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Abstract
Metalearning and multitask learning are two frameworks for solving a group of related learning tasks
more efficiently than we could hope to solve each of the individual tasks on their own. In multitask
learning, we are given a fixed set of related learning tasks and need to output one accurate model per
task, whereas in metalearning we are given tasks that are drawn i.i.d. from a metadistribution and
need to output some common information that can be easily specialized to new, previously unseen
tasks from the metadistribution.

In this work, we consider a binary classification setting where tasks are related by a shared
representation, that is, every task P of interest can be solved by a classifier of the form fP ◦ h where
h ∈ H is a map from features to some representation space that is shared across tasks, and fP ∈ F
is a task-specific classifier from the representation space to labels. The main question we ask in this
work is how much data do we need to metalearn a good representation? Here, the amount of data is
measured in terms of both the number of tasks t that we need to see and the number of samples n
per task. We focus on the regime where the number of samples per task is extremely small.

Our main result shows that, in a distribution-free setting where the feature vectors are in Rd,
the representation is a linear map from Rd → Rk, and the task-specific classifiers are halfspaces
in Rk, we can metalearn a representation with error ε using just n = k + 2 samples per task, and
d · (1/ε)O(k) tasks. Learning with so few samples per task is remarkable because metalearning
would be impossible with k + 1 samples per task, and because we cannot even hope to learn an
accurate task-specific classifier with just k + 2 samples per task. To obtain this result, we develop a
sample-and-task-complexity theory for distribution-free metalearning and multitask learning, which
identifies what properties of F and H make metalearning possible with few samples per task. Our
theory also yields a simple characterization of distribution-free multitask learning. Finally, we give
sample-efficient reductions between metalearning and multitask learning, which, when combined
with our characterization of multitask learning, give a characterization of metalearning in certain
parameter regimes.
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1. Introduction

Metalearning and multitask learning are frameworks for solving a group of related learning tasks more
efficiently than we could hope to solve each of the individual tasks on their own. It is convenient
to think of tasks as corresponding to people—for example, each task could involve completing
sentences of one person’s email or recognizing one person’s friends’ faces in photographs. These
tasks are clearly different from person to person, since people have different writing styles and
friends, but there is also a great deal of shared structure in both examples. Even though each person
may not supply enough text messages or photographs to build an accurate model, one can leverage
shared structure to solve all of the tasks more effectively.

In these frameworks (specialized to binary classification), we model each task as a distribution P
over labeled examples X × {±1}. A family of tasks can be either a finite list of tasks P1, . . . , Pt (in
multitask learning) or, more generally, a metadistribution Q over tasks (in metalearning). There are
several ways to model the relationships among a family of tasks (see Section 1.2). In this paper, we
assume that the tasks are well labeled by classifiers that share a common representation h : X → Z
for some space Z , usually of lower dimension than X . For each task Pj , there is a specialized
classifier fj : Z → {±1} such that fj ◦ h has high accuracy on Pj . For example, when recognizing
faces in photographs, a common approach uses one neural network to extract facial features followed
by a final layer that differs for each person and maps facial features to names of that person’s friends.

Given classes H of possible representations and F of possible specializations, we ask how much
data do we need to find a representation that performs well for most of the tasks in our family
of interest? Suppose the learner has access to t data sets, where the j-th dataset consists of n
observations drawn i.i.d. from task Pj . Following the literature, we consider two basic objectives:

(Proper1) Multitask learning: Output a representation h ∈ H and specialized classifiers
f1, . . . , ft ∈ F such that the error of the classifier fj ◦ h on its task Pj is low on average over
the tasks. For example, this objective corresponds to learning the classifiers for a given set of
face-recognition tasks.

(Proper1) Metalearning: Assuming that the tasks P1, ..., Pt are themselves drawn i.i.d. from
an unknown metadistribution Q, output a representation ĥ ∈ H that can then be specialized to an
unseen task P drawn from Q. The benchmark is then the expected error of the best representation
h∗ on a new task P ∼ Q, measured using the best specialized classifier f ∈ F for that task. This
objective corresponds to finding an embedding that can be used to quickly build face-recognition
classifiers for new people, as opposed to for people whose photos were used for training.

For both variants, one can consider realizable families of tasks or a more general agnostic setting.
In the realizable case, there is a representation h ∈ H such that, for every task P in the family, we
can find a classifier fP ∈ F that perfectly labels example from P . In the agnostic setting, we have
no such promise; we aim to compete with the benchmark no matter how good or bad it is.

The sample and task complexity of meta and multitask learning. The goal of this paper is to
understand the sample complexity of multitask and metalearning. Specifically

How many samples n do we need per task to solve metalearning and multitask learning
and, given a number of samples n per task, how many tasks t do we need to see?

1. For simplicity, and to highlight the relationship with metalearning, we describe the proper version of multitask/meta
learning, but we also consider a more general notion of improper multitask/meta learning.
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To get some intuition for this question, it is easy to see that in the multitask learning setting we
need at least enough samples from each task to learn a good specialized classifier. For realizable
learning, in the distribution-free setting that we study, the number of samples per task must be at least
n ≥ VC(F)/ε to learn with error ε. In contrast, metalearning’s only goal is to output a representation
that can be specialized to new tasks, and there is no need to output a good classifier for any specific
task. Thus we will focus on a more specific question

What is the minimum number of samples per task n that enable us to solve metalearning
with a finite number of tasks t?

Our main result answers this question exactly for the case of halfspace classifiers with a shared
linear representation in the distribution-free, realizable setting. That is, when examples are in Rd,
representations are linear functions from Rd → Rk, and specialized classifiers are halfspaces on
Rk. Our result shows that we can metalearn this class of functions with k + 2 samples per task.
Metalearning with k + 1 samples per task is impossible in the distribution-free setting. For constant
error, we show that the number of tasks required to learn the representation using k + 2 samples per
task is at most linear in d and exponential in k.

To prove our main result, we develop a uniform-convergence theory for distribution-free met-
alearning and multitask learning. This theory complements prior work, which developed a theory of
meta- and multitask learning under specific assumptions about the task distributions (see Section 1.2).
The main novel feature of our uniform-convergence theory is that it enables us to prove bounds on
the number of tasks required for metalearning even in the regime where we lack the samples per
task needed to accurately evaluate the quality of a representation. That is, given a representation h
and just n = VC(F) + 1 samples from a task, we can learn an arbitrarily good representation, even
though we do not have enough data to find a specialized classifier f ◦ h with small error ε.

Our theory identifies two key features of the classes H and F that enable metalearning in the
realizable case: (1) whether F has small dual Helly number, meaning that given an unrealizable
sample of size n, there is a small subset of samples that are also unrealizable, and (2) whether
the class of realizability predicates for H and F has small VC dimension, where the realizability
predicates are functions that indicate whether the sample S is realizable by a function of the form
f ◦ h for f ∈ F .

Along the way, we also study the multitask setting. We give a simple characterization of the
total number of samples nt that we need to learn and pin down the sample complexity of learning
halfspaces with a shared linear representation up to constant factors. These results help to highlight
the differences between metalearning and multitask learning. By showing that we can metalearn
(improperly) if and only if we can multitask learn in the setting where we have enough samples per
task to output a good classifier for a given representation, we obtain task and sample complexity
bounds for improper metalearning.

Our results shed light on some of the intriguing empirical phenomena in modern machine learning.
For example, the training data sets for foundation models are increasingly being augmented with data
sources from a wide variety of subpopulations, even though those sources may be very small. That’s
normally motivated by the desire to improve accuracy on these subpopulations. However, our work
highlights a different and complementary reason why that can be valuable: even a few examples
from many subpopulations can vastly improve learning on all populations, even the “data rich” ones.
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1.1. Our Results and Techniques

In this section we give a more detailed overview of our main results and techniques. We focus both
on the general conditions for meta or multitask learnability that we establish as well as our specific
sample- and task-complexity results for linear classifiers over linear representations. We begin by
describing the multitask learning setting because it is simpler and serves as a contrast to highlight
some of the unusual features of metalearning.

Multitask Learning: A General Characterization and a Tight Bound for Linear Classes. Our
first result is a complete characterization of the conditions for distribution-free multitask learning.
Given H and F and a number of tasks t, one may view the collection of functions h, f1, ..., ft output
by a proper learner as a single function from [t] × X to {±1} that maps (j, x) to fj(h(x)). We
denote by F⊗t ◦ H the class of such composite functions:

F⊗t ◦ H :=
{
g : [t]×X → {±1}

∣∣∣ ∃h ∈ H, f1, . . . , ft ∈ F s.t. g(j, x) = fj(h(x))
}

The composite class F⊗t ◦ H has been studied in other multitask learning settings (see Section 1.2).
We show that in our setting, the VC dimension of this class characterizes distribution-free multitask
learnability in both the realisable and agnostic settings.

Theorem 1.1 (Informal version of Theorem C.1) Distribution-free multitask learning to error ε
with n samples per task and t tasks is possible if and only if nt ≳ VC(F⊗t ◦H)/ε2. In the realizable
setting 1/ε2 is replaced with log(1/ε)/ε.

See Definition B.1 for a formal definition of the setting and error parameter ε. Since VC dimension
characterizes distribution-free PAC learning, this result shows that multitask learning is possible if
and only if the larger composed function class is PAC learnable. See Appendix C.2 and Appendix F
for basic upper and lower bounds on the VC dimension of the composed class.

Nevertheless, an interesting phenomenon emerges since t appears in both the definition of the
function and the sample complexity bound. As a concrete example, consider the case of a linear
classifier over a linear representation

Hd,k =
{
h | h(x) = Bx,B ∈ Rk×d

}
and Fk =

{
f | f(z) = sign(a · z− w),a ∈ Rk, w ∈ R

}
,

which will be the main example we study in this paper. Using a bound on the number of possible sign
patterns in a family of polynomials due to Warren (1968), which was also used by Baxter (2000) for
meta-learning bounds on regression problems, we characterize the VC dimension of the associated
composite class up to a constant.

Theorem 1.2 For all t, d, k ∈ N, we have

VC(F⊗t
k ◦ Hd,k) =

{
t(d+ 1), if t ≤ k

Θ(dk + kt), if t > k.

We see two distinct regimes: When t ≤ k, the VC dimension is exactly t · (d + 1) which is
also the sample complexity of learning t separate d-dimensional linear classifiers, so there is no
benefit to the existence of a common representation. When t > k, the sample complexity scales as
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n ≳ (dkt + k)/ε2, so there is a fixed cost of dk/ε2 samples that can be amortized over many tasks,
with an unavoidable marginal cost of just k/ε2 per task. See Appendix E.1 for more details.

Metalearning: The Case of Linear Representations. For metalearning, a different and more
complex picture emerges. For example, one might expect that the conditions for multitask learning
are also necessary for learning a good representation. However, this is not always the case. Consider
again the linear classes Hd,k and Fk. While multitask learning requires Ω(k/ε) samples per task,
we show that one can accurately learn a good k-dimensional linear representation for any realizable
family with just n = k + 2 samples per task:

Corollary 1.3 (Informal version of Corollary 4.3) One can metalearn (Hd,k,Fk) to error ε in
the realizable case if t = dk2 ·O(ln(1/ε)/ε)k+2 and n = k + 2.

See Definition 3.1 for a formal definition of the setting and notion of error. The algorithm underlying
this result selects a representation that minimizes the fraction of nonrealizable data sets among the
training tasks—see the explanations after Theorem 1.1 for details and intuition.

When we restrict further to the case of specialized monotone thresholds Fmon applied to a 1-
dimensional linear representation, we get a stronger bound than what would be obtained by applying
the result above with k = 1, namely, just n = 2 samples per task suffice. (see Theorem D.4).

These results consider a regime of extreme data scarcity. For linear classifiers, any nondegenerate
set of k+1 labeled examples can be perfectly fit by a halfspace and so, absent additional assumptions
like a large margin, one gets no information from seeing just k + 1 points per task. Thus n = k + 2
is the exact minimum number of samples per task that suffice for metalearning. However, with so
few examples we cannot even reliably estimate how well a candidate representation h performs on a
task. Essentially the only signal one gets is whether the data set is realizable, so it is surprising that
representation learning is possible at all in such a regime. Indeed, once we choose a representation and
sample a new task P from the metadistribution Q, we need a larger number of samples nspec ≈ k/ε2

to find a good specialized classifier for the new task. Although such a large number of samples
isn’t necessary for metalearning, when samples are plentiful we can show that one can learn a good
representation with task complexity polynomial in d, k and 1/ε, even in the agnostic setting.

Corollary 1.4 (Informal version of Corollaries 4.6 and E.2) One can metalearn the class (Hd,k,Fk)
to error ε with n = O(k ln(1/ε)/ε2) samples per task and either t = Õ(dk2/ε4) tasks via a proper
learner, or t = O(d) tasks via an improper learner.

Metalearning for realizable families with minimal sample complexity. To prove these results, we
develop a general uniform-convergence theory for metalearning. Our results for realizable learning
rely on two major ideas: first, we show that there is a sample size n which depends only on F (not
on H or ε) that allows for training a representation given many tasks; second, we identify a set of
predicates based on H and F that determine how many tasks are needed.

Definition 1.5 (The dual Helly number (Bousquet et al., 2020)) Let F be a class of functions
f : Z → {±1}. We define the dual Helly number, denoted DH(F), to be the smallest integer m for
which every set S ⊆ Z × {±1} that is not realizable by F has a nonrealizable subset of size at most
m. If no such m exists, then we write DH(F) = ∞.
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The dual Helly number is essentially the smallest sample size at which we are guaranteed
that realizability provides a meaningful signal. For example, the class of monotone threshold
functions Fmon has DH(Fmon) = 2, since every nonrealizable set has two points with different
labels that are out of order. Halfspaces in Rk have dual Helly number k + 2 by a classic duality
argument (Kirchberger, 1903). In general, DH(F) and VC(F) dimension can differ arbitrarily in
either direction, as shown in Kane et al. (2019), Bousquet et al. (2020) and Lemma F.1.

Given this sample size m, we consider a class of realizability predicates:

Definition 1.6 (Realizability predicate) Let F be a class of specialized classifiers f : Z → {±1}
and n ∈ N. Given a representation function h : X → Z , the (n,F)-realizability predicate is
rh((x1, y1), . . . , (xn, yn))

def
= I±{∃f ∈ F s.t. ∀i ∈ [n], f(h(xi)) = yi}. The class of realizability

predicates, Rn,F ,H, contains all realizability predicates rh for h ∈ H.

For example, for the class of monotone thresholds, we can view the representation h as a 1-
dimensional function that orders the samples on the real line. Then, rh returns +1 if and only
if all the positively labeled samples have greater representation value than the negative ones.

Our key result is that realizable metalearning with just m samples per task is possible whenever
the VC dimension of this predicate class is finite—in fact, it scales linearly with its VC dimension
and at most exponentially in DH(F)—by minimizing the fraction of nonrealizable samples.

Theorem 1.7 (Informal version of Theorem 3.2) We can metalearn (H,F) with error ε in the
realizable case with DH(F) samples per task and task complexity that, when VC(F) = O(DH(F)),
scales as

t = VC
(
RDH(F),F ,H

)
·O

(
log(1/ε)

ε

)DH(F)

.

For natural classes (such as halfspaces), we expect the VC dimension of F and the dual Helly
number to be comparable, and so we get a complexity of roughly VC(Rm,F ,H)/ε

m form = DH(F).
To get some intuition for Theorem 1.7, consider a fixed representation ĥ and a task P on

X × {±1}. The heart of our argument is a relationship between two important quantities: the
population error of F ◦ ĥ on P , and the probability of nonrealizability of a dataset from P⊗m by
functions in F ◦ ĥ. Letting B denote an arbitrary distribution on Z × {±1} (in the rest of the paper,
this distribution will generally be (ĥ(X), Y ) for (X,Y ) ∼ P and some candidate representation ĥ),
we define

err(B,F)
def
= min

f∈F
Pr(x,y)∼B[[[f(x) ̸= y ]]] and pnr(B,F ,m)

def
= PrS∼Bm[[[S is not realizable by F ]]].

In Lemma 3.3, we give a general lower bound on the probability of nonrealizability pnr(B,F ,m)
in terms of the error of the best classifier err(B,F) and the complexity DH(F): for any class of
specialization functions F and any distribution B on the intermediate space Z × {±1},

pnr(B,F ,m) ≳
(

m
m+VC(F) · err(B,F)

)m
for m = DH(F) . (1)

Bounding pnr is nontrivial since the sample size m = DH(F) is typically much smaller than
N = VC(F)/err(B,F), which is what standard concentration arguments require. To get around
this, we consider a thought experiment in which a larger data set size N is drawn and then a random
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subsample of size m within it is observed. Since the larger set will almost certainly be unrealizable,
by definition it must contain an unrealizable subset of size m. The random subsample will find such
a witness with probability at least 1/

(
N
m

)
, which is bounded by the expression in (1).

The lower bound on pnr implies that a representation ĥ which is poor for typical tasks from a
meta distribution Q will also lead to a typical sample of size m drawn from a typical task being
unrealizable. When Rm,F ,H has low VC dimension, the number of unrealizable samples in the
training data will concentrate uniformly across representations ĥ, and so the representation which
minimizes the number of unrealizable training data sets will also, up some loss, minimize the
expected population level loss err(B,F). This line of argument leads to Theorem 1.7.

Metalearning with More Data Per Task. Checking the realizability of very small data sets works
when we are guaranteed to find a representation for which all the training data sets will be realizable.
In the agnostic setting, this approach makes less sense. Additionally, the bounds we obtain scale
poorly with the DH(F).

To obtain polynomial scaling and cope with the agnostic setting, we consider larger training data
sets—large enough to assess the quality of a given representation on the task at hand—and a different
set of function classes associated to the pair (H,F). Instead of realizability, we consider a function
that returns the best achievable empirical error for a given representation on a dataset:

Definition 1.8 (Empirical error function) Let F be a class of specialized classifiers f : Z →
{±1} and n ∈ N. Given a representation function h : X → Z , the (n,F)-empirical error function
of h is qh(x1, y1, . . . , xn, yn)

def
= minf∈F

1
n

∑n
i=1 I{f(h(xi)) ̸= yi}. The class of empirical error

functions Qn,F ,H contains all empirical error functions qh for h ∈ H.

We show that the task complexity of metalearning with data sets of size n can be bounded via the
complexity of Qn,F ,H. Specifically, we consider the pseudodimension of Qn,F ,H, which is essentially
the VC dimension of the class of all binary thresholdings of the class. The pseudodimension of
Qn,F ,H is thus at least VC dimension of the realizability class Rm,F ,H, but can in general be larger.

Theorem 1.9 (see Theorem 3.6) Let H be a class of representation functions h : X → Z and F
be a class of specialized classifiers f : Z → {±1}. Then, for every ε and δ ∈ (0, 1) we can (ε, δ)-
properly metalearn (H,F) with t tasks and n samples per task when t = O

(
PDim(Qn,F,H) ln(1/ε)+ln(1/δ)

ε2

)
and n = O

(
VC(F)+ln(1/ε)

ε2

)
.

There exist other ways of measuring the complexity of real-valued functions—fat-shattering
dimension and Rademacher complexity are more general than pseudodimension—but we show that
for the linear representations and halfspaces, the pseudodimension lends itself directly to bounds
based on the signs of polynomials.

Generic reductions between metalearning and multitask learning. To complement our uniform
convergence theory for metalearning, we also show a generic equivalence between metalearning
and multitask learning in Appendix B.3. This equivalence leads to improved sample complexity for
linear classes in the regime where we have enough samples per task to solve multitask learning.

In contrast to our earlier results, these reductions do not yield any bounds for metalearning when
we have just n = VC(F) + 1 samples per task. Interestingly, the reduction gives metalearners that
are improper, even when the original multitask learner is proper. Instead of a succinct representation,
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the reduction produces a specialization algorithm whose description is no simpler than the entire
training data set. We leave it as an open question to determine if one can match the sample complexity
bounds we obtain from our reduction via proper metalearning.

Analyzing the classes associated to linear representations. To apply our general results to linear
classes, we produce bounds on the VC dimension of the realizability predicates and, using similar
tools, the pseudodimension of the empirical error function, yielding the following result:

Theorem 1.10 (see Theorem 4.5) For all d, k, n with n ≥ k + 2, PDim(Qn,Fk,Hd,k
) = Õ(dkn) .

At a high level, our approach shows that the predicate rh can be expressed in low-complexity
language. Concretely, we first derive a list of low-degree polynomials p(1)(h), . . . , p(w)(h) which are
positive exactly when certain conditions on the data and representation are met. We then show that
the realizability predicate can be written as a Boolean function over these conditions: the function’s
ℓ-th input is sign(p(ℓ)(h)). A result of Warren (1968) allows us to bound the VC dimension of signs
of low-degree polynomials, and we prove a novel extension of Warren’s result applies to functions
over these objects.

This approach involves a subtle conceptual shift. Let D = (x1, y1, . . . , xn, yn) be a data set. Our
notation for the realizability predicate rh(D) suggests that it is “parameterized” by representations
and receives as input a data set. In this section of analysis, these roles are reversed: we construct and
analyze polynomials p(1)D (h), . . . , p

(w)
D (h). The coefficients of these polynomials depend on D, but

we measure their complexity via their degree as polynomials in h.

1.2. Related Work

There is a large body of literature on both multitask learning and metalearning, including related
concepts or alternative names such as transfer learning, learning to learn, and few-shot learning,
going back at least as far as the 90s (see Caruana (1997); Thrun and Pratt (1998) for early surveys).
Although this line of work is too broad to survey entirely, we summarize here some of the main
themes and highlight points of difference with our work.

The most closely related work to ours is that of Baxter (2000), which proves sample complexity
bounds for both multitask learning and metalearning in a framework that is equivalent to our shared
representation framework. Our main advances compared to Baxter (2000) are: (1) we prove sample
complexity bounds in the regime where the number of samples per task is too small to learn an
accurate specialized classifier, whereas the generalization arguments in Baxter (2000) crucially rely
on having enough samples per task to learn an accurate specialized classifier for a given representation
and task, (2) our bounds hold in a distribution-free, classification setting and do not rely on the sort
of margin assumptions that are essential for the covering arguments used in Baxter (2000) for the
analogous setting. Other works differ from ours along one or more of the following axes.

Stronger assumptions on the tasks or meta-distribution. Several works (Srebro and Ben-David,
2006; Maurer, 2009; Maurer and Pontil, 2012; Pontil and Maurer, 2013; Maurer et al., 2016) prove
dimension-free generalization bounds for various forms of linear classifiers over linear representations
under stronger margin assumptions on the input. In contrast, our work proves distribution-free bounds,
which are necessarily dimension-dependent. Another line of work (Tripuraneni et al., 2020; Du et al.,
2020; Tripuraneni et al., 2021) considers multitask/meta learning under squared loss under task
diversity assumptions that make it easier to identify the optimal representation. In contrast, our work
gives bounds for the 0/1-loss without diversity assumptions. We note that the previous works all rely
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on covering arguments that are suitable for reasoning about Lipschitz loss functions and margin-based
bounds. However, as in the case of single-task learning, these techniques are insufficient for reasoning
about 0/1-loss over worst-case distributions, and we need to use VC-dimension arguments instead.

Other ways to model task relatedness based on Kolmogorov/information complexity include Juba
(2006); Ben-David and Borbely (2008); Hassan Mahmud (2009). Lastly Hanneke and Kpotufe (2022)
consider a setting where the tasks share the same optimal classifier, not just a common representation
that can be specialized to different optimal classifiers.

Computationally efficient algorithms. While our work focuses on the intrinsic information-
theoretic sample complexity of multitask and metalearning, there is a long line of work (Balcan
et al., 2019; Kong et al., 2020a,b; Saunshi et al., 2020; Fallah et al., 2020; Thekumparampil et al.,
2021; Chen et al., 2021; Collins et al., 2022) that studies the sample complexity of specific practical
heuristics such as model-agnostic metalearning (MAML) under more restrictive assumptions where
these heuristics are provably effective. Bairaktari et al. (2023) also give efficient algorithms for
multitask learning sparse low-weight halfspaces.

PAC-Bayes bounds for multitask and metalearning. Another important line of work (Pentina and
Lampert, 2014; Amit and Meir, 2018; Lucas et al., 2020; Rezazadeh et al., 2021; Rothfuss et al.,
2021; Chen et al., 2021; Rezazadeh, 2022) extends the PAC-Bayes and other information-theoretic
generalization bounds to the multitask and metalearning problems. These works typically consider
properties of both a data distribution and an algorithm that bound generalization error, but do not
address the optimal sample complexity of learning specific families, which is the focus of our work.

2. Preliminaries

In this work we consider several different types of objects—representations and classifiers—and
several different types of error—training and test error over different distributions. The following
table summarizes these error measures. For further details about our notation see Appendix A.

err(S, f) = 1
|S|

∑|S|
i=1 I{f(xi) ̸= yi} training error of classifier f

err(P, f) = Pr(x,y)∼P [[[f(x) ̸= y ]]] test error of classifier f

err(P,F) = minf∈F Pr(x,y)∼P [[[f(x) ̸= y ]]] test error of class F
rep-err(S, h,F) = minf∈F err(S, f ◦ h) training error of representation h

rep-err(P, h,F) = minf∈F err(P, f ◦ h) = err(h(P ),F) test error of representation h

rep-err(Q, h,F) = EP∼Q[rep-err(P, h,F)] meta-error of representation h

pnr(P,F ,m) = PrS∼Pm[[[S is not realizable by F ]]] probability of non-realizability

Our sample complexity results are based on classical generalization bounds via VC dimension
and pseudodimension. These definitions and results are included in Appendix A and in standard
references (Shalev-Shwartz and Ben-David, 2014; Anthony and Bartlett, 1999). The VC dimension
of a function class F is denoted VC(F) and the pseudodimension is PDim(F).

9
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3. Metalearning

In this section, we define the metalearning model and outline our arguments bounding the number
of tasks and samples per task needed to properly metalearn general classes of representations and
specialized classifiers. For complete proofs and additional discussion see Appendix D.

3.1. The Proper Metalearning Model

Suppose there exists a distribution Q of different but related binary classification tasks. For each task,
specified by a distribution P , we can draw a dataset of labeled examples in X × {±1}. In proper
metalearning, we draw t tasks from distribution Q and pool together the data from these tasks. We
exploit the relatedness between the tasks to learn a common representation h : X → Z in H that
maps the features to a new domain, in the hope that the learned representation facilitates learning
new tasks from the same distribution Q with fewer samples compared to the baseline where we had
to learn those tasks from scratch.

The accuracy of the representation is measured based on how well we can use it to solve a
new binary classification task drawn from the same distribution as the ones we have seen in the
metalearning phase. The data efficiency of the metalearning algorithm is measured based on two
parameters, the number of tasks and the number of samples per task. The proper metalearning setting
is particularly interesting when the number of samples per task is too small to learn a good classifier
for each task independently, so data must be pooled across tasks to find a representation that can be
specialized to new tasks using less data than we would need to learn from scratch.

Definition 3.1 (Proper Metalearning) Let H be a class of representation functions h : X → Z
and F be a class of specialized classifiers f : Z → {±1}. We say that (H,F) is (ε, δ)-properly
meta-learnable for t tasks and n samples per task, if there exists an algorithm A that for all
metadistributions Q over distributions on X × {±1} has the following property: Given n i.i.d.
samples per task distribution Pj , where j ∈ [t], that was drawn indepedently from Q, A returns
representation ĥ ∈ H such that with probability at least 1− δ over the randomness of the samples
and the algorithm

rep-err
(
Q, ĥ,F

)
≤ min

h∈H
rep-err(Q, h,F) + ε. (2)

If there exists an algorithm A such that the same guarantee holds only for all metadistributions
Q such that minh∈H rep-err(Q, h,F) = 0 then we say that (H,F) is (ε, δ)-properly meta-learnable
for t tasks and n samples per task in the realizable case.

Definition 3.1 only requires us to learn a good representation ĥ, and does not explicitly discuss
the number of samples required to learn a good specialized classifier for a new task. However, the
sample complexity for specialization is essentially determined by the complexity of F . That is, given
a new task P ′ drawn from Q and a representation ĥ that satisfies (2), nspec = O(VC(F)/ε2) suffice
in order to find an f ∈ F such that f ◦ ĥ has error rep-err(Q, ĥ,F) + 2ε. The size nspec of the data
used for specialization could be much larger or smaller than the per-task training set size n.

3.2. Sample and Task Complexity Bounds

In this section we give generic sample complexity bounds in terms of two quantities, the VC
dimension of the realizability predicate (see Definition 1.6) and the pseudodimension of the empirical

10
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error predicate (see Definition 1.8). For the realizable case, Theorem 3.2 covers the case where we
have very few samples per task, which we consider to be the most interesting case, and Theorem 3.5
covers the case where we have more samples per task. The agnostic case is covered in Theorem 3.6.

Theorem 3.2 (Complete statement of Theorem 1.7) Let F be a class of specialized classifiers
f : Z → {±1} with dual Helly number DH(F) = m and H be a class of representation functions
h : X → Z . Then, for every ε and δ in (0, 1), we can (ε, δ)-properly metalearn (H,F) in the
realizable case for t tasks and n samples per task when

t =
(
VC(Rm,F ,H) + ln(1/δ)

)
·
(
O(max(VC(F),m) ln(1/ε))

mε

)m
and n = m.

We use Lemmas 3.3 and 3.4 to prove Theorem 3.2. For a fixed distribution P and class F , Lemma 3.3
allows us to relate the probability of drawing a nonrealizable dataset, pnr(P,F ,DH(F)), to the test
error of class F .

Lemma 3.3 Let F be the class of specialized classifiers f : Z → {±1} with DH(F) = m. Fix an
arbitrary distribution B over Z × {±1}. If err(B,F) > 0, then

pnr(B,F ,m) ≥ 1

2

([
m · err(B,F)

16e · v ln (16/err(B,F))

]m)
,

where v = max(VC(F),m).

Q
meta dist.

Pj
task j dist.

Distribution D

Labeled
samples
(x

(j)
1 , y

(j)
1 )

(x
(j)
2 , y

(j)
2 )

...
(x(j)n , y(j)n )

ζj := ((x
(j)
1 , y

(j)
1 , . . . , x

(j)
m , y

(j)
m ),+1)

n times

samplesample

& add label +1

Concatenate

Figure 1: Constructing a datapoint drawn from distribution D.

The prior lemma established a quantitative relationship between the test error of F and the probability
of non-realizability. The following lemma shows how we can exploit this relationship for provable
metalearning. For its proof we view the dataset of every task j as a single “data point” ζj constructed
as depicted in Figure 1. Our goal is to learn a realizability predicate that labels these points correctly.
We prove that such a predicate corresponds to a representation with bounded meta-error.

Lemma 3.4 Let H be a class of representation functions h : X → Z , F be a class of spe-
cialized classifiers f : Z → {±1} and m be a positive integer. Suppose there exists a strictly
increasing convex function ϕ : (0, 1] → [0, 1] such that for all metadistributions Q satisfying
minh∈H rep-err(Q, h,F) = 0, all data distributions P in the support of Q and all representations
h ∈ H, if rep-err(P, h,F) > 0 the following holds:

ϕ(rep-err(P, h,F)) ≤ Pr(x1,y1),...,(xm,ym)∼Pm[[[ (h(x1), y1), . . . , (h(xm), ym) not realizable by F ]]] .
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Then, we can (ε, δ)-properly metalearn (H,F) with t = O
(
VC(Rm,F,H)+ln(1/δ)

ϕ(ε)

)
tasks and m

samples per task in the realizable case.

Theorem 3.5 Let H be a class of representation functions h : X → Z and F be a class of special-
ized classifiers f : Z → {±1}. For every ε, δ ∈ (0, 1), we can (ε, δ)-properly metalearn (H,F) in
the realizable case with t tasks and n samples per task when t = O

(
VC(Rn,F,H) ln(1/ε)+ln(1/δ)

ε

)
and n = O

(
VC(F) ln(1/ε)

ε

)
.

Next, we consider metalearning when the underlying metadistribution is not realizable, and show
that the pseudodimension of the empirical error predicate (Definition 1.8) bounds the number of
tasks needed.

Theorem 3.6 (Restatement of Theorem 1.9) Let H be a class of representation functions h :
X → Z and F be a class of specialized classifiers f : Z → {±1}. Then, for every ε and
δ ∈ (0, 1) we can (ε, δ)-properly metalearn (H,F) with t tasks and n samples per task when
t = O

(
PDim(Qn,F,H) ln(1/ε)+ln(1/δ)

ε2

)
and n = O

(
VC(F)+ln(1/ε)

ε2

)
.

4. Metalearning of Halfspaces over Linear Representations

In this section, we focus on metalearning of halfspaces with a shared linear representation:

Hd,k =
{
h | h(x) = Bx,B ∈ Rk×d

}
, and Fk =

{
f | f(z) = sign(a · z− w),a ∈ Rk, w ∈ R

}
.

More precisely, the representation is a linear projection that maps vectors in d dimensions to vectors
in k dimensions. The specialized classifiers are halfspaces over the k-dimensional representation.

We use our results for general classes from Section 3 to bound the number of tasks and the
number of samples per task we need to properly metalearn (Hd,k,Fk). Our results (Corollary 4.3 for
realizable learning and Corollary 4.6 for agnostic) rely on bounding the VC dimension of the class
of realizability predicates and the pseudodimension of the class of empirical error functions. See
Appendix E for proofs and extensions.

Before presenting our results for proper metalearning, we provide a lemma that generalizes
Warren’s theorem (Lemma E.1). We construct a parameterized class of hypotheses based on a given
Boolean function g whose inputs are signs of polynomials. Appealing to Warren’s theorem, we show
that the VC dimension of this class cannot be too large.

Lemma 4.1 Letw, ℓ, d ∈ N with ℓ ≥ 2 and fix a domain of features X and a function g : {±1}w →
{±1}. For each x ∈ X , let p(1)x , . . . , p

(w)
x be degree-ℓ polynomials in d variables. Consider the

hypothesis class C consisting of, for all v ∈ Rd, the functions cv : X → {±1} defined as

cv(x) := g(sign(p(1)x (v)), . . . , sign(p(w)x (v))). (3)

We have VC(C) ≤ 8d log2(ℓw).

Our central result on halfspaces over linear representations in the realizable setting is Theorem 4.2,
which bounds the VC dimension of the realizability predicates (see Definition 1.6). This VC dimen-
sion bound, combined with our metalearning bounds for general classes in Section 3, immediately
yields our statement about metalearning presented in Corollary 4.3.
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Theorem 4.2 For every d, k, n with n ≥ k + 2, VC(Rn,Fk,Hd,k
) ≤ O(dkn+ dk log(kn)).

Corollary 4.3 (Detailed version of Corollary 1.3) We can (ε, δ)-properly metalearn (Hd,k,Fk)

in the realizable case with t tasks and n samples per task when t =
(
dk2 + ln(1/δ)

)
·O

(
ln(1/ε)
ε

)k+2

and n = k + 2, or t = O
(
dk2 ln2(1/ε)

ε2
+ ln(1/δ)

ε

)
and n = O

(
k ln(1/ε)

ε

)
.

Proof [of Corollary 4.3] For the class of halfspaces, the following result of Kirchberger gives the
exact dual Helly number:

Fact 4.4 (Kirchberger (1903)) Every dataset of size at least k + 2 that is not realizable by k-
dimensional halfspaces has a subset of size k + 2 that is not realizable by k-dimensional halfspaces.
Therefore, DH(Fk) = k + 2.

Theorem A.6 states that the VC dimension of the linear separators for k-dimensional points
is k + 1. Using these facts, Theorem 3.2, and Theorem 4.2, we obtain the first task and sample
complexities in the statement of the corollary. Similarly, the second line of complexities is derived
when we use Theorem 3.5 instead of Theorem 3.2.

We now turn to bounding the pseudodimension (Definition A.7) of the class of empirical error
functions (Definition 1.8). This bound on the pseudodimension immediately gives the statement
about the task complexity of metalearning linear representations.

Theorem 4.5 (Thm. 1.10, Restated) For all d, k, nwith n ≥ k+2, PDim(Qn,Fk,Hd,k
) = Õ(dkn) .

Corollary 4.6 We can (ε, δ)-properly metalearn (Hd,k,Fk) with t tasks and n samples per task

when t = O
(
dk2 ln(1/ε)+dk ln(1/ε)2

ε4
+ ln(1/δ)

ε2

)
and n = O

(
k+ln(1/ε)

ε2

)
.

Acknowledgments

Part of this work was performed while MA was at Northeastern University and Boston University, and
while GB was at Boston University. MA, KB, and JU were supported by NSF awards CNS-2120603,
CNS-2232692, and CNS-2247484. MA and GB, while at Boston University, and AS were supported
in part by NSF awards CCF-1763786 and CNS-2120667 and Faculty Awards from Google and Apple.
While at the University of Washington, GB was supported by NSF Award 2019844. While at Boston
University, MA was supported by BU’s Hariri Institute of Computing.

References

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In
International Conference on Machine Learning, pages 205–214. PMLR, 2018.

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999. doi: 10.1017/CBO9780511624216.

Konstantina Bairaktari, Guy Blanc, Li-Yang Tan, Jonathan Ullman, and Lydia Zakynthinou. Multitask
learning via shared features: Algorithms and hardness. In The Thirty Sixth Annual Conference on
Learning Theory, COLT ’23. PMLR, 2023.

13



ALIAKBARPOUR BAIRAKTARI BROWN SMITH SREBRO ULLMAN

Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pages 424–433. PMLR,
2019.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

Shai Ben-David and Reba Schuller Borbely. A notion of task relatedness yielding provable multiple-
task learning guarantees. Machine learning, 73:273–287, 2008.

Olivier Bousquet, Steve Hanneke, Shay Moran, and Nikita Zhivotovskiy. Proper learning, helly
number, and an optimal svm bound. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings
of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pages 582–609. PMLR, 09–12 Jul 2020.

Rich Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

Qi Chen, Changjian Shui, and Mario Marchand. Generalization bounds for meta-learning: An
information-theoretic analysis. Advances in Neural Information Processing Systems, 34:25878–
25890, 2021.

Liam Collins, Aryan Mokhtari, Sewoong Oh, and Sanjay Shakkottai. Maml and anil provably learn
representations. In International Conference on Machine Learning, pages 4238–4310. PMLR,
2022.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pages 1082–1092. PMLR, 2020.

Steve Hanneke and Samory Kpotufe. A no-free-lunch theorem for multitask learning. The Annals of
Statistics, 50(6):3119–3143, 2022.

M.M. Hassan Mahmud. On universal transfer learning. Theoretical Computer Science, 410(19):
1826–1846, 2009. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2009.01.013. Algorithmic
Learning Theory.

Brendan Juba. Estimating relatedness via data compression. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, ICML ’06, page 441–448, New York, NY, USA, 2006.
Association for Computing Machinery. ISBN 1595933832.

Daniel Kane, Roi Livni, Shay Moran, and Amir Yehudayoff. On communication complexity of
classification problems. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-
Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research,
pages 1903–1943. PMLR, 25–28 Jun 2019.
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Appendix A. Notation and Background

In this paper, we use bold lowercase letters for vectors, e.g. a, and bold uppercase letters for matrices,
e.g. A. Given a d-dimensional vector a and a value b, (a∥b) is a d+ 1-dimensional vector, where
we have appended value b to vector a. For distributions over labeled data points we use the regular
math font, e.g. D, whereas for metadistributions (distributions over task data distributions) we use
fraktur letters, e.g. D. We define the indicator function of a predicate p as

I{p} =

{
1 if p is true
0 o.w.

.

Occasionally, we use the alternative indicator I±{p}, which takes value +1 if p is true and −1
otherwise. We also use the following sign function

sign(x) =

{
+1 if x ≥ 0

−1 o.w.
.

Contrary to the convention in Boolean analysis, when necessary we interpret +1 as logical “true”
and −1 as logical “false.”
VC dimension. We start by recalling the standard definition of VC dimension and the Sauer-Shelah
Lemma.

Definition A.1 Let F be a set of functions mapping from a domain X to {±1} and suppose that
X = (x1, . . . , xn) ⊆ X . We say that F shatters X if, for all b ∈ {±1}n, there is a function fb ∈ F
with fb(xi) = bi for each i ∈ [n].

The VC dimension of F , denoted VC(F), is the size of the largest set X that is shattered by F .

VC dimension is closely related to the growth function, which bounds the number of distinct
labelings a hypothesis class can produce on any fixed data set.

Definition A.2 Let F be a class of functions f : Z → {±1} and S = {z1, . . . , zn} be a set of
points in Z . The restriction of F to S is the set of functions

FS = {(f(z1), . . . , f(zn)) | f ∈ F}.

The growth function of F , denoted GF (n), is GF (n) := supS:|S|=n|FS |.
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The Sauer-Shelah Lemma, which bounds the growth function in terms of the VC dimension.

Lemma A.3 If VC(F) = v, then for every n > v, GF (n) ≤ (en/v)v.

VC dimension and PAC learning. Now we recall the relationship between VC dimension and the
sample complexity of distribution-free PAC learning. Here we refer to the textbook notion of PAC
learning without giving a formal definition.

Theorem A.4 Let C be a hypothesis class of functions f : X → {±1} with VC(C) = v <∞, then
for every ε, δ ∈ (0, 1)

1. C has uniform convergence with sample complexity O(v+ln(1/δ)
ε2

)

2. C is agnostic PAC learnable with sample complexity O(v+ln(1/δ)
ε2

)

3. C is PAC learnable with sample complexity O(v ln(1/ε)+ln(1/δ)
ε ).

While uniform convergence requires O(1/ε2) samples, with just O(ln(1/ε)/ε) samples we will
have the property that every hypothesis that has error ε on the distribution has non-zero error on the
sample.

Theorem A.5 Let C be a hypothesis class with VC dimension v. Let D be a probability distribution
over X × {±1}. For any ε, δ > 0 if we draw a sample S from D of size n satisfying

n ≥ 8

ε

(
v ln

(
16

ε

)
+ ln

(
2

δ

))
then with probability at least 1− δ, all hypotheses f in F with err(D, f) > ε have err(S, f) > 0.

VC dimension of halfspaces. For a significant part of this paper, we work with linear classifiers of
the form

Fd =
{
f
∣∣∣f(x) = sign(a · x− w),a ∈ Rd, w ∈ R

}
.

We also consider the class of linear classifiers that pass through the origin

F̃d =
{
f
∣∣∣f(x) = sign(a · x),a ∈ Rd

}
.

Theorem A.6 We have VC(Fd) = d+ 1 and VC(F̃d) = d.

Pseudodimension. For real-valued functions we use generalization bounds based on a generalization
of VC dimension called the pseudodimension.

Definition A.7 Let F be a set of functions mapping from a domain X to R and suppose that
X = (x1, . . . , xn) ⊆ X . We say that X is pseudoshattered by F if there are real numbers r1, . . . , rn
such that for each b ∈ {±1}n there is a function fb ∈ F with sign(fb(xi)− ri) = bi for each i ∈ [n].

The pseudodimension of F , denoted Pdim(F), is the size of the largest set X that is pseudoshat-
tered by F .

Theorem A.8 Let C be a hypothesis class of functions f : X → R with PDim(C) = ψ <∞, then
C has uniform convergence with sample complexity O(ψ ln(1/ε)+ln(1/δ)

ε2
).

17



ALIAKBARPOUR BAIRAKTARI BROWN SMITH SREBRO ULLMAN

Appendix B. Multitask Learning and Metalearning Models

In this section we introduce two other learning models we also consider in this work, one for multitask
learning and one for general (improper) metalearning.

B.1. The Multitask Learning Model

In multitask learning, we pool data together from t related tasks with the aim of finding one classifier
per task so that the average test error per task is low. When these tasks are related, we may need fewer
samples per task than if we learn them separately, because samples from one task inform us about
the distribution of another task. In this work, we consider classifiers that use a shared representation
to map features to an intermediate space in which the specialized classifiers are defined. We want to
achieve low error on tasks that are related by a single shared representation that can be specialized to
obtain a low-error classifier for most tasks.

Definition B.1 (Multitask learning) Let H be a class of representation functions h : X → Z
and F be a class of specialized classifiers f : Z → {±1}. We say that (H,F) is distribution-free
(ε, δ)-multitask learnable for t tasks with n samples per task if there exists an algorithm A such
that for every t probability distributions P1, . . . , Pt over X × {±1}, for every h ∈ H and every
f1, . . . , ft ∈ F , given n i.i.d. samples from each Pi, returns hypothesis g : [t]× X → {±1} such
that with probability at least 1− δ over the randomness of the samples and the algorithm

1

t

∑
j∈[t]

err(Pj , g(j, ·)) ≤ min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , fj ◦ h) + ε.

If there exists an algorithm A such that the same guarantee holds except that we only quantify
over all distributions P1, . . . , Pt such that

min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , fj ◦ h) = 0

then we say that (H,F) is distribution-free (ε, δ)-multitask learnable for t tasks with n samples per
task in the realizable case.

For brevity, we will typically omit the term “distribution-free,” which applies to all of the results
in this paper.

The natural approach to learning (H,F) is to learn a classifier that, given the index of a task
and the features of a sample, computes the representation of the sample and then labels it using the
task-specific specialized classifier. We call the class of these classifiers F⊗t ◦ H.

Definition B.2 Let H be a class of representations h : X → Z and f be a class of specialized
classifiers f : Z → {±1}. We define the class of composed classifiers for multitask learning with t
tasks as

F⊗t ◦ H = {g : [t]×X → {±1} | ∃h ∈ H, f1, . . . , ft ∈ F s.t. g(j, x) = fj(h(x))}.
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B.2. The General (Improper) Metalearning Model

We can also think of metalearning as a more general process than the proper metalearning model we
defined which finds a good representation. At a high level the metalearning process pools together
datasets from multiple tasks and returns an algorithm that we can use in the future to obtain good
classifiers for new tasks drawn from the same metadistribution. In proper metalearning we did
not just specify the form of the output of the specialization algorithm, but also the specialization
algorithm itself. In that case, the metalearning process finds a representation ĥ ∈ H and everytime
the specialization algorithm is called it performs ERM using the samples from the new task to find a
f ∈ F that minimizes the training error of f ◦ ĥ.

Definition B.3 (General Metalearning) Let H be a class of representation functions h : X → Z
and F be a class of specialized classifiers f : Z → {±1}. We say that (H,F) is (ε, δ)-meta-
learnable for t tasks, n samples per task and nspec specialization samples, if there exists an algorithm
A that for all metadistributions Q over distributions on X ×{±1} has the following property: Given
n i.i.d. samples from each data distribution Pj , where j ∈ [t], that was drawn independently from Q,
A returns a specialization algorithm A′. Algorithm A′, given a set S of nspec samples from P which
was drawn from Q, returns hypothesis g : X → {±1} such that with probability at least 1− δ over
the randomness of the samples of the t tasks and algorithms A and A′

E
P,S

[
err(P,A′(S))

]
≤ min

h∈H
E
P

[
min
f∈F

err(P, f ◦ h)
]
+ ε.

B.3. Reductions between improper metalearning and multitask learning

We show how we can reduce metalearning to multitask learning. The algorithm we construct for the
reduction stores the given t datasets. For every new task it performs multitask learning on the t+ 1
datasets and returns the hypothesis that corresponds to the new task. We need to highlight that this is
not a proper metalearning algorithm, since it does not return one representation that is used for all
new tasks, but the algorithm builds the classifier from scratch every time it is given a new task.

Theorem B.4 Suppose (H,F) is (ε, ε)-multitask learnable for t+ 1 tasks and n samples per task.
Then, for all c > 0, it is (improperly) (cε, 2/c)-meta-learnable, for t tasks, n samples per task and n
specialization samples.

Proof Given a multitask learning algorithm Amulti, we construct a metalearning algorithm Ameta
that stores the t data sets and, when given the new dataset, runs Amulti on the collected t+ 1 datasets.
Formally, recall that a multitask learning algorithm sees the datasets of t+ 1 tasks and outputs one
hypothesis per task minimizing the average test error, while a metalearning algorithm sees t datasets
from tasks drawn from the same metadistribution and outputs an algorithm Aspec that can be used to
train a model for a new task.

In our reduction, the metalearning algorithm Ameta, on input data sets S1, ..., St, returns an
algorithm Aspec which, given a set Snew of n samples from distribution Pnew for a new task, executes
the following steps. First, it draws an index jnew uniformly at random from [t+ 1] and inserts the
new task in this position by setting S′

jnew
= Snew. For j < jnew it sets S′

j = Sj and for j > jnew
S′
j = Sj+1. For notation purposes, let P ′

j be the distribution that S′
j was drawn from. Second, it runs

the multitask algorithm Amulti for t+ 1 tasks and n samples for each of these tasks. At the end, it
outputs the classifier it has computed for the jnew-th task.
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By our assumption, the guarantee that multitask learning gives is that Amulti outputs g1, . . . , gt+1

such that with probability at least 1 − ε over the randomness of Amulti and the t + 1 datasets
S′
1, . . . , S

′
t+1

1

t+ 1

∑
j∈[t+1]

err(P ′
j , gj) ≤ min

h∈H;f1,...,ft+1∈F

1

t+ 1

∑
j∈[t+1]

err(P ′
j , fj ◦ h) + ε. (4)

Therefore, for all distributions P ′
1, . . . , P

′
t+1 in the support of Q

E
Amulti,S1,...,St+1

 1

t+ 1

∑
j∈[t+1]

err(P ′
j , gj)

 ≤ min
h∈H;f1,...,ft+1∈F

1

t+ 1

∑
j∈[t+1]

err(P ′
j , fj ◦ h) + 2ε.

We now want to compute the expected error of the metalearning algorithm over the randomness
of the algorithm and the stored datasets. Since we draw index jnew uniformly at random,

E
Aspec,P1,...,Pt,S1,...,St,

[
E
P,S

[
err(P,Aspec(S))

]]
=

E
Amulti,j∼Unif([t+1]),P1,...,Pt,S1,...,St

[
E
P,S

[
err(P,Amulti(S

′
1, . . . , S

′
t+1)j)

]]
=

E
Amulti,P1,...,Pt,S1,...,St

 1

t+ 1

∑
j∈[t+1]

E
P,S

[
err(P,Amulti(S

′
1, . . . , S

′
t+1)j)

] =

E
Amulti,P

′
1,...,P

′
t+1,S

′
1,...,S

′
t+1

 1

t+ 1

∑
j∈[t+1]

err(P ′
j ,Amulti(S

′
1, . . . , S

′
t+1)j)

.
Combining the above results we obtain the following inequality

E
Aspec,P1,...,Pt,S1,...,St

[
E
P,S

[
err(P,Aspec(S))

]]
≤

E
P ′
1,...,P

′
t+1

 min
h∈H,f1,...,ft+1∈F

1

t+ 1

∑
j∈[t+1]

err(P ′
j , fj ◦ h)

+ 2ε ≤

min
h∈H

E
P ′
1,...,P

′
t+1

 1

t+ 1

∑
j∈[t+1]

min
fj∈F

err(P ′
j , fj ◦ h)

+ 2ε =

min
h∈H

E
P

[
min
f∈F

err(P, f ◦ h)
]
+ 2ε.

Therefore, we have shown that

E
Aspec,P1,...,PtS1,...,St

[
E
P,S

[
err(P,Aspec(S))

]
−min

h∈H
E
P

[
min
f∈F

err(P, f ◦ h)
]]

< 2ε.

We apply Markov’s inequality to obtain the following probability

PrAspec,P1,...,Pt,S1,...,St

[[[
E
P,S

[
err(P,Aspec(S))

]
−min

h∈H
E
P

[
min
f∈F

err(P, f ◦ h)
]
> cε

]]]
≤

EAspec,P1,...,Pt,S1,...,St

[
EP,S

[
err(P,Aspec(S))

]
−minh∈H EP [minf∈F err(P, f ◦ h)]

]
cε

<
2

c
.
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To conclude, we showed that with probability at least 1− 2
c over algorithm Aspec

E
P,S

[
err(P,Aspec(S))

]
≤ min

h∈H
E
P

[
min
f∈F

err(P, f ◦ h)
]
+ cε.

Corollary 4.6 captures one application of this general reduction to the case of linear classes with
n roughly k/ε2 samples per task.

We can also show the opposite direction, how to reduce multitask learning to metalearning.
We first use some of the samples from the tasks to learn a specialization algorithm and then we
run this algorithm to learn one classifier per task. Since metalearning assumes the existence of a
metadistribution, we set it to be the uniform distribution over the distributions of the seen tasks. As a
result, when we draw tasks from the metadistribution we might draw the same task more than once,
which means we need additional samples from that task. We use a standard balls-and-bins argument
(Lemma B.5) to argue that we have enough samples per task to generate independent samples for
metalearning.

Lemma B.5 Suppose we draw t samples from a uniform distribution over [t]. Let Fi denote the
frequency of each i ∈ [t] in the sample set. With probability 1− δ, maxi Fi is at most ln((t/δ)2)

ln ln((t/δ)2)
.

Theorem B.6 Suppose (H,F) is (improperly) (ε, ε)-metalearnable for t tasks, n samples per task
and nspec specialization samples. Then, for all c > 0, it is (cε, 3/c)-multitask learnable for t tasks
and n⌈2 ln(ct)⌉+ nspec samples per task.

Proof Given a metalearning algorithm Ameta that returns a specialization algorithm Aspec, we
construct a multitask learning algorithm Amulti.

In our reduction, Amulti gets as input t datasets S1, . . . , St, where each Sj has n⌈ln(ct)⌉+ nspec
samples drawn i.i.d. from distribution Pj , and executes the following steps:

1. Draw t indices of tasks i1, . . . , it uniformly at random from [t] with replacement. A pair of
tasks ij , ij′ might correspond to the same original task.

2. Build datasets S′
1, . . . , S

′
t as follows. For each j, if there are no samples remaining in Sij , fail

and output ⊥, otherwise let S′
j be the next n samples from Sij and delete those samples from

Sij .

3. Run Ameta(S
′
1, . . . , S

′
t) which returns Aspec.

4. For every j ∈ [t] define dataset Sspec
j as a set of nspec datapoints from Sj . As in Step 2, avoid

using the same datapoint twice (and output ⊥ if that’s impossible).

5. For every task j, set gj = Aspec(S
spec
j ).

The goal in multitask learning is to bound the probability

PrS1,...,St,Amulti

 1

t

∑
j∈[t]

err(Pj , gj) ≤ min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , f ◦ h) + cε
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for all P1, . . . , Pt.
Fix t tasks P1, . . . , Pt. The multitask learning algorithm receives a dataset per task Sj of

n⌈ln(ct)⌉ + nspec samples as input, and in steps 1 and 2 constructs an appropriate input for the
metalearning algorithm. Let B be the event that the algorithm outputs ⊥. In other words, it’s the
event it drew some task j more than ⌈2 ln(ct)⌉ times in step 1. By Lemma B.5 we know that
PrS1,...,St,Amulti[[[B ]]] ≤ 1

c .
By our assumption, if B does not hold, then Ameta returns specialization algorithm Aspec with the

guarantee that with probability at least 1− ε over the randomness of the samples and the algorithms

E
P,S

[
err(P, (Ameta(S

′
1, . . . , S

′
t))(S))

]
≤ min

h∈H
E
P

[
min
f∈F

err(P, f ◦ h)
]
+ ε,

where P is Pj for j drawn uniformly at random from [t].
Thus,

E
i1,...,it,S′

1,...,S
′
t,Ameta,Aspec

[
E
j,S

[
err(Pj , (Ameta(S

′
1, . . . , S

′
t))(S))

∣∣ not B
]]

≤ min
h∈H

E
j

[
min
f∈F

err(Pj , f ◦ h)
]
+2ε.

Conditioning on B not happening, we see that

E
S1,...,St,
Amulti

 1

t

∑
j∈[t]

err(Pj , gj)

∣∣∣∣∣∣ not B

 =

E
S1,...,St,
i1,...,it,

Ameta,Aspec

 1

t

∑
j∈[t]

err(Pj ,Ameta(S
′
1, . . . , S

′
t)(S

spec
j )

∣∣∣∣∣∣ not B

 =

E
S1\Sspec

1 ,...,St\Sspec
t ,

i1,...,it,
Ameta,Aspec

 1

t

∑
j∈[t]

E
S

spec
j

[
err(Pj ,Ameta(S

′
1, . . . , S

′
t)(S

spec
j )

]∣∣∣∣∣∣ not B

 =

E
S1\Sspec

1 ,...,St\Sspec
t ,

i1,...,it,
Ameta,Aspec

[
E
j,S

[
err(Pj ,Ameta(S

′
1, . . . , S

′
t)(S)

]∣∣∣∣ not B
]
=

E
i1,...,it,
S′
1,...,S

′
t,

Ameta,Aspec

[
E
j,S

[
err(Pj ,Ameta(S

′
1, . . . , S

′
t)(S)

]∣∣∣∣ not B
]
≤

min
h∈H

E
j

[
min
f∈F

err(PJ , f ◦ h)
]
+ 2ε =

min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , fj ◦ h) + 2ε.
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By Markov’s inequality we can bound the corresponding probability

PrS1,...,St,Amulti

 1

t

∑
j∈[t]

err(Pj , gj)− min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , f ◦ h) > cε

∣∣∣∣∣∣ not B

 ≤

1

cε
· E
S1,...,St,Amulti

 1

t

∑
j∈[t]

err(Pj , gj)− min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , f ◦ h) > cε

∣∣∣∣∣∣not B

 ≤ 2

c
.

Combining the results above we can show that for all P1, . . . , Pt

PrS1,...,St,Amulti

 1

t

∑
j∈[t]

err(Pj , gj) > min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , f ◦ h) + cε

 ≤

PrS1,...,St,Amulti

 1

t

∑
j∈[t]

err(Pj , gj)− min
h∈H,f1,...,ft∈F

1

t

∑
j∈[t]

err(Pj , f ◦ h) > cε

∣∣∣∣∣∣ not B


+PrS1,...,St,Amulti[[[B ]]] ≤ 3

c
.

This concludes the proof.

Appendix C. Multitask Learning

In this section, we bound the number of tasks and samples per task we need to multitask learn using
the VC dimension. Moreover, we provide upper and lower bounds of this VC dimension for general
classes of representations and specialized classifiers.

C.1. Sample and Task Complexity Bounds for General Classes

Here we prove that the VC dimension of the composite class F⊗t ◦ H determines the total number
of samples required for multitask learning.

Theorem C.1 For any (H,F), any ε, δ > 0, and any t, n,

1. In the realizable case, (H,F) is (ε, δ)-multitask learnable with t tasks and n samples per task
when nt = O(VC(F⊗t◦H)·ln(1/ε)+ln(1/δ)

ε ).

2. In the agnostic case, (H,F) is (ε, δ)-multitask learnable with t tasks and n samples per task
when nt = O(VC(F⊗t◦H)·ln(1/δ)

ε2
).

3. If nt ≤ 1
4 ·VC(F⊗t ◦ H) then (H,F) is not (1/8, 1/8)-multitask learnable with t tasks and

n samples per task, even in the realizable case.

The proof of this theorem closely follows the standard proofs on VC dimension which upper and
lower bound on the sample complexity of distribution-free classification. The main difference is
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that the samples we analyze, while independent, are not identically distributed. This is because each
sample comes from a specific task distribution and these distributions are potentially different.
Proof We’ll start by proving part 1, which covers the realizable case. We will omit the proof of part
2, which generalizes the realizable case in a standard way. Finally, we will prove part 3.

Proof of 1. For every task j ∈ [t] we have n i.i.d. samples Sj = {(x(j)i , y
(j)
i )}i∈[n] drawn from

Pj . Our dataset is equivalent to dataset S = {(j, x(j)i , y
(j)
i )}i∈[n],j∈[t], where the js have fixed values.

In standard PAC learning we assume that all the datapoints are i.i.d. However, in our case the samples
are independent but not identically distributed because different tasks have (potentially) different
distributions.

As in standard PAC learning, our proof follows the “double-sampling trick”. We want to bound
the probability of bad event

B : ∃g ∈ F⊗ ◦ H s.t. err(S, g) = 0, but
1

t

∑
j∈[t]

err(Pj , g(j, ·)) > ε.

We consider an auxiliary dataset Ŝ = {(j, x̂(j)i , ŷ
(j)
i )}i∈[n],j∈[t], where (x̂

(j)
i , ŷ

(j)
i ) are drawn

independently from Pj . In our proof we will bound the probability of B by bounding the probability
of event

B′ : ∃g ∈ F⊗ ◦ H s.t. err(S, g) = 0, and err(Ŝ, g) >
ε

2
.

We can show that if nt > 8
ε , then PrS[[[B ]]] ≤ 2PrS,Ŝ[[[B

′ ]]]. We can show this by applying a

multiplicative Chernoff bound on err(Ŝ, g), which is an average of independent random variables.
Due to this step, it suffices to bound PrS,Ŝ[[[B

′ ]]].

We also define a third event B′′ as follows. We give S and Ŝ as inputs to randomized process
Swap which iterates over j ∈ [t] and i ∈ [n] and at every step it swaps (x(j)i , y

(j)
i ) with (x̂

(j)
i , ŷ

(j)
i )

with probability 1/2. Let T and T̂ be the two datasets this process outputs. We define event

B′′ : ∃g ∈ F⊗t ◦ H s.t. err(T, g) = 0 and err(T̂ , g) >
ε

2
.

We see that PrS,Ŝ,Swap[[[B
′′ ]]] = PrS,Ŝ[[[B

′ ]]]. This happens because T , T̂ , S and Ŝ are identically
distributed. Thus, what we need to do now is bound PrS,Ŝ,Swap[[[B

′′ ]]].
We start by showing that for a fixed g

PrSwap

[[[
err(T, g) = 0 and err(T̂ , g) >

ε

2
| S, Ŝ

]]]
≤ 2−ntε/2.

Given S and Ŝ, B′′ happens if for every j ∈ [t] and i ∈ [n] g predicts the label of x(j)i or x̂(j)i
correctly and makes m > εnt/2 mistakes overall. Additionally, all m mistakes g makes are in
dataset T̂ . This means that Swap assigns all these points to T̂ , which happens with probability
1/2m ≤ 1/2εnt/2.

Let
(
F⊗t ◦ H

)
(S ∪ Ŝ) ⊂ F⊗t ◦ H be a set of hypotheses which contains one hypothesis for

every labeling of S ∪ Ŝ. Then,
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PrS,Ŝ,Swap

[[[
B′′]]] = E

S,Ŝ

[
PrSwap

[[[
∃g ∈ F⊗t ◦ H s.t. err(T, g) = 0 and err(T̂ , g) >

ε

2
| S, Ŝ

]]]]
≤ E

S,Ŝ

 ∑
g∈F⊗t◦H(S∪Ŝ)

PrSwap

[[[
err(T, g) = 0 and err(T̂ , g) >

ε

2
| S, Ŝ

]]]
≤ GF⊗t◦H(2nt)2

−εnt/2.

For the probability of bad event B happening to be at most δ, by the steps above we need
nt ≥ 2

log2 GF⊗t◦H(2nt)+log2(2/δ)
ε samples in total.

By Lemma A.3, for nt > VC(F⊗t ◦ H),

log2 (GF⊗t◦H(2nt)) ≤ VC(F⊗t ◦ H) log2

(
e2nt

VC(F⊗t ◦ H)

)
.

One can show that if nt ≥ VC(F⊗t◦H)
ε log2

(
2e
ε

)
, then nt ≥ log2

(
e2nt

VC(F⊗t◦H)

)
VC(F⊗t◦H)

ε . Therefore,

we get that for nt ≥ VC(F⊗t◦H) log2(2e/ε)+log2(2/δ)
ε samples in total the probability of bad event B is

at most δ.

Proof of 3. Our goal is to construct distributions P1, . . . , Pt over X × {±1}. We will first build
their support and then define the probability distributions.

Let v = VC(F⊗t ◦ H). Since 4nt ≤ v, there exists a dataset S = {(ji, xi)}i∈[4nt] that can be
shattered by F⊗t ◦ H. Let Sj = {(ji, xi) ∈ S | ji = j}. In general for every task j the size of Sj ,
i.e. |Sj |, will be different. We want to use S to get a new dataset S′ that can be shattered by F⊗t ◦H,
but also has at least 2n points for every task. For every j ∈ [t] we throw away points from Sj until
we have a multiple of 2n. After doing this, we have thrown away at most 2n per task, which is at
most 2nt points in total. We can redistribute points so that we have at least 2n points per task as
follows. For every task j ∈ [t], if there are no points in this task, there must be another task k with
at least 4nt points. In this case, we move nt points from task k to task j by replacing k with j in
(k, xi). We denote this new dataset by S′ and the subset for task j, by S′

j .
We claim that S′ , which has at least 2n points per task, can also be shattered by F⊗t ◦H. To see

this, suppose that S was shattered by g̃. Now, if task j did not lose all its points, the remaining points
can be shattered by g̃(j, ·). Otherwise, we are in the case where j’s points were initially assigned to
task k, so they can be shattered by g̃(k, ·).

Let
(
F⊗t ◦ H

)
(S′) be a set of hypotheses that contains one function for each labeling of S′. We

choose a labeling function g uniformly at random from
(
F⊗t ◦ H

)
(S′). For all tasks j ∈ [t] we

define Pj as the distribution of (x, y) obtained by sampling x uniformly from S′
j (ignoring the task

index in the sample) and labeling it according to g.
Suppose that the (potentially randomized) learning algorithm A returns ĝ after seeing datasets

Ŝ1, . . . , Ŝt, where every Ŝj has n points drawn i.i.d. from Pj . For a fixed task j, the probability that
ĝ makes a mistake on a new point (x, y) drawn from Pj is

Prg,Ŝj ,(x,y)∼Pj
[[[ ĝ(j, x) ̸= y ]]] ≥ Prg,Ŝj ,(x,y)∼Pj

[[[
ĝ(j, x) ̸= y and x /∈ Ŝj

]]]
= Prg,Ŝj ,(x,y)∼Pj

[[[
x /∈ Ŝ

]]]
Prg,Ŝ,(x,y)∼Pj

[[[
ĝ(j, x) ̸= y | x /∈ Ŝj

]]]
.
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We know that PrŜj ,(x,y)∼Pj

[[[
x /∈ Ŝ

]]]
≥ 1/2 because x is chosen uniformly at random out of

more than 2n points that are in S′
j and Ŝj has only n points. When x /∈ Ŝj the algorithm has not seen

the label that corresponds to this x and, thus, y = g(j, x) is independent of ĝ(j, x). We have picked
g uniformly at random from a class with exactly one function per labeling, which means that for each
(j, x) we see +1 and −1 with equal probability. Therefore, Prg,Ŝj ,(x,y)∼Pj

[[[
ĝ(j, x) ̸= y | x /∈ Ŝj

]]]
=

1/2. Thus, Prg,Ŝj ,(x,y)∼Pj
[[[ ĝ(j, x) ̸= y ]]] ≥ 1/4.

The average error is

1

t

∑
j∈[t]

Prg,Ŝj ,(x,y)∼Pj
[[[ ĝ(j, x) ̸= y ]]] ≥ 1

4
.

In expectation over the labeling functions g and the randomness of algorithm A, we have

E
g,A

1

t

∑
j∈[t]

PrŜj ,(x,y)∼Pj
[[[ ĝ(j, x) ̸= y ]]]

 ≥ 1

4

Hence, there exists a labeling function g in F⊗t ◦ H(S′) such that

E
A

1

t

∑
j∈[t]

PrŜj ,(x,y)∼Pj
[[[ ĝ(j, x) ̸= y ]]]

 ≥ 1

4
.

For this g we have that

E
A

1

t

∑
j∈[t]

PrŜj ,(x,y)∼Pj
[[[ ĝ(j, x) ̸= y ]]]


= E

A

1

t

∑
j∈[t]

E
Ŝj

[err(Pj , ĝ(j, ·))]


= E

A,Ŝ1,...,Ŝt

1

t

∑
j∈[t]

err(Pj , ĝ(j, ·))


= PrA,Ŝ1,...,Ŝt

 1

t

∑
j∈[t]

err(Pj , ĝ(j, ·)) >
1

8

 E
A,Ŝ1,...,Ŝt

1

t

∑
j∈[t]

err(Pj , ĝ(j, ·))

∣∣∣∣∣∣
∑
j∈[t]

err(Pj , ĝ(j, ·)) >
1

8


+PrA,Ŝ1,...,Ŝt

 1

t

∑
j∈[t]

err(Pj , ĝ(j, ·)) <
1

8

 E
A,Ŝ1,...,Ŝt

1

t

∑
j∈[t]

err(Pj , ĝ(j, ·))

∣∣∣∣∣∣
∑
j∈[t]

err(Pj , ĝ(j, ·)) <
1

8


≤ PrA,Ŝ1,...,Ŝt

 1

t

∑
j∈[t]

err(Pj , ĝ(j, ·)) >
1

8

+
1

8

Thus, we showed that there exist P1, . . . , Pt such that PrA,Ŝ1,...,Ŝt

[[[
1
t

∑
j∈[t] err(Pj , ĝ(j, ·)) > 1

8

]]]
≥

1
8 .
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C.2. Generic Bounds on VC(F⊗t ◦ H)

Ideally, given H and F we would like to be able to determine the VC dimension of the composite
class F⊗t ◦ H. For general classes, we can state a few simple upper and lower bounds. For one
lower bound, consider the easier problem where someone gives us the representation h and we only
need to find the specialized classifiers f1, . . . , ft for each task. Even in this simpler setting we need
VC(F) samples per task, and thus the total sample complexity is tVC(F). For another lower bound,
consider the easier problem where all specialized classifiers are the same, so the data is labeled by a
single concept f ◦ h ∈ F ◦ H, which requires total sample complexity VC(F ◦ H).

For an upper bound, there is a naı̈ve strategy for multitask learning where we treat the data for
each task in isolation and simply try to learn a classifier from F ◦H. This requires sample complexity
VC(F ◦ H) per task.

Lemma C.2 formalizes these results.

Lemma C.2 For any representation class H that contains a surjective function, any class of
specialized classifiers F , and any t,

max{t ·VC(F),VC(F ◦ H)} ≤ VC(F⊗t ◦ H) ≤ t ·VC(F ◦ H).

The upper bound still holds even if H does not contain a surjective function.

Proof We will show the two parts of the statement separately.

Proof of the upper bound on VC dimension. Assume that we have a datasetX = ((j1, x1), . . . , (jn, xn))
of size n = VC(F⊗t ◦ H) which can be shattered by F⊗t ◦ H. We split it into t disjoint datasets
X1, . . . , Xt, where Xj = {xi : (j, xi) ∈ X}. Each one of these datasets can be shattered by F ◦ H.

Let nj be the size of dataset Xj . Then, we have that nj ≤ VC(F ◦ H). As a result, we obtain
VC(F⊗t ◦ H) =

∑
j∈[t] nj ≤ tVC(F ◦ H).

Proof of the lower bound on VC dimension. We will first show that VC(F⊗t ◦H) ≥ VC(F ◦H).
Suppose X = (x1, . . . , xn) is a dataset of size n that can be shattered by class F ◦ H. Then, for any
j1, . . . , jn ∈ [t], the dataset ((j1, x1), . . . , (jn, xn)) can be shattered by F⊗t ◦ H. To see this, fix a
labeling (y1, . . . , yn) of ((j1, x1), . . . , (jn, xn)). Since we assumed X could be shattered by F ◦ H,
there exists f∗ ∈ F and h∗ ∈ H such that ∀i ∈ [n], yi = f∗(h∗(xi)). Thus, there is a function in
F⊗t ◦ H (namely, the one with representation h∗ and all t personalization functions equal to f∗) that
realizes this labeling. Therefore, VC(F⊗t ◦ H) ≥ VC(F ◦ H).

Next, we will prove that VC(F⊗t ◦ H) ≥ tVC(F). Let (z1, . . . , zn) ∈ Zn be a dataset that F
can shatter. Since there exists an h ∈ H whose image is Z , there exist (x1, . . . , xn) ∈ X n such
that ∀i ∈ [n] h(xi) = zi. We now construct a new dataset ∪j∈[t]{(j, x1) . . . , (j, xn)}, which has nt
datapoints. Our function class F⊗t ◦ H can shatter this dataset. To see this: for any labeling we split
the dataset to t parts according to the value of j, use h to get (z1, . . . , zn) for each part. We then
label each part using an f ∈ F . This means that there exists a dataset of size tVC(F) that F⊗t ◦ H
can shatter. Thus, VC(F⊗t ◦ H) ≥ tVC(F).

See Appendix F for more precise bounds that hold for finite classes.
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Appendix D. Metalearning

In this section, we illustrate the techniques used to achieve the results in Section 3 via the special case
of monotone thresholds applied to 1-dimensional representations (Appendix D.1). This special case
corresponds to a natural setting where the representation assigns a real-valued score to each example,
but the threshold for converting that score into a binary label may vary from task to task. We then
restate the main theorems and provide their complete proofs for the realizable (Appendix D.2) and
the agnostic cases (Appendix D.3), respectively. Finally, we include a sample and task complexity
bound for general metalearning (Appendix D.4).

D.1. Warm Up and Techniques Overview

In this subsection, we describe the technical tools we use to bound the number of samples and
tasks needed to find a good representation ĥ. As a warm-up, we first prove Theorem D.4, which
covers metalearning for the class of monotone thresholds over linear representations in realizable
case with minimal sample complexity. For this example, we prove a stronger result than what is
implied by our general bounds. This example considers the class of linear representations that map
from d dimensions to 1 dimension, Hd,1 =

{
h | h(x) = b · x,b ∈ Rd

}
, and the class of specialized

monotone thresholds Fmon = {f | f(z) = sign(z − w), w ∈ R}. Then, we sketch the techniques
for metalearning with more samples per task. Finally, we discuss extending our techniques to the
agnostic case.

Metalearning in the realizable case. A data set S ∈ (Z × {±1})∗ is realizable by a concept class
F if there is an f ∈ F such that yi = f(zi) for every (zi, yi) ∈ S. A distribution B over Z × {±1}
is realizable by F if there exists f ∈ F such that y = f(z) with probability 1 over (z, y) ∼ B. In
our metalearning model, realizability has two “layers,” one for the representation and one for the
specialized classifiers. Let P be a family of data distributions P over X × {±1}. We say that P
is meta-realizable by F ◦ H if there exists a shared representation function h∗ for which, for all
P ∈ P , the test error of h∗, rep-err(P, h∗,F), is zero. In other words, there exists an h∗ such that for
all P ∈ P there exists a specialized classifiers f ∈ F such that err(P, f ◦ h∗) = 0. We say a meta
distribution is meta-realizable if its support is meta-realizable.

By these definitions we see that in the realizable case there exists a representation h∗ in H such
that all tasks drawn from distribution Q are realizable by f ◦ h∗ for an f in F . Therefore, during the
training process we want to find a representation that allows for perfect classification of all the points
of all the seen tasks. Our technical approach to achieve this while getting generalization for unseen
tasks depends on the number of samples per task we have.

The key component of our analysis is a class of binary functions that we call realizability
predicates (recall Definition 1.6). Given a representation h, a dataset of n points and a set of
specialized classifiers F , the realizability predicate returns +1 if and only if the mapping of the
dataset using h is realizable by a function in F .

For instance, in class R2,Fmon,H the realizability predicate rh takes two labeled datapoints (x1, y1)
and (x2, y2) and returns +1 if h orders them correctly. More formally, given an h ∈ H

rh(x1, y1,x2, y2) =


−1, y1 = +1, y2 = −1 and h(x1) < h(x2)

−1, y1 = −1, y2 = +1 and h(x1) > h(x2)

+1, otherwise.
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We can think of rh as a classifier on “data points” of the form (x1, y1,x2, y2), indicating whether h
is a good representation or not.

Since Q is meta-realizable by F ◦ H, there exists a representation h∗ ∈ H for which all tasks
have a specialized classifier that perfectly classifies all samples. This implies that the corresponding
realizability predicate rh∗ ∈ Rn,F ,H outputs +1 for any n samples drawn from a distribution P ∼ Q.

At a high level, we exploit the above fact about rh∗ and class Rn,F ,H. We consider a new
data distribution D that generates samples of the form ζj := ((x

(j)
1 , y

(j)
1 , . . . , x

(j)
n , y

(j)
n ),+1). The

feature part of the sample is a task training set of size n generated by a data distribution Pj ∼ Q :

{(x(j)i , y
(j)
i )}i∈[n]. The label part of the sample is always +1. See Figure 1. Note that the realizability

predicate rh∗ also labels the task training sets of size n with +1:

rh∗((x
(j)
1 , y

(j)
1 ), . . . , (x(j)n , y(j)n )) = +1.

Hence, we can say that the new data distribution D is realizable by the hypothesis class Rn,F ,H.
Now, if we have t samples from D for a sufficiently large t (that is t tasks P1, . . . , Pt drawn from Q
and n samples from each), by the fundamental theorem of PAC learning, Theorem A.4, we can PAC
learn the class Rn,F ,H with respect to D. More precisely, we can show that any rĥ ∈ Rn,F ,H that
labels samples ζj’s correctly has low mislabeling error under D. Recall that all the labels according
to D were always +1. Thus, mislabeling a ζj implies that the realizability predicate rĥ of the training
set corresponding to ζj is false. Thus, the representation function we have found, which has a low
error probability for mislabeling a ζ, allows the realizability of the dataset corresponding to ζ with
high probability. Hence, ĥ is an accurate shared representation function which we need to metalearn
Q by F ◦ H.

Going back to our example of monotone thresholds over linear representations, suppose that
for every task j ∈ [t] we see two points (x(j)

1 , y
(j)
1 ) and (x

(j)
2 , y

(j)
2 ) drawn from Pj , which itself is

drawn from Q. Since we are in the realizable case, there is a representation h∗ ∈ Hd,1 that always
orders points from the same task correctly on the real line. Therefore, for every task j ∈ [t] we have
rh∗(x

(j)
1 , y

(j)
1 ,x

(j)
2 , y

(j)
2 ) = +1. Intuitively we want to learn an ĥ ∈ Hd,1 which has low error:

E
P∼Q

[
Pr(x1,y1),(x2,y2)∼P 2

[[[
rĥ(x1, y1,x2, y2) ̸= +1

]]]]
= Prζ∼D

[[[
rĥ(ζfeat) ̸= +1

]]]
.

In other words, we want to find a representation that will allow two points of a new task drawn from
Q to be classified correctly using a monotone threshold in Fmon. By Theorem A.4, if we have t =

O

(
VC(R2,Fmon,Hd,1

) ln(1/ε)+ln(1/δ)

ε2

)
tasks, each with a datapoint ζj = ((x

(j)
1 , y

(j)
1 ,x

(j)
2 , y

(j)
2 ),+1)

drawn from D, then by choosing ĥ ∈ Hd,1 which minimizes 1
t

∑
j∈[t] I{rh(ζj,feat) ̸= +1} we get

that with probability at least 1− δ over the dataset

Prζ∼D
[[[
rĥ(ζfeat) ̸= +1

]]]
= E

P∼Q

[
Pr(x1,y1),(x2,y2)∼P 2

[[[
rĥ(x1, y1,x2, y2) ̸= +1

]]]]
< ε2.

In Lemma D.1 we show that the VC dimension of R2,Fmon,Hd,1
is at most d. Thus, we can learn with

t = O
(
d ln(1/ε)+ln(1/δ)

ε2

)
tasks.

Lemma D.1 We have VC(R2,Fmon,Hd,1
) ≤ d.
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Proof Fix a set of inputs to rh: ((x(1)
1 , y

(1)
1 ,x

(1)
2 , y

(1)
2 ), . . . , (x

(n)
1 , y

(n)
1 ,x

(n)
2 , y

(n)
2 )). Assume for all

i we have y(i)1 ̸= y
(i)
2 , since otherwise we have rh(x

(i)
1 , y

(i)
1 ,x

(i)
2 , y

(i)
2 ) = +1 for all h, which means

the overall set cannot be shattered.
Because the thresholds are monotone, if y(i)1 > y

(i)
2 then rh(x

(i)
1 , y

(i)
1 ,x

(i)
2 , y

(i)
2 ) = +1 when h

places h(x(i)
1 ) above h(x(i)

2 ). Equivalently, associating h with b ∈ Rd, this holds when sign(b ·
(x

(i)
1 − x

(i)
2 )) = +1. The opposite holds for y(i)1 < y

(i)
2 .

We can achieve a labeling s ∈ {±1}n if there exists b such that, for all i,

sign(b · (x(i)
1 − x

(i)
2 )) = si · sign(y(i)1 − y

(i)
2 ).

From this, we see that the number of achievable labelings is determined by the number of possible
signs of b · (x(i)

1 −x
(i)
2 ). This is at most 2d by Theorem A.6, which bounds the capacity of halfspaces

passing through the origin. Thus, R2,Fmon,Hd,1
cannot shatter a set of size d+ 1.

So far, we have described how to find a representation ĥ that, evaluated on data sets of size
n drawn from new tasks, is likely to produce something which F can perfectly classify, i.e., the
following expressions are small:

E
P∼Q

[
Pr(x1,y1),...,(xn,yn)∼Pn

[[[
rĥ((x1, y1), . . . , (xn, yn)) ̸= +1

]]]]
=

E
P∼Q

[
Pr(x1,y1),...,(xn,yn)∼Pn

[[[
(ĥ(x1), y1), . . . , (ĥ(xn), yn) is not realizable by F

]]]]
.

However, in metalearning we want to bound the following error

rep-err(Q, ĥ,F) = E
P∼Q

[
min
f∈F

Pr(x,y)∼P

[[[
f(ĥ(x)) ̸= y

]]]]
.

The next step is to derive a bound on this error. We consider two cases based on the number of
samples per task we have.

Metalearning with DH(F) samples per task. Often, for a given concept class F we can see
that every dataset that is not realizable by F has a subset of size at most m that is still not realizable.
The smallest m for which this condition holds is the dual Helly number, which we denote by DH(F).

For example, the dual Helly number of the class of monotone thresholds is 2. Every dataset with
more than 2 points that is not realizable by Fmon has a non-realizability witness of size 2. To see this,
suppose all subsets of two points are realizable by Fmon. This means that any point with a positive
label is greater than a point with a negative label. In this case, there exists a monotone threshold
that labels these points correctly by placing the threshold between two consecutive points in the real
line with opposite labels, which leads to a contradiction. Just seeing one point of a dataset does not
suffice to show non-realizability cause every one-sample dataset is realizable.

For a fixed data distribution B over Z × {±1} that is realizable by F , we define the probability
of nonrealizability of a dataset from B by functions in F :

pnr(B,F ,m)
def
= Pr(z1,y1),...,(zm,ym)∼Bm[[[ (z1, y1), . . . , (zm, ym) is not realizable by F ]]],

and the population error of F on B:

err(B,F)
def
= min

f∈F

{
Pr(z,y)∼B[[[f(z) ̸= y ]]]

}
.
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Figure 2: Example of an ROC curve and the line (1−TPR)ρ+FPR(1− ρ) = c, which corresponds
to points with error c. The line and curve intersect when c = err(B,Fmon).

Notice that here distribution B is over labeled points in the intermediate space, the codomain
of the representation function. Given DH(F) points from B, we derive a bound of the form
ϕ(err(B,F)) ≤ pnr(B,F ,DH(F)), for a strictly increasing and convex ϕ.

For the class of monotone thresholds Fmon with 2 samples drawn fromB, we show in Lemma D.3
that (err(B,Fmon))

2 ≤ pnr(B,Fmon, 2). The proof uses Fact D.2 and a geometric argument linking
err(B,Fmon) to pnr(B,Fmon, 2).

For a fixed distribution P , we analyze the ROC curve of classifiers with threshold w: sign(z−w).
The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR), which are
defined as

TPR(w) := Pr(z,y)∼B[[[z ≥ w | y = +1]]]

FPR(w) := Pr(z,y)∼B[[[z ≥ w | y = −1]]].

We need the following standard fact about ROC curves.

Fact D.2 For any distribution B, the area under the ROC curve is equal to

Pr[[[z1 > z2 | y1 = +1, y2 = −1]]].

Lemma D.3 Fix a distribution B over Z × {±1}. We have (err(B,Fmon))
2 ≤ pnr(B,Fmon, 2).

Proof Let ρ = Pr(z,y)∼B[[[y = 1]]] and S be a dataset {(z1, y1), (z2, y2)}, where (z1, y1) and (z2, y2)
were drawn independently from distribution B. We start by showing that

err(B,Fmon)
2 ≤ 2ρ(1− ρ)(1−PrS∼B2[[[z1 > z2 | y1 = +1, y2 = −1)]]]). (5)
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By the law of total probability, we have

Pr(z,y)∼B[[[sign(z − w) ̸= y ]]] = Pr(z,y)∼B[[[z < w | y = +1]]]ρ+Pr(z,y)∼B[[[z ≥ w | y = −1]]](1− ρ)

= (1− TPR(w))ρ+ FPR(w)(1− ρ).

Fact D.2 says that the area under the curve equals PrS∼B2[[[z1 > z2 | y1 = +1, y2 = −1]]]. Therefore,
we can geometrically upper bound this quantity by the area of the space which is (i) under the isoerror
line for error c = err(B,Fmon) and (ii) under the line TPR = 1. See Figure 2 for an illustration.
Note that err(B,Fmon) is exactly minw∈R

{
Pr(z,y)∼B[[[sign(z − w) ̸= y ]]]

}
. This approach gives us

the following bound:

PrS∼B2[[[z1 > z2 | y1 = +1, y2 = −1]]] ≤ 1− (err(B,Fmon))
2

2ρ(1− ρ)
.

Rearranging yields Equation (5). Next, we show that the right-hand side of Equation (5) is exactly
pnr(B,Fmon, 2), the probability of non-realizability.

LetE be the event that (z1, y1), (z2, y2) is not realizable by Fmon. By the law of total probability,
we have that

PrS∼B2[[[E ]]] =
∑

i∈{±1}

∑
j∈{±1}

PrS∼B2[[[E | y1 = i, y2 = j ]]]PrS∼B2[[[y1 = i, y2 = j ]]]

= 2ρ(1− ρ)PrS∼B2[[[z1 ≤ z2 | y1 = +1, y2 = −1]]]

= 2ρ(1− ρ)(1−PrS∼B2[[[z1 > z2 | y1 = +1, y2 = −1]]]).

Therefore, err(B,Fmon)
2 ≤ pnr(B,Fmon, 2).

In our example, since both err(B,Fmon) and pnr(B,Fmon, 2) are non-negative, err(B,Fmon) ≤√
pnr(B,Fmon, 2). Therefore, we conclude that with probability at least 1− δ over the data (that we

get by seeing t = O
(
d ln(1/ε)+ln(1/δ)

ε2

)
tasks with data distributions Pj drawn from Q and 2 samples

from Pj for every task j ∈ [t])

E
P∼Q

[
min
w∈R

{
Pr(x,y)∼P

[[[
sign(ĥ(x)− w) ̸= y}

]]]}]
≤√

E
P∼Q

[
Pr(x1,y1),(x2,y2)∼P 2

[[[
rĥ(x1, y1,x2, y2)

]]]
̸= +1

]
≤ ε.

This proves Theorem D.4.

Theorem D.4 We can metalearn (Hd,1,Fmon) to accuracy ε in the realizable case with t tasks and
n samples per task when t = O

(
d ln(1/ε)/ε2

)
and n = 2

From Monotone Thresholds to Arbitrary Function Classes. Although the argument above relies
on the particular structure of monotone function classes in several ways, the next few sections will
show how the results can be generalized to arbitrary representations and specialized classifiers. First,
we study the realizable case with very few samples per task (Section 3.2), and then we study the
agnostic case (Appendix D.3) with more samples per task. The results for the agnostic case also
apply to the realizable case, yielding incomparable statements. After establishing these general
bounds in terms of properties of the representation and specialized classifiers, we use them to prove
specific sample complexity bounds for linear classes in Section 4.
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D.2. Sample and Task Complexity Bounds for the Realizable Case

When the metadistribution is meta-realizable, Theorems 3.2 and 3.5 bound the number of tasks and
samples per task we need to metalearn. Their proofs follow the structure described in Appendix D.1.

Theorem 3.2 (Restated) Let F be a class of specialized classifiers f : Z → {±1} with dual Helly
number DH(F) = m and H be a class of representation functions h : X → Z . Then, for every
ε and δ in (0, 1), we can (ε, δ)-properly metalearn (H,F) in the realizable case for t tasks and n
samples per task when

t =
(
VC(Rm,F ,H) + ln(1/δ)

)
·
(
O(max(VC(F),m) ln(1/ε))

mε

)m
and n = m.

We first prove Lemma 3.3 and Lemma 3.4, which we use in the proof of Theorem 3.2.

Lemma 3.3 (Restated) Let F be the class of specialized classifiers f : Z → {±1} with DH(F) =
m. Fix an arbitrary distribution B over Z × {±1}. If err(B,F) > 0, then

pnr(B,F ,m) ≥ 1

2

([
m · err(B,F)

16e · v ln (16/err(B,F))

]m)
,

where v = max(VC(F),m).

Proof Let g(ε) = 16
ε VC(F) ln(16/ε). Function g is continuous and strictly decreasing in ε for

ε ∈ (0, 1]. The proof analyzes two cases
In case one, if m > g(err(B,F)), then by Theorem A.5 the probability that a dataset of m points

drawn from B is not realizable by F is

pnr(B,F ,m) = PrSm∼Bm[[[Sm is not realizable by F ]]]

= PrSm∼Bm

[[[
min
f∈F

err(Sm, f) > 0

]]]
≥ 1

2
,

because err(B,F) > 0 and m ≥ 8
ε [VC(F) ln(16/ε) + ln(2/δ)] for ε = err(B,F) and δ = 1

2 . This
is stronger than the claimed lower bound. To see this, recall v ≥ m and observe

1

2

(
m · err(B,F)

16e · v ln (16/err(B,F))

)m
≤ 1

2

(
err(B,F)

16e · ln (16/err(B,F))

)m
≤ 1

2

(
1

16e · ln (16)

)m
,

which is less than 1
2 .

In case two, suppose m ≤ g(err(B,F)). Drawing m i.i.d. samples from B is equivalent to
drawing a larger dataset Sn = {(zi, yi)}i∈[n] from B of some size n ≥ m, set later in the proof, and
picking a uniformly random subset Sm ⊆ Sn of size m. More formally,

pnr(B,F ,m) = PrSm∼Bm[[[Sm is not realizable]]]

= Pr Sn∼Bn

Sm∼(Sn
m )

[[[Sm is not realizable]]].
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Furthermore, we notice that if Sn is labeled correctly by some f ∈ F , then f labels Sm correctly,
too. Hence,

pnr(B,F ,m) = Pr[[[Sm is not realizable]]]

= Pr[[[Sm is not realizable | Sn is not realizable]]] ·Pr[[[Sn is not realizable]]]. (6)

We know that if Sn is not realizable then there exists a non-realizable subset of size m. Since there
are

(
n
m

)
subsets, Sm is exactly this subset with probability at least 1/

(
n
m

)
.

We now provide a lower bound on the probability that Sn is not realizable. We set n :=
16

err(B,F)VC(F) ln(16/err(B,F)), which satisfies n ≥ m by hypothesis. Then, by Theorem A.5 the
probability that dataset Sn is not realizable by F is

PrSn∼Bn[[[Sn is not realizable by F ]]] = PrSn∼Bn

[[[
min
f∈F

err(Sn, f) > 0

]]]
≥ 1

2
,

again because err(B,F) > 0 and n is sufficiently large.
Thus, continuing from Equation (6) and using a bound on the binomial coefficient, we see that

pnr(B,F ,m) ≥ 1
2(n

m)
≥ 1

2( en
m

)m . Plugging in n = 16
err(B,F)VC(F) ln(16/err(B,F)), we get that

pnr(B,F ,m) ≥ 1

2

[
m · err(B,F)

16e ·VC(F) ln (16/err(B,F))

]m
. (7)

As VC(F) ≤ v, this is stronger than the claim in the lemma. This concludes the proof.

Lemma 3.4 (Restated) Let H be a class of representation functions h : X → Z , F be a class
of specialized classifiers f : Z → {±1} and m be a positive integer. Suppose there exists a
strictly increasing convex function ϕ : (0, 1] → [0, 1] such that for all metadistributions Q satisfying
minh∈H rep-err(Q, h,F) = 0, all data distributions P in the support of Q and all representations
h ∈ H, if rep-err(P, h,F) > 0 the following holds:

ϕ(rep-err(P, h,F)) ≤ Pr(x1,y1),...,(xm,ym)∼Pm[[[ (h(x1), y1), . . . , (h(xm), ym) not realizable by F ]]] .

Then, we can (ε, δ)-properly metalearn (H,F) with t = O
(
VC(Rm,F,H)+ln(1/δ)

ϕ(ε)

)
tasks and m

samples per task in the realizable case.

Proof Our goal is to show that there exists a shared representation that achieves small representation
error for Q. The proof proceeds in two stages. First, we use our bound on the VC dimension of
Rm,F ,H to show that we can find a representation ĥ that, when applied to data from a new task, admits
a perfect specialized classifier with high probability. Second, we connect this to rep-err(Q, ĥ,F),
the error of ĥ on the meta-distribution.

Recall our approach for monotone thresholds in Appendix D.1: for each task, we receive a data
set S(j) = (x

(j)
1 , y

(j)
1 , . . . , x

(j)
m , y

(j)
m ) and construct a single “data point” ζj :

ζj
def
= (S(j),+1) .

We set the label to “+1” because, by the meta-realizability assumption, there exists an h∗ such that
rh∗(S

(j)) = +1 for all j. Since each task distribution Pj is drawn independently from Q, these
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ζj observations are drawn i.i.d. from some distribution D. For an illustration of this process, see
Figure 1.

We find an ĥ such that rĥ has zero error on the dataset ζ1, . . . , ζt. Because we set t =

Θ
(
VC(Rm,F,H)+ln(1/δ)

ϕ(ε)

)
, by Theorem A.4 we know that rĥ generalizes. That is, with probabil-

ity at least 1− δ, we have

Prζ=(S,+1)∼D
[[[
rĥ(S) ̸= +1

]]]
≤ ϕ(ε) . (8)

For a data set S = ((x1, y1), . . . , (xm, ym)) and representation h, define Sh to be
((h(x1), y1), . . . , (h(xm), ym)). Recall that by the assumption of this lemma, for ĥ and all P in the
support of Q, if rep-err(P, ĥ,F) > 0 we have:

ϕ
(

rep-err(P, ĥ,F)
)
≤ PrS∼Pm

[[[
Sĥ is not realizable by F

]]]
. (9)

Note that ϕ is a strictly increasing function and, thus, it has an inverse function ϕ−1 that is also
strictly increasing. Therefore, the above bound implies that

rep-err(P, ĥ,F) ≤ ϕ−1
(
PrS∼Pm

[[[
Sĥ is not realizable by F

]]])
. (10)

Now we are ready to bound the meta-error of ĥ: rep-err(Q, ĥ,F). We start by bounding
ϕ
(

rep-err(Q, ĥ,F)
)

. Since ϕ is convex, ϕ−1 is concave and we can apply Jensen’s inequality. We
get that:

rep-err(Q, ĥ,F) = E
P∼Q

[
rep-err(P, ĥ,F)

]
≤ E

P∼Q

[
rep-err(P, ĥ,F) | rep-err(P, ĥ,F) > 0

]
≤ E

P∼Q

[
ϕ−1

(
PrS∼Pm

[[[
Sĥ is not realizable by F

]]])]
(by Eq. 10)

≤ ϕ−1

(
E

P∼Q

[
PrS∼Pm

[[[
Sĥ is not realizable by F

]]]])
(Jensen’s inequality)

≤ ϕ−1(ϕ(ε)) = ε (by Eq. 8)

The above bound implies:

rep-err(Q, ĥ,F) ≤ ε = min
h∈H

rep-err(Q, h,F) + ε .

As a result, using t = O
(
VC(Rm,F,H)+log(1/δ)

ϕ(ε)

)
tasks and m samples from each task, we have

found a representation function ĥ that has the desired error bound for metalearning with probability
1− δ. Hence, the proof is complete.

We can now prove Theorem 3.2 by combining the results of Lemma 3.3 and Lemma 3.4.
Proof [Proof of Theorem 3.2] Let

ϕ(ε) =
1

2

[
mε

16e ·max(VC(F),m) ln(16/ε)

]m
.
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By differentiating ϕ twice we see that it is a strictly increasing convex function in ε, for ε ∈ (0, 1)
and m ≥ 1.

Applying Lemma 3.3, we obtain that for every representation ĥ and distribution P if
minf∈F Pr(x,y)∼P

[[[
f(ĥ(x)) ̸= y

]]]
> 0, then

ϕ

(
min
f∈F

Pr(x,y)∼P

[[[
f(ĥ(x)) ̸= y

]]])
≤ Pr(x1,y1),...,(xm,ym)∼Pm

[[[
(ĥ(x1), y1), . . . , (ĥ(xm), ym) is not realizable by F

]]]
.

This satisfies the assumptions of Lemma 3.4 which says that we can metalearn (H,F) with
t = O

(
VC(Rm,F,H)+ln(1/δ)

ϕ(ε)

)
tasks and m samples per task. This concludes our proof.

Our next result analyzes metalearning with fewer tasks and more samples per task. Formally,
Theorem 3.5 shows that we can metalearn (H,F) for a meta-realizable Q with Õ(VC(Rn,F ,H)/ε)
tasks and Õ(VC(F)/ε) samples per task.

Theorem 3.5 (Restated) Let H be a class of representation functions h : X → Z and F
be a class of specialized classifiers f : Z → {±1}. For every ε, δ ∈ (0, 1), we can (ε, δ)-
properly metalearn (H,F) in the realizable case with t tasks and n samples per task when
t = O

(
VC(Rn,F,H) ln(1/ε)+ln(1/δ)

ε

)
and n = O

(
VC(F) ln(1/ε)

ε

)
.

Proof First, we set ε1 := ε/3. Set the number of tasks

t := O

(
VC(Rn,F ,H) ln(1/ε1) + ln(1/δ)

ε1

)
.

Each task j has n samples Sj = {(x(j)i , y
(j)
i )}i∈[n], we construct a dataset Z of t points ζj =

((x
(j)
1 , y

(j)
1 , . . . , x

(j)
n , y

(j)
n ),+1), one for each task j, as in Figure 1. Each ζj is drawn i.i.d. from

data distribution D (where we first draw P from Q and then n points from P ). Since we are in the
realizable case, there exists a representation h such that rh returns +1 for every sample drawn from
D. By Theorem A.8 we have that for ĥ = argminh∈H err(Z, rh) with probability at least 1− δ over
dataset Z

err(D, rĥ) ≤
ε

3
.

Fix a distribution P in the support of Q. We start by assuming that rep-err(P, ĥ,F) > ε/3. By
Theorem A.5 for a dataset S of

n :=
24

ε
(VC(F) ln(48/ε) + ln(4))

samples drawn from P , with probability at least 1/2 over S all specialized classifiers f ∈ F with
err(P, f ◦ ĥ) > ε/3 have err(S, f ◦ ĥ) > 0. Therefore,

PrS∼Pn

[[[
min
f∈F

err(S, f ◦ ĥ) > 0

]]]
= PrS∼Pn

[[[
rĥ(S) ̸= −1

]]]
≥ 1

2
.
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By Markov’s inequality, we see that

PrP∼Q

[[[
PrS∼Pn

[[[
rĥ(S) ̸= +1

]]]
≥ 1/2

]]]
≤ 2 E

P∼Q

[
PrS∼Pn

[[[
rĥ(S) ̸= +1

]]]]
= 2 err(D, rĥ) ≤

2ε

3
.

So far we have shown that for a fixed P if rep-err(P, ĥ,F) > ε/3, then PrS∼Pn

[[[
rĥ(S) ̸= +1

]]]
≥

1/2. As a result, we have that

PrP∼Q

[[[
rep-err(P, ĥ,F) > ε/3

]]]
≤ PrP∼Q

[[[
PrS∼Pn

[[[
rĥ ̸= +1

]]]
≥ 1/2

]]]
≤ 2ε

3
.

We can use this to bound the meta-error of representation ĥ as follows. We see that with probability
at least 1− δ over the datasets of the t tasks

rep-err(Q, ĥ,F) = E
P∼Q

[
min
f∈F

Pr(x,y)∼P

[[[
f(ĥ(x)) ̸= y

]]]]
≤ ε

3
+PrP∼Q

[[[
min
f∈F

Pr(x,y)∼P

[[[
f(ĥ(x)) ̸= y

]]]
> ε/3

]]]
≤ ε

3
+ 2

ε

3
= ε.

This concludes our proof.

D.3. Sample and Task Complexity Bounds for the Agnostic Case

In this section, we consider metalearning in the agnostic case.

Theorem 3.6 (Restated) Let H be a class of representation functions h : X → Z and F be a class
of specialized classifiers f : Z → {±1}. Then, for every ε and δ ∈ (0, 1) we can (ε, δ)-properly
metalearn (H,F) with t tasks and n samples per task when t = O

(
PDim(Qn,F,H) ln(1/ε)+ln(1/δ)

ε2

)
and n = O

(
VC(F)+ln(1/ε)

ε2

)
.

Proof We begin by setting our parameters: Set ε1 := ε/3 and ε2 := ε/3. Let the number of tasks be
the following for a sufficiently large constant in the O notation:

t := O

(
PDim(Qn,F ,H) ln(1/ε1) + ln(1/δ))

ε21

)
. (11)

Suppose for each task j ∈ [t] has n samples Sj = {(x(j)i , y
(j)
i )}i∈[n], we construct a dataset Z of t

points ζj = ((x
(j)
1 , y

(j)
1 , . . . , x

(j)
n , y

(j)
n )), one for each task j. Each ζj is drawn i.i.d. from the data

distribution D for which we first draw P from Q and then n points from P . By Theorem A.8, we
have that for ĥ = argminh∈H

1
t

∑t
j=1 qh(ζj) with probability at least 1− δ:

E
ζ∼D

[
qĥ(ζ)

]
≤ min

h∈H
E
ζ∼D

[qh(ζ)] +
ε

3
.

37



ALIAKBARPOUR BAIRAKTARI BROWN SMITH SREBRO ULLMAN

Fix a task distribution P and a representation h. For any fixed specialized classifier f ′ ∈ F , we have:

E
(x1,y1),...,(xn,yn)∼Pn

min
f∈F

1

n

∑
i∈[n]

I{f(h(xi)) ̸= yi}

 ≤ E
(x1,y1),...,(xn,yn)∼Pn

 1

n

∑
i∈[n]

I{f ′(h(xi)) ̸= yi}

 .

Since the inequality holds for any f ′ in F , it holds when we take minimum over all f ′. Hence, we
obtain:

E
(x1,y1),...,(xn,yn)∼Pn

min
f∈F

1

n

∑
i∈[n]

I{f(h(xi)) ̸= yi}

 ≤ min
f∈F

E
(x1,y1),...,(xn,yn)∼Pn

 1

n

∑
i∈[n]

I{f(h(xi)) ̸= yi}

 .
(12)

Next, we use the above inequality to continue bounding the expectation of qĥ:

E
ζ∼D

[
qĥ(ζ)

]
≤ min

h∈H
E
ζ∼D

[qh(ζ)] +
ε

3
(Eq. (11))

= min
h∈H

E
P∼Q

[
E

(x1,y1),...,(xn,yn)∼Pn

[
min
f∈F

1

n

n∑
i=1

I{f(h(xi)) ̸= yi}

]]
+
ε

3

≤ min
h∈H

E
P∼Q

[
min
f∈F

E
(x1,y1),...,(xn,yn)∼Pn

[
1

n

n∑
i=1

I{f(h(xi)) ̸= yi}

]]
+
ε

3
(Eq. 12)

= min
h∈H

rep-err(Q, h,F) +
ε

3
.

Consider an arbitrary task distribution P . Suppose we have a dataset S of n labeled sample from P
where n is the following with a sufficiently large constant in the O notation:

n := O

(
VC(F) + ln(1/ε2)

ε22

)
.

Since n is sufficiently large, we have uniform convergence of the empirical error for all f ∈ F by
Theorem A.4. Furthermore, the specialized classifier f̂ minimizing the empirical error over S, (i.e.
f̂ = argminf∈F err(S, f ◦ ĥ)) must have low true error as well. Therefore, with probability 1− ε

3
over the randomness in S, we get:

rep-err(P, ĥ,F) ≤ Pr(x,y)∼P

[[[
f̂(ĥ(x)) ̸= y

]]]
≤ rep-err(S, ĥ,F) +

ε

3
.
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Thus, if we take the expectation over the dataset S, we see that:

rep-err(P, ĥ,F) = E
S∼Pn

[
rep-err(P, ĥ,F)

]
= E

S∼Pn

[
rep-err(P, ĥ,F)

∣∣∣rep-err(P, ĥ,F) ≤ rep-err(S, ĥ,F) +
ε

3

]
×PrS∼Pn

[[[
rep-err(P, ĥ,F) ≤ rep-err(S, ĥ,F) +

ε

3

]]]
+ E
S∼Pn

[
rep-err(P, ĥ,F)

∣∣∣rep-err(P, ĥ,F) > rep-err(S, ĥ,F) +
ε

3

]
×PrS∼Pn

[[[
rep-err(P, ĥ,F) > rep-err(S, ĥ,F) +

ε

3

]]]
≤

(
E

S∼Pn

[
rep-err(S, ĥ,F)

]
+
ε

3

)
· 1 + 1 · ε

3

= E
S∼Pn

[
rep-err(S, ĥ,F)}

]
+

2ε

3
.

Now, we take the expectation over P ∼ Q and obtain that:

rep-err(Q, ĥ,F) ≤ E
P∼Q

[
E

S∼Pn

[
rep-err(S, ĥ,F)}

]]
+

2ε

3

= E
ζ∼D

[
qĥ(ζ)

]
+

2ε

3
.

Note that in the last line above, the S dataset drawn from a random P can be viewed as a random
data set according to D. Combining with the bound we have derived earlier for the expected value of
qĥ, we get the following that holds with probability at least 1− δ:

rep-err(Q, ĥ,F) ≤ min
h∈H

rep-err(Q, h,F) + ε .

Hence, the proof is complete.

D.4. Sample and Task Complexity Bounds for General Metalearning

For general metalearning we obtain the following corollary of Theorem B.4 by applying Theorem C.1
for agnostic multitask learning. It is important to note that this method does not return a representation
h ∈ H, but a more general specialization algorithm that uses the datasets of the already seen tasks to
learn a classifier for the new task.

Corollary D.5 For any (H,F), any ε > 0, constant c > 0 and any t, n, (H,F) is (ε, 2/c)-
meta-learnable in the agnostic case with t tasks, n samples per task and n specialization samples
when

nt = O

(
VC(F⊗t+1 ◦ H) ln(1/ε)

ε2

)
.

Proof By Theorem B.4 we can (ε/c, ε/c)-multitask learn (H,F) for t+1 tasks and n per task when

nt+ n =
c′c2VC(F⊗t+1 ◦ H) ln(c/ε)

ε2
,
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for a constant c′ > 0. As a result, the reduction of Theorem B.4 implies that we can (ε, 2/c)-metalearn
(H,F) for t tasks, n samples per task and n specialization samples when

nt = O

(
VC(F⊗t+1 ◦ H) ln(1/ε)

ε2

)
.

This concludes the proof.

Appendix E. Bounds for Halfspaces over Linear Representations

In this section, we provide results on multitask learning and metalearning of linear projections (as
representations) and halfspaces (as specialized classifiers):

Hd,k =
{
h | h(x) = Bx,B ∈ Rk×d

}
, and Fk =

{
f | f(z) = sign(a · z− w),a ∈ Rk, w ∈ R

}
.

E.1. VC Dimension of F⊗t
k ◦ Hd,k

The general bounds of Lemma C.2 give us that the VC dimension of F⊗t
k ◦ Hd,k is in the range

max(kt+ t, d+ 1) ≤ VC(F⊗t
k ◦ Hd,k) ≤ dt+ t.

We know the VC dimension of the class of composite functions Fk ◦ Hd,k because Fk ◦ Hd,k and
Fd, the class of d-dimensional halfspaces, are the same class.

In Theorem 1.2 we characterize the VC dimension of class F⊗t
k ◦ Hd,k up to a constant. The

bound we give matches the intuition from counting the number of parameters, which yields dk+kt+t
when t > k and dt+ t when t ≤ k.

Theorem 1.2 (Restated) For all t, d, k ∈ N, we have

VC(F⊗t
k ◦ Hd,k) =

{
t(d+ 1), if t ≤ k

Θ(dk + kt), if t > k.

In the proof for the upper bound we use Warren’s Theorem, which we state here as a lemma:

Lemma E.1 (Warren’s Theorem, Warren (1968)) Let p1, . . . , pn be real polynomials in v vari-
ables, each of degree at most ℓ ≥ 1. If n ≥ v, then the number of distinct sequences sign(p1(x)), . . . ,
sign(pn(x)) for all x does not exceed (4eℓn/v)v. In particular, if ℓ ≥ 2 and n ≥ 8v log2 ℓ, then the
number of distinct sequences of +1,−1 taken by sign(p1(x)), . . . , sign(pn(x)) is less than 2n.

Proof We first show that for t ≤ k tasks VC
(
F⊗t
k ◦ Hd,k

)
= dt + t. To lower-bound the VC

dimension, we will show that there exists a dataset of size dt + t which can be shattered by
F⊗t
k ◦ Hd,k. We know that the VC dimension of the class of d-dimensional thresholds Fd is d+ 1,

which means that there exists a dataset (x1, . . . ,xd+1) which can be shattered by Fd. Consider the
dataset ∪j∈[t]{(j,x1), . . . , (j,xd+1)}. This dataset can be shattered by F⊗t

k ◦Hd,k. To see this, fix a
labeling y ∈ {±1}t×(d+1), where yj,i is the label of datapoint (j,xi). For a j ∈ [t] we know that
there exist bj ∈ Rd and wj ∈ R such that for all i ∈ [d+ 1] we have sign(bjxi − wj) = yj,i. Since
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t ≤ k, we set B to be the matrix with rows bTj for the first t rows and all zeros everywhere else
and aj ∈ Rk to be the one-hot encoding of j. We pick h(x) = Bx and fj(z) = sign(ajz − wj).
Therefore, we have that for all j ∈ [t] and i ∈ [d+ 1], yj,i = fj(h(xi)). As a result,

VC(F⊗t
k ◦ Hd,k) ≥ dt+ t.

For the upper bound Lemma C.2 says that VC(F⊗t
k ◦ Hd,k) ≤ tVC(Fk ◦ Hd,k). Furthermore,

since the composition of linear functions is linear the class of composite functions Fk ◦ Hd,k and Fd
are the same. Hence,

VC(F⊗t
k ◦ Hd,k) ≤ tVC(Fd) = dt+ t.

We now look at the case where we have more than k tasks. For the upper bound we rewrite
functions g ∈ F⊗t

k ◦ Hd,k as g(j,x) = sign(ajBx− wj). Observe that this is equivalent to

g(j,x) = sign(ejTABx− ej
Tw),

where ej ∈ {0, 1}t is the one-hot encoding of j and

A =

aT1
...
aTt

 and w =

w1
...
wt

.
Every combination of A ∈ Rt×k,B ∈ Rk×d and w ∈ Rt gives us a specific labeling function
g. Let n ≥ 8(tk + kd + t). Take a dataset ((j1,x1), . . . , (jn,xn)) ∈ ([t] × Rd)n. We will
show that F⊗t

k ◦ Hd,k does not shatter this data set. For each i ∈ [n], we define a polynomial
pi(A,B,w) = eTjiABxi − eTjiw. Each of these is a degree-2 polynomial in tk + kd+ t variables.
By construction, g(ji,xi) = sign(pi(A,B,w)). By Lemma E.1, VC

(
F⊗t
k ◦ Hd,k

)
≤ 8(dk+kt+t).

By Lemma C.2 we have that VC(F⊗t
k ◦ Hd,k) ≥ kt + t. Additionally, for t > k any dataset

that is shattered by F⊗k
k ◦ Hd,k can be shattered by F⊗t

k ◦ Hd,k. As a result, VC(F⊗t
k ◦ Hd,k) ≥

VC(F⊗k
k ◦ Hd,k). We proved above that VC(F⊗k

k ◦ Hd,k) = dk + k. Therefore,

VC(F⊗t
k ◦ Hd,k) ≥ Ω(dk + kt).

Recall that we can reduce metalearning to multitask learning and obtain the task and sample
complexity in Corrolary D.5. Therefore, the characterization of the VC dimension of class F⊗t

k ◦Hd,k

implies the following bound for the task and sample complexity of metalearning.

Corollary E.2 For ε > 0 and constant c > 0, we can (ε, c/2)-metalearn (Hd,k,Fk) with t tasks
and n samples per task when

n = O

(
k ln(1/ε)

ε2

)
and t ≥ d.

Proof Based on Theorem 1.2 when t ≥ d, we know that VC(F⊗t
k ◦ Hd,k) = O(kt). Hence, by

Corollary D.5 we can metalearn (Hd,k,Fk) up to error ε when n = O
(
k ln(1/ε)

ε2

)
.
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E.2. Bounding the VC Dimension of Boolean Functions of Polynomials

Here we restate and prove Lemma 4.1.

Lemma 4.1 (Restated) Let w, ℓ, d ∈ N with ℓ ≥ 2 and fix a domain of features X and a function
g : {±1}w → {±1}. For each x ∈ X , let p(1)x , . . . , p

(w)
x be degree-ℓ polynomials in d variables.

Consider the hypothesis class C consisting of, for all v ∈ Rd, the functions cv : X → {±1} defined
as

cv(x) := g(sign(p(1)x (v)), . . . , sign(p(w)x (v))). (13)

We have VC(C) ≤ 8d log2(ℓw).

Proof We bound the growth function of C. Fix n datapoints x1, . . . , xn ∈ X . By the definition of
hypothesis class C, the sequence cv(x1), . . . , cv(xn) is exactly the sequence

g
(
sign(p(1)x1 (v)), . . . , sign(p

(w)
x1 (v))

)
, . . . , g

(
sign(p(1)xn (v)), . . . , sign(p

(w)
xn (v))

)
By Lemma E.1, we know that the number of distinct sequences

sign(p(1)x1 (v)), . . . , sign(p
(w)
x1 (v)), . . . , sign(p(1)xn (v)), . . . , sign(p

(w)
xn (v))

for all v ∈ Rd does not exceed (4eℓwn/d)d. The number of distinct outputs of a function is upper
bounded by the number of distinct inputs it gets. As we saw above, the number of distinct inputs is
at most (4eℓwn/d)d and, thus, |{(cv(x1), . . . , cv(xn)) | v ∈ Rd}| ≤ (4eℓwn/d)d. Since this holds
for fixed x1, . . . , xn ∈ X , the growth function of C is at most (4eℓwn/d)d.

To bound the VC dimension of C it suffices to show that for n > 8d log2(ℓw) points, the growth
function GC(n) is less than 2n. If n > 8d log2(ℓw), then n > 8d because ℓ ≥ 2 and w ≥ 1. We
know that when n/d > 8, log2(4e) < n/(2d) and log2(n/d) < 3n/(8d). Therefore, we see that

log2

(
4eℓwn

d

)
= log2(4e) + log2(ℓw) + log2

(n
d

)
<

n

2d
+

n

8d
+

3n

8d
=
n

d
.

Combining the above steps, we have proven that for n > 8 log2(ℓw), GC(n) ≤ (4eℓwn/d)d < 2n.

E.3. VC Dimension of the Realizability Predicate Class

In this section we provide the full proof of Theorem 4.2.

Theorem 4.2 (Restated) For every d, k, nwith n ≥ k+2, VC(Rn,Fk,Hd,k
) ≤ O(dkn+dk log(kn)).

Given a dataset D = {(zi, yi)}i∈[n] of n points in Rk × {±1}, we define Z as the matrix whose
i-th row is the k + 1-dimensional vector z′i = yi(zi∥1), for i ∈ [n]. For I ⊆ [n] a set of indices, we
define ZI to be the matrix whose rows are the vectors z′i for i in I .

To prove Theorem 4.2, we establish a set of conditions on a data set which allow us to check for
separability. These conditions can be expressed via a limited number of low-degree polynomials,
which allows us to apply Warren’s Theorem.

Our first lemma in this section equates separability of a data set with the existence of a special
subset of points. If these points are “on the margin” of a linear separator defined by vector a, then
we know that a is a strict separator.
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Lemma E.3 Dataset D = {(zi, yi)}i∈[n] is strictly separable if and only if there exists a subset I of
linearly independent rows of Z such that for all a ∈ Rk+1 if z′i · a = 1 for all i ∈ I , then z′i · a ≥ 1
for all i ∈ [n].

Proof By definition, D is strictly separable iff there exists a linear separator a ∈ Rk+1 such that for
all i ∈ [n] we have yi(zi∥1) ·a = z′i ·a ≥ 1. We defineA = {a | z′i ·a ≥ 1, ∀i ∈ [n]} as the set of all
linear separators of D and, for any a, Ia as the set of tight constraints for a, i.e., Ia = {i | z′i ·a = 1}.
Note that A and Ia might be empty.

⇐) Assume that I ⊆ [n] defines a subset of linearly independent rows such that for all a ∈ Rk+1

if z′i · a = 1 for all i ∈ I , then z′i · a ≥ 1 for all i ∈ [n]. We find a vector a that makes the constraints
in I tight, that is, solve the linear system ZIa = 1, where 1 is the |I|-dimensional all-ones vector.
Since ZI has linearly independent rows, this system has at least one solution â = Z+

I 1, where
Z+
I = ZTI (ZIZ

T
I )

−1 is the pseudoinverse. Thus, for all i ∈ I we have z′i · â = 1, which implies
z′i · â ≥ 1 for all i ∈ [n] by our assumption on I . Therefore, the points in D are strictly separable.

⇒) Assume that D is strictly separable. Then, by Lemma E.4, there exists a strict separator a
such that rank(ZIa) = rank(Z) and Z · a ≥ 1, where the inequality holds entry-wise. If needed, we
can remove indices from Ia to produce I , a subset with the same rank but linearly independent rows.

Now suppose that a′ satisfies z′i · a′ = 1 for all i ∈ I . In other words, a′ satisfies ZI · a′ = 1.
This means we can write a′ = a+ u, where u is in the right nullspace of ZI . Since Z and ZI share
a rowspace, they also share a right nullspace. Thus Z · a′ = Z · a ≥ 1, where the inequality holds
entry-wise. This completes the proof.

The proof of lemma E.3 uses the following lemma, which says that every strictly separable data
set admits a separator whose set of tight constraints is full rank.

Lemma E.4 For a data set D = {(zi, yi)}i∈[n], let Z be its associated matrix and, for a vector
a, let Ia ⊆ [n] be the set of tight constraints (i.e., the largest set I such that ZI · a = 1). If
D is strictly separable, then there exists a vector a∗ such that zi · a∗ ≥ 1 for all i ∈ [n] and
rank(Z) = rank(ZIa∗ ).

Proof
D is strictly separable, so by definition there exists a vector a0 such that zi ·a0 ≥ 1 for all i ∈ [n].

Suppose rank(Z) > rank(ZIa0 ), since otherwise we are done. We will construct another separator
a1 that satisfies rank(ZIa0 ) < rank(ZIa1 ). Since rank(Z) is finite, repeating this process will yield
a separator a∗ with rank(ZIa∗ ) = rank(Z).

If a is a solution to ZIa0 ·a = 1, we can write it as a′ = a0+u, where u is in the right nullspace
of ZIa0 . Since the rank of ZIa0 is strictly less than the rank of Z, there exists a vector v that lies in
the right nullspace of ZIa0 but not in the right nullspace of Z. Our separator a1 will be of the form
a0 + c · v for some real value c. Note that halfspaces of this form keep the constraints in Ia0 tight:
by construction we have z′i · (a0 + c · v) = 1 for all i ∈ Ia0 .

Let I⊥ ⊆ Īa0 be the subset of rows which are not in the right rowspace of ZIa0 . This set is
nonempty, since rank(ZIa0 ) < rank(Z). For all i ∈ I⊥, let mi(c) = ⟨z′i,a0⟩+ c · ⟨z′i,u⟩. Each of
these is a linear function in c and, by the definition of Ia0 and the fact that a0 is a linear separator, we
see that mi(0) > 1 for all i ∈ I⊥.

For each i ∈ I⊥, there exists an interval [Li, Ri] such that, if c ∈ [Li, Ri], then mi(c) ≥ 1,
i.e., point i lies on the correct side of a0 + c · v. Because mi(0) > 1 for all i /∈ Ia0 , we see that
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Li < 0 < Ri. The intersection of these intervals, [maxLi,minRi], is nonempty. For any c in the
intersection, a0 + c · v is a strict separator. (This holds for i ∈ I⊥ by construction; if i /∈ I⊥ then i is
in the rowspace of ZIa0 and we have z′i · (a0 + c · v) = z′i · a0 ≥ 1, as v is in the nullspace of ZIa0 .)

It remains to select c so that at least one additional constraint is tight. This is easy: if maxLi is
finite then we have mi(maxLi) = 1. The same holds for minRi. Since we know at least one of
maxLi and minRi are finite, we can select a finite one as our value of c∗.

We have constructed a vector a1 = a0 + c∗ · v that strictly separates D and makes constraint
i∗ tight for some i∗ ∈ I⊥, where I⊥ is the set of constraints not in the rowspace of ZIa0 . Thus,
rank(ZIa0 ) < rank(ZIa1 ). This concludes the proof.

A simple corollary to Lemma E.3 says that, on separable data sets, the special subset of points
allows us to identify a specific separator.

Corollary E.5 Dataset D = {(zi, yi)}i∈[n] is strictly separable if and only if there exists a subset of
points I for which

1. ZI is full rank, and

2. for all i ∈ [n], we have that z′i · â ≥ 1, where â = Z+
I 1|I|.

Proof ⇒) Assume D is strictly separable. By Lemma E.3 we know that there exists a subset I of
linearly independent rows such that for all a ∈ Rk+1 if z′i · a = 1 for all i ∈ I then z′i · a ≥ 1 for
all i ∈ [n]. Since the rows in subset I are linearly independent, ZI is full rank. By construction, â
satisfies ZI · â = 1|I|. Thus z′i · â ≥ 1 for all i ∈ [n].

⇐) Assume that such a subset I exists. We see that â strictly separates D.

We now show how to express this characterization of separability in the language of polynomials.
With this lemma in hand, the proof of Theorem 4.2 will be a direct application of Lemma 4.1, our
extension of Warren’s Theorem.

Lemma E.6 Let w = (n + 1) · 2n. For a data set D = {(xi, yi)}i∈[n], there exists a Boolean
function g : {±1}w → {±1} and a list of polynomials p1D(h), . . . , p

w
D(h), each of degree at most

4(k + 1), such that we can express the (n,Fk)-realizability predicate rh as

rh(D) = g
(
sign

(
p
(1)
D (h)

)
, . . . , sign

(
p
(w)
D (h)

))
.

Proof A representation h induces a labeled dataset in the representation spaceDh = {(h(xi), yi)}i∈[n].
By Corollary E.5, we can check whether Dh is linearly separable by checking whether any of the∑k+1

i=1

(
n
i

)
≤ 2n subsets of Dh of size at most k + 1 satisfies the two conditions of the corollary.

In the remainder of the proof, we fix a subset I and construct a Boolean function gI over signs
of polynomials that checks if I satisfies these conditions. This function will use at most n + 1
polynomials, each of degree at most 4(k+1). The proof is finished by taking g to be the OR of these
functions for each subset I .

We write Dh as a matrix Z whose i-th row is the k+1 dimensional vector z′i = yi(h(xi)∥1). We
construct a polynomial p(0)I (h) that is negative iff ZI is full rank (so that sign p(0)I = +1 indicates
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rank deficiency). For each i ∈ [n], we construct a polynomial p(i)I (h) that, when ZI is full rank, is
nonnegative iff z′i · â ≥ 1, where â = Z+

I 1|I|. We then take gI to be

gI(h) :=
(
¬ sign p

(0)
I (h)

)
∧

 ∧
i∈[n]

sign p
(i)
I (h)

.
Recall that we interpret +1 as logical “true.”

Matrix ZI is full rank if and only if det(ZIZTI ) ̸= 0. Therefore, we set p(0)I (h) = −det(ZIZ
T
I )

2,
which is a polynomial in k × d variables of degree 4(k + 1). To see this, observe that each entry in
ZIZ

T
I is a polynomial of degree 2 in the variables of h. Then, det(ZIZTI ) is a polynomial of degree

2I . Finally, det(ZIZTI )
2 is a polynomial of degree 4I ≤ 4(k + 1). Taking the negation gives us the

desired polynomial p(0)I .
We now check that z′i · â− 1 ≥ 0 for a given i. Let ∆ = det(ZIZ

T
I ), a polynomial of degree

2(k + 1). Then â = ZTI (ZIZ
T
I )

−11|I| =
ZT
I adj(ZIZ

T
I )1|I|

∆ , where adj denotes the adjugate matrix.
We have z′i · â − 1 ≥ 0 when ∆ ̸= 0 and z′i ·∆â −∆ ≥ 0. Each entry in ∆â is a polynomial of
degree 2|I| − 1 ≤ 2k + 1, so setting p(i)I (h) = z′i ·∆â−∆ we have a polynomial of degree at most
2(k + 1) that is, when ZI is full rank, is nonnegative iff the constraint is satisfied.

Proof [Proof of Theorem 4.2] By Lemma E.6, we have that the (n,Fk)-realizability predicate is a
Boolean function of (n+1) · 2n signs of polynomials in dk variables of degree 4(k+1). Lemma 4.1
gives us that the VC dimension of the class of realizability predicates Rn,Fk,Hd,k

is upper-bounded
by 8dk log2(4(k + 1)n2n) = O(dkn+ dk log(kn)).

E.4. Pseudodimension of the Empirical Error Function Class

We can now also bound the pseudodimension (Definition A.7) of the class of empirical error functions
(Definition 1.8).

Theorem 4.5 (Restated) For all d, k, n with n ≥ k + 2, PDim(Qn,Fk,Hd,k
) = Õ(dkn) .

Our first step toward proving these results is the following lemma, which follows almost immedi-
ately from Corollary E.5. The proof uses the fact that a data set which can be classified with accuracy
at least α can be classified perfectly if we change 1− α labels.

Lemma E.7 Dataset D = {(zi, yi)}i∈[n] can be linearly separated with accuracy α if and only if

there exists a subset of points I and a vector σσσ ∈ {±1}n with
∑n

i=1
I{σi=+1}

n = α such that

1. ZI is full rank

2. for all i ∈ [n], we have that (z′i · âσσσ)σi ≥ 1, where âσσσ = Z+
I σσσI .

Proof By definition, dataset D can be linearly separated with accuracy α if and only if there exists
a vector σσσ ∈ {±1}n with

∑n
i=1

I{σi=1}
n = α such that dataset Dσ = {(zi, σiyi)}i∈[n] is strictly

separable. Now, we can apply Corollary E.5 to dataset Dσ. Let Ẑ be the matrix whose i-th row is
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the vector ẑ′i = σiyi(zi∥1). The rank of ẐI remains the same as the rank of ZI since every row is a
scalar multiple of the corresponding row in ZI . Additionally, observe that Z+

I σσσI = Ẑ+
I 1|I|.

The next lemma shows how to express statements about the empirical error function in the
language of low-degree polynomials.

Lemma E.8 Given a datasetD = {(xi, yi)}i∈[n] and anα ∈ [0, 1], the predicate I±{qh(x1, y1, . . . , xn, yn) =
α} is a Boolean function of (n+1) ·22n signs of polynomials in the variables of h of degree 4(k+1).

Proof By Lemma E.7 we have seen that I±{qh(x1, y1, . . . , xn, yn)=α} = I±{∃σσσ ∈ {±1}n with∑n
i=1 I{σi = +1} = αn s.t. rh(x1, σ1y1, . . . , xn, σnyn) = +1}. Therefore, by Lemma E.6 for

every value of σσσ that has α fraction of ones we can check a Boolean function of (n+ 1) · 2n signs of
polynomials in the variables of h of degree 4(k + 1). There are no more than 2n such vectors σ. In
total, we need to evaluate (n+ 1) · 22n signs of polynomials.

We are now ready to prove the final result in this section.
Proof [Proof of Theorem 4.5]

A well-known fact about pseudodimension (see, e.g., Anthony and Bartlett (1999)) is that it
equals the VC dimension of the class of subgraphs. As a function qh ∈ Qn,F ,H maps data sets
D = {(xi, yi)}i∈[n] to the interval [0, 1] (corresponding to error), the object (D, τ) lies in the
subgraph of qh if qh(D) ≥ τ . In our case,

PDim(Qn,F ,H) = VC({I±{qh(D) ≥ τ} | qh ∈ Qn,F ,H}). (14)

To use the tools we have previously established, we will show that, for a fixed (D, τ), we can write
the indicator I±{qh(D) ≥ τ} as a Boolean function of signs of polynomials.

But this is easy: the indicator is +1 exactly when there exists an α ≥ τ such that qh(D) =
α, which we analyzed in Lemma E.8. We take an OR over the n + 1 possible values of α ∈
{0, 1/n, . . . , 1}:

I±{qh(D) ≥ τ} =
∧
α

(
I±{qh(D) = α and α ≥ τ}

)
.

(Recall that we interpret +1 as logical “true.”) When α < τ , we can represent this as sign(−1), a
degree-0 polynomial. When α ≥ τ , we apply Lemma E.8 to see that each term can be written as
a Boolean function of (n+ 1) · 22n signs of polynomials in the variables of h of degree 4(k + 1).
Together, we see that I±{qh(D) ≥ τ} can be written as a Boolean function of at most (n+ 1)222n

signs of polynomials, each of (at most) the same degree. By Lemma 4.1, the VC dimension (and thus
the pseudodimension ofQn,F ,H) is at most 8dk log2(4(k+1)·(n+1)222n) = O(dkn+dk log(kn)).

Appendix F. Bounds for Finite Specialized Classifiers and Representations

In this section, we study multitask learning and metalearning for a finite class of representations H
and a finite class of specialized classifiers F . Specifically, we use our results from Appendix C and
Section 3 to provide bounds for the number of tasks and the number of samples per task needed to
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multitask learn and metalearn (H,F). Recall that the VC dimension of a finite class G is at most
log2 |G|.

By Theorem C.1, we can (ε, δ)-multitask learn (H,F) when the number of tasks t and the
number of samples per task n satisfy nt = O(VC(F⊗t◦H)·ln(1/ε)+ln(1/δ)

ε ) in the realizable case and

nt = O(VC(F⊗t◦H)·ln(1/δ)
ε2

) in the agnostic case. For finite classes, we can bound the VC dimension
of F⊗t ◦ H directly by counting:

VC(F⊗t ◦ H) ≤ log2 |H|+ t log2 |F|.

(For specific classes, the VC dimension can be significantly smaller.)
To apply our general metalearning theorems, we need to bound the VC dimension of the

realizability predicate class Rn,F ,H, the pseudodimension of the empirical error function class
Qn,F ,H, and the dual Helly number DH(F). All of these bounds are direct since the underlying
classes are finite.

Corollaries F.2 and F.3 present our results for metalearning in the realizable and agnostic settings,
respectively. Note that for finite classes of specialized classifiers F , the best possible bound on
DH(F) that depends only on |F| is simply DH(F) ≤ |F|. (Lemma F.1 shows that this is tight, but
for many classes we have DH(F) ≪ |F|.) Since the number of tasks depends exponentially on
DH(F), the first result in Corollary F.2 is only useful for ε small enough so that |F| is smaller than
O( log2 |F| ln(1/ε)

ε ).

Lemma F.1 (VC dimension and dual Helly number) For every integer ℓ ≥ 2,

1. There exists a class Fℓ,VC with VC dimension ℓ and dual Helly number 2.

2. There exists a class Fℓ,NR with dual Helly number ℓ and VC dimension 1.

Proof Fix ℓ ≥ 2. Let Fℓ,VC be the class of all functions f : ′,∞, ..., ℓ→ {±1} such that f(0) = 1.
This class has VC dimension ℓ since it shatters the set {1, ..., ℓ} but not the entire domain. However,
it has very small nonrealizable subsets: if a set cannot be realized, it must either contain the same
value labeled with different points, or the example (0,−1). Either way, there is a subset of 1 or 2
points that is not realizable.

Let Fℓ,NR denote the class of point functions on [ℓ]; that is, the functions fx that take the value 1
at exactly one point x ∈ [ℓ] (and -1 elsewhere). This class has VC dimension 1. However, the set
S = {(x,−1) : x ∈ [ℓ]} is unrealizable (since no value is labeled with 1), but all of its subsets of
size ℓ− 1 are realizable (by fx, where (x,−1) is the point that was removed from S).

Corollary F.2 If H,F are finite, we can (ε, δ)-metalearn (H,F) in the realizable case with t tasks
and n samples per task when

t = (log2 |H|+ ln(1/δ)) ·O
(
ln(1/ε)

ε

)|F|
and n = |F|

or

t = O

(
log2 |H| · ln(1/ε) + ln(1/δ)

ε

)
and n = O

(
log2 |F| · ln(1/ε)

ε

)
.

47



ALIAKBARPOUR BAIRAKTARI BROWN SMITH SREBRO ULLMAN

Proof For finite F , we have VC(F) ≤ log2 |F| and DH(F) ≤ |F|. The second inequality holds
because, if a dataset is not realizable by F , then for every f ∈ F there exists a data point that
is not labeled correctly by f . The union of these at most |F| points is also not realizable by F .
For finite H, the class of realizability predicates Rn,F ,H has at most one realizability predicate
per representation. Thus, it has VC dimension VC(Rn,F ,H) ≤ log2 |H|. The corollary follows by
plugging these measures into the results of Theorems 3.2 and 3.5.

Corollary F.3 If H,F are finite, we can (ε, δ)-metalearn (H,F) with t tasks and n samples per
task when

t = O

(
log2 |H| · ln(1/ε) + ln(1/δ)

ε2

)
and n = O

(
log2 |F|+ ln(1/ε)

ε2

)
.

Proof We have that VC(F) ≤ log2 |F|. Additionally, we see that PDim(Qn,F ,H) ≤ log2 |H|
because PDim(Qn,F ,H) = VC({I±{qh(D) ≥ τ} | qh ∈ Qn,F ,H}) and the size of Qn,F ,H is at most
|H|. By plugging these two bounds into Theorem 3.6 we obtain the result.
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