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Abstract
Developing an optimal PAC learning algorithm in the realizable setting, where empirical risk min-
imization (ERM) is suboptimal, was a major open problem in learning theory for decades. The
problem was finally resolved by Hanneke a few years ago. Unfortunately, Hanneke’s algorithm
is quite complex as it returns the majority vote of many ERM classifiers that are trained on care-
fully selected subsets of the data. It is thus a natural goal to determine the simplest algorithm that
is optimal. In this work we study the arguably simplest algorithm that could be optimal: return-
ing the majority vote of three ERM classifiers. We show that this algorithm achieves the optimal
in-expectation bound on its error which is provably unattainable by a single ERM classifier. Fur-
thermore, we prove a near-optimal high-probability bound on this algorithm’s error. We conjecture
that a better analysis will prove that this algorithm is in fact optimal in the high-probability regime.
Keywords: PAC learning, Risk Bounds, Generalization Bounds, Sample Complexity

1. Introduction

In the setting of realizable Probably Approximately Correct (PAC) learning Valiant (1984); Vapnik
and Chervonenkis (1964, 1974), the goal is to learn or approximate an unknown target function
f⋆ ∈ {0, 1}X from a labelled training sample (S, f⋆(S)) = ((X1, f

⋆(X1)), . . . , (Xn, f
⋆(Xn))),

where the Xi’s are i.i.d. samples from an unknown distribution P over an instance space X . In
the realizable setting, we are furthermore promised that f⋆ belongs to a known function class F ⊆
{0, 1}X of Vapnik-Chervonenkis (VC) dimension d.

Given a labelled training sample (S, f⋆(S)), a learning algorithm produces a function f̂S ∈
{0, 1}X with the goal of minimizing the probability of mispredicting the label of a new sample
from P , where we denote this error by errP

(
f̂S

)
:= PrX∼P [f̂S(X) ̸= f⋆(X)]. The simplest

reasonable learning algorithm, known as empirical risk minimization (ERM), simply reports an
arbitrary function f̂S ∈ F that is consistent with f⋆ on the training data, i.e. f̂S(Xi) = f⋆(Xi)
for all i = 1, . . . , n. Classic work by Blumer et al. Blumer et al. (1989) (the same bound also
essentially follows from the earlier works Vapnik and Chervonenkis (1968, 1971)) shows that for
any δ > 0, it holds with probability 1− δ over S that any f̂S ∈ F consistent with f⋆ on S has

errP

(
f̂S

)
= O

(
d

n
log
(n
d

)
+

1

n
log

(
1

δ

))
. (1)
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On the lower bound side, there exists an instance space X and function class F such that for
a certain ERM algorithm, there is a target function f⋆ ∈ F and hard distribution P for which
Eq. (1) is tight Haussler et al. (1994); Auer and Ortner (2007); Simon (2015); Hanneke (2016b).
Learning algorithms that always output a function in F are referred to as proper learning algorithms.
Generally, it is known that not only ERM, but all proper learners fail to achieve the optimal error
bound in the PAC learning framework. See the corresponding lower bounds in Bousquet et al.
(2020).

For improper learning algorithms — algorithms that are allowed to output an arbitrary function
f̂S ∈ {0, 1}X — known lower bounds on the error only imply that we must have

errP

(
f̂S

)
= Ω

(
d

n
+

1

n
log

(
1

δ

))
. (2)

Developing an algorithm with a matching error upper bound, or strengthening the lower bound,
was a major open problem for decades. This was finally resolved in 2015 when Hanneke Hanneke
(2016a), building on the work of Simon Simon (2015), proposed the first optimal algorithm with an
error upper bound matching Eq. (2), leading to the optimal error bound

Θ

(
d

n
+

1

n
log

(
1

δ

))
. (3)

Hanneke’s algorithm is based on constructing a large number (≈ n0.79) of sub-samples S1, S2, · · · ⊆
S of the training data. This algorithm then runs ERM on each (Si, f

⋆(Si)) to obtain functions
f̂S1 , f̂S2 , . . . and finally combines them via a majority vote. The sub-samples Si are constructed
to have a carefully designed overlapping structure, and an intricate inductive argument exploiting
this structure is then used to argue optimality. Recent work by Larsen Larsen (2023) shows that the
carefully designed overlap structure may instead be replaced by the significantly simpler strategy
of sampling each Si as Θ(n) samples with replacement from S. This algorithm is precisely the
classic heuristic known as Bagging, or bootstrap aggregation, due to Breiman Breiman (1996).
Furthermore, the proof shows that a mere O(log(n/δ)) sub-samples suffice for an optimal sample
complexity. The proof is however even more involved than Hanneke’s and uses his analysis at its
core.

Another line of work studied an alternative learning algorithm, the one-inclusion graph algo-
rithm of Haussler, Littlestone, and Warmuth Haussler et al. (1994) that returns a function f̂OIG.
This work also introduces the prediction model of learning, which focuses on achieving bounds
on the expected error rather than high probability bounds on the error. The one-inclusion graph
algorithm was initially shown to have an expected error of

E
S∼Pn

[
errP

(
f̂OIG

)]
≤ d

n+ 1
, (4)

which was later proven to be optimal within this prediction model Li et al. (2001). Because of the
tightness of the in-expectation bound Eq. (4), Warmuth conjectured Warmuth (2004) that the one-
inclusion graph algorithm achieves an error upper bound matching the general lower bound Eq. (2)
in the high probability regime.

Recent work by Aden-Ali, Cherapanamjeri, Shetty, and Zhivotovskiy Aden-Ali et al. (2023a)
unfortunately refutes this conjecture. Concretely, they show that for any d ∈ N, sample size n ≥ d

2



MAJORITY-OF-THREE: THE SIMPLEST OPTIMAL LEARNER?

and confidence parameter δ ≥ cd/n, there exists a function class F ⊆ {0, 1}X with VC dimension
d and a hard distribution P such that a certain implementation of the one-inclusion graph algorithm
has, with probability at least δ,

errP

(
f̂OIG

)
= Ω

(
d

δn

)
.

This result essentially says that, in general, the one-inclusion graph algorithm’s high-probability
guarantee cannot be better than applying Markov’s inequality to the in-expectation guarantee in
Eq. (4). In recent work also by Aden-Ali et al. Aden-Ali et al. (2023b), it was shown that if one
combines the output of Ω(n) predictions made by one-inclusion algorithms on prefixes of the train-
ing data ((X1, f

⋆(X1)), . . . , (Xm, f⋆(Xm))) for m = n/2, . . . , n via a majority vote, then the
resulting function is optimal in the high probability regime and, therefore, matches the error bound
Eq. (3). Unfortunately, the one-inclusion graph algorithm (and this extension) is much less intuitive
than the aforementioned algorithms based on taking majority votes of ERMs.

1.1. The simplest possible optimal algorithm?

In light of prior work, we have several provably optimal algorithms for PAC learning in the realizable
setting. The algorithms and their analyses vary in complexity and a natural question remains: What
is the simplest possible optimal algorithm? We know from lower bounds that the algorithm has to
be improper and as such must be more complicated than ERM. Bagging is arguably the simplest
algorithm among previous proposed algorithms, but has the most difficult analysis. The voting
among one-inclusion algorithms has a somewhat simple proof, but the algorithm is not the simplest.
In this work, we consider what is perhaps the simplest imaginable improper algorithm, Majority-
of-Three (ERMs): Partition S into three equal-sized disjoint pieces S1, S2, S3, run the same ERM
algorithm on each (Si, f

⋆(Si)) to obtain f̂S1 , f̂S2 , f̂S3 , and combine them via a majority vote to
produce the function Maj(f̂S1 , f̂S2 , f̂S3). Since a majority vote of two functions is undefined when
the functions disagree, this is arguably the simplest possible improper algorithm. Our first main
result shows that this concrete majority vote of three ERMs, which we will refer to as Majority-of-
Three throughout, is optimal in expectation.

Theorem 1 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . For any ERM algorithm f̂ : X × Z∗ → {0, 1} it follows that

E
S1,S2,S3∼Pn

[
errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)]
= O

(
d

n

)
.

This result shows that Majority-of-Three matches the optimal expectation bound Eq. (4) achieved
by the one-inclusion graph algorithm, up to a universal constant. Furthermore, our proof of Theo-
rem 1 is in fact quite simple, especially compared to the previous proof that Bagging is optimal.

We note here that a single ERM alone is sub-optimal by a multiplicative ln(n/d) factor in-
expectation (see the well-known lower bound in (Haussler et al., 1994, Theorem 4.2)). We empha-
size that in Theorem 1, the ERMs corresponding to S1, S2 and S3 can be chosen by any algorithm f̂
that outputs functions consistent with the sample. The only restriction is that it is the same algorithm
f̂ that is run on each Si (and that the subsets Si are disjoint and thus i.i.d.).

We now turn our attention to the high-probability regime, where we prove the following result.
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Theorem 2 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . Fix any ERM algorithm f̂ : X × Z∗ → {0, 1}. For any parameter
δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness of S1, S2, S3 ∼ Pn that

errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)
= O

(
d

n
log

(
log

(
min

{
n

d
,
1

δ

}))
+

1

n
log

(
1

δ

))
.

This bound is sub-optimal due to the log(log(min{n/d, 1/δ})) term, however the additive
log(1/δ) term dominates for δ ≤ d−d. Thus, Majority-of-Three is optimal both in the constant (The-
orem 1) and high-probability regimes (Theorem 2). Because of this, we conjecture that Majority-
of-Three is in fact optimal for all δ and leave this as an open question for future research.

Conjecture 3 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . Fix any ERM algorithm f̂ : X × Z∗ → {0, 1}. For any parameter
δ ∈ (0, 1) it holds with probability at least 1− δ over the randomness of S1, S2, S3 ∼ Pn that

errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)
= O

(
d

n
+

1

n
log

(
1

δ

))
.

1.2. An alternative by Simon

In his breakthrough work, Simon Simon (2015) proposed taking majority votes of three ERMs
trained on certain sub-samples of the training sample.1 However, his algorithm is slightly different
than ours. Concretely, he proposed the following algorithm: given an ERM algorithm and labelled
training sample, partition S into three equal-sized disjoint pieces S1, S2, S3 and for i = 1, 2, 3,
run any ERM algorithm on ((S1, . . . , Si), f

⋆((S1, . . . , Si))) to obtain f̂S1 , f̂(S1,S2), f̂(S1,S2,S3), and
combine them via a majority vote to produce the function Maj(f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)). Intu-
itively, more training data for the ERM should be better and Simon also proved the following high-
probability upper bound on his algorithm’s error:

errP

(
Maj

(
f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)

))
= O

(
d

n
log
(
log
(n
d

))
+

1

n
log

(
1

δ

))
. (5)

This bound is asymptotically smaller than the tight bound Eq. (1) that holds for a single ERM.
We note that Simon also discusses the applicability of his analysis to more general majorities of

ERMs including the Majority-of-Three function Maj(f̂S1 , f̂S2 , f̂S3) analyzed in this work.2 How-
ever, adopting the approach in Simon (2015), the error of Majority-of-Three is controlled by the
same upper bound as expressed in (5), which is suboptimal as demonstrated by Theorem 1. Fur-
thermore, we additionally remark that a similar in spirit construction based on the majority of three
functions has been extensively studied in Schapire’s PhD thesis Schapire (1992). However, his ap-
proach (inspired by what we now know as boosting) works with essentially any learning algorithm
and is not necessarily limited to ERM.

In the same work Simon (2015), Simon further showed that for a specific function class F for
which there is a choice of target function f⋆ ∈ F and hard distribution P that certify the tightness

1. Simon studied majority votes over any odd number L of ERMs trained on specific sub-samples of the data. He also
proved bounds on the error of these majority votes that shrunk as L increased.

2. Simon’s analysis applies to any majority where each of the participating ERMs is trained on an independent constant
fraction of the training sample.

4



MAJORITY-OF-THREE: THE SIMPLEST OPTIMAL LEARNER?

of Eq. (1) for a certain choice ERM, his algorithm can actually achieve an optimal upper bound
matching Eq. (2) for F regardless of the choice of f⋆ ∈ F and P . Unfortunately, we prove the
following lower bound that shows that the upper bound Eq. (5) cannot be improved in general,
answering a question posed by Simon.

Theorem 4 For any sample size n that is divisible by 6 and positive integer d ≤ n, there is a
function class F ⊆ {0, 1}[0,1] with VC dimension 4d, distribution P over [0, 1], target function
f⋆ ∈ F , and an ERM algorithm f̂ : X × Z∗ → {0, 1} such that the following holds: given i.i.d.
training samples S1, S2, S3 ∼ Pn,

errP

(
Maj

(
f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)

))
= Ω

(
d

n
log
(
log
(n
d

)))
,

with probability at least 2/3 over the randomness of S = (S1, S2, S3).

This result shows that Simon’s algorithm unfortunately cannot achieve the optimal bound Eq. (3)
in general. This indicates that it is important that the ERM algorithm used in Majority-of-Three is
instantiated on disjoint subsets of the training sample.

1.3. Notation

We use X to denote the instance space, F ⊆ {0, 1}X to denote a function class, and let Z =
X × {0, 1}. Throughout, P is a distribution over X and f⋆ ∈ F is the unknown target func-
tion in the class. For n ∈ N and a distribution P , we denote by Pn the product distribution of
P . We say that a sequence S = (X1 . . . , Xn) is a training sample of size n where Xi are i.i.d.
samples from a distribution P . For a training sample S = (X1, . . . , Xn), we find it useful to
write (S, f⋆(S)) = ((X1, f

⋆(X1)), . . . , (Xn, f
⋆(Xn))), and we call this the labelled training sam-

ple. For training samples S1 = (X1, . . . , Xn) and S2 = (Xn+1, . . . , Xn+m) we let (S1, S2) =
(X1, . . . , Xn, Xn+1, . . . , Xn+m), and for S1, S2 and S3 we take (S1, S2, S3) = ((S1, S2), S3). We
define the error of a binary function f under distribution P and target function f⋆ to be errP (f) =
PrX∼P [f(X) ̸= f⋆(X)]. For any measurable set R ⊆ X , we define PR to be the conditional
distribution of P restricted to R, i.e. for X ∼ PR we have that for any measurable function g that
EX∼PR

[g(X)] = EX∼P [g(X)1{X ∈ R}] /PrX∼P [X ∈ R] .
For a function class F and subset U = {x1, . . . , xd} ⊆ X of d points we let F |U denote the

set {y ∈ {0, 1}d | ∃f ∈ F : ∀i ∈ [d], f(xi) = yi}. The Vapnik-Chervonenkis (VC) dimension is
then defined as the largest number d such that there exists a point set U ⊆ X of size d such that the
cardinality of F |U is 2d. We use log(x) and ln(x) to denote log2(x) and loge(x) respectively and
we also use Log(x) := max{2, log2(x)} to denote a truncated logarithm.

Let Z∗ = ∪∞
i=1Z i be the set of all possible labelled training samples. We define a learning

algorithm f̂ to be a mapping f̂ : X × Z∗ → {0, 1}. That is, given a labelled training sample
(S, f⋆(S)) as input, f̂(·; (S, f⋆(S))) : X → {0, 1} is the function that is learned from (S, f⋆(S)).
For ease of reading, we often denote the learned function by f̂S := f̂(·; (S, f⋆(S))). A learning
algorithm f̂ is an Empirical Risk Minimizer (ERM) for the class F if, given a labelled training
sample (S, f⋆(S)) as input, it output a function f̂S in F that satisfies f̂S(Xi) = f⋆(Xi) for every
Xi that appears in S. We define the majority vote of k binary functions f1, . . . , fk : X → {0, 1} to
be the function

Maj(f1, . . . , fk)(x) := 1{f1(x) + · · ·+ fk(x) > k/2}.
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2. Majority-of-Three is optimal in-expectation

In this section, we prove the main in-expectation result for the Majority-of-Three algorithm. Before
we prove our result, we will find it helpful to introduce some auxiliary notation. Throughout this
section, we set f̂ : X ×Z∗ → {0, 1} to be a fixed (but arbitrary) ERM algorithm. Fix a distribution
P over X and let f⋆ ∈ F be the target function. For any x ∈ X we let

px(n, f
⋆, P ) = Pr

S∼Pn
[f̂S(x) ̸= f⋆(x)].

In words, px(n, f⋆, P ) is the chance that f̂S errs on the point x for an average sample S ∼ Pn. We
now define a partition of X based on px(n, f

⋆, P ). Consider the following sets for any i ∈ N:

Ri(n, f
⋆, P ) = {x ∈ X : px(n, f

⋆, P ) ∈ (2−i, 2−i+1]}.

We often write Ri = Ri(n, f
⋆, P ) and px = px(n, f

⋆, P ) since n, P , and f⋆ will always be clear
from the context. With this notation in place, we are now ready to prove that Majority-of-Three has
an optimal in-expectation upper bound on its error.

Theorem 1 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . For any ERM algorithm f̂ : X × Z∗ → {0, 1} it follows that

E
S1,S2,S3∼Pn

[
errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)]
= O

(
d

n

)
.

To prove Theorem 1, we require the following lemma which says that two ERMs trained on 2
i.i.d. training samples of the same size rarely makes a mistake on the same point.

Lemma 5 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . For any ERM algorithm f̂ : X × Z∗ → {0, 1} it follows that

E
S1,S2∼Pn

[
Pr
X∼P

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]]
≤ c

d

n
,

where c is a universal constant.

We postpone the proof of Lemma 5 for now and show how it implies Theorem 1.
Proof [Proof of Theorem 1] For any fixed x ∈ X and fixed samples S1, S2, S3, if it is the case that
Maj(f̂S1 , f̂S2 , f̂S3)(x) ̸= f⋆(x), then there must be at least two distinct indices i, j ∈ [3] such that
f̂Si(x) ̸= f⋆(x) and f̂Sj (x) ̸= f⋆(x). So,

errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)
= Pr

X∼P

[
Maj(f̂S1 , f̂S2 , f̂S3)(X) ̸= f⋆(X)

]
≤
∑
i,j∈[3]
i<j

Pr
X∼P

[
f̂Si(X) ̸= f⋆(X) ∧ f̂Sj (X) ̸= f⋆(X)

]
.

Combining the above and Lemma 5 gives us

E
S1,S2,S3∼Pn

[
errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)]
≤ 3c

d

n
.

This concludes the proof.

We now move on to proving Lemma 5, where we will use the following lemma.
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Lemma 6 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X ,
target function f⋆ ∈ F , and R ⊆ X such that PrX∼P [X ∈ R] ̸= 0. For any ERM algorithm
f̂ : X × Z∗ → {0, 1} it follows that

E
S∼Pn

[
errPR

(
f̂S

)]
≤ 20

dLog(ePrX∼P [X ∈ R]n/d)

PrX∼P [X ∈ R]n
.

Lemma 6 is an immediate consequence of the celebrated uniform convergence principle and a
simple proof can be found in Appendix A.1. We now prove Lemma 5.
Proof [Proof Lemma 5] Let S1 and S2 be independent samples from Pn. By the independence of
S1 and S2 and the definition of px we have, for any x ∈ X , that

Pr
S1,S2∼Pn

[
f̂S1(x) ̸= f⋆(x) ∧ f̂S2(x) ̸= f⋆(x)

]
=

2∏
i=1

Pr
Si∼Pn

[
f̂Si(x) ̸= f⋆(x)

]
= Pr

S1∼Pn

[
f̂S1(x) ̸= f⋆(x)

]2
= p2x.

Using the above, the law of total expectation with partitioning (Ri)i∈N, and swapping the order
of expectations (X and (S1, S2) being independent), we get that

E
S1,S2∼Pn

[
Pr
X∼P

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]]
=

∞∑
i=1

Pr
X∼P

[X ∈ Ri] E
X∼P

[
p2X |X ∈ Ri

]
≤

∞∑
i=1

Pr
X∼P

[X ∈ Ri] 2
−2i+2,

where the inequality follows from the fact that px ≤ 2−i+1 for every x ∈ Ri. We will now show
that PrX∼P [X ∈ Ri] ≤ cdi2i/n for every i ∈ N (for a universal constant c ≥ 1 chosen below),
which combined with the above gives us

E
S1,S2∼Pn

[
Pr
X∼P

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]]
≤ 4cd

n

∞∑
i=1

i2−i ≤ 8c
d

n
.

This yields the claim with the constant 8c. Towards a contradiction, assume there is an i ∈ N such
that PrX∼P [X ∈ Ri] > cdi2i/n, which is equivalent to PrX∼P [X ∈ Ri]n/d > ci2i ≥ 1. Using
this assumption, the fact that x → Log(ex)/x is decreasing for x > 0, and Lemma 6, we have

E
S1∼Pn

[
errPRi

(
f̂S1

)]
≤ 20

Log(ePrX∼P [X ∈ Ri]n/d)

(PrX∼P [X ∈ Ri]n/d)
≤ 20

Log
(
eci2i

)
ci2i

. (6)

By changing the order of expectations of the left hand side of the above and using the fact that
px > 2−i for every x ∈ Ri, we also have

E
S1∼Pn

[
errPRi

(
f̂S1

)]
= E

X∼PRi

[pX ] > 2−i. (7)

Combining the upper bound (6), the lower bound (7), and the fact that the function x → Log(ex)/x
is decreasing for x > 0, we get

1 < 20
Log

(
eci2i

)
ci

≤ 20

(
Log (eci)

ci
+

2

c

)
≤ 20

Log(ec) + 2

c
.
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However, for c large enough, the right hand side of the above is strictly less than 1. This gives us
the desired contradiction and concludes the proof.

3. A lower bound for certain majorities

In this section, we prove that not all majorities of 3 ERMs trained on subsets of the data are optimal.
In particular, we show that Simon’s Simon (2015) original partitioning scheme of the training sam-
ple into 3 sub-samples can produce a majority of 3 ERMs with sub-optimal error. Recall Simon’s
algorithm: partition the training sample S = (S1, S2, S3) into 3 equal pieces S1, S2, S3, train 3
ERMs f̂S1 , f̂(S1,S2), f̂(S1,S2,S3), and return the majority vote Maj(f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)). Simon
proved that this algorithm enjoys the PAC upper bound

errP

(
Maj

(
f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)

))
= O

(
d

n
log
(
log
(n
d

))
+

1

n
log

(
1

δ

))
.

The next theorem shows that this algorithm unfortunately has a matching lower bound on its error.

Theorem 4 For any sample size n that is divisible by 6 and positive integer d ≤ n, there is a
function class F ⊆ {0, 1}[0,1] with VC dimension 4d, distribution P over [0, 1], target function
f⋆ ∈ F , and an ERM algorithm f̂ : X × Z∗ → {0, 1} such that the following holds: given i.i.d.
training samples S1, S2, S3 ∼ Pn,

errP

(
Maj

(
f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)

))
= Ω

(
d

n
log
(
log
(n
d

)))
,

with probability at least 2/3 over the randomness of S = (S1, S2, S3).

Comparing the above bound with the upper bound in Theorem 1, we see that if the ERMs did
not overlap in their sub-samples the log factor would not be present. The construction we use in
our lower bound is a modification of the usual construction used to prove a lower bound on the
error of a single ERM (see Auer and Ortner (2007); Simon (2015)). In these constructions, one
takes the domain X to be a finite set of size roughly n/ log(n/d) where n ≥ d is the sample size3

and the function class F is taken to be all functions that assign the value 1 to at most d points on
X . Furthermore, the target function is set to be the 0 function, and the sampling distribution is the
uniform distribution over X . Finally, the “bad” ERM algorithm returns any function that assigns as
many 1’s to the domain as possible, while being consistent on the observed samples. The error of
this ERM is tightly connected to the number of unique elements we sample from the domain. One
can then use a coupon collector argument to show that the error is Ω(d log(n/d)/n) with constant
probability.

Simon noticed that we cannot directly use this “hard instance” to prove a lower bound on his
algorithm due to the structure of the class F (Simon, 2015, Theorem 7). We get around this by
considering a version of this construction that uses a continuous domain (instead of finite) and a
function class consisting of functions that are unions of intervals (instead of points).

Before we prove Theorem 4, it will be convenient to introduce the following notation. For a
positive integer d and non-empty set A, we define A⌊d⌋ to be the set consisting of the smallest d

3. These results are often stated as lower bounds on the sample complexity for some target error ϵ.
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elements of A with respect to an ordering of the elements of A. The ordering we use will be clarified
when needed. We now prove Theorem 4.

Figure 1: An illustration of the partitioning of the interval (0, 1] for a training sample consisting of
m = 18 points with d = 2. The interval (0, 1] is partitioned into 4 intervals I1, . . . , I4.
Each interval Ii is further partitioned into the 4 subintervals I(i,1), . . . , I(i,4). The red
points correspond to the first half of the sample (X1, . . . , X9) and the blue points corre-
spond to the second half of the sample (X10, . . . , X18). The yellow highlighted regions
are the first d intervals I2 and I4 that contain no points from (X1, . . . , X9). The green
highlighted regions are the first d subintervals of I2 and I4 that contain no points from
(X10, . . . , X18). The green intervals are added to the union of intervals used by f̂S as
their indices correspond to the set L1(S).

Proof [Proof of Theorem 4] Fix a sample size n divisible by 6 and positive integer d ≤ n. Through-
out, we will assume any interval considered is left-open and right-closed. A collection of intervals
I1, . . . , It ⊆ [0, 1] can be viewed as the binary function fI1∪···∪It that satisfies fI1∪···∪It(x) = 1 if
and only if there is an index j such that x ∈ Ij . We will consider the function class F that is the
collection of all functions corresponding to the union of at most 2d interval. It is not hard to show
that this class has VC dimension 4d. We take P to be the uniform distribution on the domain [0, 1]
and choose the target function f⋆ to be the 0 function on the domain [0, 1].

We now describe the “bad” ERM algorithm f̂ : X × Z∗ → {0, 1}. For the remainder of the
proof, C > 0 is a large universal constant that we will determine below. For a training sample size
m, we define three collections of sets:

9



ADEN-ALI HØGSGAARD LARSEN ZHIVOTOVSKIY

1. {Ii(m) : i ∈ [m1]} is the unique partition of (0, 1] into m1 := ⌈Cm/ ln (Cm/d)⌉ intervals
of the same length.

2. {Ii,j(m) : i ∈ [m1], j ∈ [m2]} where, for a fixed i, {Ii,j(m) : j ∈ [m2]} is the unique
partition of Ii(m) into m2 := ⌈4Cm/ (m1 ln (ln (Cm/d)))⌉ intervals of the same length.

3. {Ji(m) : i ∈ m3} is the unique partition of (0, 1] into m3 := ⌈2Cm/ ln (2Cm/d)⌉ intervals
of the same length.

Given a labelled training sample (S, f⋆(S)) = ((X1, 0), . . . , (Xm, 0)) as input, the ERM algorithm
f̂ constructs the function f̂S = f̂(·; (S, f⋆(S))) in the following way:4

1. For i ∈ [m1], j ∈ [m2], and k ∈ [m3] define the sets

Ĩi(S) = {x1, . . . , x⌊m/2⌋} ∩ Ii(m),

Ĩ(i,j)(S) = {x⌊m/2⌋+1, . . . , xm} ∩ I(i,j)(m),

J̃k(S) = {x1, . . . , xm} ∩ Jk(m).

2. Define the index sets

L1(S) = {(i, j) : i ∈ {i′ : Ĩi′(S) = ∅}⌊d⌋, Ĩ(i,j)(S) = ∅}⌊d⌋, 5

L2(S) = {k : J̃k(S) = ∅}⌊d⌋.

3. Define the union of intervals

IS =

 ⋃
(i,j)∈L1(S)

Ii,j(m)

⋃ ⋃
i∈L2(S)

Ji(m)

 .

4. Finally, define the function f̂S = fIS .

Observe that IS is the union of at most 2d disjoint intervals, so f̂S will always be in the class
F . Furthermore, f̂S is always consistent with the sample S by construction. See Fig. 1 for an
example of the resulting intervals considered by the set L1(S). Let m = n/3. From now on we
use m1 and m2 to denote the number of intervals of the form Ii(2m) and I(i,j)(2m) considered by
f̂(S1,S2) respectively. Consider the unions of intervals IS1 and I(S1,S2) corresponding to the ERM
functions f̂S1 and f̂(S1,S2). The number m is divisible by 2 from our choice of n, so it follows
that Ji(m) = Ii(2m) and J̃i(S1) = Ĩi(S1, S2), which implies L2(S1) = {k : Ĩk((S1, S2)) =
∅}⌊d⌋. Thus, f̂S1 and f̂(S1,S2) agree, and simultaneously err, on every subinterval I(i,j)(2m) with
(i, j) ∈ L1(S1, S2). Because P is the uniform distribution and every interval I(i,j)(2m) has length
1/(m1m2) = Θ(ln (ln (n/d)) /n), it follows that the error of the majority vote satisfies

errP

(
Maj

(
f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)

))
≥ |L1(S1, S2)|

m1m2
= Ω

(
|L1(S1, S2)|

n
ln
(
ln
(n
d

)))
.

4. This defines f̂S when (S, f⋆(S)) contains only 0 labels. On any (S, f⋆(S)) that contains a 1 label we return an
arbitrary consistent function.

5. The ordering used for pairs (i, j) and (i′, j′) is the natural one: (i, j) ≤ (i′, j′) if i < i′ or i = i′ and j ≤ j′.
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Thus, if |L1(S1, S2)| = d, we have

errP

(
Maj

(
f̂S1 , f̂(S1,S2), f̂(S1,S2,S3)

))
= Ω

(
d

n
log
(
log
(n
d

)))
,

so the claim of the theorem follows once we prove that

Pr
(S1,S2)∼P 2m

[|L1(S1, S2)| = d] ≥ 2/3.

To this end, let E1 = E1(S1) be the event that S1 satisfies |L2(S1)| = d and let E2 = E2((S1, S2))
be the event that (S1, S2) satisfies |L1(S1, S2)| = d. Using the law of total probability we get,

Pr
(S1,S2)∼P 2n/3

[|L1(S1, S2)| = d] = Pr
(S1,S2)∼P 2m

[E2] ≥ Pr
(S1,S2)∼P 2m

[E2 | E1] Pr
S1∼Pm

[E1] ,

so it suffices to prove that Pr(S1,S2)∼P 2m [E2 | E1] ≥
√
2/3 and PrS1∼Pm [E1] ≥

√
2/3. We omit

the proof of the later inequality since it is very similar to the proof of the former inequality.
When E1 occurs, we have |L2(S1)| = |{k : J̃k(S1) = ∅}⌊d⌋| = |{k : Ĩk((S1, S2)) = ∅}⌊d⌋| =

d. So, showing that the event E2 occurs conditioned on E1 is equivalent to showing that at least
d subintervals in the collection {I(i,j) : i ∈ L2(S1), j ∈ [m2]} do not contain any points from the
sample S2. Let Y ∼ Q be the random variable that counts the number of points required to sample
from P until m2d − d subintervals in {I(i,j) : i ∈ L2(S1), j ∈ [m2]} contain one of the sampled
points. Furthermore, let Yt ∼ Qt denote the random variable that counts the number of trials
required to cover (t + 1) subintervals given that we have covered t. Notice that Yt is a geometric
random variable with parameter pt = m2d−t

m1m2
= d

m1
− t

m1m2
and Y =

∑m2d−d−1
t=0 Yt. It follows that

Pr
(S1,S2)∼P 2m

[E2 | E1] ≥ Pr
Y∼Q

[Y ≥ m] = Pr
Yt∼Qt

[
m2d−d−1∑

t=0

Yt ≥ m

]
.

We can use a concentration inequality for sums of geometric random variables together with some
simple calculations to show that

Pr
Yt∼Qt

[
m2d−d−1∑

t=0

Yt ≥ m

]
≥
√
2/3, (8)

when C is large enough. We defer these calculations to Appendix B. This concludes the proof.

4. High probability upper bound

In this section we prove our high-probability upper bound for the Majority-of-Three algorithm
which we now restate for convenience.

Theorem 2 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . Fix any ERM algorithm f̂ : X × Z∗ → {0, 1}. For any parameter
δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness of S1, S2, S3 ∼ Pn that

errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)
= O

(
d

n
log

(
log

(
min

{
n

d
,
1

δ

}))
+

1

n
log

(
1

δ

))
.
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In this section it will be convenient to use the following notation: for a probability distribution
P over X and set R ⊆ X , we define P (R) = PrX∼P [X ∈ R]. Theorem 2 is a consequence of the
following technical lemma.

Lemma 7 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X
and target function f⋆ ∈ F . Fix an ERM algorithm f̂ : X × Z∗ → {0, 1}. For any parameter
δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness of S1, S2 ∼ Pn that

Pr
X∼P

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ c

(
d

n
Log

(
Log

(
min

{
n

d
,
1

δ

}))
+

1

n
Log

(
1

δ

))
,

where c is a universal constant.

We now prove Theorem 2 using Lemma 7 and postpone the proof of Lemma 7.
Proof [Proof of Theorem 2] Since Maj(f̂S1 , f̂S2 , f̂S3)(x) ̸= f⋆(x) happens if and only if there
exists two distinct indices i, j ∈ [3] such that f̂Si(X) ̸= f⋆(X) and f̂Sj (X) ̸= f⋆(X), we get that

errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)
≤
∑
i,j∈[3]
i<j

Pr
X∼P

[
f̂Si(X) ̸= f⋆(X) ∧ f̂Sj (X) ̸= f⋆(X)

]
.

Using Lemma 7 with confidence parameter δ/3 for every distinct pair i, j ∈ [3] together with a
union bound gives us, with probability at least 1− δ over the randomness of (S1, S2, S3), that

errP

(
Maj(f̂S1 , f̂S2 , f̂S3)

)
= O

(
d

n
Log

(
Log

(
min

{
n

d
,
1

δ

}))
+

1

n
Log

(
1

δ

))
.

This concludes the proof.

Before we prove Lemma 7, we provide a short overview of the proof. Our first step is to reuse
the idea from Section 2 to partition the instance space X into sets {Ri}i∈N based on the chance
that an average ERM errs on a point in x ∈ X . However, we use a different way to quantify the
errors defining Ri by incorperating the failure parameter δ. For i ≥ 2, we can actually reuse our
in-expectation analysis from Section 2 together with a simple application of Markov’s inequality
and a sequence of union bounds. This gives us an upper bound on the joint error of two ERMs on
the conditional distributions for all {Ri}i≥2, with high probability. The major technical work of the
proof lies in controlling the joint error of two ERMs on the conditional distribution of R1. To do
this, we borrow an idea from Simon Simon (2015) that views the probability of f̂S1 and f̂S2 jointly
erring as the probability that f̂S1 errs times the probability that f̂S2 errs conditioned on f̂S1 erring.6

A crucial technicality that differentiates our setting from Simon’s is that the probability that f̂S1 and
f̂S2 jointly err is taken over a conditional distribution PR rather than the distribution P from which
the samples S1 and S2 are drawn.

The following lemma formalizes how we can control the joint error of two ERMs under PR.

6. This idea used by Simon in fact builds upon even earlier work of Hanneke Hanneke (2009) in the context of active
learning. It was also applied in the context of PAC learning by Darnstädt Darnstädt (2015).
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Lemma 8 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X ,
target function f⋆ ∈ F and R ⊆ X such that P (R) ̸= 0. Fix an ERM algorithm f̂ : X × Z∗ →
{0, 1}. For any parameter δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness
of S1, S2 ∼ Pn that

Pr
X∼PR

[f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)] ≤ 8max {dLog(8eLog(eP (R)n/d)),Log(8/δ)}
P (R)n

.

We now prove Lemma 7 using Lemma 8, the proof of Lemma 8 can be found in Appendix A.4.
Proof [Proof of Lemma 7] We use the same definition for px (see Section 2) but redefine the sets
{Ri}i∈N to be

R1 =
{
x ∈ X : px ∈ (2−1δ/Log(1/δ), 1]

}
,

and for any integer i ≥ 2,

Ri =
{
x ∈ X : px ∈

(
2−iδ/Log(1/δ), 2−i+1δ/Log(1/δ)

]}
.

Using the law of total probability we have

Pr
X∼P

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
= P (R1) Pr

X∼PR1

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
+

∞∑
i=2

P (Ri) Pr
X∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
.

We will prove that there is a universal constant c > 0 such that the events

E1 = E1((S1, S2)) :=

{
P (R1) Pr

X∼PR1

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤

cmax

{
dLog(Log(min{n/d, 1/δ}))

n
,
Log(1/δ)

n

}}
,

and

E2 = E2((S1, S2)) :=

{ ∞∑
i=2

P (Ri) Pr
X∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ c

d

n

}

each happen with probability at least 1 − δ/2 over the randomness of (S1, S2). The claim of
Lemma 7 then follows from a union bound. Define the set I = {i ≥ 2 : P (Ri) ̸= 0}. To
prove that E1 and E2 each occur with high probability, we will use the following proposition.

Proposition 9 In the setting of Lemma 7 we have the following:

1. There is a universal constant c′ such that for any i ∈ N

P (Ri) ≤
c′2idLog(2i Log(1/δ)/δ) Log(1/δ)

δn
.
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2. With probability at least 1 − δ/2 over the randomness of (S1, S2) we have, simultaneously
for all i ∈ I = {i ≥ 2 : P (Ri) ̸= 0}, that

Pr
X∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ 5 · 2−1.1iδ

Log2(1/δ)
.

We defer the proof of Proposition 9 to Appendix A.3 as its proof is similar to that of Lemma 5.
We first prove that the event E1 occurs with high probability. If P (R1) = 0, then we im-

mediately have that Pr(S1,S2)[E1] = 1. We now consider the case that P (R1) ̸= 0. From
Item 1 of Proposition 9 we can conclude there is a universal constant c̃ such that P (R1) ≤
min{1, c̃dLog

2(1/δ)
δn }. Using this combined with Lemma 8 we have, with probability at least 1− δ/2

over the randomness of (S1, S2), that

P (R1) Pr
X∼PR1

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ 8max

{
dLog(8eLog(min{en/d, ec̃Log2(1/δ)/δ}))

n
,
Log(16/δ)

n

}
≤ cmax

{
dLog(Log(min{n/d, 1/δ}))

n
,
Log(1/δ)

n

}
,

where the last inequality holds for c large enough.
We now prove that the event E2 occurs with high probability. Combining Items 1 and 2 of

Proposition 9 we have, with probability at least 1− δ/2 over the randomness of (S1, S2), that

∞∑
i=2

P (Ri) Pr
X∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤
∑
i ̸∈I

0 +
∑
i∈I

2ic′dLog(2i Log(1/δ)/δ) Log(1/δ)

δn
· 5 · 2

−1.1iδ

Log2(1/δ)

≤ 5c′d

n

∞∑
i=2

2−0.1i Log(2i Log(1/δ)/δ)

Log(1/δ)

≤ 5c′d

n

∞∑
i=2

2−0.1i · (iLog(2) + Log(Log(1/δ)) + Log(1/δ))

Log(1/δ)

≤ c
d

n
,

where the last inequality holds for c large enough. This concludes the proof.
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Appendix A. Ommited proofs from Sections 2 and 4

In this appendix we prove Lemma 6, Lemma 8, Proposition 9, and Lemma 11. These results are by-
products of the classic uniform convergence result which uniformly bounds the error of any function
in F that is consistent with the training sample. To state the result, we first introduce some notation.
For a training sample S = ((X1, f

⋆(X1)), . . . , (Xn, f
⋆(Xn))), let FS denote the functions in F

that are consistent with S, i.e., f ∈ FS if and only if f(Xi) = f⋆(Xi) for every i ∈ [n].

Lemma 10 [Uniform convergence Blumer et al. (1989)] Fix a function class F ⊆ {0, 1}X with
VC dimension d. Fix a distribution P over X and target function f⋆ ∈ F . For any parameter
δ ∈ (0, 1/2] it holds with probability at least 1− δ over S ∼ Pn that

sup
f∈FS

errP (f) ≤ 2

(
d log(2en/d) + log(2/δ)

n

)
.

In what follows, we will use the slightly weaker bound

sup
f∈FS

errP (f) ≤ 4max

{
dLog(2en/d)

n
,
Log(2/δ)

n

}
. (9)

A.1. Proof of Lemma 6

We now prove Lemma 6 which we restate here for convenience.

16



MAJORITY-OF-THREE: THE SIMPLEST OPTIMAL LEARNER?

Lemma 6 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X ,
target function f⋆ ∈ F , and R ⊆ X such that PrX∼P [X ∈ R] ̸= 0. For any ERM algorithm
f̂ : X × Z∗ → {0, 1} it follows that

E
S∼Pn

[
errPR

(
f̂S

)]
≤ 20

dLog(ePrX∼P [X ∈ R]n/d)

PrX∼P [X ∈ R]n
.

Proof Consider the case that PrX∼P [X ∈ R]n ≤ 4d. In this case the claim follows easily since
errPR

(
f̂S

)
≤ 1 and x → Log(ex)/x is decreasing in x for x > 0, so 20dLog(ePrX∼P [X∈R]n/d)

PrX∼P [X∈R]n >

1. We now consider the case that PrX∼P [X ∈ R]n > 4d. For any m ∈ N we define the event
Em = Em(S) = {|{i ∈ [n] : Xi ∈ R}| = m}. Similarly, we define the event

E = E(S) =
⋃

m≥PrX∼P [X∈R]n/2

Em.

It follows from a Chernoff bound and our assumption that PrX∼P [X ∈ R]n > 4d that

Pr
S∼Pn

[E] ≥ 1− exp

(
−PrX∼P [X ∈ R]n

8

)
≥ 1− 8

PrX∼P [X ∈ R]n
.

Using the law of total probability we have

E
S∼Pn

[
errPR

(
f̂S

)]
≤ E

S∼Pn

[
errPR

(
f̂S

) ∣∣∣ E]+ 8

PrX∼P [X ∈ R]n
. (10)

So, if we show that for any m ≥ PrX∼P [X ∈ R]n/2 that

E
S∼Pn

[
errPR

(
f̂S

) ∣∣∣ Em

]
≤ 12dLog (ePrX∼P [X ∈ R]n/d)

PrX∼P [X ∈ R]n
, (11)

the claim follows from one more application of the law of total probability applied to the first term
on the right hand side of Eq. (10).

We now prove Eq. (11). Using the non-negativity of errPR

(
f̂S

)
we have

E
S∼Pn

[
errPR

(
f̂S

) ∣∣∣ Em

]
=

∫ ∞

0
Pr

S∼Pn

[
errPR

(
f̂S

)
> x

∣∣∣ Em

]
dx

≤ 4dLog (2em/d)

m
+

∫ 1

4dLog(2em/d)
m

Pr
S∼Pn

[
errPR

(
f̂S

)
> x

∣∣∣ Em

]
dx.

(12)

Notice that conditioned on Em, the m samples that land in R form an i.i.d. sample from the condi-
tional distribution PR. Thus, any ERM trained on S is also consistent with m i.i.d. samples from PR,
so we can apply uniform convergence (Lemma 10) to control the error of any ERM when measured
with respect to the conditional distribution PR. Setting δ = 21−

mx
4 we have∫ 1

4dLog(2em/d)
m

Pr
S∼Pn

[
errPR

(
f̂S

)
> x

∣∣∣ Em

]
dx

17
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=

∫ 1

4dLog(2em/d)
m

Pr
S∼Pn

[
errPR

(
f̂S

)
>

4Log(2/δ)

m

∣∣∣∣ Em

]
dx

≤ 2

∫ 1

4dLog(2em/d)
m

2−
mx
4 dx

≤ 2

(
4 · 2−dLog(2em/d)

m ln(2)

)
≤ 2dLog (2em/d)

m
.

Here, the first equality follows from the fact that m ≥ PrX∼P [X ∈ R]n/2 ≥ 2d and our choice
of δ. The second inequality follows from Eq. (9) and the final inequality follows from the fact that
dLog(2em/d) ≥ 2. Now, using the fact that x → Log(2ex)/x is decreasing for x > 0 together
with the fact that m ≥ PrX∼P [X ∈ R]n/2 ≥ 2d, we conclude

E
S∼Pn

[
errPR

(
f̂S

) ∣∣∣ Em

]
≤ 6dLog (2em/d)

m
<

12dLog (ePrX∼P [X ∈ R]n/d)

PrX∼P [X ∈ R]n
,

as claimed.

A.2. Proof of Lemma 8.

In this section we prove Lemma 8. To do so, we will need the following lemma which is a simple
consequence of uniform convergence. We defer the proof of this lemma to Appendix A.4.

Lemma 11 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X ,
target function f⋆ ∈ F , and R ⊆ X such that P (R) ̸= 0. Fix an ERM algorithm f̂ : X × Z∗ →
{0, 1}. For any parameter δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness
of S ∼ Pn that

errPR

(
f̂S

)
≤ 8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(4/δ)

P (R)n

}
.

We are now ready to prove Lemma 8, which we restate before the proof for convenience

Lemma 8 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X ,
target function f⋆ ∈ F and R ⊆ X such that P (R) ̸= 0. Fix an ERM algorithm f̂ : X × Z∗ →
{0, 1}. For any parameter δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness
of S1, S2 ∼ Pn that

Pr
X∼PR

[f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)] ≤ 8max {dLog(8eLog(eP (R)n/d)),Log(8/δ)}
P (R)n

.

Proof [Proof of Lemma 8] We will prove that the event

E = E((S1, S2)) :=

{
Pr

X∼PR

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ 8max

{
dLog(8eLog(eP (R)n/d))

P (R)n
,
Log(8/δ)

P (R)n

}}

18
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occurs with high probability. Let B1 denote the (random) set {x ∈ X : f̂S1(x) ̸= f⋆(x)} and define
the event E1 = E1(S1) := {P (R ∩B1) ̸= 0}. By the law of total probability, we have

Pr
(S1,S2)∼P 2n

[E] = Pr
(S1,S2)∼P 2n

[E1 ∩ E] + Pr
(S1,S2)∼P 2n

[
Ē1 ∩ E

]
. (13)

Furthermore, we can write the second term on the right hand side of Eq. (13) as

Pr
(S1,S2)∼P 2n

[
Ē1 ∩ E

]
= Pr

(S1,S2)∼P 2n

[
E | Ē1

]
Pr

(S1,S2)∼P 2n

[
Ē1

]
= Pr

(S1,S2)∼P 2n

[
Ē1

]
.

Combining the identities above, it suffices to show that

Pr
(S1,S2)∼P 2n

[E ∩ E1] ≥ Pr
(S1,S2)∼P 2n

[E1]− δ.

Notice that when E1 occurs, then for any measurable set C ⊆ X , the distribution (PR)B1 (which
is the conditional distribution of PR restricted to B1) satisfies

(PR)B1(C) =
PR (C ∩B1)

PR (B1)
=

P (C ∩B1 ∩R)

P (B1 ∩R)
= PR∩B1 (C) ,

i.e., (PR)B1 = PR∩B1 . Thus on E1, the probability that both f̂S1 and f̂S2 simultaneously err on a
new data point drawn from PR can be written as

Pr
X∼PR

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
= errPR

(
f̂S1

)
errPR∩B1

(
f̂S2

)
. (14)

We now bound the right side of Eq. (14). To do this, we define the following events over
(S1, S2):

E2 = E2(S1) :=

{
errPR

(
f̂S1

)
≤ 8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(8/δ)

P (R)n

}}
and for outcomes of S1 in E1

E3 = E3((S1, S2))

:=

errPR∩B1

(
f̂S2

)
≤ 8max

dLog(eP (R)n errPR

(
f̂S1

)
/d)

P (R)n errPR

(
f̂S1

) ,
Log(8/δ)

P (R)n errPR

(
f̂S1

)

 .

We now show that the event E1 ∩E2 ∩E3 happens with probability at least P [E1]− δ and that
it implies the event E1 ∩ E. Assume that E1 ∩ E2 ∩ E3 occurs. If

8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(8/δ)

P (R)n

}
= 8

dLog(eP (R)n/d)

P (R)n
,

we have

errPR

(
f̂S1

)
errPR∩B1

(
f̂S2

)
≤ 8max

dLog(eP (R)n errPR

(
f̂S1

)
/d)

P (R)n
,
Log(8/δ)

P (R)n


19
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≤ 8max

{
dLog(8eLog(eP (R)n/d))

P (R)n
,
Log(8/δ)

P (R)n

}
.

Otherwise, if

8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(8/δ)

P (R)n

}
= 8

Log(8/δ)

P (R)n
,

we have

errPR

(
f̂S1

)
errPR∩B1

(
f̂S2

)
≤ 8

Log(8/δ)

P (R)n
· 1.

We can thus conclude that E1 ∩E2 ∩E3 implies E1 ∩E. Towards showing the bound lower bound
of Pr(S1,S2)∼P 2n [E1 ∩ E2 ∩ E3] ≥ P [E1] − δ, notice that the bound Pr(S1,S2)∼P 2n

[
Ē2

]
≤ δ/2

can be established from Lemma 11 directly. Furthermore, for any fixed realization of S1 such that
P (R ∩B1) ̸= 0, Lemma 11 implies that

errPR∩B1

(
f̂S2

)
≤ 8max

dLog(eP (R) errPR

(
f̂S1

)
n/d)

P (R) errPR

(
f̂S1

)
n

,
Log(8/δ)

P (R) errPR

(
f̂S1

)
n

 ,

with probability at least 1− δ/2 over the randomness of S2. Using the independence of S1 and S2

we have

Pr
(S1,S2)∼P 2n

[E1 ∩ E2 ∩ E3] = E
S1∼Pn

[
1E11E2 Pr

S2∼Pn
[E3]

]
≥ E

S1∼Pn
[1E11E2 ] (1− δ/2)

≥ (1− Pr
S1∼Pn

[
Ē1

]
− Pr

S1∼Pn

[
Ē2

]
)(1− δ/2)

≥ ( Pr
S1∼Pn

[E1]− δ/2)(1− δ/2)

≥ Pr
S1∼Pn

[E1]− δ.

This completes the proof.

A.3. Proof of Proposition 9

We now prove Proposition 9 which we restate here for convenience.

Proposition 9 In the setting of Lemma 7 we have the following:

1. There is a universal constant c′ such that for any i ∈ N

P (Ri) ≤
c′2idLog(2i Log(1/δ)/δ) Log(1/δ)

δn
.
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2. With probability at least 1 − δ/2 over the randomness of (S1, S2) we have, simultaneously
for all i ∈ I = {i ≥ 2 : P (Ri) ̸= 0}, that

Pr
X∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ 5 · 2−1.1iδ

Log2(1/δ)
.

Proof We first prove Item 1. Towards a contradiction, assume that there is an i ∈ N such that

P (Ri)n

d
≥ c′2i Log(2i Log(1/δ)/δ) Log(1/δ)

δ

for a constant c′ that we will choose below. By changing the order of expectations we have

E
S1∼Pn

[
errPRi

(
f̂S1

)]
= E

X∼PRi

[
Pr

S1∼Pn

[
f̂S1(X) ̸= f⋆(X)

]]
= E

X∼PRi

[pX ] .

Using the above together with the fact that pX ≥ 2−iδ/Log(1/δ) for any X ∈ Ri, we can conclude
that

E
S1∼Pn

[
errPRi

(
f̂S1

)]
>

δ

2i Log(1/δ)
. (15)

On the other hand, using Lemma 6 we conclude that there is a universal constant ĉ such that

E
S1∼Pn

[
errPRi

(
f̂S1

)]
≤ ĉ

dLog (P (Ri)n/d)

P (Ri)n
.

Combining this inequality with the fact that Log(x)/x is a decreasing function for x > 0, we have

E
S1∼Pn

[
errPRi

(
f̂S1

)]
≤ ĉ

δ Log
(
c′2i Log(2i Log(1/δ)/δ) Log(1/δ)

δ

)
c′2i Log(2i Log(1/δ)/δ) Log(1/δ)

= ĉ
2−iδ

Log(1/δ)
·
Log

(
c′2i Log(2i Log(1/δ)/δ) Log(1/δ)

δ

)
c′ Log

(
2i Log(1/δ)

δ

)
≤ ĉ

2−iδ

Log(1/δ)
·
Log (c′) + Log

(
Log

(
2i Log(1/δ)

δ

))
+ Log

(
2i Log(1/δ)δ

)
c′ Log

(
2i Log(1/δ)

δ

) .

However, for c′ large enough, the above is less than 2−iδ/Log(1/δ) which contradicts the lower
bound Eq. (15). Thus, we have shown that there is a constant c′ such that

P (Ri)n

d
≤ c′2i Log(2i Log(1/δ)/δ) Log(1/δ)

δ
,

which proves Item 1.
We now prove Item 2. We will show that for each i ∈ I with probability at least 1−2−0.9i+2δ/5

we have

Pr
X∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
≤ 5 · 2−1.1iδ

Log2(1/δ)
. (16)
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Applying a union bound implies that the above holds simultaneously for every i ∈ I with probability
at least 1−

∑
i≥2 2

−0.9i+2δ/5 ≥ 1− δ/2. To see that Eq. (16) holds for each i ∈ I , notice that we
can use the fact that S1 and S2 are i.i.d. samples together with the fact that pX ≤ 2−i+1δ/Log(1/δ)
for X ∈ Ri to conclude that

E
X∼PRi

[
Pr

S1,S2∼Pn

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]]
= E

X∼PRi

p2X ≤ 2−2i+2δ2

Log2(1/δ)
.

Combining this with Markov’s inequality we have

Pr
S1,S2∼Pn

[
PrX∼PRi

[
f̂S1(X) ̸= f⋆(X) ∧ f̂S2(X) ̸= f⋆(X)

]
>

5 · 2−1.1iδ

Log2(1/δ)

]
≤ 2−2i+2δ2

Log2(1/δ)

Log2(1/δ)

5 · 2−1.1iδ
= 2−0.9i+2δ/5,

which proves the claim.

A.4. Proof of Lemma 11

We now prove Lemma 11 which we restate here for convenience.

Lemma 11 Fix a function class F ⊆ {0, 1}X with VC dimension d. Fix a distribution P over X ,
target function f⋆ ∈ F , and R ⊆ X such that P (R) ̸= 0. Fix an ERM algorithm f̂ : X × Z∗ →
{0, 1}. For any parameter δ ∈ (0, 1/2] it holds with probability at least 1− δ over the randomness
of S ∼ Pn that

errPR

(
f̂S

)
≤ 8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(4/δ)

P (R)n

}
.

Proof If 8Log(4/δ)/(P (R)n) ≥ 1 we are done as errPR
(f) ≤ 1. Thus, for the remainder of the

proof we will assume that 8Log(4/δ)/(P (R)n) < 1, which is equivalent to P (R)n ≥ 8Log(4/δ).
Define the event

E = E(S) = {|{i ∈ [n] : Xi ∈ R}| ≥ P (R)n/2}.

Using the Chernoff bound and our assumption that P (R)n ≥ 8Log(4/δ), we have

Pr
S∼Pn

[E] ≥ 1− exp

(
−P (R)n

8

)
≥ 1− δ/2.

Notice that conditioned on E, the M ≥ P (R)n/2 ≥ 1 samples7 that land in R form an i.i.d. sample
from the conditional distribution PR. Thus when E occurs, any ERM trained on S is also consistent
with M ≥ P (R)n/2 ≥ 1 i.i.d. samples from PR, so Lemma 10 yields, with probability at least
1− δ/2 over the randomness of S, that

errPR

(
f̂S

)
≤ 4max

{
dLog(2eM/d)

M
,
Log(4/δ)

M

}
7. The number of samples M is random.
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≤ 8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(4/δ)

P (R)n

}
.

Here, the second inequality follows from the fact that x → Log(2ex)/x is decreasing for x > 0.
Using the law of total probability we get that

Pr
S∼Pn

[
errPR

(
f̂S

)
> 8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(4/δ)

P (R)n

}]
≤ Pr

S∼Pn

[
Ē
]
+ Pr

S∼Pn

[
errPR

(
f̂S

)
> 8max

{
dLog(eP (R)n/d)

P (R)n
,
Log(4/δ)

P (R)n

} ∣∣∣∣ E]
≤ δ/2 + δ/2 = δ.

This concludes the proof.

Appendix B. Ommited proofs from Section 3

In this appendix we prove Eq. (8). We will show that

Pr
Y∼Q

[Y ≥ m] = Pr
Yt∼Qt

[
m2d−d−1∑

t=0

Yt ≥ m

]
≥
√

2

3
.

Let p⋆ = pm2d−d−1 = d+1
m1m2

be the smallest parameter pt of the geometric random variables
{Yt}m2d−d−1

t=0 that we consider. We make use of the following well known concentration inequality
for sums of geometric random variables:

Pr
Y∼Q

[
Y ≤ λ E

Y∼Q
[Y ]

]
≤ exp

(
−p⋆ E

Y∼Q
[Y ](λ− 1− ln(λ))

)
, (17)

which holds for any 0 < λ ≤ 1 (see (Janson, 2018, Theorem 3.1)). Let λ = 1/4. We will show
EY∼Q [Y ] ≥ 4m and p⋆ EY∼Q [Y ] ≥ 4 which combined with 1/4−1−ln (1/4) ≥ 1/2 and Eq. (17)
gives us

Pr
Y∼Q

[Y ≤ m] ≤ Pr
Y∼Q

[
Y ≤ E

Y∼Q
[Y ]/4

]
≤ exp

(
−p⋆ E

Y∼Q
[Y ] /2

)
≤ exp(−2) ≤ 1−

√
2/3.

This implies PrY∼Q [Y ≥ m] ≥
√

2/3 as required. We first show that EY∼Q[Y ] ≥ 4m. We have

E
Y∼Q

[Y ] =

m2d−d−1∑
t=0

m1m2

m2d− t
=

m2d∑
i=d+1

m1m2

i
≥ m1m2 ln

(m2

2

)
. (18)

Plugging in the definition of m1 and m2 into Eq. (18) and using the fact that ⌈x⌉ ≤ 2x for x ≥ 0.5
gives us

E
Y∼Q

[Y ] ≥ 8Cm

ln (ln (2Cm/d))
ln

(
ln(2Cm/d)

ln (ln (2Cm/d))

)
.
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For C large enough we have ln(ln(2Cm/d)) > 0, ln(2Cm/d)
ln(ln(2Cm/d)) ≥

√
ln(2Cm/d) and C > 1, so

E
Y∼Q

[Y ] ≥ 8Cm

ln (ln (2Cm/d))
ln
(√

ln(2Cm/d)
)
≥ 4m.

We now show that p⋆ EY∼Q[Y ] ≥ 4. Using the fact that p⋆ ≥ 2/(m1m2) together with Eq. (18)
gives us

p⋆ E
Y∼Q

[Y ] ≥ 2 ln
(m2

2

)
≥ 2 ln

(
ln(2Cm/d)

ln (ln (2Cm/d))

)
≥ 4,

where the last inequality holds for C large enough.
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