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Abstract
We provide a unified framework for characterizing pure and approximate differentially private (DP)
learnability. The framework uses the language of graph theory: for a concept class H, we define the
contradiction graph G of H. Its vertices are realizable datasets and two datasets S, S′ are connected
by an edge if they contradict each other (i.e., there is a point x that is labeled differently in S and
S′). Our main finding is that the combinatorial structure of G is deeply related to learning H under
DP. Learning H under pure DP is captured by the fractional clique number of G. Learning H under
approximate DP is captured by the clique number of G. Consequently, we identify graph-theoretic
dimensions that characterize DP learnability: the clique dimension and fractional clique dimen-
sion. Along the way, we reveal properties of the contradiction graph which may be of independent
interest. We also suggest several open questions and directions for future research.
Keywords: Differential privacy, PAC learning, Contradiction graph, Clique number, Chromatic
number, Fractional clique number, Fractional chromatic number, LP duality.

1. Introduction

Modern machine learning applications often involve handling sensitive data. Differential privacy
(DP) (DMNS06) has emerged as a sound theoretical approach to reason about privacy in a precise
and quantifiable fashion and has become the gold standard of statistical data privacy (DR14). It has
also been implemented in practice, notably by Google (EPK14), Apple (app16b; app16a), and in
the 2020 US census (DLS+). These developments raise the question:

Which learning tasks can be performed subject to differential privacy?

Extensive research has been carried out on this question within the framework of the classical
Probably Approximately Correct (PAC) model (VC68; Val84), leading to the development of var-
ious characterizations of private learnability. Beimel, Nissim, and Stemmer introduced a quantity
called the representation dimension that characterizes pure DP learnability (BNS13; BNS19). In a
follow-up work, Feldman and Xiao found an interesting connection with communication complex-
ity by associating every concept class H with a communication task whose complexity characterizes
whether H is pure DP learnable (FX15).
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Extensive research has also been devoted to studying the question of which learning tasks can
be performed subject to approximate differential privacy, which is comparatively less demand-
ing than pure differential privacy. Several characterizations of PAC learnability under this less
restrictive version have been proven, including finite Littlestone dimension and online learnabil-
ity (ALMM19; BLM20; ABL+22), replicability and reproducibility (ILPS22; BGH+23), low infor-
mation complexity, PAC Bayes stability, and other variants of algorithmic stability (LM20; PNG22).
For a more detailed discussion, please refer to (MM22).

Our Contribution. While the definitions of pure and approximate DP are closely related, the
characterizations of learning under these distinct privacy constraints differ significantly. In this
work, we devise a unified approach for characterizing both pure and approximate DP learnability.
Our framework is based on graph theory; in particular, it demonstrates a tight link between private
learnability and cliques in certain graphs, which we call contradiction graphs.

A clique in a graph G is a set δ of vertices such that every pair of distinct vertices in δ is
connected by an edge. A fractional clique is a standard LP relaxation of a clique. A function
δ : V → [0, 1] is a fractional clique if for every independent set I ⊆ V ,∑

v∈I
δ(v) ≤ 1.

The size of a fractional clique δ is the sum
∑

v∈V δ(v). Notice that if δ(v) ∈ {0, 1} for all v then δ
is the indicator function of a clique, and its size is the number of vertices in the clique. The clique
number of G, denoted ω(G), is the largest size of a clique in G. Similarly, the fractional clique
number of G, denoted ω⋆(G), is the largest size of a fractional clique in G. Notice that ω⋆(G) ≥
ω(G).

Definition [Contradiction Graph] Let H ⊆ {0, 1}X be a concept class and let m ∈ N. The
contradiction graph of order m of H is an undirected graph Gm = Gm(H) whose vertices
are datasets of size m that are consistent with H. Two datasets are connected by an edge
whenever they contradict each other.

In other words, the vertices of the contradiction graph Gm(H) are H-realizable sequences of
length m, and {S′, S′′} is an edge if there is x ∈ X such that (x, 0) ∈ S′ and (x, 1) ∈ S′′.
Let ωm = ω(Gm) and ω⋆

m = ω⋆(Gm) denote the clique and fractional clique numbers of Gm. We
prove that both ωm and ω⋆

m satisfy a polynomial-exponential dichotomy:
(i) For every H, either ω⋆

m = 2m for all m, or ω⋆
m ≤ poly(m).

(ii) For every H, either ωm = 2m for all m, or ωm ≤ poly(m).
These dichotomies characterize pure and approximate DP learnability:

(i) H is pure DP learnable if and only if ω⋆
m ≤ poly(m).

(ii) H is approximately DP learnable if and only if ωm ≤ poly(m).
These characterizations yield graph-theoretic dimensions of H that characterize private learning.
Define the clique dimension of H, denoted by CD(H), as the largest m ∈ N ∪ {∞} for which
ωm = 2m. Analogously, define the fractional clique dimension of H, denoted by CD⋆(H), as the
largest m for which ω⋆

m = 2m. Thus,
(i) CD⋆(H) < ∞ if and only if H is pure DP learnable.

(ii) CD(H) < ∞ if and only if H is approximately DP learnable.
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Technically, our proofs rely on the fact that the fractional clique and chromatic numbers are equal.
For finite graphs, this fact follows from LP duality, however, in our setting the contradiction graph
can be infinite. Lastly, we prove that the contradiction graph exhibits strong duality: the fractional
clique and chromatic numbers are equal for every (possibly infinite) contradiction graph. This part
is based on tools from functional analysis and topology.

Note that in this work we focus on providing a unified and concise framework to characterize
and study private learning. Important topics, such as regarding the informational or computational
complexity are not addressed in this work. Nevertheless, given that graph theory is a well-studied
area with sophisticated tools and techniques, we hope that the equivalence established here will
facilitate a deeper integration between learning theory and graph theory. Specifically, we anticipate
that it will provide new tools and insights to tackle other fundamental questions in learning theory.

Organization. In Section 2 we present the main results in greater detail. Section 3 contains back-
ground and relevant definitions in learning theory, graph theory, and differential privacy, together
with basic facts regarding the contradiction graph. In Section 4 we provide a technical overview
of the proofs of the main theorems. Finally, in Section 5, we suggest directions for future work.
Appendices A to D contain the full proofs.

2. Main Results

We use standard definitions and terminology from graph theory, learning theory, and differential
privacy; see Section 3 for detailed definitions.

2.1. Dichotomies and Dimensions

In this section we present Theorems 2 and 3 which concern cliques and fractional cliques in the
contradiction graph. These results are key in our characterizations of private learnability, but they
might also be of independent interest as combinatorial results.

We begin with a basic lemma which shows that the contradiction graph does not contain cliques
or fractional cliques of size larger than 2m.

Lemma 1 Let H be a class and m ∈ N and let ωm and ω⋆
m denote the clique and fractional clique

numbers of Gm(H). Then, ωm ≤ ω⋆
m ≤ 2m.

A short proof of this lemma is provided in Appendix D.

Theorem 2 (Clique Number) Let H be a class and let ωm denote the clique number of Gm(H).
Then, exactly one of the following statements holds:

1. ωm = 2m for all m.
2. ωm ≤ P (m) for all m, where P (m) is a polynomial.

Theorem 3 (Fractional Clique Number) Let H be a class and let ω⋆
m denote the fractional clique

number of Gm(H). Then, exactly one of the following statements holds:
1. ω⋆

m = 2m for all m.
2. ω⋆

m ≤ P (m) for all m, where P (m) is a polynomial.

Theorems 2 and 3 motivate the following definitions.
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Definition 4 (Clique Dimension) The clique dimension of a concept class H, denoted CD(H), is
defined as follows:

CD(H) := sup{m : ωm = 2m} ∈ N ∪ {∞},
where ωm is the clique number of the contradiction graph Gm(H).

Definition 5 (Fractional Clique Dimension) The fractional clique dimension of a concept class H,
denoted CD⋆(H), is defined as follows:

CD⋆(H) := sup{m : ω⋆
m = 2m} ∈ N ∪ {∞},

where ω⋆
m is the fractional clique number of the contradiction graph Gm(H).

Thus, Theorems 2 and 3 demonstrate that the clique and fractional clique dimensions satisfy a
dichotomy similar to the Sauer-Shelah-Perles (SSP) dichotomy of the VC dimension (Sau72). The-
orems 2 and 3 are key in our characterizations of private PAC learnability. This is analogous to the
crucial role played by the SSP lemma in the characterization of PAC learnability.

It is worthwhile to note that the polynomial/exponential dichotomy in Theorem 3 is weaker than
the one in Theorem 2. Specifically, in Theorem 2 the degree of the polynomial P (m) is the clique
dimension CD(H) (see Lemma 18). In contrast, our proof of Theorem 3 does not imply a bound
on the degree of P (m) in terms of the fractional clique dimension. Rather, the implied bound
depends on the difference 2m−ω⋆

m > 0, where m is any integer for which this difference is positive
(m exists by Lemma 1). We leave as an open question to determine whether the fractional clique
number ω⋆

m is upper bounded by a polynomial P (m) whose degree depends only on the fractional
clique dimension.

2.2. Private Learnability: Characterizations

We next present the characterizations of pure and approximate private learnability.

Theorem 6 (Pure DP Learnability) The following statements are equivalent for a concept class H.
1. H is pure differentially private PAC learnable.
2. H has finite fractional clique dimension.

Theorem 7 (Approximate DP Learnability) The following statements are equivalent for a con-
cept class H.

1. H is approximately differentially private PAC learnable.
2. H has finite clique dimension.

Theorems 6 and 7 provide a unified characterization of private PAC learnability in terms of
cliques and fractional cliques. Roughly speaking, these theorems assert that large (fractional)
cliques in the contradiction graph correspond to tasks that are hard to learn privately. However, our
proofs of Theorems 6 and 7 do not explicitly illustrate this correspondence. Instead, our proofs fol-
low an indirect path by linking the clique and fractional clique dimensions to the representation and
Littlestone dimensions, respectively. This implies the stated equivalences since the representation
and Littlestone dimensions characterize pure and approximate DP learnability (BNS19; ABL+22).

It would be interesting to find direct proofs that illustrate the correspondence between large
cliques in the contradiction graphs and hard learning tasks. A clique of size k in the contradiction
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graph is simply a set S of k realizable datasets such that every two distinct datasets S′, S′′ ∈ S dis-
agree on some example. Analogously, a fractional clique of size k is a distribution ν over realizable
data sets such that PrS∼ν [h is consistent with S] ≤ 1/k for every hypothesis h. Hence, it is quite
natural to speculate that there exists a natural and direct conversion between cliques and fractional
cliques, and realizable distributions on datasets that are hard for private learning.

Duality, Representation Dimension, and Communication Complexity. The fractional clique
number is defined via a linear program and as such it has a dual definition. The latter is called
the fractional chromatic number and is defined as follows. Let G be an undirected graph and let I
denote the family of independent sets in G. A fractional coloring is an assignment c : I → R≥0 such
that for every vertex v we have

∑
I:v∈I c(I) ≥ 1. The number of colors in c is defined by col(c) =∑

I∈I c(I). The fractional chromatic number, denoted by χ⋆(G), is the infimum number of colors
in a fractional coloring. Notice that χ⋆(G) ≤ χ(G), where χ(G) is the chromatic number of G.
This holds because any coloring defines a fractional coloring by assigning 1 to each color class.

Fractional colorings of the contradiction graph have a natural learning theoretic interpretation.
A fractional coloring c of Gm(H) corresponds to a distribution µ over hypotheses such that for
every realizable dataset S of size m:

Pr
h∼µ

[h is consistent with S] ≥ 1

col(c)
. (1)

The fractional chromatic number of the contradiction graph is tightly linked to the representation
dimension (see Definition 9). The latter is a dimension introduced by (BNS19) to characterize pure
DP learnability. Roughly, the representation dimension of H is the minimal integer d for which
there exists a distribution P over hypothesis classes of size ≤ 2d such that for every realizable
distribution D, a random class H ∼ P contains with probability at least 3/4 an hypothesis h = hD
whose loss with respect to D is at most 1/4. The representation dimension can be interpreted as a
lossy variant of the fractional chromatic number. Indeed, consider a uniformly sampled hypothesis
h drawn from a random class H ∼ P , and pick D to be the uniform distribution over the examples
in a realizable dataset S. Thus, with probability at least 3

42
−d, the random hypothesis h classifies

correctly 3/4 of the examples in S.

A similar link exists between the fractional clique number of Gm(H) and the communication
complexity theoretic characterization of pure private learnability by (FX15). The latter is based on a
communication game between two players whom we call Alice and Bob. In the game, Alice’s input
is a hypothesis h ∈ H, Bob’s input is a point x, and Alice sends a single message to Bob. Their goal
is that with probability at least 3/4, Bob will be able to decode h(x) from Alice’s message. Feldman
and Xiao showed that the optimal number of bits required to perform this task is proportional to the
representation dimension of H, and hence characterizes pure DP learnability.

Fractional cliques are linked to hard distributions for the above communication game. A frac-
tional clique δ corresponds to a distribution ν over realizable datasets S of size m such that for every
hypothesis h:

Pr
S∼ν

[
h is consistent with S

]
≤ 1

|δ|
. (2)

Consider a variant of the above equation where the event “h is consistent with S” is replaced by
the event “h classifies correctly at least 3/4 of the examples in S”. This variant induces a hard
distribution for the communication game as follows. Pick a random dataset S ∼ ν and a concept
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h ∈ H such that h is consistent with S. Let Alice’s input be h and Bob’s input be a random
(unlabeled) example from S. Standard arguments in communication complexity show that this
distribution is indeed hard for the communication game.

To summarize the discussion, LP duality implies that the fractional clique and chromatic num-
bers are equal. When considering this along with the aforementioned connections, it illuminates a
dual relationship between the representation dimension and the communication-complexity-based
characterization of pure private learnability.

2.3. Strong Duality in Infinite Contradiction Graphs

Our proofs heavily rely on the equality of the fractional clique and chromatic numbers. For finite
graphs, this equality is a consequence of LP duality. However, in learning theory, we often study
infinite hypothesis classes H whose contradiction graphs are therefore also infinite. In general,
LP duality does not apply in infinite dimensional spaces. Therefore, we prove the next theorem
showing that any (possibly infinite) contradiction graph Gm(H) satisfies that its fractional clique
and chromatic numbers are equal and are bounded from above by 2m.

Theorem 8 Let X be an arbitrary domain, H ⊆ {0, 1}X a concept class and m ∈ N. Let ω⋆
m and

χ⋆
m denote the fractional clique and chromatic numbers of the contradiction graph Gm(H). Then,

ω⋆
m = χ⋆

m ≤ 2m.

Moreover, there exists a fractional coloring realizing χ⋆
m. (I.e. the infimum is in fact a minimum.)

The proof of Theorem 8 uses tools from functional analysis, topology, and measure theory. The
equality ω⋆

m = χ⋆
m is derived using Sion’s Theorem (Sio58), and the upper bound of 2m hinges

on Kolmogorov’s Extension Theorem (see, e.g. Theorem 2.4.3 in (Tao11)). This proof appears
in Appendix C, which we attempted to present in a manner accessible for readers who may only
have basic familiarity with topology and functional analysis.

3. Preliminaries

3.1. Learning

PAC Learning. We use standard notations from statistical learning; for more details see e.g.
(SSBD14). Let X be a domain; for simplicity, in this work, we assume that X is countable, although
our arguments apply more generally. Given an hypothesis h : X → {0, 1}, the empirical loss of h
with respect to a dataset S =

(
(x1, y1), . . . , (xm, ym)

)
is defined as LS(h) := 1

m

∑m
i=1 1[h(xi) ̸= yi].

We say that h is consistent with S if LS(h) = 0. The population loss of h with respect to a distribu-
tion D over X × {0, 1} is defined as LD(h) := Pr(x,y)∼D[h(x) ̸= y]. A distribution D over labeled
examples is realizable with respect to H if infh∈H LD(h) = 0

For a set Z, let Z⋆ = ∪∞
n=0Z

n. A learning rule A is a (possibly randomized) algorithm that
takes as input a dataset S ∈ (X × {0, 1})⋆ and outputs a hypothesis h = A(S) ∈ {0, 1}X . In the
PAC learning model, the input S is sampled i.i.d. from a realizable distribution D, and the learner’s
goal is to output a hypothesis with small population loss with respect to D. More precisely, let
m,α, β > 0. We say that an algorithm A is an (m,α, β)-learner for H if for every realizable
distribution D, PrS∼Dm [LD(A(S)) > α] < β. Here, α is called the error, β is the confidence
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parameter, and m is the sample complexity. A class H is PAC learnable if there exists vanish-
ing α(m), β(m) → 0 and an algorithm A such that for all m, algorithm A is a (m,α(m), β(m))-
learner for H.

Differential Privacy. We use standard notations from differential privacy literature; for more de-
tails see e.g. (DR14; Vad17). A randomized learning algorithm A is differentially private with
parameters (ϵ, δ), if for every input datasets S, S′ ∈ (X × {0, 1})m that differ on a single example,
and every event E ⊆ {0, 1}X :

Pr[A(S) ∈ E] ≤ eϵ Pr[A(S′) ∈ E] + δ,

where the probability is over the randomness of A. The parameters ϵ and δ are usually treated as
follows: ϵ is a small constant (say ≤ 0.1) and δ is negligible, δ = m−ω(1) where m is the input
datasets size. When δ = 0 we say that A is pure differentially private, and when δ > 0 we say
that A is approximate differentially private.

An hypothesis class H is pure privately learnable (abbreviated pure DP learnable) if it is pri-
vately learnable by an algorithm which is (ϵ(m), 0)-differentially private, where ϵ(m) = O(1) is a
numerical constant. An hypothesis class H is approximately privately learnable (abbreviated DP
learnable) if it is PAC learnable by an algorithm A which is (ϵ(m), δ(m))-differentially private,
where ϵ(m) = O(1) is a numerical constant and δ(m) = m−ω(1).

Representation Dimension. The representation dimension is a combinatorial parameter intro-
duced by Beimel et al. (BNS19) who used it to characterize pure DP learnability.

Definition 9 (Representation Dimension (BNS19)) The representation dimension of a concept
class H, denoted RepDim(H), is defined to be ln(d), where d is the minimal integer for which
there exists a distribution P over hypothesis classes of size d that satisfies the following. For every
distribution D on labeled examples that is realizable by H,

Pr
C∼P

[
∃h ∈ C s.t. LD(h) ≤

1

4

]
≥ 3

4
.

As (BNS19) show, the constants 1/4, 3/4 above can be replaced by any other pair of constants
in (0, 1) without changing the semantics of the definition. This follows from the next lemma:

Lemma 10 (Boosting Probabilistic Representation, Lemma 18 (BNS19)) Let H be a class with
RepDim(H) = d < ∞. Then for every 0 < α, β < 1 there exists a probability distribution P
over hypothesis classes of size O

(
( 1α)

d+ln ln ln( 1
α
)+ln ln( 1

β
)
)

which satisfies the following. For every
realizable distribution D on labeled examples which is realizable by H,

Pr
C∼P

[∃h ∈ C s.t. LD(h) ≤ α] ≥ 1− β.

Littlestone Dimension. The Littlestone dimension is a combinatorial parameter that captures mis-
take and regret bounds in online learning (Lit88; BDPSS09). A mistake tree is a binary decision
tree whose nodes are labeled with instances from X and whose edges are labeled by 0 or 1 such that
each internal node has one outgoing edge labeled 0 and one outgoing edge labeled 1. A root-to-leaf
path in a mistake tree is a sequence of labeled examples (x1, y1), . . . , (xd, yd). The point xi is the
label of the i’th internal node in the path, and yi is the label of its outgoing edge to the next node in
the path. A class H shatters a mistake tree if every root-to-leaf path is realizable by H. The Little-
stone dimension of H, denoted LD(H), is the largest number d ∈ N ∩ {∞} such that there exists a
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complete binary mistake tree of depth d shattered by H. If H shatters arbitrarily deep mistake trees
then we write LD(H) = ∞.

3.2. Graph Theory

Cliques, Colorings, and Distributions. Let G = (V,E) be a (possibly countable) graph. Denote
by ω(G) the clique number of G, which is largest size of a clique in G. Denote by χ(G) the
chromatic number of G, which is the smallest number of colors needed to color the vertices of G so
that no two adjacent vertices share the same color. The clique and chromatic numbers have natural
LP relaxations.

A fractional clique is a function δ : V → R≥0 such that
∑

v∈I δ(v) ≤ 1 for every independent
set I . The size of δ is |δ| :=

∑
v∈V δ(v). The fractional clique number of G, denoted ω⋆(G),

is defined by ω⋆(G) := supδ|δ|. A fractional coloring is a finite measure1 c on I, where I is the
family of all independent sets in G, such that c({I : v ∈ I}) ≥ 1 for every v ∈ V . The fractional
chromatic number of G, denoted χ⋆(G), is defined by χ⋆(G) := infc c(I). Note that from (weak)
LP-duality, for any graph G, ω(G) ≤ ω⋆(G) ≤ χ⋆(G) ≤ χ(G). In finite graphs strong LP-duality
holds and ω⋆(G) = χ⋆(G). Theorem 8 extends this equality to any (possibly infinite) contradiction
graph.

There is a natural correspondence between fractional colorings of a graph G and distributions
over independent sets. Given a fractional coloring c, normalizing c by the number of colores in c,
denoted by col(c) := c(I), induces a distribution µ over independent sets, such that for every
vertex v,

Pr
I∼µ

[v ∈ I] =
1

col(c)
· c({I : v ∈ I}).

Define the value of a distribution µ over I to be val(µ) := infv∈V PrI∼µ[v ∈ I]. By taking infi-
mum,

val(µ) := inf
v∈V

Pr
I∼µ

[v ∈ I] =
1

col(c)
.

From the other direction, given a distribution µ over I, normalizing µ by val(µ) induces a fractional
coloring of G. Minimizing the number of colors of a fractional coloring is equivalent to maximizing
the value of the corresponding distribution, hence

1

χ⋆(G)
= sup

µ
val(µ) = sup

µ
inf
v∈V

Pr
I∼µ

[v ∈ I].

Similarly, there is a correspondence between fractional cliques of a graph G and distributions
over vertices. Normalizing a fractional clique δ : V → R≥0 by |δ|, induces a distribution ν over
vertices, and normalizing a distribution ν over V by val(ν) := supI∈I Prv∼ν [v ∈ I] induces a
fractional clique. Similarly,

1

ω⋆(G)
= inf

ν
val(ν) = inf

ν
sup
I∈I

Pr
v∼ν

[v ∈ I].

For further reading about fractional graph theory see (SU13).

1. For a finite G, one typically defines a fractional coloring as a function c : I → R≥0 such that
∑

v∈I c(I) ≥ 1 for
every v ∈ V . The latter amounts to c being a discrete measure on I. In this work, we also consider infinite graphs
and use this more general definition which allows for non-discrete measures on I. We refer the reader to Section C
for a more detailed discussion.
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3.3. The Contradiction Graph: Basic Facts

In this section, we state basic lemmas about the structure of the contradiction graph. We begin with a
discussion about the relation between interpolating learning rules and colorings of the contradiction
graph. Then, we discuss the relation between fractional colorings and cliques, and distributions over
hypotheses and realizable datasets. Omitted proofs can be found at Appendix D.

Interpolating Algorithms are Proper Colorings. There is a correspondence between proper col-
orings of the contradiction graph and interpolating learning rules. A deterministic learning rule A
is said to be interpolating with respect to a class H if for every realizable input dataset S, the output
hypothesis h := A(S) satisfies h(x) = y for every labeled example (x, y) ∈ S. A proper coloring
of a graph is an assignment of a color to each vertex so that no two adjacent vertices share the same
color. In other words, a coloring is a partition of the vertices such that every subset in the partition
is an independent set. The correspondence between colorings and interpolation algorithms is a di-
rect result of the following lemma which identifies independent sets in the contradiction graph with
hypotheses2.

Lemma 11 (Independent sets and consistent hypotheses) Let H be a class and m be a natural
number.

1. For every independent set I in Gm(H), there exists an hypothesis h ∈ {0, 1}X such that h
is consistent with every dataset S ∈ I; i.e. for every dataset S ∈ I and every example
(x, y) ∈ S, we have h(x) = y.

2. For every hypothesis h, the set of all datasets of size m that are consistent with h is an
independent set in Gm(H); i.e. the set

Vh := {S = ((x1, y1), . . . , (xm, ym)) ∈ Vm(H) | ∀i, h(xi) = yi}
is independent in Gm(H).

Colorings → Algorithms. Let S be a realizable dataset of size m, and consider a coloring of Gm(H).
By part 1 of Lemma 11 there exists a hypothesis h which is consistent with every dataset in Gm(H)
colored with the same color as S. Now simply define A(S) = h. This defines an interpolating
learning rule A for H.
Algorithms → Colorings. Given an interpolating learning rule A, by part 2 of Lemma 11 for every
realizable dataset S of size m, the set VA(S) is independent. Note that since A is interpolating every
dataset S ∈ Vm(H) is covered, indeed S ∈ VA(S). Next, assign a unique color to all datasets in
VA(S). (If there is more than one possible color option for some datasets then arbitrarily choose
one.) This defines a proper coloring of Gm(H).

Fractional Cliques and Colorings of the Contradiction Graph. In the contradiction graph in-
dependent sets correspond to hypothesis and vertices are realizable datasets. Therefore, fractional
colorings can be viewed as distributions over hypotheses, and fractional cliques as distributions over
realizable datasets:

Lemma 12 (Fractional cliques and colorings vs. distributions) Let H be a class, m ∈ N. Then,

2. The mapping described in Lemma 11 is 1− 1 for maximal independent sets.

9
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1. There exists a fractional coloring c of Gm(H) with col(c) = α > 0 if and only if there exists
a distribution µ over hypotheses such that

inf
S

Pr
h∼µ

[h is consistent with S] =
1

α
,

where the infimum is taken over realizable datasets of size m.
2. There exists a fractional clique δ of Gm(H) with |δ| = α > 0 if and only if there exists a

distribution ν over realizable datasets of size m such that

sup
h

Pr
S∼ν

[h is consistent with S] =
1

α
,

where the supremum is taken over hypotheses h ∈ {0, 1}X .

Let ω⋆
m and χ⋆

m denote the fractional clique and chromatic numbers of Gm(H). It follows that
1

χ⋆
m

= sup
µ

inf
ν

E
h∼µ
S∼ν

[1[h is consistent with S]] , (3)

1

ω⋆
m

= inf
ν
sup
µ

E
h∼µ
S∼ν

[1[h is consistent with S]] . (4)

where the supremum is taken over distributions over hypotheses, and the infimum is taken over
distributions over realizable datasets of size m. (See discussion in Section 3.2.)

Corollary 13 Let ω⋆
m denote the fractional clique number of Gm(H). Then there exists a distribu-

tion µ⋆ over hypotheses such that for every realizable dataset S of size m,

Pr
h∼µ⋆

[h is consistent with S] ≥ 1

ω⋆
m

.

Proof By Theorem 8 there exists a fractional coloring of value χ⋆
m = ω⋆

m, thus by Lemma 12 there
exists a distribution µ⋆ over hypotheses as wanted.

4. Technical Overview

4.1. Dichotomies and Dimensions: Theorems 2 and 3

We begin with overviewing the proof of Theorem 2. Assuming there exists a natural number d such
that ωd < 2d, we need to show that |δ| ≤ poly(m) for every m and for every clique δ in Gm. The
crux of the proof is to show that there exists a balanced instance x1 in the following sense:

|{S ∈ δ : (x1, 0) ∈ S}| ≥ Ω
( |δ|
m

)
and |{S ∈ δ : (x1, 1) ∈ S}| ≥ Ω

( |δ|
m

)
(5)

To see how Equation (5) completes the proof, let Hx→y = {h ∈ H : h(x) = y}. Notice that at
least one of Gd−1(Hx1→0), Gd−1(Hx1→1) does not contain a clique of size 2d−1. Indeed, if δ0, δ1
are cliques of size 2d−1 in Gd−1(Hx1→0) and Gd−1(Hx1→1), then they can be combined to form
a clique of size 2d in Gd(H) by adding the example (x1, 0) to every dataset in δ0 and the exam-
ple (x1, 1) to every dataset in δ1, and taking their union.

Repeating this argument d − 1 times, we obtain a class H′ = Hx1→y1,...xd−1→yd−1
such that

(i) G1(H′) does not contain a clique of size 2, and (ii) there is a clique in Gm(H′) whose size is

10
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at least |δ|/(c ·m)d−1 for some constant c. On the other hand, the first item means that |H′| = 1
and hence every clique in Gm(H′) has size 1. Thus, 1 ≥ |δ|/(c ·m)d−1, which implies that |δ| ≤
(c ·m)d−1 = poly(m) as required.

We prove that there exists a balanced instance (i.e. that satisfies Equation (5)) constructively
using a greedy procedure (see Lemma 17 for the short proof).

The proof of Theorem 3 is more involved and it integrates different ideas and techniques such
as LP duality, probabilistic arguments, and regret analysis from online learning. Our objective is to
demonstrate that if there exists a natural number d such that ω⋆

d < 2d, then |δ| ≤ poly(m) for every
fractional clique δ in Gm. The first step in the proof is to apply LP duality, which reduces the latter
to show that there exists a fractional coloring of Gm(H) that employs poly(m) colors. Fractional
colorings correspond to distributions over hypotheses, therefore, it suffices to prove the following
statement: there exists a distribution µ over hypotheses such that for every dataset S of size m that
is realizable by H:

Pr
h∼µ

[h is consistent with S] ≥ 1/poly(m). (6)

We obtain the distribution µ as follows. By the above correspondence, there is a distribution µ′

such that Prh∼µ′ [h is consistent with S] ≥ 2−d + ϵ, for every realizable dataset S of size d. The
distribution µ is obtained by independently sampling Θ(logm/ϵ2) hypotheses from µ′ and taking
their majority vote. Interestingly, the analysis showing that µ satisfies Equation (6) follows by a
reduction to online prediction using expert advice.

4.2. Characterizations of Private Learnability: Theorems 6 and 7

Our proof of Theorems 6 and 7 rely on the exponential-polynomial dichotomies (Theorems 3,
and 2). We begin with overviewing the proof of Theorem 7. By (ABL+22), a class H is ap-
proximately DP learnable if and only if it has a finite Littlestone dimension. Thus, it suffices to
show that the clique dimension is finite if and only if the Littlestone dimension is finite. Our proof
yields explicit bounds of

LD(H) ≤ CD(H) ≤ O(LD(H) log LD(H)),

where LD(H) denotes the Littlestone dimension of H. One direction is straightforward. If the
Littlestone dimension is at least m, then there is a mistake tree of depth m that is shattered by H.
Each branch of the tree corresponds to a realizable dataset of length m, and the collection of 2m

datasets corresponding to the branches form a clique. Indeed, every two datasets disagree on the
example corresponding to the least common ancestor of their branches.

The converse direction is more challenging. Assume that the clique dimension CD(H) is at
least m. We prove the existence of a shattered mistake tree of depth Ω̃(m). Like in Theorem 2, we
prove this using the existence of a balanced point (see Equation (5)). Indeed, given a clique δ of
size 2m in Gm(H), we pick the root of the mistake tree to be a balanced point x in δ, and proceed
to find a balanced point in each of {S ∈ δ : (x, 0) ∈ S} and {S ∈ δ : (x, 1) ∈ S}, corresponding to
the left and right subtrees. We continue this way until one of the branches is consistent with exactly
one dataset in δ. A standard calculation shows that this way one obtains a Littlestone tree of depth
at least Ω̃(m). We note that there is a simple example of a class H that satisfies LD(H) < CD(H)
(see Section 5). We leave as an open question to determine whether LD(H) = Θ(CD(H)).

11
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We now move to overview the proof of Theorem 6. Our proof follows by relating the represen-
tation dimension with the fractional clique dimension, showing that one is finite if and only if the
other is finite. This finishes the proof because the representation dimension characterizes pure DP
learnability (BNS19). The direction showing that finite representation dimension implies finite frac-
tional clique dimension follows directly by results from (BNS19). In particular, (BNS19) proved a
boosting result which reduces the probability of error of the random class from 1/4 to ϵ. Applying
their result with ϵ < 1/m yields a bound on the fractional clique number.

For the converse direction, we use Theorem 3. Assume that the fractional clique dimension
of H is finite; therefore, for every m the fractional clique number is bounded by poly(m). Thus,
by LP duality there exists a fractional coloring c with poly(m) many colors. Now, since fractional
colorings correspond to distributions µ over hypotheses satisfying Equation (1), we can define a
distribution over hypothesis classes by sampling poly(m) independent hypotheses from c. By
Equation (1) it follows that for every realizable dataset S of size m, one of the poly(m) hypotheses
is consistent with S with probability at least a constant (say 1/4). By a standard generalization
argument, this yields the desired bound on the representation dimension.

5. Future Work and Open Questions

Clique Dimension vs. Littlestone Dimension. Lemmas 16 and 20 tie together the clique dimen-
sion and the Littlestone dimension of a class H, showing that they are equivalent up to log factors.
It is natural to ask whether a tighter relationship holds:

Question 14 Is it the case that CD(H) = Θ(LD(H))?

Notice that LD(H) ≤ CD(H) for every H, because the datasets corresponding to the branches of a
shattered tree form a clique. Thus, it suffices to determine whether CD(H) ≤ O(LD(H)) in order
to answer the above question. We remark that there are classes H for which LD(H) < CD(H); for
example, the following class H ⊆ {0, 1}4 has CD(H) = 3 and LD(H) = 2:

H =
{
(0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 0), (The red datasets form a clique.)

(1, 0, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1), (1, 1, 0, 1)
}
.

Sauer-Shelah-Perles Lemma for Fractional Clique Dimension. In Appendix B we proved the
analogue to the Sauer-Shelah-Perles Lemma for the fractional clique dimension. We showed a
polynomial bound on the fractional clique number of Gm(H) whenever CD⋆(H) is finite. In contrast
to the polynomial-exponential dichotomy satisfied by the clique dimension, where the dimension
itself bounds the polynomial degree, in this case the obtained bound on the polynomial degree
depends on the difference 2m − ω⋆

m where m is any number satisfying 2m − ω⋆
m > 0.

Question 15 Let H be a class with CD⋆(H) = d < ∞. Is there a polynomial Pd(m) whose degree
depends only on d such that ω⋆

m(H) ≤ Pd(m) for every m?

Direct Proofs. It will be interesting to find direct proofs for the characterizations of pure and
approximate private learnability via the clique and fractional clique dimensions. In particular, is
there a natural way to construct hard distributions for private learning from large cliques or fractional
cliques?

12
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Expressivity of Contradiction Graphs. Which learning theoretic properties are definable by the
contradiction graph? In this work, we demonstrated that online learnability, approximate private
learnability, and pure private learnability are captured by the clique and fractional clique numbers
of the contradiction graph. How about PAC learnability (which is equivalent to finite VC dimen-
sion)? Is the property of having a finite VC dimension detectable in the contradiction graph? More
formally, are there two hypothesis classes H1,H2 such that the VC dimension of H1 is finite and
the VC dimension of H2 is infinite, but Gm(H1) ≡ Gm(H2) for every m? (Here “≡” denotes the
isomorphism relation between undirected graphs).

Acknowledgements

We thank Ron Holzman, Emanuel Milman and Ramon van Handel for insightful discussions and
suggestions surrounding the proof of the strong duality for contradiction graphs (Theorem 8). We
also thank Jonathan Shafer for his comments.

NA acknowledges support in part by NSF grant DMS-2154082. SM is a Robert J. Shillman Fel-
low; he acknowledges support by ISF grant 1225/20, by BSF grant 2018385, by an Azrieli Faculty
Fellowship, by Israel PBC-VATAT, by the Technion Center for Machine Learning and Intelligent
Systems (MLIS), and by the the European Union (ERC, GENERALIZATION, 101039692). HS
acknowledges support by ISF grant 1225/20, and by the the European Union (ERC, GENERAL-
IZATION, 101039692). Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

References

[ABL+22] Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private and
online learnability are equivalent. J. ACM, 69(4):28:1–28:34, 2022.

[ALMM19] Noga Alon, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private PAC learning
implies finite Littlestone dimension. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, pages 852–860, New York, NY,
USA, 2019. Association for Computing Machinery.

[app16a] Apple promises to deliver AI smarts without sacrificing your privacy. The Verge, 2016.

[app16b] Apple tries to peek at user habits without violating privacy. The Wall Street Journal,
2016.
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Appendix A. Approximate Privacy and Cliques

In this section, we prove Theorems 2 and 7. Recall, Theorem 2 states that the clique number of the
contradiction graph obeys an exponential-polynomial dichotomy, and Theorem 7 states that a class
is approximately DP PAC learnable if and only if it’s clique dimension is finite. The main idea is
to study the relations between the clique dimension and the Littlestone dimension. It is known that
a class H is approximately DP learnable if and only if the Littlestone dimension LD(H) is finite
(ALMM19; BLM20). Therefore, to prove Theorem 7 it suffices to show that the clique dimension
CD(H) is finite if and only if LD(H) is finite. Recall that LD(H) is equal to the depth of the deepest
mistake tree that is shattered by H. Observe that if a class H shatters a mistake tree of depth m,
then the 2m datasets corresponding to the leaves of the shattered tree form a clique in Gm(H). This
observation proves the following lemma.

Lemma 16 Let H be a hypothesis class. Then LD(H) ≤ CD(H).

In simple words, deep shattered trees imply large cliques. We will show that the opposite state-
ment holds as well. The following lemma is the crux of our proof. It asserts that for any clique
in Gm(H) there exists an unlabeled data point x which separates a non-negligible fraction of the
datasets in the clique.

Lemma 17 Let H be an hypothesis class and let C ⊆ Vm(H) be a clique in Gm(H). Then,
there exists an unlabeled data point x ∈ X which is balanced in the following sense: at least |C|−1

2m

datasets in C contain the labeled example (x, 1) and at least |C|−1
2m datasets in C contain the labeled

example (x, 0).

Before proving this lemma let us remark that quantitative improvements in the above lemma
translate to improvements in Theorem 2 and to tighter bounds relating the Littlestone and clique
dimensions. We elaborate on this in Section 5.
Proof [Proof of Lemma 17] Denote c := |C|. Given a labeled example (x, b) denote by C(x,b) the
set of all datasets in C that contains (x, b):

C(x,b) := {S ∈ C | (x, b) ∈ S}.
We perform the following iterative process to find a balanced example x:

Eliminate Unbalanced Examples in Clique:

As long as there is S ∈ C and (x, b) ∈ S such that |C(x,1−b)| < c−1
2m , do:

1. Update S → S ∖ {(x, b)}.
2. Update the edges of C accordingly: if a dataset S′ ∈ C(x,1−b) does not contradict S

anymore (i.e. S and S′ disagreed only x), then delete the edge between them.

Observe that:
1. The number of iterations is at most cm: Consider the sum

∑
S∈C |S|. At the beginning of

the process
∑

S∈C |S| = cm, and at each iteration, the size of one dataset is reduced by
one and hence

∑
S∈C |S| decreases by one. The bound follows since

∑
S∈C |S| is always

non-negative.
2. At each iteration, the number of edges that are deleted is less than c−1

2m .
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3. Thus, the total number of edges that are deleted during the process is less than cm· c−1
2m =

(
c
2

)
.

Therefore, at the end of the process, there is at least one remaining edge. That is, there are two
datasets in C that contradict each other on an unlabeled example x which satisfies both |C(x,1)|
and |C(x,0)| are at least c−1

2m , as required.

Lemma 18 Let H be a hypothesis class and denote by ωm the clique number of Gm(H). Then, for
all m,

ωm ≤ (2m+ 1)LD(H) ≤ (2m+ 1)CD(H).

The idea of the proof is to apply Lemma 17 on a maximal clique in Gm(H) and construct
inductively a shattered Littlestone tree whose depth is large (as a function of ωm). Together with
the fact that the depth is at most LD(H), the desired bound follows.

Note that proving this lemma completes the proof of Theorem 2: if LD(H) = ∞ then by
previous observation ωm = 2m for every m, and if LD(H) is finite then by the above lemma
ωm ≤ (2m+ 1)LD(H) = poly(m) for every m.
Proof [Proof of Lemma 18] Let C be a clique of size ωm in Gm(H). Without loss of generality,
we can assume ωm > 2m (otherwise the bound trivially holds3). By Lemma 17 there exists an
unlabeled example x such that each of the sets

R = {S ∈ C | (x, 1) ∈ S},
L = {S ∈ C | (x, 0) ∈ S}

has size at least ωm−1
2m ≥ ωm

2m+1 . Take x to be the root of a mistake tree, and recursively repeat the
same operation on the sub-cliques induced by R,L. This way, in the i’th step we have 2i cliques
and the size of each clique is at least

ωm

(2m+ 1)i
.

Say this process terminates after T steps, yielding a shattered tree of depth T ≤ LD(H). Note that
the process terminates if and only if at least one of the produced cliques has size ≤ 1, hence

ωm

(2m+ 1)T
≤ 1,

which implies

ωm ≤ (2m+ 1)T ≤ (2m+ 1)LD(H).

The second inequality holds by Lemma 16.

As an immediate corollary we conclude that for every class H, the clique dimension is finite if
and only if the Littlestone dimension is finite.

Corollary 19 Let H be a hypothesis class. Then

CD(H) < ∞ ⇐⇒ LD(H) < ∞

As shown earlier, this completes the proof of Theorem 7. We turn to state another quantitative
relation between the Littlestone and clique dimensions that follows from Lemma 18.

3. If ωm ≤ 2m and LD(H) ≥ 1, then the inequality in the lemma holds. In the degenerate case when LD(H) = 0, we
have |H| = 1 hence ωm = 1 for all m, and the inequality holds as well.
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Lemma 20 Let H be a hypothesis class. Then

CD(H) ≤ max
{
2LD(H) log(LD(H)), 300

}
.

The proof of this lemma is straightforward and technical thus deferred to Appendix D.

Appendix B. Pure Privacy and Fractional Cliques

In this section we prove Theorems 3 and 6. Recall, Theorem 3 states that the fractional clique
number of the contradiction graph obeys an exponential-polynomial dichotomy, and Theorem 6
states that a class is pure DP PAC learnable if and only if it’s fractional clique dimension is finite.
Beimel et al. proved that a class H is pure DP learnable if and only if the representation dimen-
sion RepDim(H) is finite (BNS13). Recall, RepDim(H) is finite if there exists a distribution over
finite hypothesis classes such that for every realizable distribution over labeled examples, with high
probability, a random class contains a hypothesis that has small population error. We will show that
RepDim(H) is finite if and only if the fractional clique dimension CD⋆(H) is finite. We begin with a
technical lemma. An optimal fractional coloring of Gm(H) induces a distribution over hypotheses
such that every realizable dataset of size m is consistent with a random hypothesis with probability
of at least 1/ω⋆

m (Corollary 13). In other words, the probability that a random hypothesis has zero
empirical loss (with respect to any realizable dataset of size m) is bounded from below by a positive
constant. Using measure concentration arguments gives similar results when considering the popu-
lation loss of a random hypothesis instead of the empirical loss. That is, there exists a distribution
over hypotheses such that for every realizable distribution D, the probability that a random hypothe-
sis has small population loss (with respect to D) is bounded from below. This fact is essential for the
proof of the equivalence between the representation dimension and the fractional clique dimension.

Lemma 21 Let H be a class and m ∈ N. Then there exists a distribution µ⋆ over hypotheses which
satisfies the following. For every distribution D over labeled examples which is realizable by H,
and for every 0 ≤ θ ≤ 1,

Pr
h∼µ⋆

[LD(h) ≤ θ] ≥ 1

ω⋆
m

− (1− θ)m,

where ω⋆
m is the fractional clique number of Gm(H).

Proof The proof idea is to consider an optimal fractional coloring of Gm(H) (which exists by
Theorem 8). The number of colors of this coloring is the fractional chromatic number, which equals
to the fractional clique number. Fractional colorings correspond to distributions over hypotheses, as
demonstrated by Lemma 12. This optimal fractional coloring translates to an optimal distribution
µ⋆ over hypotheses. Then, we use a concentration argument to reason that this distribution achieves
the desired bound.

Let µ⋆ be, as in Corollary 13, a distribution over hypotheses which satisfied the following: for
every realizable dataset S of size m,

Pr
h∼µ⋆

[h is consistent with S] ≥ 1

ω⋆
m

.
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Since this is true for every realizable dataset S of size m, it also holds on expectation when sampling
S from a realizable distribution. Let D be a realizable distribution over labeled examples. Hence,

1

ω⋆
m

≤ E
S∼Dm

[
E

h∼µ⋆

[
1{h is consistent with S}|S

]]
= E

h

[
E
S

[
1{h is consistent with S}|h

]]
= E

h
[(1− LD(h))

m] .

Denote a random variable X =
(
1− LD(h)

)m, where h ∼ µ⋆. Thus, for every θ ∈ [0, 1],

E
h∼µ⋆

[X] ≤ (1− θ)m · Pr [X < (1− θ)m] + 1 · Pr [X ≥ (1− θ)m] (X ≤ 1 almost surely)

≤ (1− θ)m + Pr [X ≥ (1− θ)m]

= (1− θ)m + Pr
h∼µ⋆

[
LD(h) ≤ θ

]
.

Hence,

Pr
h∼µ

[
LD(h) ≤ θ

]
≥ E[X]− (1− θ)m

≥ 1

ω⋆
m

− (1− θ)m.

We now turn to prove Theorem 6. As elaborated above, it suffices to show that for every class H,
the dimension RepDim(H) is finite if and only if CD⋆(H) is finite. A key tool used in the proof is
the SSP lemma for the fractional clique dimension, which states that CD⋆(H) is finite if and only if
for every m, the fraction clique number of Gm(H) is bounded by a polynomial in m (Theorem 3).
We begin by proving Theorem 6 assuming Theorem 3, and then we will formally prove Theorem 3.

Lemma 22 (Finite fractional clique dimension → finite representation dimension) Let H be an
hypothesis class and assume CD⋆(H) = d < ∞. Denote ϵ = 1

ω⋆
d+1

− 1
2d+1 where ω⋆

d+1 is the frac-

tional chromatic number of Gd+1(H). Then,

RepDim(H) = O

(
log 1

ϵ

ϵ2
· ln

(
log 1

ϵ

ϵ2

)
+

log 1
ϵ

ϵ2
· ln ln

(
log 1

ϵ

ϵ2

))
.

Proof The goal is to construct a distribution P over finite hypothesis classes such that for every
realizable distribution over labeled examples D:

Pr
C∼P

[
(∃h ∈ C) : LD(h) ≤

1

4

]
≥ 3

4
. (7)

By Theorem 3 there exists a natural number α = O
(
log
(
1
ϵ

)
/ϵ2
)

such that for every m, we
have ω⋆

m ≤ mα. Let m = m(α) to be determined later on. By applying Lemma 21 with θ = 1
4 ,

it follows that there exists a distribution µ⋆ over hypotheses such that for every realizable distribu-
tion D,

Pr
h∼µ⋆

[
LD(h) ≤

1

4

]
≥ 1

mα
−
(
3

4

)m

=: q(m). (8)
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Sampling k hypotheses h1, . . . , hk i.i.d. from µ⋆ induces a probability distribution over classes of
size at most k. Denote this distribution by Pk. Observe that

Pr
C∼Pk

[
∃h ∈ C, LD(h) ≤

1

4

]
= 1− Pr

{hi}ki=1∼(µ⋆)k

[
(∀i) : LD(hi) >

1

4

]
≥ 1−

(
1− q(m)

)k
. (by Equation (8))

The following technical lemma concludes the proof:

Lemma 23 Let α ≥ 2, and set m = ⌊20α lnα⌋ and k = 4mα. Then,(
1− q(m)

)k ≤ 1

4
.

The proof of Lemma 23 is deferred Appendix D. As a result, by setting m, k as in Lemma 23,
the distribution Pk satisfies the property described in Equation (7) and therefore RepDim(H) =
O(ln k) = O(α lnα+ α ln lnα) < ∞.

Lemma 24 (Finite representation dimension → finite fractional clique dimension) Let H be a
class and assume RepDim(H) = d < ∞. Then CD⋆(H) < ∞.

Proof We need to show that there exists a natural number m such that the fractional clique number
of Gm(H) is strictly smaller than 2m. By Lemma 12 it is enough to show that there exist m, a
distribution µ over hypotheses, and ϵ > 0 such that for every realizable dataset S of size m,

Pr
h∼µ

[h is consistent with S] ≥ 1

2m
+ ϵ. (9)

By Lemma 10, there exists a distribution P over classes of size k = O((2m)d+ln ln ln(2m)+ln ln(4))
such that for every realizable distribution D,

Pr
C∼P

[
∃h ∈ C s.t. LD(h) ≤

1

2m

]
≥ 3

4
. (10)

Randomly sampling C ∼ P and then randomly uniformly sampling h ∈ C induces a probability
distribution over hypotheses. Denote this distribution by µ. It suffices to show that µ satisfies the
property in Equation (9). Let S = ((x1, y1), . . . , (xm, ym)) be a realizable dataset of size m. Define
a distribution over labeled examples D as follows

D(x, y) =
1

m
·

m∑
i=1

1[(x, y) = (xi, yi)].

Note that D is realizable with respect to H since S is a realizable dataset. Furthermore, for every
hypothesis h,

LD(h) =
1

m

m∑
i=1

1[h(xi) ̸= yi] = LS(h). ( by definition of D)
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Therefore, h is consistent with S if and only if LD(h) < 1
m . Therefore,

Pr
h∼µ

[h is consistent with S] ≥ Pr
h∼µ

[
LD(h) ≤

1

2m

]
≥ Pr

C∼P

[
∃h ∈ C s.t. LD(h) ≤

1

2m

]
· 1
k

(by definition of µ)

≥ 3

4k
(by Equation (10))

≥ 1

2m
+ ϵ,

where the last inequality holds with some ϵ > 0 provided that m > log(4k3 ). Thus, it remains
to show that there exists m such that m > log(4k3 ). (Recall that k = k(m) is the size of the
hypothesis classes in the support of the distribution P such that Equation (10) holds.) Now, since
k = O

(
(2m)d+ln ln ln(2m)+ln ln(4)

)
(Lemma 10), we get that log(4k3 ) is sublinear in m. Thus,

m ≥ log(4k3 ) for a large enough m, as required.

B.1. SSP Lemma for Fractional Clique Dimension

We turn to prove Theorem 3. We begin with a general layout of the proof. Let H be a class and
assume that Item 1 does not hold. Meaning, there exists a natural number m0 such that the fractional
chromatic number of Gm0(H) is strictly smaller than 2m0 . In order to show that ω⋆

m is bounded by
a polynomial, by Lemma 12 it is enough to show that for every m, there exists a distribution over
hypotheses µm, such that for every realizable dataset S of size m, a random hypothesis is consistent
with S with probability at least poly(m−1); i.e. for every realizable dataset of size m,

Pr
h∼µm

[h is consistent with S] ≥ 1

poly(m)
. (11)

Specifically, we will derive an explicit upper bound on the degree of the polynomial on the right
hand side, denoted by α:

α = O

(
log 1

ϵ

ϵ2

)
, (12)

where ϵ = 1
ω⋆
m0

− 1
2m0 . The idea is to use a boosting argument to show such distributions exist. The

analysis involves a reduction to regret analysis for online predictions using experts’ advice.
Step 1: There exists a distribution µ̃ over hypotheses such that a random hypothesis is “slightly better

then a random guess”. Formally, for every realizable distribution over labeled examples D,
and for every γ ∈ (0, 12),

Pr
h∼µ̃

[LD(h) ≤
1

2
− γ] > ϵ− 2γ.

Step 2: Set T = ⌈2 logm
γ2 ⌉. For every realizable dataset S of size m, the majority vote of T i.i.d.

hypotheses sampled from µ̃ (from Step 1) is consistent with S, with probability at least (ϵ −
2γ)T = m

− 2
γ2

log 1
ϵ−2γ .
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Step 3: Denote by µm the a distribution over hypotheses induced by sampling T i.i.d. hypotheses
from µ̃ and then taking their majority vote. Plug in γ = ϵ

4 and conclude

Pr
h∼µm

[h is consistent with S] ≥ m
−O

(
log 1

ϵ
ϵ2

)
,

which concludes the proof.
Proof [Proof of Theorem 3] From Lemma 21 there exists a distribution over hypotheses µ̃ such that
for every realizable distribution D

Pr
h∼µ̃

[
LD(h) ≤

1

2
− γ

]
≥ 1

ω⋆
m0

−
(
1

2
+ γ

)m0

=
1

2m0
+ ϵ−

(
1

2
+ γ

)m0

where 0 < γ < 1
2 will be determined later on. Observe that since

(
1
2 + γ

)m0 < 1
2m0 + 2γ for all

0 < γ < 1
2

4, we get that

Pr
h∼µ̃

[
LD(h) ≤

1

2
− γ

]
≥ ϵ− 2γ. (13)

Here and below, we say that an hypothesis h is γ-good with respect to a distribution D if LD(h) ≤
1
2 − γ. Let m be a natural number and S = {(xi, yi)}mi=1 be a realizable dataset of size m. Define
µ = µm to be the distribution over hypotheses induced by taking the majority vote of T i.i.d.
hypotheses sampled from µ̃, where T = ⌈2 logm

γ2 ⌉.
The goal is to prove that the distribution µ satisfies the property described in Equation (11). The

following two lemmas will complete the proof.

Lemma 25 Let S be a realizable dataset of size m and h1, . . . , hT a sequence of hypotheses where
T = ⌈2 logm

γ2 ⌉. Then, there exists a sequence of realizable distributions D1,D2, . . . ,DT such that
Dt is a function of h1, . . . , ht−1 and the following condition holds. If for every t ∈ [T ], ht is γ-good
with respect to Dt, then S is consistent with MAJ{ht}Tt=1.

The proof of Lemma 25 uses a regret analysis for online learning using expert advice, and is
deferred after a short discussion introducing concepts and notations from online learning.

Lemma 26 For every t ≤ T ,

Pr
(h1,...,ht)∼µ̃t

[hk is γ-good w.r.t. Dk, ∀k = 1, . . . , t] ≥ (ϵ− 2γ)t,

where D1, . . . ,Dt is a sequence of realizable distributions as in Lemma 25.

The proof of Lemma 26 is technical and follows from Equation (13) and simple induction.

4.
(
1
2
+ γ

)m0 = 1
2m0 + γ

∑m0−1
k=0

(
m0
k

)
γm0−1−k · 1

2k
< 1

2m0 + γ 1
2m0−1

∑m0−1
k=0

(
m0
k

)
= 1

2m0 + γ 2m0−1

2(m0−1) <
1

2m0 + 2γ
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With Lemma 25 and Lemma 26 in hand, the following calculation finishes the proof.

Pr
h∼µ

[h is consistent with S] = Pr
(h1,...,hT )∼µ̃T

[
S is consistent with MAJ{ht}Tt=1

]
(by the definition of µ)

≥ Pr
(h1,...,hT )∼µ̃T

[ht is γ-good w.r.t. Dt, ∀t = 1, . . . T ]

(from Lemma 25)

≥ (ϵ− 2γ)T (from Lemma 26)

≥ (ϵ− 2γ)
2 logm

γ2 (by the choice of T )

= m
− 2

γ2
log 1

ϵ−2γ .

Denote α(γ) = 2
γ2 log

1
ϵ−2γ . The upper bound stated in Equation (12) is obtained by plugging

in γ = ϵ
4 .

Proof [Proof of Lemma 26] We will show that for t ≤ T ,

Pr
(h1,...,ht)∼µ̃t

[hk is γ-good w.r.t. Dk, k = 1, . . . , t] ≥ (ϵ− 2γ)t. (14)

Indeed, the base case where t = 1 follows directly from Equation (13) and the fact that D1 does not
depend on h1. For t > 1,

Pr
(h1,...,ht)∼µ̃t

[hk is γ-good w.r.t. Dk, k = 1, . . . , t] =

= E
(h1,...,ht)∼µ̃t

[
1{hk is γ-good w.r.t. Dk , k=1,...,t−1} · 1{ht is γ-good w.r.t. Dt}

]
= E

h1,...,ht−1

[
E
ht

[
1{hk is γ-good w.r.t. Dk , k=1,...,t−1} · 1{ht is γ-good w.r.t. Dt} | h1, . . . , ht−1

]]
(15)

= E
h1,...,ht−1

[
1{hk is γ-good w.r.t. Dk , k=1,...,,t−1} · E

ht

[
1{ht is γ-good w.r.t. Dt} | h1, . . . , ht−1

]]
(16)

≥ (ϵ− 2γ) E
h1,...,ht−1

[
1{hk is γ-good w.r.t. Dk , k=1,...,t−1}

]
(17)

≥ (ϵ− 2γ)t. (18)

Equation (15) is obtained by applying the law of total expectation. Equation (16) holds since for ev-
ery k < t, Dk does not depend on ht. Equation (17) holds since for every realization of h1, . . . , ht−1,
Dt is determined and does not depend on ht, hence by Equation (13),

E
ht∼µ̃

[
1{ht is γ-good w.r.t. Dt} | h1 = h̃1, . . . , ht−1 = h̃t−1

]
≥ ϵ− 2γ.

Finally, Equation (18) is true by induction.

In order to finish the proof of Theorem 3 it is left to prove Lemma 25. We begin with a short
technical overview of online learning using experts’ advice.

Learning Using Expert Advice. We briefly introduce the setting of online prediction using expert
advice. Let Z = {z1, . . . , zm} be a set of experts and I be a set of instances. Given an instance i ∈ I ,
an expert z predicts a prediction p = z(i) ∈ {0, 1}.
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In this online learning problem, at each round t the learner receives an instance it and has
to come up with a prediction according to advice from the m experts. The learner does that by
obtaining at each round a distribution wt over the set of experts Z, randomly picking an expert
z(t) ∼ wt, and predicting pt = z(t)(it). Then, the learner receives ft, the true label of it, and pays
a cost lt = 1[pt ̸= ft] for taking the advise of z(t). Lastly, the learner updates the distribution over
the set of experts Z (according to some update rule).

Online predictions using expert advice-general scheme

Input: Z = {z1, . . . , zm} a set of experts.
Initialize: distribution w1 over Z.
For every round t = 1, 2, . . . , T :

– Receive an instance it.
– Sample an expert z(t) ∼ wt.
– Predict pt = z(t)(it).
– Receive true label ft and pay cost of lt = 1[pt ̸= ft].
– Update the distribution wt to wt+1.

The total loss of the learner is the expected sum of costs:

L(T ) = E

[
T∑
t=1

lt

]
.

The regret of the learner is the difference between the total loss and the loss of the best expert:

Reg(T ) = L(T )− min
zj∈Z

T∑
t=1

1[zj(it) ̸= ft].

The goal of the learner is to compete with the best expert in Z; i.e. the goal is to minimize the
regret. There are several well studied algorithms for online prediction using expert advice which
achive sublinear regret. A classic example is Multiplicative Weights (see section 21.2 in (SSBD14))
which satisfy the following regret bound:

Reg(T ) ≤
√
2T logm. (19)

We will use that fact to prove Lemma 25.
Proof [Proof of Lemma 25] Let S = {zj = (xj , yj)}mj=1 be a realizable dataset of size m and let

h1, . . . , hT be a sequence of hypotheses where T = ⌈2 logm
γ2 ⌉. Recall, an hypothesis h is γ-good

with respect to a distribution D if LD(h) ≤ 1
2 − γ. The goal is to show that there exists a sequence

of realizable distributions D1, . . . ,DT which satisfies the following properties:
1. Dt = Dt(h1, . . . , ht−1) for all t ≤ T . In particular, D1 does not depend on h1, . . . , hT .
2. If for every t, ht is γ-good with respect to Dt, then S is consistent with the majority hypothesis

MAJ{ht}Tt=1.
The idea of the proof is as follows. We think of the dataset S as a set of m “experts”. Then we

simulate an online learner for learning using experts’ advice with h1, . . . , hT as “instances”. The
distributions D1, . . . ,DT will be induced by the internal weights of the “experts” over time during
the simulation. Regret analysis, together with the specific choice of number of rounds T , will lead
to the desired results.
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Let A be an online learner for prediction using expert advice, which satisfies the regret bound in
Equation (19), with the following settings: Our set of experts is the dataset S = {z1, z2, . . . , zm},
and a possible instance is an hypothesis h ∈ {0, 1}X . Given an expert z = (x, y) and an instance h,
the loss of z on h is defined to be l(z, h) = 1[h(x) = y]; i.e. A suffers a loss if the hypothesis h is
consistent with the example z = (x, y). Now, when running A on the input sequence h1, . . . , hT ,
the algorithm maintains a distribution wt on the dataset S at each timestamp t ∈ [T ]. Denote Dt to
be a distribution over all labeled examples induced by wt; i.e,

Dt(x, y) =
∑

j:zj=(x,y)

wt(zj)

Note that since S is a realizable dataset, Dt is a realizable distribution for all t.
We claim that the sequence D1, . . . ,DT fulfills the desired properties. Indeed, property (1)

holds since the internal distribution obtained by the learner, wt, does not depend on the current
instance ht. We next show that property (2) holds as well. assume ht is γ-good with respect to Dt

for all t. Then, the expected loss of A at timestamp t satisfies

E[lt] = Pr
(x,y)∼Dt

[ht(x) = y]

= 1− LDt(ht)

≥ 1

2
+ γ.

By linearity, the expected total loss of A is bounded from below by

E

[
T∑
t=1

lt

]
≥ T

2
+ γT. (20)

If by contradiction S is not consistent with MAJ{h1, . . . , hT }, then there exists j ∈ [m] such that
T∑
t=1

1[ht(xj) = yj ] =
T∑
t=1

l(zj , ht) <
T

2
. (21)

From the regret bound in Equation (19), combining together Equations (20) and (21) yields

γT <
√

2T logm.

However, this is a contradiction to the choice of T (recall T = ⌈2 logm
γ2 ⌉). Thus property (2) indeed

holds and the proof of the lemma is complete.

Appendix C. Strong Duality in the Contradiction Graph

We now turn to prove that for every (possibly infinite) H and m ∈ N, the contradiction graph Gm(H)
satisfies that its fractional chromatic and clique numbers are equal and bounded by 2m (Theorem 8).
Towards this end it will be convenient to represent fractional colorings using probability distribu-
tions over {0, 1}X and fractional cliques using probability distributions over Vm(H) – the set of
all m-datasets that are realizable by H.

Since H might be infinite, we need to be more careful with specifying which distributions
we consider. Let us begin with {0, 1}X : one of the basic facts we use in the paper is that the
fractional chromatic number of Gm(H) is at most 2m. To prove this, we drew a random hypothesis
by sampling its values on each x ∈ X uniformly and independently. For this argument to apply to
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infinite domains X it is natural to use the product topology on {0, 1}X (i.e. the Tychonoff product
of the discrete topology over {0, 1}). The product structure allows to sample a random hypothesis
as above, by taking the product of the uniform distributions over {0, 1} (see Remark 30).

Formally, we let the set of fractional colorings be the space of all Borel5 regular6 probability
measures over {0, 1}X , where the latter is equipped with the product topology (Tychonoff). Denote
this space by ∆

(
{0, 1}X

)
. (The relevant concepts in topology are defined below.)

We now turn to define fractional cliques, which are distributions over the set of realizable
datasets of size m, Vm(H). Here, we simply consider finitely supported distributions and use the
trivial discrete topology and the corresponding Borel σ-algebra over Vm(H), both equal to the
entire powerset. Denote the space of all finitely supported probability distributions over Vm(H)
by ∆(V H

m ).
We next extend the definitions of fractional clique and chromatic numbers using the above

structures. The definitions rely on the following basic claim.

Claim 27 The function f : Vm(H)× {0, 1}X → R defined by

f(S, h) = 1[h is consistent with S],

is continuous and hence Borel-measurable with respect to the product topology over Vm(H) ×
{0, 1}X .

Proof Because open sets are union-closed, it is enough to show that for each fixed S ∈ Vm(H), the
set {(S, h) : h is consistent with S} is open. Since {S} is open in the discrete topology on Vm(H),
it is enough to show that {h : h is consistent with S} is open in the product topology on {0, 1}X .
The latter is indeed true because this set is a basic open set in the product topology (see below for
definitions and topological background).

Definition 28 (Fractional Chromatic and Clique Numbers) Let H ⊆ {0, 1}X be a class and
m ∈ N. The fractional chromatic number of Gm(H), denoted χ⋆

m, is defined by
1

χ⋆
m

= sup
µ∈∆

(
{0,1}X

) inf
ν∈∆(V H

m )
E

h∼µ,
S∼ν

[
1[h is consistent with S]

]
,

with the convention that 1
0 = ∞ and 1

∞ = 0.
The fractional clique number of Gm(H), denoted ω⋆

m, is defined by
1

ω⋆
m

= inf
ν∈∆(V H

m )
sup

µ∈∆
(
{0,1}X

) E
h∼µ,
S∼ν

[
1[h is consistent with S]

]
,

with the convention that 1
0 = ∞ and 1

∞ = 0.

Remark 29 The definition below of the fractional chromatic and clique numbers involves taking
expectation of the random variable 1[h is consistent with S] when h ∼ µ ∈ ∆

(
{0, 1}X

)
and S ∼

5. A Borel measure on a topological space X is a measure defined on the Borel σ-algebra, which is the σ-algebra
generated by all open sets in X .

6. Roughly speaking, a regular measure is a measure that can be approximated from above by open sets and from below
by compact sets. See definition in Section C.1.
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ν ∈ ∆(V H
m ). Note that because the distribution ν is finitely supported, this expectation can be

expressed as a finite sum:

E
h∼µ,
S∼ν

[
1[h is consistent with S]

]
=
∑

ν(S) · E
h∼µ

[1[h is consistent with S]],

where the sum ranges over all (finitely many) datasets S in the support of ν.

Remark 30 In Section C.3 we show that there exists a Borel-regular probability measure over
h ∈ {0, 1}X which corresponds to sampling h(x) ∈ {0, 1} uniformly and independently for each
x ∈ X . Thus, the corresponding fractional coloring which witnesses that χ⋆

m ≤ 2m is well-defined.

Sion’s Theorem. Our proof of Theorem 8 relies on Sion’s theorem, which is a generalization of
Von-Neumann’s minimax theorem. Note that we state a slightly weaker version than the original
Sion’s theorem (Sio58).

Theorem 31 (Sion’s Theorem – weak version) Let W be a compact convex subset of a linear
topological space7 and U a convex subset of a linear topological space. If F is a real-valued
function on W × U such that

1. F (w, ·) is linear and continuous on U for every w ∈ W , and
2. F (·, u) is linear and continuous on W for every u ∈ U

then,

max
w∈W

inf
u∈U

F (w, u) = inf
u∈U

max
w∈W

F (w, u).

To apply Sion’s Theorem we start by defining appropriate topologies on ∆
(
{0, 1}X

)
and ∆(V H

m ).
We start by presenting useful facts from topology and functional analysis. Readers who are familiar
with this material may skip it and continue to Section C.2

C.1. Preliminaries from Topology and Analysis

Product Topology. Let {0, 1}X be the space of all functions f : X → {0, 1}. The product topol-
ogy on {0, 1}X is the coarsest topology in which each projection is continuous; i.e, for every x ∈ X ,
the mapping πx : {0, 1}X → {0, 1} defined by πx(f) = f(x), is continuous. A basis of open sets
of the product topology is given by sets of the form

U(x1,y1)...,(xm,ym) = {f | f(xi) = yi for all 1 ≤ i ≤ m},

where m ∈ N and
(
(x1, y1), . . . , (xm, ym)

)
∈
(
X × {0, 1}

)m. Note that every such basic open
set is also closed since its complement is a union of 2m − 1 basic sets (such sets are often called
clopen because they are both closed and open). By Tychonoff’s theorem (e.g. see Theorem 5.13 in
(Kel75)), the space {0, 1}X is compact for any set X .

Total Variation. We next state some basic useful facts on total variation. For more information
see Chapter 6 at (Rud87). Let (X,Σ, µ) be a measure space where µ is a signed measure8. The

7. A linear topological space is a vector space that is also a topological space with the property that the vector space
operations (vector addition and scalar multiplication) are continuous.

8. A signed measure is a σ-additive set-function that can assign negative values.
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total variation measure of µ is a positive measure on (X,Σ) defined as follows

|µ|(E) = sup
∞∑
i=1

|µ(Ei)|, E ∈ Σ

where the supremum ranges over all countable partitions {Ei}∞i=1 of E. Note that for every mea-
surable set E, |µ|(E) ≥ |µ(E)|. If |µ| is finite, we say that µ has bounded variation, and the total
variation of µ is defined to be

∥µ∥TV = |µ|(X).

The set of all signed measures with bounded variation, together with ∥· ∥TV , is a normed linear
space. Given a signed measure µ, define

µ+ =
1

2
(|µ|+ µ), µ− =

1

2
(|µ| − µ).

Then, both µ+ and µ− are positive measures on (X,Σ) which are called the positive and negative
variations of µ. Also we have that µ = µ+ − µ−, |µ| = µ+ + µ−, and therefore

∥µ∥TV = |µ|(X) = µ+(X) + µ−(X) = ∥µ+∥TV + ∥µ−∥TV .

This representation of µ as the difference of the positive measures µ+ and µ− is called the Jordan
Decomposition of µ.

Regularity. A measure µ, defined on a σ−algebra Σ of a Hausdorff space X , is called inner
regular if for every E ∈ Σ,

µ(E) = sup
K∈Σ

(µ(K) | K ⊆ E is compact).

The measure µ is called outer regular if for every E ∈ Σ,

µ(E) = inf
O∈Σ

(µ(O) | O ⊃ E is open).

The measure µ is regular if it is both inner regular and outer regular. Note that if X is compact and
µ is finite, inner regularity is equivalent to outer regularity.

Weak⋆ Topology and the Dual of C(K). Recall that for a linear space V , the space V ⋆ denotes
the dual space, i.e. the space of all linear functionals on V . Let X be a linear topological space
over R. For x ∈ X , let Tx ∈ X⋆⋆ denote the evaluation operator: Tx(f) = f(x), where f ∈ X⋆ is
a linear functional f : X → R. The weak⋆ topology on X⋆ is the coarsest topology such that the
operators Tx are continuous.

Let K be a compact Hausdorff space. Denote by C(K) the set of all real-valued continuous
functions on K, and denote by B(K) the set of all finite signed regular Borel measures on K. We
treat both C(K) and B(K) as linear normed spaces, the first is equipped with max-norm and the
second with total-variation norm. By Riesz-Markov Representation Theorem C(K)⋆ and B(K) are
isometric:

Theorem 32 (Riesz, Theorem 6.19, (Rud87)) Let K be a compact Hausdorff space. Then, every
bounded linear functional ϕ on C(K) is represented by a unique regular finite Borel signed9 mea-

9. Theorem 6.19 in (Rud87) considers complex functionals and complex measures. However, one can show that if the
functional is real then the corresponding regular measure must also be real. One way to see it is to use Urysohn’s
Lemma to show that a regular complex measure for which all continuous functions have real integrals is in fact a real
measure.
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sure µ, in the sense that

ϕf =

∫
K
f dµ

for every f ∈ C(K). Moreover, the operator norm of ϕ is the total variation of µ:

∥ϕ∥ = ∥µ∥TV .

This natural identification between C(K)⋆ and B(K) allows us to define a topology on B(K) in
terms of a topology on C(K)⋆. We do so by considering the weak⋆ on C(K)⋆. Thus, this is the
coarsest topology such that the operators

Tf (µ) =

∫
f dµ

are continuous for every f ∈ C(K). We now use Banach-Alaoglu Theorem (Theorem 3.15
in (Rud91)) which implies that the closed unit ball of C(K)⋆ is closed with respect to the weak⋆

topology. Consequently by the above identification of C(K)⋆ and B(K) we obtain:

Claim 33 Let K be a compact Hausdorff space. Then the closed unit ball of B(K),

B
[
B(K)

]
:= {µ ∈ B(K) | ∥µ∥TV ≤ 1},

is compact in the weak⋆ topology.

C.2. Proof of Theorem 8 [Strong duality in the contradiction graph]

Theorem [Theorem 8 Restatement] Let X be an arbitrary domain, H ⊆ {0, 1}X a concept class
and m ∈ N. Let ω⋆

m and χ⋆
m denote the fractional clique and chromatic numbers of the contradiction

graph Gm(H). Then,

ω⋆
m = χ⋆

m ≤ 2m.

Moreover, there exists a fractional coloring realizing χ⋆
m. (I.e. the infimum is in fact a minimum.)

Proof [Proof of Theorem 8] In order to prove the equality ω⋆
m = χ⋆

m we use Sion’s Theorem.
Recall the extended definitions of fractional colorings and cliques of Gm(H): fractional colorings
are regular Borel probability measures on {0, 1}X (where the latter is equipped with the product
topology). The set of fractional colorings is denoted ∆({0, 1}X). Fractional cliques are finitely
supported distributions over Vm(H), the set of H-realizable datasets of size m. The set of fractional
cliques is denoted ∆(V H

m ).
We plug in Sion’s theorem W = ∆

(
{0, 1}X

)
, U = ∆(V H

m ), and

F (µ, ν) = E
h∼µ
S∼ν

[1[h is consistent with S]].

Note that by definition of F ,

sup
w∈W

inf
u∈U

F (w, u) =
1

χ⋆
m

,

inf
u∈U

sup
w∈W

F (w, u) =
1

ω⋆
m

.

Applying Sion’s Theorem with W ,U and F as above proves the equality ω⋆
m = χ⋆

m, and the claim
that there exists a fractional coloring realizing χ⋆

m. In order to apply Sion’s theorem on W , U , F ,
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we need to define the corresponding linear topological spaces and verify that the assumptions in the
premise of Sion’s theorem are satisfied.

Step 1: ∆
(
{0, 1}X

)
is a compact convex subset of a linear topological space. ∆

(
{0, 1}X

)
is

a subset of B({0, 1}X ), which is the set of all signed finite regular Borel measures on {0, 1}X .
We consider B({0, 1}X ) as a linear topological space equipped with the weak⋆ topology. Clearly,
∆({0, 1}X) is convex, and thus it remains to show that it is compact. Notice that ∆({0, 1}X) is
contained in the unit ball B[B({0, 1}X)], and the latter is compact by Claim 33. Thus, it remains to
show that ∆({0, 1}X) is closed in the weak⋆ topology, which follows from the next claim.

Claim 34 Let

B = B
[
B
(
{0, 1}X

)]
=
{
µ ∈ B

(
{0, 1}X

)
| ∥µ∥TV ≤ 1

}
,

S =
{
µ ∈ B

(
{0, 1}X

)
| µ
(
{0, 1}X

)
= 1
}
.

Then, ∆
(
{0, 1}X

)
= B ∩ S.

Note that the above claim implies that ∆
(
{0, 1}X

)
is weak⋆-closed as an intersection of two

closed subsets: B is weak⋆-compact (and in particular closed) by Claim 33. To see that S is closed,
consider the operator T1(µ) =

∫
1 dµ = µ({0, 1}X), which is weak⋆-continuous because the con-

stant map 1 is continuous. Thus, S = T−1
1 ({1}) is closed.

Proof [Proof of Claim 34] It is clear that ∆
(
{0, 1}X

)
is contained in the right-hand side. From

the other direction, it is enough to show that if µ ∈ B ∩ S then µ ≥ 0. Write µ = µ+ − µ−,
where µ+, µ− are the positive and negative variations of µ. Since µ ∈ B,

∥µ∥TV = ∥µ+∥TV + ∥µ−∥TV ≤ 1. (22)

Since µ ∈ S,

1 = µ({0, 1}X) = µ+({0, 1}X)− µ−({0, 1}X)

= |µ+|({0, 1}X)− |µ−|({0, 1}X) (because µ+, µ− are positive measures)

= ∥µ+∥TV − ∥µ−∥TV . (23)

From Equations (22) and (23) we conclude ∥µ−∥TV = 0, i.e. µ− = 0, and µ = µ+ is a positive,
completing the proof.

Step 2: ∆(V H
m ) is a convex subset of a linear topological space. Consider the space of all finitely

supported signed measures on Vm(H) with the discrete topology. ∆(V H
m ) is a convex subset of this

space.

Step 3: F is linear and continuous in each coordinate. First, notice that F (µ, ν) is linear in
each coordinate by linearity of expectation with respect to the underlying measure.

We next show that F (·, ν) is continuous for every fixed ν. By Remark 29, for every fixed ν, F (·, ν)
is a finite convex combination of functions of the form

FS(µ) = E
h∼µ

[1[h is consistent with S]],

where S is a fixed H-realizable dataset of size m. Thus it suffices to show that FS(µ) is weak⋆-
continuous for each fixed S. Let fS(h) = 1[h is consistent with S] and notice that FS(µ) =
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Eh∼µ[fS(h)]. Thus, by the definition of the weak⋆ topology, it is enough to show that the map fS
is continuous with respect to the product topology on {0, 1}X . Since fS is an indicator map (with
values in {0, 1}), continuity amounts to showing that both f−1

S (0) and f−1
S (1) are open sets. Indeed,

by definition f−1
S (1) is a basic open set which is also closed and hence f−1

S (0) is also open as re-
quired. It remains to show that F (µ, ·) is continuous in its second coordinate for every fixed µ. This
is straightforward because the topology on the second coordinate (∆(V H

m )) is discrete and hence
every function is continuous.

To complete the proof of Theorem 8, it is left to show that χm ≤ 2m. Recall,
1

χ⋆
m

= sup
µ∈∆

(
{0,1}X

) inf
ν∈∆(V H

m )
E

h∼µ,
S∼ν

[
1[h is consistent with S]

]
.

Hence, it suffices to show that there exists a distribution µ⋆ ∈ ∆
(
{0, 1}X

)
such that for every

realizable dataset S =
(
(x1, y1), . . . , (xm, ym)

)
∈ Vm(H),

Pr
h∼µ⋆

[h is consistent with S] = µ⋆
(
{h | h(xi) = yi, i = 1, . . . ,m}

)
=

1

2m
.

Indeed if this holds, then by definition 1
χ⋆
m

≥ 1
2m . Therefore, the following lemma concludes the

proof.

Lemma 35 Let X be an arbitrary domain. Then there exists a regular Borel probability measure
µ⋆ over {0, 1}X , which satisfies the following property. For every finite set {x1, . . . , xk} ⊆ X and
labels y1, . . . , yk

µ⋆
(
{h ∈ {0, 1}X | h(xi) = yi, i = 1, . . . , k}

)
=

1

2k
.

Before turning to prove Lemma 35, we first need to recollect some definitions and state known
results from measure theory which are needed for the proof. The proof is deferred to Section C.3.

C.3. Tossing a fair coin infinitely many times

One of the basic facts we used in the paper is that the fractional chromatic number of the contra-
diction graph is bounded. To prove this fact we drew a random hypothesis by sampling a value
independently for each x ∈ X uniformly over {0, 1}.

For a countable domain X it is clear that this sampling process induces a well-defined proba-
bility distribution over {0, 1}X . However, if X is arbitrary, and possibly uncountable, it is not clear
that this process is even well-defined.

In this section, we prove Lemma 35: we show that indeed the described sampling process in-
duces a probability measure on the product space {0, 1}X . Furthermore, we show that this measure
is a regular Borel measure, and hence a valid fractional coloring. (Recall that we identify fractional
colorings as regular Borel probability measures over {0, 1}X , where the latter is equipped with the
product topology).

C.3.1. MEASURE THEORY PRELIMINARIES

The Product σ-Algebra. Let (Xα,Σα)α∈I be a family of measurable spaces. Denote by XI =∏
α∈I Xα the product space, and by πα : XI → Xα the projection map to Xα. Using the projection
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πα, we can pull back the σ-algebra Σα on Xα, to a σ-algebra on XI :

π∗
α(Σα) := {π−1

α (Eα) | Eα ∈ Σα}.
Define the product σ-algebra on XI , denoted ΣI , to be the σ-algebra generated by all π∗

α(Σα):

ΣI :=
〈⋃
α∈I

π∗
α(Σα)

〉
= ⟨π−1

α (Eα) | α ∈ I⟩.

Using similar notations, for every subset of indices A ⊆ I, let XA =
∏

α∈AXα, let πA : XI → XA

denote the projection to XA, and denote the product σ-algebra on A by

ΣA =
〈⋃
α∈A

πA ◦ π∗
α(Σα)

〉
.

Given A ⊆ I, a measure µI on the product σ-algebra ΣI , induces a measure µA on ΣA (which is
the pushforward of µI):

µA(E) := (πA)∗µI(E) = µI(π
−1
A (E)).

Note that those measures obey the compatibility relation: For B ⊆ A ⊆ I , denote by πA→B the
projection πB|XA

: XA → XB . Then

µB = (πA→B)∗µA, (24)

i.e, for every E ∈ ΣB , µB(E) = µA((πA→B)
−1(E)).

Kolmogorov’s Extension Theorem. A natural question is whether one can reconstruct µI solely
from the projections µA to finite subsets A ⊆ I. It turns out that in the special case where the µA

are probability measures (and satisfy some additional regularity and compatibility conditions), it is
indeed possible. This is the content of Kolmogorov’s Theorem (Theorem 2.4.3 in (Tao11)).

Theorem 36 (Kolmogorov’s Extension Theorem) Let (Xα,Σα, τα)α∈I be a family of measur-
able spaces (Xα,Σα), equipped with a topology τα. For every finite subset A ⊆ I, let µA be a prob-
ability measure on ΣA which is inner regular with respect to the product topology τA :=

∏
α∈A τα

on XA. Furthermore, assume µA, µB obey the compatibility condition in Equation (24) for ev-
ery nested finite subsets B ⊆ A of I. Then, there exists a unique probability measure µI on the
product σ-algebra ΣI , with the property that (πA)∗µI = µA for all finite subset A ⊆ I. (I.e. the
push-forward measure of µI when projected on A equals to µA.)

Extending a product measure to a regular Borel measure. Let us assume here and below that
each Xα is a compact Hausdorff space, and Σα is the Borel σ-algebra on Xα. Kolmogorov’s theo-
rem allows to construct a probability measure on the product σ-algebra by specifying its behavior
over finite projections. The following theorem allows us to further extend this measure to the Borel
σ-algebra of the product space XI . (Notice that the Borel σ-algebra is finer than the Product σ-
algebra.)

Theorem 37 (Theorem 2, (Kak43)) Let (Xα,Σα)α∈I be a family measurable spaces where each
Xα is a compact Hausdorff space and Σα is the Borel σ-algebra of Xα. Then, every probability
measure on the product σ-algebra, ΣI , has a unique extension to a regular Borel measure µ∗

I on
XI .
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C.3.2. PROOF OF LEMMA 35

Proof For every finite set of unlabeled examples {x1, . . . , xk} ⊆ X , let µ{x1,...,xk} be the uniform
distribution measure over {0, 1}{x1,...,xk}. Notice that {µ{x1,...,xk} : {x1, . . . , xk} ⊆ X} are regular
and obey the the compatibility condition in Equation (24). By Theorem 36 there exists a probability
measure µ over the product σ-algebra of {0, 1}X which satisfies the equations stated in the Lemma.
By Theorem 37 there exists a regular Borel probability measure µ⋆ as required.

Appendix D. Additional Proofs

D.1. Proof of Lemma 1 [Clique and fractional clique numbers are bounded]

Lemma [Lemma 1, Restatement] Let ωm and ω⋆
m denote the clique and fractional clique numbers

of Gm(H). Then, ωm ≤ ω⋆
m ≤ 2m.

We note that Lemma 1 holds in a more general setting as well, where the domain X is arbitrary
(possibly uncountable). We refer the reader to Appendix C for more details.
Proof Let δ be a fractional clique in Gm(H). Draw a random h ∈ {0, 1}X such that h(x) is drawn
uniformly and independently from {0, 1} for each x ∈ X . Consider the random variable

X =
∑

S∈Vm(H)

1 [S is consistent with h] · δ(S).

Note that X ≤ 1 almost surely: indeed, the set {S : S is consistent with h} is independent for every
hypothesis h. Therefore,

1 ≥ E [X] =
∑

S∈Vm(H)

Pr [S is consistent with h] · δ(S)

=
∑

S∈Vm(H)

2−m · δ(S)

= 2−m|δ|.
Thus |δ|≤ 2m and therefore ω⋆

m ≤ 2m. Note that the inequality ωm ≤ ω⋆
m trivially holds since

every (integral) clique is a fractional clique.

D.2. Proof of Lemma 11 [Independent sets and consistent hypotheses]

Lemma [Lemma 11, Restatement] Let H be a class and m be a natural number.
1. For every independent set I in Gm(H), there exists an hypothesis h ∈ {0, 1}X such that h

is consistent with every dataset S ∈ I; i.e. for every dataset S ∈ I and every example
(x, y) ∈ S, we have h(x) = y.

2. For every hypothesis h, the set of all datasets of size m that are consistent with h is an
independent set in Gm(H); i.e. the set

Vh := {S = ((x1, y1), . . . , (xm, ym)) ∈ Vm(H) | ∀i, h(xi) = yi}
is independent in Gm(H)
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Proof First, we prove the first part of the lemma. Let I be an independent set in Gm(H) and denote

L(I) =
{
(x, y) ∈ X × {0, 1} | ∃S ∈ I s.t. (x, y) ∈ S

}
.

Observe that since I is independent, if (x, y) ∈ L(I) then (x, 1 − y) must not be in L(I) (because
datasets containing (x, 1 − y) are connected with an edge to datasets containing (x, y)). Define an
hypothesis h as follows: for every (x, y) ∈ L(I) set h(x) = y. For every x such that neither (x, 0)
or (x, 1) are in L(I), set arbitrarily h(x) = 0. Indeed h interpolates every dataset S ∈ I .

Next, we prove the second part of the lemma. Let h ∈ {0, 1}X be a hypothesis. Vh is indeed
independent in Gm(H), else there must be S, S′ ∈ Vh and an unlabeled example x ∈ X such that
(x, 0) ∈ S, (x, 1) ∈ S′, and by definition h(x) = 0 = 1, leading to a contradiction.

D.3. Proof of Lemma 12 [Fractional cliques and colorings vs. distributions]

Lemma [Lemma 12, Restatement] Let H be a class, m ∈ N. Then,
1. There exists a fractional coloring c of Gm(H) with col(c) = α > 0 if and only if there exists

a distribution µ over hypotheses such that

inf
S

Pr
h∼µ

[h is consistent with S] =
1

α
,

where the infimum is taken over realizable datasets of size m.
2. There exists a fractional clique δ of Gm(H) with |δ| = α > 0 if and only if there exists a

distribution ν over realizable datasets of size m such that

sup
h

Pr
S∼ν

[h is consistent with S] =
1

α
,

where the supremum is taken over hypotheses h ∈ {0, 1}X .

Proof As demonstrated in Section 3.2, there is a correspondence between fractional colorings and
independent sets: a fractional coloring of Gm(H) with α colors corresponds to a distribution µ over
independent sets of Gm(H) with

val(µ) =
1

α
= inf

S∈Vm(H)
Pr
I∼µ

[S ∈ I].

From Lemma 11, there is a correspondence between (maximal) independent sets and hypotheses:
an independent set I in Gm(H) corresponds to a hypothesis h which is consistent with all datasets
S ∈ I . Note that a realizable dataset S of size m belongs to an independent set I if and only if S is
consistent with the hypothesis h corresponds to I . Hence, by abuse of notation, consider µ to be a
distribution over hypotheses. Observe that for every realizable dataset S of size m,

Pr
h∼µ

[h is consistent with S] = Pr
I∼µ

[S ∈ I] .

This completes Item 1 in the lemma. Note that Item 2 is immediate, again it follows from the
discussion in Section 3.2, since the vertices of the contradiction are realizable datasets of size m.

D.4. Proof of Lemma 20

Lemma [Lemma 20, Restatement] Let H be a hypothesis class. Then

CD(H) ≤ max
{
2LD(H) log(LD(H)), 300

}
.
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To show the desired bound we will use the following technical lemma.

Lemma 38 Let d ∈ N and m0 ∈ R such that

(i) m0 ≥ d
ln 2 , and

(ii) 2m0 ≥ (2m0 + 1)d.

Then,

(∀m > m0) : 2
m > (2m+ 1)d.

Further, m0 = 2d log d satisfies items (i) and (ii) above, provided that d ≥ 30.

Proof [Proof of Lemma 20] If LD(H) = ∞ then the inequality trivially holds. Suppose LD(H) =
d < ∞. We distinguish between two cases: if d < 30 then by Lemma 18,

ωm ≤ (2m+ 1)d < (2m+ 1)30

which is less than 2m for every m ≥ 300, and thus CD(H) ≤ 300 ≤ max{2d log d, 300} as required.
Else, if d ≥ 30 then by Lemma 38 for every m > 2d log d

ωm ≤ (2m+ 1)d < 2m,

thus CD(H) ≤ 2d log(d) ≤ max{2d log d, 300} as required.

Proof [Proof of Lemma 38] We first show that 2m > (2m+1)d for all m > m0. Indeed, if m > m0

then

2m = 2m−m0 · 2m0

≥ 2m−m0 · (2m0 + 1)d. (by assumption (ii))

Note that ( 2m+ 1

2m0 + 1

)d
=
(
1 +

2(m−m0)

2m0 + 1

)d
< exp

(2(m−m0) · d
2m0 + 1

)
(1 + x < exp(x) for all x > 0)

≤ exp
(
ln(2)(m−m0)

)
( 2d
2m0+1 ≤ ln 2 by assumption (i))

= 2m−m0 ,

which implies that 2m−m0 · (2m0 + 1)d > (2m + 1)d, therefore by the previous derivation, 2m >
(2m+1)d as wanted. Next, assume d ≥ 30 and set m0 = 2d log d. We will show m0 satisfies items
(i) and (ii). We first prove that m0 ≥ d

ln 2 :

m0 ≥
d

ln 2
⇐⇒ 2d log d ≥ d

ln 2

⇐⇒ log d ≥ 1

2 ln 2

⇐⇒ d ≥ 2
1

2 ln 2 ,
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and indeed d ≥ 2
1

2 ln 2 =
√
e since d ≥ 30. Lastly, we prove that 2m0 ≥ (2m0 + 1)d:

2m0 = 22d log d = d2d

≥ (6d log d)d (since d ≥ 6 log d for all d ≥ 30)

= (3m0)
d

≥ (2m0 + 1)d.

D.5. Proof of Lemma 23

Lemma [Lemma 23, Restatement] Let α ≥ 2, and set m = ⌊20α lnα⌋ and k = 4mα. Then,(
1− q(m)

)k ≤ 1

4
,

where q(m) = 1
mα −

(
3
4

)m
.

Proof Observe that

(1− q(m))k ≤ exp(−k · q(m)) (1 + x < exp(x) for all x > 0)

Hence it is enough to show that for m = ⌊20α lnα⌋, k = 4mα

k · q(m) ≥ ln 4.

Indeed, it easy to verify that
(
3
4

)m ≤ 1
2mα where α ≥ α and m = ⌊20α lnα⌋. Therefore,

k · q(m) = k

(
1

mα
−
(
3

4

)m)
≥ k · 1

2mα

= 2 (setting k = 4mα)

≥ ln 4.
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