∗ ∈ Θ should approximately equal to the delta distribution that
has all its probability on x∗. Also, the fitness function generalizes the problem as specifically, i) if f
has good properties, then it is naturally to set gf,θ as f ; ii) if g is indeed related with θ, e.g. pθ-level
function (Ollivier et al., 2017), then the problem has a time-varying environment that many online
optimizers pursue.

2.1. Natural Gradient Flow with Zeroth-order Feedback

Equation (2) is often solved with natural gradient flow on the parameter space Θ when targeting on
invariance (Amari, 1998; Kakade, 2001),

dθ

dt
= −∇̃θEpθ [gf,θt(x)] = −∇̃θLθt(θ), (3)

where θt denotes θ at time step t, ∇̃θ := I−1(θ)∇θ is the natural gradient with I(θ) the fisher
information matrix, and Lθt(θ) := Epθ [gf,θt(x)] denotes the loss function with Θ as its domain.
The usage of natural gradient keeps this ODE invariant under smooth bijective transformation of
parameter space. Its vanilla discrete version, i.e. natural gradient descent algorithm goes to,

θt+1 = θt − h∇̃θ|θ=θtLθt(θ). (4)

Here h denotes the learning rate. To practically compute the natural gradient in black-box
setting, information geometric optimization (IGO) sets a sampling method given space Θ,

∇̃θ|θ=θtLθt(θ) = I−1(θt)

∫
gf,θt(x)

∂ ln pθ(x)

∂θ
|θ=θtpθt(dx). (5)

Different choices of distribution family Θ thus provide different optimization methods in the
form of (4), we thus assume a finite computational cost O(HΘ) which widely holds (Akimoto et al.,
2012; Hansen, 2016), and define the IGO complexity as a measurement accordingly.

Assumption 1 For a given x ∈ Rn and θ ∈ Θ, I−1(θ)∂ ln pθ(x)
∂θ cost O(HΘ) time to compute.

Definition 1 (IGO complexity) When Assumption 1 holds, the IGO complexity O(HΘN) denotes
the computational complexity for single step updates when applying IGO to natural gradient method,
i.e. to compute equation (5) with N samples.

When discretizing with a given learning rate, errors with respect to the invariant property oc-
cur, which may accumulate to drastically change the trajectory. In gradient accessible setting with
general loss function, the best invariant error achieved (Song et al., 2018) is 2-nd order invariant,
representing the decrease of the error between the optimizer and some exactly invariant trajectories
is O(h2). Similar error order is achieved in the content of black-box setting for certain parametric
distribution (Bensadon, 2015). There are some attempts to illustrate a fully invariant optimizer, such
as IGO-ML in Ollivier et al. (2017), but they are not practically invented. In short, there is no prac-
tical algorithm that has a better order of invariance; when introducing historical information, e.g.
momentum, current invariance order and even stability might be violated (Akimoto et al., 2014).
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Definition 2 (Invariant property) Let θ be the parameter of an optimizer using model pθ and φ(θ)
be an smooth bijective transformation of θ of the same optimizer using model p′φ(θ) = pθ. Let θt be
the optimization trajectory when optimizing objective f , parameterized by θ and initialized at θ0.
And φt the optimization trajectory when optimizing objective f , parameterized by φ and initialized
at φ0 = φ(θ0). We claim that the optimizer is invariant if ∀t ∈ N, φt = φ(θt).

3. An Invariant Optimizer Family with an Approximate Objective

In this section, we will overcome aforementioned challenges in invariance and stablity, presenting a
fully invariant optimizer family with historical information incorporated.

3.1. Optimizing with the Approximate Objective

We start with replacing the loss function Lθt(θ) := Epθ [gf,θt(x)] in (3) that is only computational
differentiable at point θ = θt. Given that gf,θt is manually selected and ∀b ∈ R,∇θEpθ [gf,θt(x)] =
∇θEpθ [gf,θt(x)+b], we assume gf,θt to be non-negative without loss of generality. Then we denote

reweighted distribution qθ(x) :=
pθ(x)gf,θt (x)

Lθt (θ)
and decompose logLθt(θ) as follow,

log
Lθt(θ)

Lθt(θt)
= DKL(qθt∥qθ) +DKL(qθt∥pθt)−DKL(qθt∥pθ). (6)

where DKL(p∥q) :=
∫
p(x) log p(x)

q(x)dx is the Kullback–Leibler (KL) divergence.
Inspired from decomposition (6), we claim DKL(qθt∥pθ) a good objective approximating Lθt(θ).

All the proofs and detailed derivations are set in Appendix1 A.

Proposition 3 The KL-divergence DKL(qθt∥pθ) is a substitution for Lθt(θ) with the following
properties.

1. The (natural) gradients for logLθt(θ) and −DKL(qθt∥pθ) coincide at current point θt, fur-
ther, for every θ := (θt + δθ) ∈ Θ, ∇θ logLθt(θ) = −∇θDKL(qθt∥pθ) +O(δθ).

2. Under Assumption 1 , computing natural gradient of DKL(qθt∥pθ) at any point θ ∈ Θ costs
the IGO complexity O(HΘN). While objective Lθt(θ) in IGO is only differentiable at point
θt.

To utilize the everywhere differentiability of DKL(qθt∥pθ), we then frame discretized updates
for θt+1 as a step-size constrained optimization problem instead of vanilla descents in (4),

θt+1
∗ = argmaxθDKL(qθt∥pθ) s.t. DKL(pθt∥pθ) ≤ ϵ2/2. (7)

The specific choice of the constraint comes from the definition of natural gradient (Amari, 1998;
Martens, 2020) −∇̃|θ=θtLθt(θ) ∝ limϵ→0+

1
ϵargmaxδθ s.t. DKL(pθt∥pθt+δθ)≤ϵ2/2DKL(qθt∥pθt+δθ).

More precisely, from this definition, the optimization problem (7) is approximately solving dθ
dt =

−s(θ)∇̃ logLθt(θ) with s(θ) := ϵ
∥∇̃|θ=θtDKL(qθt∥pθ)∥I−1

where ∥v∥B :=
√
vTBv for vector v and

matrix B.

1. Please refer to https://github.com/Anoxxx/SynCMA-official for appendix and source codes.
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3.2. Invariantly Incorporating Historical Information

When only local information is used in each iteration, historical information is helpful for the op-
timization, even if the environment is constantly changing over time (Yuan et al., 2016). We thus
modify objective DKL(qθt∥pθ) to incorporate historical information. Here T denotes the horizon
and the widely used exponential decay is applied with decay parameter λ ∈ [0, 1). λ0 is regarded
as 1 in default.

θt+1
∗ = argmaxθ

T∑
τ=0

λτDKL(qθt−τ ∥pθ) s.t. DKL(pθt∥pθ) ≤ ϵ2/2. (8)

Although problem (8) can be solved with strong duality and additional convex optimization,
applying a simple natural Lagrange condition as a line search will yields more room for accessible
invariant with proper computational cost. Here we denote Gt(θ) :=

∑T
τ=0 λ

τDKL(qθt−τ ∥pθ),

∇̃θ|θ=θt+1(−Gt(θ) + η(ϵ2/2 −DKL(pθt∥pθ))) = 0. (9)

We name this algorithm family from iteratively solving (9) for different choice of parametric
distribution family Θ as INVIGO. Further, when T is set to be large, we can always replace Gt(θ)
with a self-evolved term M t(θ) that retain the gradient information. In practice, it suffice to evolve
only ∇̃θM

t(θ) as shown in the following section.

∇̃θG
t(θ) = −∇̃θM

t(θ) + ∇̃θDKL(qθt∥pθ). (10)

Assumption 2 The chosen fitness function gf,θt(x) and the Lagrange multiplier η are independent
from the parameterization of θ.

Theorem 4 (Invariant for INVIGO) When assumption 1, 2 hold and the decay weight λ is inde-
pendent from the parameterization of θ ∈ Θ, optimizers in INVIGO are invariant and the single
step computational cost is O(min(HΘNT,HΘN +K)) where O(K) denotes the cost to compute
∇̃θM

t(θ).

4. Exemplifying with Multi-dimensional Gaussian

We exemplify INVIGO with multi-dimensional Gaussian as our candidate distribution family Θ. To
start with, we clarify the computational accessibility of multi-dimensional Gaussian for Assump-
tion 1.

Proposition 5 (Theorem 4.1 in Akimoto et al. (2012)) Suppose θm and θc are n- and n(n+1)/2-
dimensional column representing mean m and covariance matrix C respectively. Then ∂m/∂θm
and ∂vec(C)/∂θc are invertible at θ ∈ Θ and,

I−1
m (θ)

∂ ln pθ(x)

∂θm
= (

∂m

∂θm
)−1(x−m), (11)

I−1
c (θ)

∂ ln pθ(x)

∂θc
= (

∂vec(C)

∂θc
)−1vec((x−m)(x−m)T − C). (12)

where the fisher information matrix I(θ) is consists of two blocks for mean and covariance respec-
tively by parameterizations.
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The requirement of fitness function gf,θt(x) in Assumption 2 widely holds, such as the level
function that reflect the probability to sample a value better than f(x) according to pθt in standard
CMA-ES (Hansen, 2016). We choose this fitness function for comparing needs : In time step t, N

samples {xti} are drawn from pθt and we further denote ŵt
i :=

gf,θt (x
t
i)∑

i gf,θt (x
t
i)

as the normalized fitness

for sample xti. Finally, according to Proposition 5, parameter θ = (θm, θc) 7→ N (m,C) with
θm ∈ Rn and θc ∈ Rn(n+1)/2 representing mean and covariance respectively. We can thus split
the Lagrange multiplier into constants pair η = (ηm, ηc) in INVIGO without violating the invariant
property. The Assumption 2 is satisfied thereby.

We use the parameterization θ = (m,C) for simplification sake through this section. Different
parameterizations that meet the conditions in Proposition 5 will conduct different practical optimiz-
ers by following this section with minor modifications. The performance should be the same up to
the transformation due to the invariant property.

4.1. An Invariant Optimizer with Historical Information : SYNCMA

We directly apply INVIGO and a maximum time horizon T = t − 1. By choosing such infinite
horizon, the historical information is maximally used. To reduce the computational costs to the
same as IGO, i.e. scalable to O(HΘN) for single step update, we design M t(θ) as follow,

∇̃mM t(θ) = λ0(s
t
m +mt −m), (13)

∇̃cM
t(θ) = λ0((s

t
c +mt −m)(stc +mt −m)T − C) +Qt

1 +Qt
2 ◦m+Qt

3mmT .

Here scalars λ0, Q
t
1 ∈ R and vectors stm, stc, Q

t
2, Q

t
3 ∈ Rn, with ◦ applying to two vectors

v1, v2 ∈ Rn that denotes v1 ◦ v2 := v1v
T
2 + v2v

T
1 . For brevity sake, we denote dti := xti −mt, dtw :=∑

i ŵ
t
id

t
i, d̂

t
w := dtw + mt to represent statistics in a single generation, and ŝt−1

m := st−1
m + mt−1,

ŝt−1
c := st−1

c +mt−1 to represent elements for history. Corresponding updates for hyperparameter
λ0 ∈ R and self-evolved terms stm, stc, Q

t
2, Q

t
3 ∈ Rn that initially zero are shown below:

λ = λ0/λ0+1, (14)

stm +mt = λŝt−1
m + (1− λ)d̂t−1

w , (15)

stc +mt =
√
λŝt−1

c +
√
1− λd̂t−1

w , (16)

Qt
1 = λQt−1

1 + λ
∑

ŵi(d
t−1
i − dt−1

w )(dt−1
i − dt−1

w )T − λ0

√
λ
√
1− λd̂t−1

w ◦ ŝt−1
c , (17)

Qt
2 = λQt−1

2 − λ0(
√
λ+

√
1− λ− 2)(

√
λ ∗ ŝt−1

c +
√
1− λ ∗ d̂t−1

w ), (18)

Qt
3 = λQt−1

3 − λ0(
√
λ− 1)(

√
1− λ− 1). (19)

We now arrive at the single step update for next parameter θt+1 = (mt+1, Ct+1). The resulting
algorithm is named as SYNCMA to emphasize another prominent characterization, the synchronous
update nature, as discussed in section 4.2, besides invariance. The final updates in single iteration
with zm = ηm+λ0+1, zc = ηc+λ0+1, βt = 1

zm
(dtw +λ0s

t
m) for brevity sake are shown below:

mt+1 =mt + βt, (20)

Ct+1 =
ηc
zc
(Ct + βt(βt)T ) +

λ0

zc
(stc − βt)(stc − βt)T (21)

+
1

zc
(
∑
i

ŵi(d
t
i − βt)(dti − βt)T +Qt

1 +Qt
2 ◦mt +Qt

3m
t(mt)T ).

6



AN INVARIANT INFORMATION GEOMETRIC METHOD

4.2. Theoretical Comparison with Other CMA Optimizers

To the best of our knowledge, SYNCMA is the first fully invariant optimizer and the first CMA opti-
mizer stably incorporating historical information in mean updates. We aim to characterize two addi-
tional properties of SYNCMA, clarify the absence of step-size adaption, and connect SYNCMA with
CMA-ES in this subsection.

Synchronous Updates Given that INVIGO treats the current distribution θ as a single point in
parameter space to update, the updates for mean and covariance matrix in SYNCMA naturally in-
tertwine. This synchronous update nature allows SYNCMA to strictly follow Proposition 5, which
is fundamental for all such CMA optimizers. In other CMA optimizers, updates in each itera-
tion are sequentially performed, and thus only approximately follows Proposition 5, e.g. mt+1 =
Um(mt, (σt)2Σt) and Σt+1 = Uc(m

t+1, (σt)2Σt) where Um and Uc are updates for mean and
covariance, and σt is the additional step-size which SYNCMA lacks.

Effective Learning Rate As illustrated at the end of Section 3.1, INVIGO along with its derived
algorithm SYNCMA have an effective rate that inversely proportion to gradient, which enhances
their capabilities to escape local optima and saddle points over other optimizers. This property is
further examined in experiments with rugged functions.

Absence of Step-size Adaption One of the direct consequences of directly exemplifying from
INVIGO, i.e. synchronous updates, is the lack of the step-size σt adaption. Such step-size scaling
the sampling region is one of the crucial components in lots modern optimizers (Hansen, 2016;
Abdolmaleki et al., 2017). While we are fully aware of its importance, we exclude this part of
research in the favor of strictly demonstrating INVIGO in a practical way, and sincerely regard an
additional step-size in SYNCMA as a future topic.

Connection to CMA-ES. It is also worth building the connection between SYNCMA and the
CMA family algorithms in Proposition 6, where two used approximations correspond to the fully
incorporation of history and the synchronous nature of SYNCMA.

Proposition 6 When i) the historical information is partially used for covariance, i.e. ∇̃mM t(θ) =
0 and ∇̃cM

t(θ) = λ0((s
t
c +mt −m)(stc +mt −m)T − C). ii) all the higher order terms, when

assuming ηc ≈ zc ≫ 1, zm ≫ 1, are discarded. SYNCMA coincide with CMA-ES up to an external
learning rate difference.

5. Experiments

In this section, we intensively evaluate SYNCMA with other baselines in Mujoco locomotion tasks,
rover planning task and synthetic functions. The criteria are chosen in the context of online opti-
mization, focusing on full optimization procedures in the natural axis and sample efficiency when
achieve a near global value. All optimization procedures are plotted with the shaded area bounded
by quartiles and the solid line denoting the median performance over all trails.

Baselines are chosen in a structured way. First, random search (RS) (Bergstra and Bengio, 2012)
is chosen as the overall baseline. Then, two black-box optimizers, differential evolution (DE) (Storn
and Price, 1997) and simulated annealing (SA) (Bouttier and Gavra, 2019) are chosen. Among the
CMA optimizers, we choose CMA-ES and two of its leading variants DD-CMA (Akimoto and
Hansen, 2020) and TR-CMA-ES (Abdolmaleki et al., 2017) for detailed comparison. Finally, the
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Bayesian optimization method TuRBO (Eriksson et al., 2019) is used as the state-of-the-art base-
line for BO. Parameters ηm, ηc of SYNCMA are set to constant that match the initial settings of the
corresponding parameters in CMA-ES. λ0 corresponds to a combination of several parameters in
CMA-ES so we simply test with the constant value λ0 = 2, which corresponds to the approximate
counterparts in CMA-ES. We use this value throughout the main paper while there are better per-
formances of SYNCMA with different λ0 as shown in ablation studies in Appendix B.4. The initial
distribution for all Gaussian based optimizers are identity matrix.

TR-CMA-ES is based on its original paper version implemented in Matlab due to precision
problems in Python, and therefore we exclude TR-CMA-ES in the Mujoco locomotion and rover
planning tasks as they are based on specific Python libraries. All other baselines are implemented
with their fine-tuned version available online (Balandat et al., 2020; Duan et al., 2022). See Ap-
pendix B for details.

5.1. Mujoco Locomotion Task

We first evaluate SYNCMA and other baselines on the widely tested Mujoco locomotion tasks
(Todorov et al., 2012), which are popular benchmarks for Bayesian optimization and reinforce-
ment learning algorithms. To run sampling-based optimizers on Mujoco, we refer to (Mania et al.,
2018) and optimize a linear policy: a = Ws, where a is the agent action and s is the environment
state. The parameter matrix W are continuous and in the range of [−1, 1]. Among all 6 tasks, we
dismiss the overly high dimensional task Humanoid(6392d) and test all other 5 tasks with batch
size N = 100. Two results are shown here in figure 1(a), 1(b) with more results in Appendix B.1.
While TuRBO dominates other baselines, SYNCMA outperforms TuRBO in 2 tasks and remains
competitive with TuRBO for the other 3 tasks.

(a) Ant(888d) (b) HalfCheetah(102d) (c) Rover(60d)

Figure 1: Optimization procedure for two high dimensional Mujoco locomotion tasks over 10 trials
and rover planning task over 100 trails. Index of SYNCMA indicate λ0.

5.2. Rover Planning Task

To further explore the empirical performance of SYNCMA in a realistic setting, we consider the
rover trajectory optimization task, where a start position s and a goal position g are defined in the
2D plane, as well as a cost function c(x) over the state space. The trajectories are described by a
set of points to which a B-spline is fitted and the cost function is computed. The whole state space
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is x ∈ [0, 1]60 and we make the batch size N = 2n = 120. A reward function to be optimized is
defined to be non-smooth, discontinuous, and concave over the first two and last two dimensions of
the state. The result in figure 1(c) shows that SYNCMA still exhibits competitive performance over
other baselines.

5.3. Synthetic Function

We select 10 commonly used synthetic functions with dimension n arbitrarily set. This is the tra-
ditional test bed for black-box optimization and specific evolution strategies. These functions, in-
cluding different characteristics such as multi-modal, ill-conditioned and ill-scaled, are scaled to a
global minimum value 0 with shifted domain. The batch size is N = 2n and the evaluation limit
is the same for all optimizers except TuRBO, where the budget is fixed at 5,000 evaluations due to
memory limitations in storing matrtix.

The full experiments are run with different dimensions of n = {32, 64, 128} and the results are
presented in two ways under the same evaluation budget: near global optimum performance and
the whole optimization procedure. Some results are presented here and please refer to Appendix
B.3 for the full experimental results.

(a) Discus (b) Rastrigin (c) LevyMontalvo (d) Rosenbrock

Figure 2: Optimization procedure in 4 typical synthetic functions with dimension n = 64 over 20
trails considering all optimizers. Index of SYNCMA indicate λ0.

Table 1: Near global optimum performance on 64d synthetic functions(lower is better) over 20
trials with budget of 50000 evaluations, TuRBO is excluded due to memory limitation. Numbers in
brackets indicates the median evaluation number needed for optimizers to achieve value better than
0.5.

Optimizer Sphere Discus Schwefel DiffPowers LevyMontalvo Rastrigin Ackley

SA 0.6 100.7 0.1(2650) 37.5 6.8 1634.7 13.6
RS 793.9 1138.8 29902.6 2369.4 14.4 1395.9 11.8
DE 7.2 20.0 25.6 63.6 0.4(49700) 586.9 3.1

DDCMA 0.0(10047) 0.0(12748) 0.0(16820) 0.0(10164) 0.0(9087) 17.9 0.0(11757)
CMAES 0.0(13825) 0.0(43265) 0.0(16134) 0.0(18503) 0.0(9901) 21.4 0.0(15620)

TRCMAES 0.0(7185) 85.9 0.0(9905) 0.0(12040) 0.0(5515) 22.4 0.0(7869)
SYNCMA(Ours) 0.0(3938) 0.0(18820) 0.0(1157) 0.0(1158) 0.0(2318) 0.2(42696) 0.0(7567)

According to table 1 where TuRBO is excluded as it is unable to scale to this budget, SYNCMA demon-
strate both superior optimization capability and efficiency over others. While other optimizers are
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less efficient and fail to optimize high-conditional number multi-model function Rastrigin, ill-scaled
function Discus and others. Further, full optimization procedures including TuRBO with maximum
budget under storage limit are partially shown in figure 2, SYNCMA still outperforms others in-
cluding TuRBO after first several hundreds evaluation from 32 to 128 dimension, demonstrating the
capability of such optimizer derived from an invariant framework.

5.4. Ablation Study

The weight for historical information λ0 is a parameter that substitutes a combination of several
parameters in CMA optimizers, and is set constantly as λ0 = 2. We thus study the sensitivity on this
parameter for constant setting here. All of previous experiments are repeated for λ0 ∈ [0, 4], with
results for λ0 = {0, 1, 2, 4} shown in Appendix B.4, from which we summarize several observations
within range [0, 4] here.

Sensitivity. When SYNCMA includes historical information, i.e. λ0 > 0, SYNCMA consistently
shows competitive performance.
Function Landscape. When their exists a fundamental subspace that covers the structure of the
problem, as in Rastrigin, a higher λ0 yields better performance and efficiency. Otherwise, as in
LevyMontalvo, a higher λ0 might be detrimental.
Dimensionality. Observed from tasks in Mujoco, synthetic functions, and rover planning, a higher
dimension generally requires a higher λ0.

6. Limitations

There is still much to explore in both framework INVIGO and optimizer SYNCMA . For the frame-
work, we directly use Lagrange condition in each step to yield rooms for invariance and complexity,
which need more endeavors to characterize its theoretical behavior or design novel per step subrou-
tine. Moreover, our proposed framework and optimizer currently only work for certain parametric
distribution families that IGO set. It is possible to generalize to a broader family of models such as
neural networks, as we are based on a different objetive from the IGO objective. For the algorithm,
the biggest point yet to explore is the step-size adaption which we excluded now for a focus on our
invariant framework.

7. Conclusion

We present an invariant optimizer framework INVIGO that fully incorporates historical informa-
tion, both of invariance and full incorporation are unprecedented. When exemplified with multi-
dimensional Gaussian, our framework derives a invariant optimizer SYNCMA that retains the com-
putational complexity as in information geometric optimization. With a straightforward invariant
oriented motivation, SYNCMA shows competitive performance in both realistic and synthetic sce-
narios against leading Bayesian and evolution strategies optimizers.

We highlight its performance on high dimensional realistic problem as it shows the potential of
a property oriented evolution strategies optimizer against Bayesian optimization optimizers. And
we also defend the importance of fully invariant in optimization. In short, we believe the prop-
erty oriented perspective is more approachable than inventing a rigorous theory that illustrates and
improves current evolution strategies algorithms.
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