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Abstract

We develop a unified framework for interpolating two models with various degrees
of over-parameterization, having model merging and model ensemble as special
cases. Instead of directly interpolating models in their original parameter space, the
proposed Semi-Ensemble interpolates the over-parameterized versions of the mod-
els in a higher-dimensional joint parameter space. Here, the over-parameterizations
recover each endpoint model when projected to some low-dimensional subspace
spanned by a fraction of bases. By carefully constructing the joint parameter space,
the interpolated model can achieve a smooth tradeoff between the total number of
parameters and the model accuracy, outperforming existing baselines. Intriguingly,
we show that Semi-ensembles can sometimes achieve a better performance than
vanilla ensembles, even with a slightly smaller number of parameters.

1 Introduction

Recent breakthroughs in linear mode connectivity have given rise to a new paradigm in utilizing the
knowledge of two (or more) independently trained models [26, 8]. Unlike typical approaches, e.g.,
ensembling the model predictions [6], one can instead linearly interpolate the endpoint models in
their parameter space to construct a new model. By carefully permuting the order of neurons before
mapping to the parameter space, the interpolated model can convey the knowledge of both models
without additional training. For example, interpolating the endpoint models trained on biased data
splits can generate a model that has an improved test accuracy on balanced datasets [29, 26, 1, 17].
Such capability makes this technique, called model merging, a promising tool for various practical
applications, such as federated learning under communication and privacy constraints [24].

However, it is still in question whether the parameter interpolation has the capability to preserve
the “full” knowledge of endpoint models. Even when the interpolated model has a similar or better
accuracy than the endpoint models, it tends to perform considerably worse than the ensemble of
endpoint models [1, 17]. This performance gap between the merged model and ensemble suggests
that some task-relevant information might have been lost during the interpolation. It is often argued
that such loss may be an inevitable consequence of having an under-parameterized model as an
interpolation [1]; comparing with the collection of endpoint models, the model ensemble has the
same number of parameters, whereas the merged model has only half. This perspective suggests
that the information loss may be able to be mitigated if one can generate an over-parameterized
interpolation of models. Unfortunately, however, it is not yet clear how this can be done.
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Figure 1: Concept of Semi-Ensemble. The semi-ensemble interpolates the endpoint models while
maintaining the information of inherent parameters. When Model A is trained to have weights (vA2 , v

A
3 )

and Model B is trained to have weights (vB1 , v
B
2 ), existing model interpolation methods without any

over-parameterization give low-dimensional weights (v
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2 ,
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2 ), where the second element may
contain no useful information. The proposed Semi-Ensemble preserves unique features by interpolat-
ing the models lifted to the higher-dimensional joint parameter space, giving (vB1 ,

vA
2+vB

2

2 , vA3 ).

In this paper, we develop a new framework to describe model merging and model ensemble under a
unified perspective (see Figure 1b). Simply put, we consider an interpolation of over-parameterized
models that lie in a high-dimensional joint parameter space (spanned by {v1, v2, v3}). The joint
parameter space is constructed using the endpoint model parameters as bases, where the parameters
from each model can be mapped to the shared bases (v2) or unique bases (v1, v3). The over-
parameterized models to be interpolated are elements of two distinct hyperplanes in this space
(colored solid lines). Each hyperplane is constructed by treating a corresponding endpoint model as a
low-dimensional projection of an over-parameterized model, i.e., a subnetwork generated by pruning
a larger neural network [10]. From the hyperplanes, we select the minimum-distance pair of models
(small black dots) and then interpolate them to get a new over-parameterized model.

This framework can cover a wide range of scenarios with diverse degrees of over-parameterization,
including model merging and ensemble as special cases. Model merging corresponds to the case of no
over-parameterization, where the joint parameter space is identical to the parameter space of endpoint
models. Model ensemble corresponds to the case of full over-parameterization, where the joint
parameter space is a Cartesian product of the endpoint parameter spaces. Projecting the ensemble to
each low-dimensional subspace recovers the endpoint models, meaning that the hyperplanes for each
endpoint model have a zero distance; thus, no interpolation is required in this case.

By varying degrees of over-parameterization, our framework provides a family of over-parameterized
interpolations. We show that such interpolations, coined Semi-Ensembles, can achieve a graceful
accuracy-compactness tradeoff. This requires a careful construction of the joint parameter space, i.e.,
selecting the shared bases from each model. We find that two algorithmic choices play a key role:

• Sharing parameters for neurons with high activation correlation: We find that using parameters
that correspond to neurons with highly correlated activation as the shared basis is an effective
strategy. Such criterion is already being actively used to identify how to permute the neurons before
interpolation, and we find it useful for our purpose as well [17]. Intuitively, this choice can be
interpreted as interpolating only highly similar features of endpoint models, and preserving the
unique features of each model without any damage (thereby giving a multi-view model [2]).

• Less over-parameterization for later layers: We empirically find that having a larger number
of shared bases (thus less over-parameterized) on the later layers is essential to achieve a good
compactness-accuracy tradeoff. This observation is well aligned with the pruning literature that
later layers tend to be more compressible [9, 20], and is in contrast with competing approach that
avoids interpolating later layers [27].

Our experiments show that semi-ensembles achieve a better accuracy-compactness tradeoff than
competing frameworks for over-parameterized model merging, e.g., Stoica et al. [27]. Intriguingly,
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(a) CIFAR-10 - Balanced split. (b) CIFAR-10 - 80/20 split.

Figure 2: Distribution of correlation between matched activations. We measure the correlation in
neural activation patterns between corresponding neurons in two distinct ResNet20x4 architectures,
independently trained on the split CIFAR-10 dataset. We observe that many of the activations are
close to zero, especially when models are trained on highly heterogeneous data splits.

for the case where the datasets for endpoint models are extremely heterogeneous, the semi-ensemble
even outperforms the full model ensemble with a slightly less number of parameters. We also show
that tuning the layerwise over-parameterization ratio plays a critical role in achieving a good tradeoff,
making a performance difference up to ∼ 3% in the case of CIFAR-10 classification.

2 Preliminaries

We are interested in interpolating two different neural networks of same depth, model A and B. For
a simple presentation, we assume that both endpoint models are multi-layered perceptrons, but all
results in this section can be easily extended to any architectures, e.g., convolutional neural networks.
The weight parameters of the l-th layer of model A is denoted by WA

l =
[
wA

l,1 . . . wA
l,nl

]⊤
where each vector wA

l,i denotes the weights connected to the i-th output neuron (among nl) of the
layer. The corresponding activations at the layer output, for some sample given, are denoted by the
nl-dimensional vector xA

l =
[
xA
l,1 . . . xA

l,nl

]
.

Permuting the neurons. One useful property of neural networks is that the output of the model
does not change as we permute the order of the neurons (i.e., permutation-invariant). More precisely,
suppose that we have some nl × nl permutation matrix P. Then, suppose that we construct a new
model Ã by permuting only two layers of model A and leaving all other layers identical. In particular,
we permute the l-th layer and (l + 1)-layer of the model with P, so that

WÃ
l = PWA

l , WÃ
l+1 = WA

l+1P
⊤. (1)

Then, one can see that the model Ã is functionally identical to the model A.

Mode connectivity, modulo permutation. Many works have reported an interesting phenomenon
called the linear mode connectivity of neural networks [11, 10, 30]: if two models share a substantial
amount of training history, one can generate a new model (call C) that has a low training loss by
linearly interpolating the parameters of two models that have the same size (call A,B). Formally, the
weight parameters of the l-th layer of the interpolated network can be written as

WC
l = α ·WA

l + (1− α) ·WB
l , α ∈ [0, 1]. (2)

This operation can be viewed as merging the neurons of endpoint networks one-to-one, where the
neurons to match are determined by the original ordering of each neuron.

Interestingly, several findings suggest that the linear mode connectivity may also hold for the endpoint
models that have been trained independently from each other, once we are allowed to permute the
neurons of an endpoint model to match the counterpart neurons before interpolation [21, 26]. The
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success of such algorithms is largely determined by how well such algorithms can identify highly
similar pairs of neurons from endpoint models.

Matching algorithms. Typically, model interpolation literature formulates the neuron matching as an
optimization problem; the goal is to maximize the pairwise similarity of the matched neuron pairs in
each layer, using various notions of similarity. A popular approach is to use the (Pearson) correlation
between the activations of the neurons as a similarity measure, where the activations are computed
based on some batch of training data [1, 8, 17]. More formally, the layerwise neuron matching for
l-th layer is to solve the maximization problem

max
Pl

nl∑
i=1

corr
(
xA
l,i,x

B
l,Pl(i)

)
, (3)

where corr(·, ·) denotes the Pearson correlation and Pl(i) is the index where the i-th index is
mapped to by the permutation matrix Pl. The maximization can be solved by standard combinatorial
optimization algorithms, e.g., Hungarian algorithm. Whenever the solutions for eq. (3) have been
found, model merging algorithms interpolate the weight parameters as

WCα

l = α ·WA
l + (1− α) ·PlW

B
l Pl−1. (4)

After interpolating the weights (and also corresponding biases), one can additionally perform simple
renormalization steps, which can substantially boost the performance of the merged models [17].

2.1 A motivating observation: Are all matched neurons sufficiently correlated?

As shown in many prior works, interpolating two models without neuron matching results in a large
performance drop, because randomly matched neurons would lose most of their information after
interpolation [1, 17]. In other words, interpolating less-correlated neurons with low similarity may
cause performance degradation. Motivated by this, we first question whether all matched neurons are
sufficiently activation-correlated with each other. The concept of multi-view provides ground for our
suspicion [2]. Allen-Zhu & Li [2] claims it as a mechanism of model ensemble, that independently
trained models can capture their unique features. In this paper, we consider a model merging when
there exist unique views (i.e. multi-view) between model endpoints.

Observation. In Figure 2, we observe that some neuron pairs show near-zero correlations when
trained on separate data splits. In other words, no matter how well we match the neurons, some
neurons may need to be merged with uncorrelated counterpart neurons. Comparing Figure 2a and
2b, we can also observe heterogeneous training data split leads to an increased number of neuron
pairs with small correlations. It implies that we need a new type of model merging algorithm which
considers inevitable low-correlated neuron pairs, i.e. unique view of each model.

3 Semi-Ensemble

We now describe Semi-Ensemble, an algorithm to generate over-parameterized interpolations of the
models by partially interpolating the endpoint model parameters. Intuitively, Semi-Ensemble only
interpolates the weights of highly-correlated neurons and leaves less correlated features untouched.

3.1 Layerwise operation

We interpolate the neural network layers one-by-one, sequentially from the earliest layer to the latest.
The layerwise interpolation for the l-th layer can be described as follows.

Without loss of generality, we assume that the weight matrices of the endpoint models have been
already permuted. Furthermore, we assume that the output neurons have been sorted in the descending
order of the activation correlations, i.e.,

corr(xA
l,1,x

B
l,1) ≥ corr(xA

l,2,x
B
l,2) ≥ · · · ≥ corr(xA

l,nl
,xB

l,nl
). (5)

We interpolate only the first kl output neurons from each model, and keep the remaining nl − kl
neurons from each model untouched. In other words, the interpolated weight matrix may have the
output dimension equal to 2nl − kl, with its first kl neurons being interpolated neurons and the latter
2nl − 2kl neurons being uninterpolated neurons.
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Figure 3: A visual comparison of ensemble, model merging, and semi-ensemble. Three different
methods to utilize the knowledge of endpoint models. The neurons and parameters from each
endpoint model are colored blue (or red), and the merged neurons and parameters are colored purple.

Step#1. Over-parameterization. Before merging the output neurons, we over-parameterize each
endpoint model by copy-and-pasting the missing weight values from the counterpart model. To be
precise, note that there are several “zero” entries in both weight matrices WA

l =
[
wA

l,1 . . . wA
l,nl

]⊤
and WB

l =
[
wB

l,1 . . . wB
l,nl

]⊤
, because there are some input neurons of the layer that came

exclusively from a single endpoint model without any merging (either from model A or B). If the i-th
input neuron is exclusively from A, the weight from the i-th input neuron to the j-th output neuron on
the model B, i.e., wB

l,i→j is destined to be zero. To such zero weights, we copy the value from the other
model so that wB

l,i→j = wA
l,i→j . This operation can be seen as finding the over-parameterized version

of an endpoint model that is closest to the hyperplane given by the other model (see Figure 1b).

Step#2. Interpolation. We now interpolate the first kl output neurons of the endpoint models. In
other words, we generate WC

l =
[
wC

l,1 · · · wC
l,2nl−kl

]⊤
with the formula:

wCα

l,i =


α ·wA

l,i + (1− α) ·wB
l,i · · · i ∈ {1, . . . , kl},

wA
l,i · · · i ∈ {kl + 1, . . . , nl},

wB
l,i+kl−nl

· · · i ∈ {nl + 1, . . . , 2nl − kl}.
(6)

Although width of lth layer is extended from nl to 2nl − kl in Equation (6), the extended layer
represents a structuredly pruned layer. The connections such as those from the blue to the red neurons,
which have zero weights, can be disregarded easily during computation. It means that size of layer
does not scale quadratically to the width extended. After interpolation, we implement a series of
renormalization procedures on the Batch Normalization layers [15], as delineated in the REPAIR[17].

Note. To interpolate the last layer, we do not perform the over-parameterization step, and only perform
the interpolation step; this is equivalent to taking an ensemble of two submodels.

3.2 Tuning the layerwise kl

One benefit of our framework is that we can flexibly choose the number of neurons to be merged in
each layer. In our experiments in Section 4.3, we perform a grid-search to select the best layerwise
merging ratio (or layerwise degree of over-parameterization) to find the best performing model given
the global constraint on the number of parameters. We find that, in general, having a larger layerwise
merging ratio for the latter layers is better for the performance.

4 Experiment

In this section, we compare the performance of the Semi-Ensemble with model interpolation, model
ensemble, and a recently proposed partial model interpolation algorithm [27]. We focus on the
evaluation on the image classification task, following the prior works.
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4.1 Experimental Setup

Datasets. We mainly evaluate on various splits of the CIFAR-10 image classification dataset.

• CIFAR-10 - Balanced is a basic benchmark task whose class distribution is balanced for each
training data split. This setting is the simplest benchmark for both conventional model ensemble
and model merging algorithms. Each model can learn different 2500 training images per class. For
this benchmark, we only report test accuracy on balanced test set.

• CIFAR-10 - 80/20 split is a CIFAR10 split dataset used in previous model merging tasks [1, 17].
With randomly selected five classes, one model can access 80% of training data for selected classes
and 20% of training data for not-selected classes. Counterpart model can access to complement of
them.

• CIFAR-10 - Disjoint is a CIFAR10 split dataset used as main benchmark in ZipIt! [27]. One
model can access to full training data on randomly selected five classes and the other model can
access training data with other five classes.

For 80/20 split and disjoint benchmark, we name the training task used for training model X as Task
X. Classes for each task are randomly selected. Accuracy without additional tag is a test accuracy
for balanced test set. During calculating correlation and resetting batch normalization [15] statistics,
union of both training dataset is used.

Models. We mainly use ResNet20x4, which is a variant of the standard ResNet20 model, charac-
terized by having its channels expanded four times. We use the standard linear classification layer,
instead of a CLIP-based classifiers.

Baselines. We compare the performance of merged model with two available endpoints of our
method and baseline model merging algorithm.

• REPAIR [17] is a model merging algorithm which aims for one-to-one correspondence matching
of all neurons across model. In our algorithm, REPAIR is a special case when k in Equation (6) is
zero for all layers, which fully merge all neurons.

• Ensemble is a deep learning algorithm, which inferences multiple models to boost final perfor-
mance. Prediction averaging is one of the simplest ensemble algorithms which naïvely averages
logits from ingredient models. When all k in Equation (6) is equal to nl, two models are attached
into single model but do not share any neurons instead of the first convolutional and last classifier
layer. In our experiment, Ensemble directs prediction averaging.

• ZipIt! [27] is a recently proposed partial model interpolation algorithm that can merge only a
fraction of early layers instead of all layers (called partial zipping). We compare with various
degrees of partial zipping.

Hyperparameters. To train single ResNet20x4 model, we use SGD optimizer with momentum 0.9,
weight decay 1e−4 and cosine learning rate schedule starting from 0.4. During 200 epochs training,
batch size is set to 500 and flip+translate+cutout is adapted for training data augmentation.
Other details for specific experiments are noted in each section.

Seeds. All results are averaged over three different seeds.

4.2 Main Results

The main results are reported in Table 1. We can summarize observations as:

• Semi-Ensemble achieves higher test accuracy compared with ZipIt! [27] for all benchmark datasets
and various number of parameters.

• Our method can achieve flexible interpolated model size (e.g. ×1.38), which cannot be achieved
by ZipIt! [27] algorithm.

• In CIFAR-10 - Disjoint benchmark, our method with parameter multiplication ×1.95 results
79.19% test accuracy, which is even better than test accuracy of ensemble, 78.02%.

4.3 Tuning layer-wise merging ratios

We now test one core benefit of our method: tuning layer-wise merging ratio, which is explained in
Section 3.2. For simplicity, we test effect of tuning merging ratio on our main setting, CIFAR-10-
Balanced task.

6



Table 1: Comparing performance of Semi-Ensemble and other model merging methods. Semi-
ensemble is compared with other baselines on ResNet20x4 with linear classification layers trained
with various CIFAR-10 dataset. † is a result that Semi-Ensemble outperforms model ensemble.

Method Num Params
Balanced 80/20 Split Disjoint

Acc. (%) Acc. (%) Per-task Acc. (%) Per-task

(multiplied) Task A Task B Task A Task B

Model A ×1.0 92.01 89.14 93.12 85.17 48.47 96.94 0.0
Model B ×1.0 92.05 87.18 85.06 89.30 47.53 0.0 95.05

REPAIR ×1.0 85.74 84.92 85.04 84.83 52.78 52.78 52.78
ZipIt!(20/20) ×1.0 83.94 84.04 82.57 85.74 45.60 46.84 44.45
ZipIt!(13/20) ×1.78 89.72 84.71 85.82 84.28 62.81 63.82 61.94
ZipIt!(7/20) ×1.95 91.53 87.68 88.73 86.19 66.81 68.09 65.52

Semi-Ensemble (Ours) ×1.38 89.92 84.91 84.05 85.77 63.52 64.38 62.66
Semi-Ensemble (Ours) ×1.77 92.88 86.59 85.01 88.17 76.94 76.09 77.79
Semi-Ensemble (Ours) ×1.95 93.10 88.38 88.36 88.39 79.19† 79.17 79.22

Ensemble ×2.0 93.48 91.44 93.19 90.02 78.02 76.29 79.24

Figure 4: Performance of interpolated model with various layer-wise merging ratios on CIFAR-
10-Balanced. Legend represents block-wise merging ratio in order. For example, in 0.4_0.8_1.0,
40% of neurons in first block are merged and 100% (i.e. all) of neurons in last block are fully merged.
Blue dashed line is a convex hull of hyperparameter search points to show trend of best accuracy on
given merging ratio. Black dashed line is performance of the merged model with uniform merging
ratio among all layers.

Search space. To search for optimal layer-wise merging strategy efficiently, we evaluate block-by-
block grid search where each block is a list of convolutional layers with same number of output
channels. That means, ResNet20x4 can be split into 3 blocks in our experiment. This criterion
for splitting model is referenced from results in Stoica et al. [27]. For each block, merging ratio is
searched in range [0.0, 0.2, 0.4, 0.6, 0.8, 1.0].

4.3.1 Result

Figure 4 depicts the performance of merged model with various layer-wise merging ratios. Each
point represents the outcome of a merged model, identified through a hyperparameter tuning process.
Compared with the performance of a uniformly merged model (black dashed line), the performance
of the model with well-tuned merging ratio is much higher. Given the global constraint on the number
of parameters, we find that the models that merge more neurons in the latter layers tend to work better.
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Table 2: Ablation study for Semi-Ensemble. Table 2a is a table for Section 4.4.1, which shows that
merging neuron pairs with high correlation is efficient strategy. Table 2b is a table for Section 4.4.2,
which argues that last linear layer should be treated specially as we proposed.

Deep Top Random BotNum params

×1.0 (REPAIR) 85.74 - -

×1.38 89.92 89.37 88.93
×1.52 90.93 90.46 90.09
×1.77 92.88 91.91 91.60

×2.0(Ensemble) 93.48 - -

(a) Performance difference when priority of neuron
pair differs in CIFAR-10 - Balanced task. Top and
Bot respectively means neuron pairs with high/low acti-
vation correlations are merged for each layer. Random
means that matched neurons are randomly selected and
used for merging.

Deep SE Naïve PartialNum params

×1.0(REPAIR) 85.74 - -

×1.38 89.92 86.65 89.98
×1.52 90.93 87.53 90.83
×1.77 92.88 89.37 92.21

×2.0(Ensemble) 93.48 - -

(b) Performance difference when last layer merging
strategy differs in CIFAR-10 - Balanced task. SE
denotes the Semi-Ensemble. Naïve is a variant of SE,
which does not use Step#1 of Section 3. Partial is
another variant of SE, which performs Step#1 in the
last layer as well.

We note that this result is well-aligned with the pruning literature on convolutional neural networks
[9, 20], that the latter layers in the model can be compressed to a higher degree.

4.4 Ablation

Now we do ablation studies of Semi-Ensemble. In this section, we report contribution of two
components in our algorithm, merging neurons with high correlation and merging strategy for
classifier layer, on final performance. As a base experiment, we fix tuning strategy to be deep,
an optimal tuning strategy with limited number of total parameters searched in Figure 4, for fair
comparison. All experiments are done on CIFAR-10-Balanced task.

4.4.1 Effect of merging neurons with high correlation

Our main criterion to select neurons to be merged is how large the correlation [21] between neuron
activations. In Table 2a, we now empirically test how performance differs when criterion to select
neurons is reversed (Bot, i.e. neuron pairs with low correlation are merged) or randomly selected
(Random). We can observe that, in same layer-wise merging ratio, merging neurons with high
correlation (Top) is the most optimal criterion among three options.

4.4.2 Effect of different merging strategies for classifier layer

In Section 3, we specially treat linear classifier layer to mimic logit averaging in ensemble scenario.
In Table 2b, we ablate how performance differs when different linear layer merging strategies are
adopted. It shows that merging last layer with our proposed approach performs slightly better
than merging entire model with partial merging, except for lower number of parameters (×1.38).
One observation we find is that performance gap between Mix and Partial is amplified when the
interpolated model becomes larger (i.e. closer to model ensemble). We can see that this method
works as we intended, mimicking output of model ensemble.

5 Related Works

Model ensemble. Model ensemble [6, 3, 4, 19] is a technique to improve deep learning performance
by using multiple models at the inference time. Model ensemble are not only effective in the
standard scenario where all models are trained on the same data split, but is also powerful when
aggregating the models trained on highly heterogeneous datasets with complementary knowledge
[34, 33]. Despite its effectiveness, model ensemble comes with inherent limitations, computation and
memory requirements during inference. Although techniques for lightweight model ensemble have
been developed before [32, 5], it still require resources proportional to the number of models.
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Model merging and linear mode connectivity. Model merging is a technique to merge two or more
models into single model. According to Model Soup [30], it was shown that performance can be
boosted by simply averaging weights of independently trained model endpoints if all model endpoints
are located in same error basin [25]. This naïve weight averaging can boost performance without
increasing inference cost as model ensemble [6]. High performance of model merging is grounded on
the idea of mode connectivity [7, 12, 10, 11], the concept that there exists a path of near-constant
loss to connect two optimal model endpoints. This naïve weight averaging was widely applied to
practical applications earlier while training single model [14, 16] or on federated learning [24, 22].
To average weights from different error basins (e.g. models trained from different initialization),
permutation invariance [8] allows models to move to another basin without loss of performance [28].
Git Re-Basin [1] and REPAIR [17] respectively match weights and activations of two models by
solving linear assignment problem [18] for optimal permutation.

Model merging with exclusive views. However, it is not always possible to match all neurons from
counterpart model. Allen-Zhu & Li [2] explain how model ensemble works by introducing concept
multi-view, that independently trained models can learn only a few features in the dataset. There
are emerging observations that linear path may not exist between models with exclusive feature
[23] and naïvely averaging them can lead performance degradation of merged model [31]. One
previous work [13] proposed an algorithm, merging models trained for different tasks by maintaining
task-specific neurons (i.e. features not learned in counterpart model) unmerged. Recently, as an
algorithm to overcome the limitation of one-to-one correspondence matching and get advantage of
exclusive features during merging, ZipIt! [27] preserves exclusive features by matching redundant
activations within model and even leaves deeper layers as multi-head architecture. Although it can
generate merged model that performs well for both tasks, merged model has the complex architecture
to be efficiently deployed in various environments. In addition, to be compared with model ensemble
methods [6, 3, 4, 19], existing matching-based model merging algorithms [1, 17, 27] still have
performance gap or parameter-inefficiency.

6 Conclusion

In this paper, we propose Semi-Ensemble, a simple model merging method which results midpoint
of model merging and model ensemble. Motivated by the observation that some matched neurons
are not highly similar and can lose information during interpolation, we preserve those neurons
with dissimilar counterparts by extending dimension of model and allocating each neuron to new
dimension. With proper tuning that other baselines cannot provide, Semi-Ensemble outperforms
other model merging baselines in various training data distributions and even outperforms model
ensemble in label-split training datasets.

Limitations. One limitation of Semi-Ensemble is the heuristic nature of tuning layer-wise merging
ratio. It requires an additional computation to find optimal merging ratio, which requires non-
negligible time to be adapted to iterative process such as a federated learning system. Another
limitations of presented Semi-Ensemble is the increase in size during the model merging process,
which consequently complicates the sequential merging of more than two models. We leave the study
of merging more than two models simultaneously for the future.
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