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Abstract
A pervasive phenomenon in machine learning applications is distribution shift, where training

and deployment conditions for a machine learning model differ. As distribution shift typically results
in a degradation in performance, much attention has been devoted to algorithmic interventions that
mitigate these detrimental effects. This paper studies the effect of distribution shift in the presence
of model misspecification, specifically focusing on L∞-misspecified regression and adversarial
covariate shift, where the regression target remains fixed while the covariate distribution changes
arbitrarily. We show that empirical risk minimization, or standard least squares regression, can result
in undesirable misspecification amplification where the error due to misspecification is amplified by
the density ratio between the training and testing distributions. As our main result, we develop a
new algorithm—inspired by robust optimization techniques—that avoids this undesirable behavior,
resulting in no misspecification amplification while still obtaining optimal statistical rates. As
applications, we use this regression procedure to obtain new guarantees in offline and online
reinforcement learning with misspecification and establish new separations between previously
studied structural conditions and notions of coverage.

1. Introduction

A majority of machine learning methods are developed and analyzed under the idealized setting where
the training conditions accurately reflect those at deployment. Yet, almost all practical applications
exhibit distribution shift, where these conditions differ significantly. Distribution shift can occur
for a plethora of reasons, ranging from quirks in data collection (Recht et al., 2019), to temporal
drift (Gama et al., 2014; Besbes et al., 2015), to users adapting to an ML model (Perdomo et al.,
2020), and it typically results in a degradation in model performance. Due to the prevalence of this
phenomenon and the diversity of applications where it manifests, there is a vast and ever-growing
body of literature studying algorithmic interventions to mitigate distribution shift (Quinonero-Candela
et al., 2008; Sugiyama and Kawanabe, 2012).

Covariate shift is perhaps the most basic form of distribution shift. Covariate shift is pertinent to
supervised learning—where the goal is to predict a label Y from covariates X—and posits a change
in the distribution over covariates while keeping the target predictor fixed. This setup, in particular
that the target does not change, is natural in applications including neural algorithmic reasoning (Anil
et al., 2022; Zhang et al., 2022; Liu et al., 2023), reinforcement learning (Ross et al., 2011; Levine
et al., 2020), and computer vision (Koh et al., 2021; Recht et al., 2019; Miller et al., 2021). It is
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well known that one can adapt guarantees from statistical learning to the covariate shift setting;
specifically, for well-specified regression, a classical density-ratio argument shows that empirical
risk minimization (ERM) is consistent under suitably well-behaved covariate shifts.

One stipulation of this consistency guarantee is that the model/hypothesis class be well-specified
(also referred to as realizable). Although statistical learning theory offers a rather complete under-
standing of misspecification in the absence of covariate shift (via agnostic learning and excess risk
bounds), our understanding of how covariate shift can adversely interact with model misspecification
remains fairly immature. This interaction is the focus of the present paper.

1.1. Contributions

We study regression under adversarial covariate shift where we receive regression samples from a
distribution Dtrain but are evaluated on an arbitrary distribution Dtest for which no prior knowledge
is available; we only assume that the distributions share the same target regression function f? and
that the worst-case density ratio of the covariate marginals is bounded by C∞ ∈ [1,∞) (formally
defined in Section 2). As inductive bias, we have a function class F of predictors and assume L∞-
misspecification: there exists a predictor f̄ ∈ F that is pointwise close to f?, i.e., ‖f̄ − f?‖∞ ≤ ε∞.
This notion is natural for the covariate shift setting because it ensures that f̄ has low prediction error
on both Dtrain and any Dtest.

In this setup we obtain the following results:

1. We show that standard empirical risk minimization (ERM) is not robust to covariate shift in
the presence of misspecification. Precisely, even in the limit of infinite data, ERM over F
can incur squared prediction error under Dtest scaling as Ω(C∞ε

2
∞). Meanwhile the error

of the L∞-misspecified predictor f̄ is at most ε2
∞. We call this phenomenon—where the

misspecification error is scaled by the density ratio coefficient (despite there being a predictor
avoiding this scaling)—misspecification amplification.

2. As our main result, we give a new algorithm, called disagreement-based regression (DBR), that
avoids misspecification amplification and is therefore robust to adversarial covariate shift under
misspecification. DBR has asymptotic prediction error under Dtest scaling as O(ε2

∞), with no
dependence on the density ratio coefficient C∞. At the same time, it has order-optimal finite
sample behavior recovering standard “fast rate” guarantees for the well-specified setting, and
can be extended to adapt to unknown misspecification level (as shown in Appendix B.4). To
our knowledge, this is the first result avoiding misspecification amplification in the adversarial
covariate shift setting. Our assumptions—particularly that no information about Dtest is
available and that F is unstructured—rule out prior approaches based on density ratios (Shi-
modaira, 2000; Duchi and Namkoong, 2021) or sup-norm convergence (Schmidt-Hieber and
Zamolodtchikov, 2022); see Appendix A for further discussion.

To demonstrate the utility of disagreement-based regression, we deploy the procedure in value
function approximation settings in reinforcement learning (RL), where regression is a standard
primitive and mitigating the adverse effects of distribution shift is a central challenge. Here, using
DBR as a drop-in replacement for ERM when fitting Bellman backups, we obtain the following results:

1. In the offline RL setting, we instantiate the minimax algorithm of Chen and Jiang (2019)
with DBR and show that, under L∞-misspecification and with coverage measured via the
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concentrability coefficient, misspecification amplification can be avoided when learning a near
optimal policy. In contrast, prior lower bounds imply that misspecification amplification is
unavoidable when coverage is measured via Bellman transfer coefficients (Du et al., 2020;
Van Roy and Dong, 2019; Lattimore et al., 2020). Our result therefore establishes a new
separation between concentrability and Bellman transfer coefficients.

2. In the online RL setting, we instantiate the GOLF algorithm of Jin et al. (2021) with DBR
and obtain analogous results under the structural condition of coverability (building on the
analysis of Xie et al. (2023)). Taken with the above lower bounds (Du et al., 2020; Van Roy
and Dong, 2019; Lattimore et al., 2020), this separates structural conditions involving Bellman
errors (e.g., Bellman rank (Jiang et al., 2017), Bellman-eluder dimension (Jin et al., 2021), or
sequential extrapolation coefficient (Xie et al., 2023)) from coverability, which does not.

To keep the presentation concise and focused on the interaction between covariate shift and
misspecification, we focus on the simplest settings that manifest misspecification amplification.
In Section 5, we discuss a number of directions for future work, which include extensions to the core
technical and algorithmic results. We defer a detailed discussion of related work to Appendix A.

2. Misspecified regression under distribution shift

We begin by introducing the formal problem setting and our assumptions. Most proofs for results in
this section are deferred to Appendix B. There are two joint distributions, calledDtrain andDtest, over
X×R whereX is a covariate space. We use Ptrain,Ptest and Etrain,Etest to denote the probability law
and expectation under these distributions. We hypothesize that Dtrain and Dtest share the same Bayes
regression function, an assumption referred to as covariate shift in the literature (Shimodaira, 2000).

Assumption 2.1 (Covariate shift). For all x ∈ X we have

Etrain[y | x] = Etest[y | x].

Let f? : x 7→ Etrain[y | x] denote the shared Bayes regression function. We posit that the
marginal distributions over X are absolutely continuous with respect to a reference measure and use
dtrain and dtest to denote the corresponding marginal densities. We assume these are related via the
following density ratio assumption.

Assumption 2.2 (Bounded density ratios). The density ratio

C∞ := sup
x∈X

∣∣∣∣ dtest(x)

dtrain(x)

∣∣∣∣
is bounded, i.e., C∞ <∞.

Note that C∞ ≥ 1 always. Boundedness of density ratios is standard in the covariate shift
literature; indeed the coefficient C∞ appears in the classical covariate shift analyses as well as in
many algorithmic interventions (Shimodaira, 2000; Sugiyama et al., 2007). Beyond satisfying these
assumption, Dtest can be adaptively and adversarially chosen. In particular, no information about
Dtest, such as labeled/unlabeled samples or other inductive bias, is available.
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We have a dataset {(xi, yi)}ni=1 of n i.i.d. labeled examples sampled from Dtrain and a function
class F ⊂ (X → R) of predictors. We define the (squared) prediction errors

Rtrain(f) := Etrain

[
(f(x)− f?(x))2

]
, and Rtest(f) := Etest

[
(f(x)− f?(x))2

]
. (1)

We seek to use the dataset to find a predictor f̂ for which Rtest(f̂) is small.
We make two assumptions on F : we assume that |F| <∞ and that F is L∞-misspecified.

Assumption 2.3 (L∞-misspecification). For some ε∞ ≥ 0, there exists f̄ ∈ F with∥∥f̄ − f?∥∥∞ ≤ ε∞, where ‖f‖∞ := sup
x∈X
|f(x)|.

Most prior analyses for regression under covariate shift assume that the model class F is well-
specified, i.e., that ε∞ = 0 so that f? ∈ F . L∞-misspecification provides a relaxation that is
natural for at least two reasons. First, it enables end-to-end learning guarantees via composition
with approximation-theoretic results for specific function classes (e.g., neural networks), where
it is standard to measure approximation via the L∞ norm (Telgarsky, 2021). More importantly,
L∞-misspecification is particularly apt in the covariate shift setting because it ensures that f̄ has low
prediction error on both Dtest and Dtrain. Thus, there is at least one high-quality predictor whose
performance is stable across distributions. In contrast, we have no such guarantee if we, for example,
measure misspecification with respect to other norms (which depend on the distribution) or consider
the agnostic setting (with no quantified misspecification assumption). Indeed, we will see below that
misspecification amplification is unavoidable in such cases.

We also make the following technical assumption.

Assumption 2.4 (Boundedness). supf∈F‖f‖∞ ≤ 1 and |y| ≤ 1 a.s. under Dtrain and Dtest.

We impose Assumption 2.4 and that |F| < ∞ solely to highlight the novel algorithmic and
technical aspects; we expect that relaxing these assumptions is possible.

2.1. Misspecification amplification for empirical risk minimization

When there is no prior knowledge about or data from Dtest, perhaps the most natural algorithm for
optimizing Rtest(·) is empirical risk minimization (ERM) on the data from the training distribution:

f̂
(n)
ERM := arg min

f∈F

1

n

n∑
i=1

(f(xi)− yi)2.

A standard uniform convergence argument yields the classical covariate shift guarantee for ERM:

Proposition 2.1 (ERM upper bound). For any δ ∈ (0, 1) with probability at least 1−δ, ERM satisfies

Rtest(f̂
(n)
ERM) ≤ O

(
C∞ε

2
∞ + C∞

log(|F|/δ)
n

)
.

The second term which scales as 1/n—the statistical term—is optimal in the generality of our
setup (Ma et al., 2023; Ge et al., 2023), the interpretation being that the effective sample size is reduced
by a factor of C∞ due to the mismatch betweenDtrain andDtest. The first term—the misspecification
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term—represents the asymptotic1 test error of ERM and demonstrates a phenomenon that we call
misspecification amplification, whereby the error due to misspecification is amplified by the density
ratio coefficient. This phenomenon is simultaneously more concerning and less intuitive than the
degradation of the statistical term, because it describes an error which does not decay with larger
sample sizes and because f̄ ∈ F hasRtest(f̄) = ε2

∞. Since F contains a predictor that does not incur
misspecification amplification, one might hope that misspecification amplification can be avoided.

Our first main result is that misspecification amplification cannot be avoided by ERM in the worst
case. The result is proved in the asymptotic regime, where ERM is equivalent to the L2(Dtrain)-
projection of f? onto the function class F , defined as

f̂
(∞)
ERM ∈ arg min

f∈F
‖f − f?‖2L2(Dtrain), with ‖g‖2L2(Dtrain) := Etrain

[
g(x)2

]
.

The next proposition shows that f̂ (∞)
ERM can incur misspecification amplification.

Proposition 2.2 (ERM lower bound). For all ε∞ ∈ (0, 1) and C∞ ∈ [1,∞) such that
√
C∞ · ε∞ ≤

1/2, and for all ζ > 0 sufficiently small, there exist distributions Dtrain,Dtest and a function class F
with |F| = 2 satisfying Assumption 2.1-Assumption 2.4 (with parameters ε∞, C∞) such that

Rtest(f̂
(∞)
ERM) = C∞ε

2
∞ − ζ.

X

f?

f̄
ε∞

fbad

Dtrain

Dtest

Figure 1: The construction used to
prove Proposition 2.2. fbad and f̄ have
equal risk under Dtrain but fbad con-
centrates errors onto Dtest.

Combined with the optimality of the statistical
term (Ma et al., 2023; Ge et al., 2023), this establishes
that Proposition 2.1 characterizes the behavior of ERM
under L∞-misspecification and covariate shift. The con-
struction is based on the following insight, visualized
in Figure 1. The fact that f̄ is L∞-close to f? guaran-
tees that its prediction errors are “spread out” across the
domain X . Since f̄ ∈ F , we know that f̂ (∞)

ERM must satisfy
‖f̂ (∞)

ERM − f?‖2L2(Dtrain) ≤ ε
2
∞. Unfortunately, this property

does not guarantee that the errors of f̂ (∞)
ERM are “spread out”

in a similar manner to f̄ ’s. Indeed, we construct a predic-
tor fbad that concentrates its errors on a region of X that is amplified by Dtest and makes up for
this by having zero error elsewhere. By setting the parameters carefully, we can ensure that this bad
predictor is chosen by ERM.

We note that essentially the same construction shows that, under the weaker notion of L2(Dtrain)-
misspecification, amplification is unavoidable for any proper learner (which outputs a function in F ).
Indeed, in Figure 1, the function class {fbad} is L2(Dtrain)-misspecified but fbad has much higher
error on Dtest.

Other existing algorithms. Proposition 2.2 only pertains to ERM, and thus, one might ask whether
other algorithms can avoid misspecification amplification. Before turning to our positive results
in the next section, we briefly note that other standard algorithms (that do not require knowledge
of Dtest) either incur misspecification amplification to some degree, or have some other failure
mode. This pertains to the star algorithm (Audibert, 2007; Liang et al., 2015), other aggregation

1. We consider the asymptotic regime where n→∞ with all other quantities, like log |F| and ε∞, fixed.
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schemes (c.f., Lecué and Rigollet, 2014), and L∞-regression (Knight, 2017; Yi and Neykov, 2024), as
we discuss in Appendix B.2. Several methods for mitigating covariate shift can avoid misspecification
amplification, but either require knowledge of Dtest or structural assumptions on F ; see Appendix A.

2.2. Main result: Disagreement-based regression

In this section, we provide a new algorithm that avoids misspecification amplification while requiring
no knowledge of Dtest and recovering optimal statistical rates. To develop some intuition, observe
that in the construction in Figure 1, the only way for the bad predictor (fbad, in red) to be chosen by
ERM and have large errors onDtest is for it to have much lower error than f̄ on the rest of the domain.
Indeed, if we could filter out the points where fbad’s error is less than f̄ ’s, then fbad cannot overcome
the large errors on Dtest. Stated another way, we can avoid misspecification amplification in this
example if we restrict the regression problem to the region where |fbad(x)−f?(x)| ≥ |f̄(x)−f?(x)|.

Generalizing this insight to a larger function class suggests that, when considering a candidate
f ∈ F , we should only measure the square loss for f on the region where |f(x) − f?(x)| ≥
|f̄(x) − f?(x)|. Unfortunately, this region depends on f? and f̄ , both of which are unknown.
Nevertheless, our approach is based on this intuition, and we avoid the dependence on these unknown
functions with two algorithmic ideas.

To eliminate the dependence on f?, we use the fact that |f̄(x)− f?(x)| ≤ ε∞ and approximate
the above region with If := {x : |f(x)− f̄(x)| ≥ cε∞}. Indeed for c ≥ 2,

{x : |f(x)− f̄(x)| ≥ cε∞} ⊆ {x : |f(x)− f?(x)| ≥ |f̄(x)− f?(x)|}.

On the other hand, we know that |f(x) − f?(x)| ≤ (c + 1)ε∞ in the complementary region, ICf .
This is, up to the constant factor, the best pointwise guarantee we can attain, making it safe to ignore
the complementary region. This resolves the first issue of dependence on f?.

To address the dependence on f̄ , we use that f̄ ∈ F and formulate a robust optimization
objective that implicitly considers all possible pairwise “disagreement regions.” Formally, with
W τ
f,g(x) := 1{|f(x)− g(x)| ≥ τ} the algorithm is:

f̂
(n)
DBR ← arg min

f∈F
max
g∈F

1

n

n∑
i=1

W τ
f,g(x)

{
(f(x)− y)2 − (g(x)− y)2

}
. (2)

We call this algorithm disagreement-based regression (DBR) and keep the dependence on τ implicit
in the notation for the solution f̂ (n)

DBR.2 There are essentially three key ingredients. First, we introduce
the “filter” W τ

f,g to restrict the regression problem to the set of points where the predictions of f
and g differ considerably, which we call the disagreement region. This formalizes the intuition that
we should only measure the square loss for f on points where |f(x)− f̄(x)| ≥ cε∞. Second is the
robust optimization approach, where for each f ∈ F , we consider all possible choices g ∈ F for
filtering, which allows us to take g to be L∞-close to f? in the analysis. Finally, we measure the
square loss regret in the disagreement region, by subtracting off the square loss of the comparator

2. The name stems from the literature on disagreement-based active learning (Hanneke, 2014), where a similar “range”
computation has appeared (Krishnamurthy et al., 2019; Foster et al., 2018, 2021). However our usage is conceptually
unrelated: we use disagreement for robustness to covariate shift, while, in active learning, disagreement is used to
reduce sample complexity.
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function g. Similar to Agarwal and Zhang (2022), this accounts for the fact that each g ∈ F yields a
different regression problem, with potentially different Bayes error rates.3

As our main theorem, we show that disagreement-based regression enjoys the following guarantee.

Theorem 2.1 (Main result for DBR). Fix δ ∈ (0, 1). Let F be a function class with |F| < ∞
satisfying Assumption 2.3 and Assumption 2.4. Then with probability at least 1 − δ, f̂ (n)

DBR with
τ ≥ 3ε∞ satisfies

Etrain

[
1

{
|f̂ (n)

DBR(x)− f?(x)| ≥ τ + ε∞

}
·
{

(f̂
(n)
DBR(x)− f?(x))2 − ε2

∞

}]
≤ 160 log(2|F|/δ)

3n
,

(3)

which directly implies

Ptrain

[∣∣∣f̂ (n)
DBR(x)− f?(x)

∣∣∣ ≥ τ + ε∞

]
≤ 160 log(2|F|/δ)

3n(τ2 + 2τε∞)
. (4)

Before turning to a discussion of Theorem 2.1 we state two immediate corollaries. The first
addresses the adversarial covariate shift setting, bounding the risk of f̂ (n)

DBR under Dtest.

Corollary 2.1 (Covariate shift for DBR). Fix δ ∈ (0, 1). Under Assumption 2.1–Assumption 2.4,
with probability at least 1− δ, f̂ (n)

DBR with τ = 3ε∞ satisfies

Rtest(f̂
(n)
DBR) ≤ 17ε2

∞ +O

(
C∞

log(|F|/δ)
n

)
. (5)

The next result shows that f̂ (n)
DBR also recovers the optimal guarantee in the well-specified case,

i.e., when ε∞ = 0.

Corollary 2.2 (Well-specified case). Fix δ ∈ (0, 1). Under Assumption 2.1–Assumption 2.4 (with
ε∞ = 0), with probability at least 1− δ, f̂ (n)

DBR with τ ≤ O
(√

log(|F|/δ)/n
)

satisfies

Rtrain(f̂
(n)
DBR) ≤ O

(
log(|F|/δ)

n

)
and Rtest(f̂

(n)
DBR) ≤ O

(
C∞

log(|F|/δ)
n

)
. (6)

We now turn to some remarks regarding Theorem 2.1 and the corollaries.

DBR avoids misspecification amplification Comparing Corollary 2.1 in the n → ∞ limit
with Proposition 2.2 highlights the main qualitative difference between DBR and ERM. DBR attains
O(ε2

∞) asymptotic test error while the test error for ERM is lower bounded by Ω(C∞ε
2
∞). In other

words, DBR avoids misspecification amplification while ERM does not. At the same time, the
statistical term is identical (up to constants) to that of ERM, enabling us to recover the optimal rate in
the well-specified case.

3. More directly, the probability mass of filtered points Ptrain[W τ
f,g(x)] could vary considerably for different f, g ∈ F .
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Quantile guarantee Taking τ = O(ε∞) in Eq. (3), we have that Ptrain[|f̂ (n)
DBR(x) − f?(x)| ≥

cε∞] . 1/nε2∞, which controls the large quantiles of the prediction error. This is reminiscent of what
can be achieved by applying Markov’s inequality to the guarantee for ERM in the well-specified
case. In contrast, ERM only ensures that Rtrain(f̂

(n)
ERM) = Ω(ε2

∞) under misspecification, which does
not imply any meaningful quantile guarantee. One interpretation of our results is that, although
such quantile guarantees are not possible for ERM under misspecification, there is no information-
theoretic obstruction. We also note that these quantile guarantees are rather different from sup-norm
convergence; see Appendix A for further discussion.

Computational efficiency DBR, as described in Eq. (2), does not appear to be computationally
tractable, primarily due to the non-smoothness and non-convexity introduced by the filter Wf,g. A
natural direction for future work is to understand the computational challenges involved in avoiding
misspecification amplification.

2.2.1. EXTENSIONS

Before closing this section, we mention two extensions that we defer to Appendix B.4.

• Approximation factor. The approximation factor of 17 in Corollary 2.1 can be improved to
10 (cf. Proposition B.1); however our approach for doing so degrades the convergence rate
of the statistical term. We do not know the optimal approximation factor for this setting
or whether there is an inherent trade-off between the statistical term and the approxima-
tion/misspecification term.

• Adapting to unknown misspecification. Theorem 2.1 requires setting τ ≥ 3ε∞ which can
always be achieved by setting τ sufficiently large. However, setting τ = O(ε∞) yields the
best guarantee, and so, we would like to choose τ in a data-dependent fashion to adapt to the
misspecification level. Proposition B.2 shows that this can be done while recovering essentially
the same guarantee as in Theorem 2.1.

3. Proof of Theorem 2.1

This section contains the proof of Theorem 2.1—which we emphasize only requires elementary
arguments—and is not essential for understanding the main results of the paper. A reader interested
in applications of Theorem 2.1 to reinforcement learning can proceed to Section 4.

The proof of Theorem 2.1 is organized into three steps, each of which is fairly simple. It is
helpful to define empirical and population versions of the pairwise objective used by DBR:

(Empirical) : L̂(f ; g) :=
1

n

n∑
i=1

W τ
f,g(xi)

{
(f(xi)− yi)2 − (g(xi)− yi)2

}
,

(Population) : L(f ; g) := Etrain

[
W τ
f,g(x)

{
(f(x)− y)2 − (g(x)− y)2

}]
.

First, we establish a certain non-negativity property of the population objective, which is the main
structural result. The second step is a uniform convergence argument to show that L̂(·; ·), which
appears in the algorithm, concentrates to the population counterpart L(·; ·). Finally, we study the
minimizer f̂ (n)

DBR and an L∞-approximation f̄ and relate their objective values to establish the theorem.
Details and proofs for the corollaries are deferred to Appendix B.3.
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Step 1: Non-negativity. The key lemma for the analysis is the following structural property.

Lemma 3.1 (Non-negativity). With τ ≥ 2ε∞ and for any f̄ ∈ F such that ‖f̄−f?‖∞ ≤ ε∞, we have

L(f ; f̄) ≥ (τ2 − 2τε∞) Pr[W τ
f,f̄ (x)] ≥ 0.

The proof requires only algebraic manipulations and actually reveals a stronger property: with
τ ≥ 2ε∞, the random variable W τ

f,f̄
(x)
[
(f(x)− f?(x))2 − (f̄(x)− f?(x))2

]
is non-negative al-

most surely. By the symmetry L(f ; g) = −L(g; f), the lemma also shows that any L∞-misspecified
f̄ has non-positive population objective.

Step 2: Uniform convergence. Next we establish the following concentration guarantee.

Lemma 3.2 (Concentration). Fix δ ∈ (0, 1) and τ ≥ 3ε∞ and define εstat := 80 log(|F|/δ)
3n . Under As-

sumption 2.3, for any f̄ ∈ F such that ‖f̄ − f?‖∞ ≤ ε∞, with probability at least 1− δ we have

∀f ∈ F : L(f ; f̄) ≤ 2L̂(f ; f̄) + εstat, and equivalently, L̂(f̄ ; f) ≤ 1

2

(
L(f̄ ; f) + εstat

)
.

The proof is based on Bernstein’s inequality and importantly exploits a “self-bounding” property
of L̂(f ; g)—in particular that Var[L̂(f ; f̄)] ≤ (12/n)L(f ; f̄)—analogously to the analysis for ERM
in the well-specified case.

Step 3: Analysis of f̂ (n)
DBR. Let f̄ ∈ F be any function that is L∞-close to f? and condition on the

high probability event in Lemma 3.2 holding with the choice f̄ . The DBR minimizer satisfies

L(f̂
(n)
DBR; f̄)

(i)

≤ 2L̂(f̂
(n)
DBR; f̄) + εstat

(ii)

≤ 2 max
g∈F
L̂(f̂

(n)
DBR; g) + εstat

(iii)

≤ 2 max
g∈F
L̂(f̄ ; g) + εstat

(iv)

≤ max
g∈F
L(f̄ ; g) + 2εstat

(v)

≤ 2εstat.

Here inequalities (i) and (iv) are applications of Lemma 3.2, (ii) and (iii) follow from the definition
of f̂ (n)

DBR since f̄ ∈ F , and (v) is an application of Lemma 3.1 along with the symmetry L(f ; g) =
−L(g; f). Eq. (3) now follows from the fact that W τ

f,f̄
(x) ≥ 1{|f(x)− f?(x)| ≥ τ + ε∞}. Eq. (4)

follows since under the event |f(x) − f?(x)| ≥ τ + ε∞ we can lower bound (f(x) − f?(x))2 −
(f̄(x)− f?(x))2 ≥ (τ + ε∞)2 − ε2

∞.

4. Applications to online and offline reinforcement learning

In this section, we deploy disagreement-based regression to obtain new results in offline and online
RL with function approximation. Algorithmically, this is achieved by using DBR as a drop-in
replacement for square loss regression in existing algorithms. We illustrate this by examining and
improving the Bellman residual minimization (a.k.a. minimax) algorithm for offline RL (Antos
et al., 2008; Chen and Jiang, 2019) (Section 4.1) and the GOLF algorithm (Jin et al., 2021) for online
RL (Section 4.2). The analyses also require minimal modifications to those of Xie and Jiang (2021)
and Xie et al. (2023), respectively. To emphasize the ease with which DBR can be applied, we adopt
the formulations and much of the notation from these works. All proofs for results in this section are
deferred to Appendix C.
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4.1. Offline reinforcement learning

Setup and notation. We consider a discounted Markov decision process (MDP)M = (P,R, d0, γ)
over states S and actionsA, where P : S×A → ∆(S) is the transition operator, R : S×A → [0, 1]
is the reward function, d0 ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1) is the discount
factor. A policy π : S → ∆(A) induces a trajectory s0, a0, r0, s1, a1, r1, . . . where s0 ∼ d0, and for
each h ∈ N, ah ∼ π(sh), rh = R(sh, ah), and sh+1 ∼ P (sh, ah). We use Pπ[·] and Eπ[·] to denote
probability and expectation under this process. Let dπh ∈ ∆(S ×A) denote the occupancy measure
of π at time-step h, defined as dπh(s, a) := Pπ[sh = s, ah = a] and let dπ := (1− γ)

∑∞
h=0 γ

hdπh.
The value of π is denoted J(π) := Eπ

[∑∞
h=0 γ

hrh
]
. Each policy π has value functions V π :

s 7→ Eπ
[∑∞

h=0 γ
hrh | s0 = s

]
and Qπ : (s, a) 7→ Eπ

[∑∞
h=0 γ

hrh | s0 = s, a0 = a
]
, and it is

known that there exists a policy π? that maximizes V π(s) simultaneously for all s ∈ S. This policy
also optimizes J(·) and hence is called the optimal policy. It is also known that the value function
Q? := Qπ

?
induces the optimal policy via π? : s 7→ arg maxaQ

?(s, a) and additionally satisfies
Bellman’s optimality equation: Q?(s, a) := [T Q?](s, a) where T is the Bellman operator, defined
via T f : (s, a) 7→ E[r0 + γmaxa′ f(s1, a

′) | s0 = s, a0 = a].
In the offline value function approximation setting, we are given a dataset of n tuples Dn :=

{(si, ai, ri, s′i)}ni=1 generated i.i.d. from the following process: (si, ai) ∼ µ where µ ∈ ∆(S,A) is
the data collection distribution, ri = R(si, ai), and s′i ∼ P (si, ai). We are also given a function
class F ⊂ (S ×A → R), where each f ∈ F induces the policy πf : s 7→ arg maxa f(s, a). Given
dataset Dn and function class F , we seek a policy π̂ that has small suboptimality gap: J(π?)− J(π̂).
We impose the following assumptions on the function class and on the data collection distribution:

• L∞-misspecified realizability/completeness: There exists f̄ ∈ F such that ‖f̄−T f̄‖∞ ≤ ε∞.
Additionally, for any f ∈ F there exists g ∈ F such that ‖g − T f‖∞ ≤ ε∞.

• Concentrability: There exists a constant Cconc ∈ [1,∞) such that maxπ∈Π

∥∥∥dπµ ∥∥∥∞ ≤ Cconc.

Here Π := {πf : f ∈ F} is the policy class induced by F .

There is a large body of recent work studying various function approximation and coverage assump-
tions in offline RL (c.f., Xie and Jiang, 2021). Arguably the most standard are concentrability, as
we use, and exact realizability/completeness, which is stronger than our version with misspecifi-
cation. Regarding the function approximation assumption, it is not hard to show that misspecifi-
cation amplification—which in this setting is defined by the suboptimality J(π?) − J(π̂) scaling
as Ω(ε∞

√
Cconc)—is necessary under weaker notions, such as L2(µ)-misspecification. Regarding

coverage, as we will discuss below, the strength of the coverage assumption determines whether
misspecification amplification can be avoided or not.

Algorithm and guarantee. The algorithm we study is a minor modification to the minimax
algorithm (Antos et al., 2008; Chen and Jiang, 2019). For each function f̃ ∈ F and each tuple
(si, ai, ri, s

′
i) we can form a regression sample (si, ai, yf̃,i := ri + γmaxa′ f̃(s′i, a

′)) and define the

predictor f̂ via the objective:

f̂ := arg min
f∈F

max
g∈F

1

n

n∑
i=1

W τ
f,g(si, ai)

{
(f(si, ai)− yf,i)2 − (g(si, ai)− yf,i)2

}
. (7)
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Here W τ
f,g(·) is the filter in Eq. (2) with x = (s, a). Given f̂ , we output π̂ := πf̂ . Note that the only

difference between this algorithm and the original minimax algorithm is the use of the filter W τ
f,g(·)

which is essential for obtaining the following guarantee.

Theorem 4.1 (DBR for offline RL). Fix δ ∈ (0, 1), assume that F is L∞-misspecified and µ satisfies
concentrability (as defined above). Consider the algorithm defined in Eq. (7) with τ = 3ε∞. Then,
with probability at least 1− δ we have

J(π?)− J(π̂) ≤ O

(
ε∞

1− γ
+

1

1− γ

√
Cconc

log(|F|/δ)
n

)
.

The theorem is best understood via comparison to the guarantee for the standard minimax al-
gorithm, e.g., Theorem 5 of Xie and Jiang (2020). Under our assumptions (L∞-misspecification and
concentrability), these two bounds differ only in the misspecification term: our theorem scales as
ε∞/(1−γ) while the guarantee for the minimax algorithm scales as ε∞

√
Cconc/(1−γ).4 Thus, our algo-

rithm inherits the favorable properties of DBR to avoid misspecification amplification in offline RL.
This feature is notable in light of existing lower bounds for misspecified RL (Du et al., 2020;

Van Roy and Dong, 2019; Lattimore et al., 2020). Formally, these results consider linear function
approximation in various online RL models, but the constructions can be extended to offline RL with
general function approximation where coverage is measured via the Bellman transfer coefficient.

This coefficient is the smallest Ctransfer such that maxπ,f∈F
‖f−apx[f ]‖2L2(dπ)

‖f−apx[f ]‖2L2(µ)

≤ Ctransfer where

apx[f ] ∈ F is the L∞-approximation of T f .5 The lower bound states that an asymptotic error of
Ω(ε∞

√
Ctransfer) is unavoidable.

To contextualize our result with this lower bound, we identify two regimes: the “Bellman
transfer regime” where Ctransfer < ∞ and the “concentrability regime” where Cconc < ∞,
and note that, since Ctransfer ≤ Cconc, the former is more general. In the Bellman transfer
regime, misspecification amplification is unavoidable. In the concentrability regime, Theorem 4.1
avoids misspecification amplification and is sample efficient (i.e., has statistical term scaling as
poly(Cconc, log(|F|/δ), 1

n ,
1

1−γ )). This is the first result showing that both of these properties are
simultaneously achievable: prior results achieve sample efficiency with misspecification amplifi-
cation (e.g., Xie and Jiang, 2020), or avoid misspecification amplification with undesirable sample
complexity scaling as poly(|S|) (the latter is easily achieved under concentrability via a tabular model-
based approach). Thus, the regime determines whether misspecification amplification is avoidable
or not, and, in the regime where it is avoidable, our algorithm does so in a sample-efficient manner.

4. Xie and Jiang (2020) consider slightly weaker assumptions: they measure both misspecification and concentrability
via the L2(µ) norm. Our analysis easily accommodates L2(µ)-concentrability, as can be seen from the proof. On the
other hand, as described in Section 2.1, misspecification amplification is necessary under L2(µ)-misspecification.

5. Many Bellman transfer coefficients exist, but a standard one is the smallest Ctransfer such that
maxπ,f∈F ‖f−T f‖

2
L2(dπ)/‖f−T f‖2L2(µ) ≤ Ctransfer. This coincides with ours under exact realizability/completeness,

but we believe our definition is more appropriate for the misspecified case because it is equivalent to feature
coverage under linear function approximation. Indeed, if F consists of linear functions in some feature map
φ : S × A → Rd (but T f may not be linear due to misspecification) then our definition can be expressed via the
features (as maxπ,θ∈Rd θ

>Σπθ/θ>Σµθ where Σd = Ed
[
φ(s, a)φ(s, a)>

]
) but the standard definition cannot.
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4.2. Online reinforcement learning

Setup and notation. We consider a finite horizon episodic MDP (P,R,H, s1) over state space
S and action space A, where H ∈ N is horizon, P := {Ph}Hh=1 with Ph : S × A → ∆(S) is the
non-stationary transition operator, R := {Rh}Hh=1 with Rh : S × A → [0, 1] is the non-stationary
reward function, and s1 is a fixed starting state. A (non-stationary) policy π := {πh}Hh=1 is a
sequence of mappings πh : S → ∆(A) which induces a trajectory (s1, a1, r1, . . . , sH , aH , rH)
where ah ∼ πh(sh), rh = Rh(sh, ah) and sh+1 ∼ Ph(sh, ah) for each time step. We use Pπ[·] and
Eπ[·] to denote probability and expectation under this process, respectively. Let dπh ∈ ∆(S × A)
denote the occupancy measure of π at time-step h, defined as dπh(s, a) := Pπ[sh = s, ah = a].

The value of policy π is denoted J(π) := Eπ
[∑H

h=1 rh

]
. Each policy has value functions: V π

h :

s 7→ Eπ
[∑H

h′=h rh′ | sh = s
]

and Qπh : (s, a) 7→ Eπ
[∑H

h′=h rh′ | sh = s, ah = a
]

and there exist

an optimal policy π? = {π?h}Hh=1 that maximizes V π
h simultaneously for each state s ∈ S and hence

maximizes J(·). The optimal value functionQ?h := Q
π?h
h induces π? via π?h : s 7→ arg maxaQ

?
h(s, a)

and satisfies Bellman’s equation: Q?h(s, a) = [ThQ?h+1](s, a) where the Bellman operator Th is
defined via [Thfh+1](s, a) = Rh(s, a) + E[maxa′ fh+1(sh+1, a

′) | sh = s, ah = a]. We assume
per-episode rewards satisfy

∑H
h=1 rh ∈ [0, 1].

In online RL, we interact with the MDP for T episodes, where in each episode we select a policy
π(t) and collect the trajectory (s(t)

1 , a
(t)

1 , r
(t)

1 , . . . , s
(t)

H , a
(t)

H , r
(t)

H ) by taking actions a(t)

h = π(t)

h (s(t)

h ). We
measure performance via the cumulative regret, define as Reg :=

∑T
t=1 J(π?)− J(π(t)). We equip

the learner with a value function class F := F1× . . .×FH where each Fh ⊂ S ×A → [0, 1]. Each
f ∈ F induces a policy πf which, at time step h takes actions via πf,h(sh) = arg maxa fh(sh, ah).
We make the following assumptions:

• L∞-approximate realizability/completeness. For each h ∈ [H] there exists f̄h ∈ Fh such
that

∥∥f̄h − Thf̄h+1

∥∥
∞ ≤ ε∞. Additionally, for each fh+1 ∈ Fh+1 there exists fh ∈ Fh such

that ‖fh − Thfh+1‖∞ ≤ ε∞.

• Coverability. There exists Ccov ∈ [1,∞) such that infµ1,...,µH∈∆(S×A) supπ∈Π,h

∥∥∥ dπhµh∥∥∥∞ ≤
Ccov. Here Π := {πf : πf,h(s) = arg maxa fh(s, a), f ∈ F} is the policy class induced byF .

As in offline RL, there is a large body of recent work studying function approximation and
structural conditions for sample-efficient online RL (c.f., Agarwal et al., 2019; Foster and Rakhlin,
2023). It is fairly standard to assume exact realizability and completeness, which is stronger than our
version with misspecification. Coverability is a recently proposed structural condition (Xie et al.,
2023): Ccov is known to be small in many MDP models of interest, but weaker conditions that enable
sample-efficiency are known. As we will see, the strength of the structural condition determines
whether misspecification amplification can be avoided or not.

Algorithm and guarantee. The algorithm is a very minor modification to GOLF (Jin et al., 2021;
Xie et al., 2023). To condense the notation, given a sample (s(i)

h , a
(i)

h , r
(i)

h , s
(i)

h+1) and a function
f ′ ∈ Fh+1, define x(i)

h := (s(i)

h , a
(i)

h ) and y(i)

f ′,h := r(i)

h + maxa′ f
′(s(i)

h+1, a
′). At the beginning of

12
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episode t, define a version space

F (t−1) :={
f ∈ F : ∀h ∈ [H] : max

g∈Fh

t−1∑
i=1

W τ
fh,g

(x(i)

h )
{

(fh(x(i)

h )− y(i)

fh+1,h
)2 − (g(x(i)

h )− y(i)

fh+1,h
)2
}
≤ β

}
,

where β > 0 is a hyperparameter we will set below.
Then, we define the optimistic value function f (t) := arg maxf∈F(t−1) f1(s1, πf,1(s1)) and the

induced policy π(t) := πf (t) , collect a trajectory via π(t), and proceed to the next episode. Note that
the only difference between this algorithm, which we call GOLF.DBR, and the version of GOLF
studied by Xie et al. (2023) is that we use the filter W τ

fh,g
(·) in the construction of the version space.

GOLF.DBR enjoys the following guarantee.

Theorem 4.2 (DBR for online RL). Fix δ ∈ (0, 1), and assume that F is L∞-misspecified and
coverability (as defined above) holds. Consider GOLF.DBR with τ = 3ε∞ and β = c log(TH|F|/δ).
Then, with probability at least 1− δ, we have

Reg ≤ O
(
ε∞HT +H

√
CcovT log(TH|F|/δ) log(T )

)
.

Paralleling the discussion following Theorem 4.1, we emphasize two aspects of the result. The
first is that it extends Theorem 1 of Xie et al. (2023) to the misspecified setting, with no degradation
of the statistical term and without incurring a dependence on ε∞

√
Ccov. In other words, it avoids

misspecification amplification.
The second remark is that, when taken with existing lower bounds (Du et al., 2020; Van Roy

and Dong, 2019; Lattimore et al., 2020), Theorem 4.2 establishes a separation between coverability
and structural parameters defined in terms of Bellman errors, which include the Bellman-Eluder
dimension (Jin et al., 2021), bilinear rank (Du et al., 2021), and Bellman rank (Jiang et al., 2017).6

This separation is more subtle than in offline RL, because here, as long as the state-action space is
finite, one can always use a “tabular” method and eliminate misspecification altogether, at the cost of
poly(|S|, |A|) ·

√
T regret. To rule out this algorithm, we restrict to sample-efficient methods: in a

setting where a particular structural parameter (e.g., coverability or Bellman rank) is bounded by d we
say that an algorithm is sample-efficient if its statistical term scales as poly(d, log(|F|/δ), H) · o(T ).
The lower bounds show that, when the structural parameter involves Bellman errors (like the
Bellman rank), ε∞T

√
d misspecification error is necessary for sample efficient algorithms.7 On the

other hand, under coverability, we can achieve misspecification error with no dependence on the
structural parameter, in a sample efficient manner.8 This establishes that whether misspecification
amplification can be avoided sample-efficiently depends on the structural properties of the MDP.
To our knowledge, this is a novel insight into the interaction between the structural and function
approximation assumptions in online RL.

6. As with Bellman transfer coefficients, we believe these definitions should be adjusted to accommodate misspecification.
See Definition 10 in Jiang et al. (2017) for an example.

7. Formally, for any ζ > 0 one requires at least exp(d2ζ) samples to find a d1/2−ζε∞ suboptimal policy (Lattimore
et al., 2020).

8. We believe that misspecification error ε∞HT is optimal under coverability and that ε∞HT
√
d is optimal under

structural parameters like Bellman rank. However, it remains open to establish the necessity of the horizon factors.

13



AMORTILA CAO KRISHNAMURTHY

5. Discussion

This paper highlights an intriguing interplay between misspecification and distribution shift, exposing
the undesirable misspecification amplification property of ERM, and proposing disagreement-based
regression as a remedy. We have shown that using disagreement-based regression in online and
offline reinforcement learning yields new technical results and reveals new tradeoffs between cover-
age/structural assumptions and function approximation assumptions.

We close by mentioning several interesting avenues for future work. There are a number of
directions that pertain to the core setting of misspecified regression under covariate shift; for example,
(a) extending the analysis of DBR to infinite function classes, other loss functions, and other notions
of misspecification, (b) deriving a more computationally efficient procedure—perhaps in an oracle
model of computation—that avoids misspecification amplification, and (c) determining the optimal
achievable approximation factor. Pertaining to reinforcement learning theory, we believe the most
pressing direction is to deepen our understanding of the relationship between coverage/structural
assumptions (for offline/online RL, respectively) and function approximation assumptions, and we
believe misspecification provides a novel lens to study this relationship. It is also worthwhile to
consider other applications involving distribution shift where DBR or related procedures may reveal
new conceptual insights. Finally, it would also be interesting to study empirical issues, to understand
how pervasive and problematic misspecification amplification is, develop practical interventions, and
consider applying them to distribution shift and deep reinforcement learning scenarios.

In short, there is much more to understand about the interplay between misspecification and
distribution shift, and we look forward to progress in the years to come.
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Appendix A. Additional related work

There is a vast body of work studying distribution shift broadly and covariate shift in particular.
We focus on the most closely related techniques for the covariate shift setting and refer the reader
to Quinonero-Candela et al. (2008); Sugiyama and Kawanabe (2012); Shen et al. (2021) for a more
comprehensive treatment.

Reweighting and robust optimization. Perhaps the most common way to correct for covariate
shift is by reweighting each example (x, y) in the objective function by the density ratio w(x) :=
dtest(x)/dtrain(x). This method has been studied in a long series of works (Shimodaira, 2000; Cortes
et al., 2010; Cortes and Mohri, 2014). In its simplest form it requires knowledge of Dtest via the
density ratios, so it is not directly applicable to our adversarial covariate shift setting. Extensions
include approaches that estimate density ratios using unlabeled samples from Dtest (Huang et al.,
2006; Sugiyama et al., 2007; Gretton et al., 2009; Yu and Szepesvári, 2012) and robust optimization
approaches that employ an auxiliary hypothesis class of distributions P containing Dtest (Hashimoto
et al., 2018; Sagawa et al., 2020; Duchi and Namkoong, 2021; Agarwal and Zhang, 2022). However,
these still require prior knowledge about Dtest, in particular it is known that the sample complexity
of robust optimization scales with the statistical complexity of the auxiliary class P (Duchi and
Namkoong, 2021), leading to vacuous bounds in the absence of inductive bias.

Ge et al. (2023) study statistical inference under covariate shift in well- and misspecified settings.
They show that maximum likelihood estimation on Dtrain is inconsistent with misspecification, a
result which is conceptually similar to our lower bound for ERM. However, their construction is
not L∞-misspecified so it is not directly comparable. Algorithmically, they use reweighting for the
misspecified case, which, as mentioned, cannot be implemented in our setting.

Sup-norm convergence and function class-specific results. Another line of work provides
specialized analyses for specific function classes of interest, such as linear (Lei et al., 2021), bilin-
ear (Simchowitz et al., 2023), nonparametric (Kpotufe and Martinet, 2018; Pathak et al., 2022; Ma
et al., 2023), and some neural network (Dong and Ma, 2023a) classes. The overarching technical
approach in these works is to measure distance between distributions in a manner that captures the
structure of the function class, analogously to learning-theoretic results for domain adaptation (Ben-
David et al., 2006; Mansour et al., 2009). Many of these works operate closer to the well-specified
regime than we do (e.g., in the nonparametric setting. An exception is the work of Simchowitz et al.
(2023) who studied misspecification amplification that arises from low rank approximation under
bilinear structure, a setting that is rather different from our own.

A complementary approach is based on sup-norm convergence which seeks to control ‖f̂−f?‖∞
for a predictor f̂ and is naturally robust to covariate shift. Sup-norm convergence has been studied
for various function classes (c.f., Shah et al., 2020; Agarwal et al., 2020, 2023; Schmidt-Hieber
and Zamolodtchikov, 2022; Dong and Ma, 2023b), but unfortunately is not possible in the general
statistical learning setup (Dong and Ma, 2023b). We mention sup-norm convergence primarily to
contrast with our quantile guarantee in Eq. (4), which controls the probability over x of large errors
rather than the magnitude of the errors themselves and which is attainable for any function class,
even with misspecification.

Related work in reinforcement learning. Our results for offline and online RL build directly on
the analyses in Xie and Jiang (2020) and Xie et al. (2023) respectively. The former contributes to
a long line of work on offline RL (Munos, 2003, 2007; Antos et al., 2008; Chen and Jiang, 2019)
while the latter is part of a series of works establishing structural conditions under which online
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reinforcement learning is statistically tractable (c.f., Agarwal et al., 2019; Foster and Rakhlin, 2023).
Many of these works do account for misspecification, but the question of whether misspecification
amplification can be avoided is not considered.

Results that do focus on misspecification primarily consider linear function approximation. In
the simpler offline policy evaluation setting, several works study least squares temporal difference
learning (LSTD) (Bradtke and Barto, 1996) with misspecification (Tsitsiklis and Van Roy, 1996;
Yu and Bertsekas, 2010; Mou et al., 2022). Recently, Amortila et al. (2023) precisely characterized
the optimal misspecification amplification (i.e., approximation factors) achievable across a range of
settings, showing that LSTD is essentially optimal in most regimes. The exception is when the offline
data distribution is supported on the entire state space, one can employ a “tabular” model-based
algorithm to incur no approximation error whatsoever, but the sample complexity scales polynomially
with |S|. Our offline RL results are conceptually similar because under concentrability (which
essentially implies full support), the standard minimax algorithm does not achieve the optimal
approximation factor. A crucial difference is that our disagreement-based variant achieves an
improved approximation factor without incurring any sample complexity overhead.

For the more challenging offline policy optimization and online RL, Du et al. (2020); Van Roy and
Dong (2019); Lattimore et al. (2020) establish conditions under which misspecification amplification
is necessary. As discussed above, combining our results with these lower bounds and their variations,
reveals new tradeoffs between coverage/structural and function approximation conditions, distinct
from tradeoffs established by prior work (Xie and Jiang, 2021; Foster et al., 2022).

Appendix B. Proofs for Section 2

B.1. Analysis for ERM

Proposition 2.1 (ERM upper bound). For any δ ∈ (0, 1) with probability at least 1−δ, ERM satisfies

Rtest(f̂
(n)
ERM) ≤ O

(
C∞ε

2
∞ + C∞

log(|F|/δ)
n

)
.

Proof of Proposition 2.1. The proof of Proposition 2.1 is fairly standard, particularly in the well-
specified case when ε∞ = 0. Our analysis that handles misspecification is adapted from the proof
of Lemma 16 in Chen and Jiang (2019). For the majority of the proof we only consider Dtrain, and
we consequently omit the subscript when indexing expectations, variances, and the risk functional.
Define

R(f) := E[(f(x)− f?(x))2] and R̂(f) :=
1

n

n∑
i=1

(f(xi)− yi)2,

so that f̂ (n)
ERM := arg minf∈F R̂(f). We establish concentration on the “excess risk” functional

R̂(f)− R̂(f̄). For any f ∈ F , we establish the following facts:

E[(f(x)− y)2 − (f̄(x)− y)2] = E[(f(x)− f?(x))2 − (f̄(x)− f?(x))2] (8)

Var[(f(x)− y)2 − (f̄(x)− y)2] ≤ 8E[(f(x)− y)2 − (f̄(x)− y)2] + 16ε2
∞. (9)
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Eq. (8) implies that E[R̂(f)− R̂(f̄)] = R(f)−R(f̄) as desired. Eq. (9) will enable us to achieve a
fast convergence rate. The former is derived as follows. Observe that conditional on any x we have

E[(f(x)− y)2 − (f̄(x)− y)2 | x]

= E[(f(x)− y)2 − (f̄(x)− f?(x) + f?(x)− y)2 | x]

= E[(f(x)− y)2 − (f̄(x)− f?(x))2 − 2(f̄(x)− f?(x))(f?(x)− y)− (f?(x)− y)2 | x]

= E[(f(x)− y)2 − (f̄(x)− f?(x))2 − (f?(x)− y)2 | x]

= f(x)2 − f?(x)2 − 2Etrain[y | x](f(x)− f?(x))− (f̄(x)− f?(x))2

= (f(x)− f?(x))2 − (f̄(x)− f?(x))2.

Eq. (9) is derived as follows.

Var[(f(x)− y)2 − (f̄(x)− y)2] ≤ E[((f(x)− y)2 − (f̄(x)− y)2)2]

= E[(f(x)− f̄(x))2(f(x) + f̄(x)− 2y)2]

≤ 4E[(f(x)− f̄(x))2]

≤ 8E[(f(x)− f?(x))2 + (f̄(x)− f?(x))2]

= 8E[(f(x)− f?(x))2 − (f̄(x)− f?(x))2 + 2(f̄(x)− f?(x)2]

≤ 8E[(f(x)− f?(x))2 − (f̄(x)− f?(x))2] + 16ε2
∞.

Finally, we apply Eq. (8).
Now, Bernstein’s inequality and a union bound over f ∈ F gives that with probability at least 1−δ

∀f ∈ F : R(f)−R(f̄)−(R̂(f)− R̂(f̄))

≤
√

(16(R(f)−R(f̄)) + 32ε2
∞) log(|F|/δ)

n
+

4 log(|F|/δ)
3n

.

Since f̂ (n)
ERM minimizes R̂(f) we have that R̂(f̂

(n)
ERM)− R̂(f̄) ≤ 0, we can deduce that

R(f̂
(n)
ERM)−R(f̄) ≤

√
(16(R(f̂

(n)
ERM)−R(f̄)) + 32ε2

∞) log(|F|/δ)
n

+
4 log(|F|/δ)

3n
.

Using the AM-GM inequality (
√
ab ≤ a/2 + b/2), the right hand side can be simplified to yield

R(f̂
(n)
ERM)−R(f̄) ≤ 1

2
(R(f̂

(n)
ERM)−R(f̄)) + ε2

∞ +
28 log(|F|/δ)

3n
.

Re-arranging and using that Rtrain(f̄) ≤ ε2
∞ we obtain

Rtrain(f̂
(n)
ERM) ≤ 3ε2

∞ +
56 log(|F|/δ)

3n
.

Finally we bound the risk under Dtest via a standard importance weighting argument:

Rtest(f̂
(n)
ERM) = Etrain

[
dtest(x)

dtrain(x)
(f̂

(n)
ERM(x)− f?(x))2

]
≤ sup

x∈X

∣∣∣∣ dtest(x)

dtrain(x)

∣∣∣∣ · (3ε2
∞ +

56 log(|F|/δ)
3n

)
.

Note that we crucially use that (f̂
(n)
ERM(x)− f?(x))2 is non-negative here. This proves the proposi-

tion.
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Proposition 2.2 (ERM lower bound). For all ε∞ ∈ (0, 1) and C∞ ∈ [1,∞) such that
√
C∞ · ε∞ ≤

1/2, and for all ζ > 0 sufficiently small, there exist distributions Dtrain,Dtest and a function class F
with |F| = 2 satisfying Assumption 2.1-Assumption 2.4 (with parameters ε∞, C∞) such that

Rtest(f̂
(∞)
ERM) = C∞ε

2
∞ − ζ.

Proof of Proposition 2.2. Fix ε∞ ∈ (0, 1) and C∞ ≥ 1 such that
√
C∞ · ε∞ ≤ 1/2. Let

0 < ζ <
√
C∞ · ε∞. Let X = [0, 1] and let Dtrain be the distribution over (x, y) where x ∼

Uniform(X ) and y ∼ Ber(1/2). Let X̃ := [0, 1/C∞] ⊂ X and let Dtest be the distribution over
(x, y) where x ∼ Uniform(X̃ ) and y ∼ Ber(1/2). These choices yield f?(x) = 1/2 for all x ∈ X ,
satisfy Assumption 2.1, and ensure that supx∈X

∣∣∣ dtest(x)
dtrain(x)

∣∣∣ = C∞.

Let F = {f̄, fbad} where f̄(x) = 1/2 + ε∞ for all x ∈ X (satisfying Assumption 2.3) and fbad

is defined as

fbad(x) =

{
1/2 if x /∈ X̃

1/2 + ζ if x ∈ X̃
.

By definition, observe that f̂ (∞)
ERM = fbad as long as ‖fbad − f?‖2L2(Dtrain) <

∥∥f̄ − f?∥∥2

L2(Dtrain)
. A

direct calculation shows that this inequality is satisfied for any ζ <
√
C∞ · ε∞. However, fbad has

large population risk under Dtest, in particular

Rtest(fbad) = Etest[(fbad(x)− f?(x))2] = ζ2,

which we can make arbitrarily close to C∞ε
2
∞.

B.2. Discussion of other algorithms

Star algorithm. Audibert’s star algorithm (Audibert, 2007; Liang et al., 2015) is a two-stage
regression procedure that achieves the fast convergence rate for non-convex classes in misspecified or
agnostic regression. Given that the construction used to prove Proposition 2.2 has a finite (and hence
non-convex) function class, one might ask whether the star algorithm can avoid misspecification
amplification. We briefly sketch here why this is not the case. In the context of the construction,
where F = {fbad, f̄}, the asymptotic version of the star algorithm is to compute

f̂star := arg min
fα:α∈[0,1]

Etrain[(fα(x)− f?(x))2] where fα(x) = (1− α)fbad(x) + αf̄(x).

We claim that when ζ =
√
C∞ · ε∞, the optimal choice for α is exactly 1/2. The prediction

error under Dtest for this choice is, unfortunately, exactly 1/4(
√
C∞ + 1)2ε2

∞, which still manifests
misspecification amplification. Note that, due to the simplicity of our construction, the same argument
applies to other improper learning schemes based on convexification (c.f., Lecué and Rigollet, 2014).

To see that the minimum is achieved at α = 1/2, we write the optimization problem over α as

arg min
α∈[0,1]

1

C∞
·
(

(1− α)
√
C∞ε∞ + αε∞

)2

+

(
1− 1

C∞

)
· (αε∞)2

= arg min
α∈[0,1]

α2 + (1− α)2 +
2α(1− α)√

C∞
.
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The derivative, w.r.t. α, of the latter is

d

(
α2 + (1− α)2 + 2α(1−α)√

C∞

)
dα

= 2α− 2(1− α) +
2√
C∞
− 4α√

C∞
=

(
2− 2√

C∞

)
(2α− 1).

Since C∞ > 1, the second derivative is non-negative, so the optimization problem is convex.
Moreover, the derivative is zero at α = 1/2, showing that this is a minimizer of the optimization
problem.

L∞ regression. Given that we assume L∞-misspecification, and in light of the construction
for Proposition 2.2, it is tempting to optimize the maximal absolute deviation instead of the square
loss:

f̂ (n)
∞ ← arg min

f∈F
max
i
|f(xi)− yi|.

This procedure is known as L∞ regression or the Chebyshev estimator and has been studied in
the statistics community (Knight, 2017; Yi and Neykov, 2024). These analyses primarily consider
the well-specified setting with noise that is uniformly distributed, i.e., yi = f?(xi) + εi where
εi ∼ Unif([−a, a]) for some a ≥ 0. We believe such analyses can extend to the L∞-misspecified
setting to show that the procedure avoids misspecification amplification. However, strong assumptions
on the noise are crucial, as L∞ regression can be inconsistent under more general conditions.

We illustrate with a simple example. Let X = {x} be a singleton, y = Ber(1/4) and F = {f? :
x 7→ 1/4, f : x 7→ 1/2} be a class with two functions. For all n sufficiently large, the dataset will
contain the sample (x, 1) at which point f? will have L∞ error 3/4, while f will have error 1/2.
Thus the method will be inconsistent.

B.3. Analysis for DBR

We begin with the proofs of Lemma 3.1 and Lemma 3.2, thus completing steps one and two of the
proof. Then we turn to proving the corollaries.

Lemma 3.1 (Non-negativity). With τ ≥ 2ε∞ and for any f̄ ∈ F such that ‖f̄−f?‖∞ ≤ ε∞, we have

L(f ; f̄) ≥ (τ2 − 2τε∞) Pr[W τ
f,f̄ (x)] ≥ 0.

Proof of Lemma 3.1. Following the calculation used to derive Eq. (8) we have that, conditional on
any x:

Etrain[(f(x)− y)2 − (f̄(x)− y)2 | x] = (f(x)− f?(x))2 − (f̄(x)− f?(x))2

Under the event x ∈W τ
f,f̄

with τ ≥ 2ε∞ we claim that this must be non-negative. In particular

|f(x)− f?(x)| ≥ |f(x)− f̄(x)| − |f̄(x)− f?(x)| ≥ τ − ε∞ ≥ ε∞ ≥ 0

Therefore,

(f(x)− f?(x))2 − (f̄(x)− f?(x))2 ≥ (τ − ε∞)2 − ε2
∞ ≥ τ2 − 2τε∞.

The right hand side is non-negative whenever τ ≥ 2ε.
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Lemma 3.2 (Concentration). Fix δ ∈ (0, 1) and τ ≥ 3ε∞ and define εstat := 80 log(|F|/δ)
3n . Under As-

sumption 2.3, for any f̄ ∈ F such that ‖f̄ − f?‖∞ ≤ ε∞, with probability at least 1− δ we have

∀f ∈ F : L(f ; f̄) ≤ 2L̂(f ; f̄) + εstat, and equivalently, L̂(f̄ ; f) ≤ 1

2

(
L(f̄ ; f) + εstat

)
.

Proof of Lemma 3.2. The concentration inequality is similar to the one used in the proof of Proposi-
tion 2.1. We apply Bernstein’s inequality and a union bound to the empirical disagreement-based loss
L̂(f ; f̄) for each f ∈ F . To do so, we must calculate the mean, variance, and range of L̂(f ; f̄). Note
that by the same calculation as in the proof of Proposition 2.1, we have that E[L̂(f ; f̄)] = L(f ; f̄)
and that the range of each random variable in the empirical average is 1. The variance calculation
however is slightly different:

Var[W τ
f,f̄ (x) · {(f(x)− y)2 − (f̄(x)− y)2}] ≤ E[W τ

f,f̄ (x) · {(f(x)− y)2 − (f̄(x)− y)2}2]

≤ E[W τ
f,f̄ (x)(f(x)− f̄(x))2(f(x) + f̄(x)− 2y)2]

≤ 4E[W τ
f,f̄ (x)(f(x)− f̄(x))2].

Next, we consider a fixed x and define a := (f(x)− f?(x)) and b := (f?(x)− f̄(x)), so that we
can write (f(x) − f̄(x))2 = (f(x) − f?(x) + f?(x) − f̄(x))2 = (a + b)2. Now, when τ ≥ 3ε∞
we have:

W τ
f,f̄ (x) = 1⇒ |a| = |f(x)− f?(x)| ≥ |f(x)− f̄(x)| − ε∞ ≥ 2ε∞.

Along with the fact that |b| = |f̄(x)− f?(x)| ≤ ε∞, this implies that |b| ≤ |a|/2 or equivalently that
b2 ≤ a2/4. Using this, we can deduce that

(a+ b)2 ≤ 9a2

4
≤ 9a2

4
− 3b2 +

3a2

2
= 3(a2 − b2).

Re-introducing the definitions for a and b we have that

Var[W τ
f,f̄ (x) · {(f(x)− y)2 − (f̄(x)− y)2}] ≤ 12L(f ; f̄)

Now, applying Bernstein’s inequality and a union bound over all f ∈ F yields that with probability
1− δ:

∀f ∈ F : L(f ; f̄)− L̂(f ; f̄) ≤
√

24L(f ; f̄) log(|F|/δ)
n

+
4 log(|F|/δ)

3n

≤ 1

2
L(f ; f̄) +

40 log(|F|/δ)
3n

.

Re-arranging proves the first statement, and the second statement follows from the symmetries
L̂(f ; g) = −L̂(g; f) and L(f ; g) = −L(g; f).

Corollary 2.1 (Covariate shift for DBR). Fix δ ∈ (0, 1). Under Assumption 2.1–Assumption 2.4,
with probability at least 1− δ, f̂ (n)

DBR with τ = 3ε∞ satisfies

Rtest(f̂
(n)
DBR) ≤ 17ε2

∞ +O

(
C∞

log(|F|/δ)
n

)
. (5)
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Proof of Corollary 2.1. Beginning the with risk under Dtest and assuming that τ = 3ε∞ we can
write

Rtest(f̂
(n)
DBR) = Etest[(f̂

(n)
DBR(x)− f?(x))2]

= Etest[1{|f̂ (n)
DBR(x)− f?(x)| < 4ε∞} · (f̂ (n)

DBR(x)− f?(x))2]

+ Etest[1{|f̂ (n)
DBR(x)− f?(x)| ≥ 4ε∞} · (f̂ (n)

DBR(x)− f?(x))2]

≤ 16ε2
∞ + Etest[1{|f̂ (n)

DBR(x)− f?(x)| ≥ 4ε∞} · (f̂ (n)
DBR(x)− f?(x))2]

≤ 17ε2
∞ + Etest[1{|f̂ (n)

DBR(x)− f?(x)| ≥ 4ε∞} · {(f̂ (n)
DBR(x)− f?(x))2 − ε2

∞}].

Note that, due to the indicator, the quantity inside the expectation is non-negative. Therefore, via
exactly the same importance weighting argument as we used in the proof of Proposition 2.1, the
latter is at most C∞ times the quantity bounded in Eq. (3).

Corollary 2.2 (Well-specified case). Fix δ ∈ (0, 1). Under Assumption 2.1–Assumption 2.4 (with
ε∞ = 0), with probability at least 1− δ, f̂ (n)

DBR with τ ≤ O
(√

log(|F|/δ)/n
)

satisfies

Rtrain(f̂
(n)
DBR) ≤ O

(
log(|F|/δ)

n

)
and Rtest(f̂

(n)
DBR) ≤ O

(
C∞

log(|F|/δ)
n

)
. (6)

Proof of Corollary 2.2. Let ∆ denote the right hand side of Eq. (3). Note that in the well-specified
case where ε∞ = 0, Theorem 2.1 ensures that

Etrain[1{|f̂ (n)
DBR(x)− f?(x)| ≥ τ} · (f̂ (n)

DBR(x)− f?(x))2] ≤ ∆.

Then, if we take τ ≤
√

∆, we have

Rtrain(f̂
(n)
DBR) = Etrain[1{|f̂ (n)

DBR(x)− f?(x)| < τ} · (f̂ (n)
DBR(x)− f?(x))2]

+ Etrain[1{|f̂ (n)
DBR(x)− f?(x)| ≥ τ} · (f̂ (n)

DBR(x)− f?(x))2]

≤ τ2 + ∆ ≤ 2∆.

This proves the corollary.

B.4. Extensions

In this section, we provide two results mentioned in Section 2. First we improve the approximation
factor in Corollary 2.1 from 17 to 10 albeit at the cost of a worse statistical term. Second we show
how to choose τ in a data-driven fashion to adapt to unknown misspecification level ε∞.

Proposition B.1 (Improved approximation factor). Under Assumption 2.1–Assumption 2.4, with
τ = 2ε∞ and for δ ∈ (0, 1), we have that, with probability at least 1− δ:

Rtest(f̂
(n)
DBR) ≤ 10ε2

∞ + C∞ ·O

(√
log(|F|/δ)

n

)
. (10)
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Proof sketch. The proof is essentially identical to that of Theorem 2.1, except that we replace the
concentration statement of Lemma 3.2 with a simpler one that relies on Hoeffding’s inequality. The
new concentration statement is that for any τ ≥ 0 and δ ∈ (0, 1) with probability 1− δ we have

∀f ∈ F : L(f ; f̄) ≤ L̂(f ; f̄) + εslow,

where εslow := c

√
log(|F|/δ)

n for some universal constant c > 0. This follows by a standard
application of Hoeffding’s inequality and a union bound, but importantly does not impose the
restriction that τ ≥ 3ε∞.

Now the analysis to prove Theorem 2.1 yields that for any τ ≥ 2ε∞:

Etrain

[
1{|f̂ (n)

DBR(x)− f?(x)| ≥ τ + ε∞} ·
{

(f̂
(n)
DBR(x)− f?(x))2 − (f̄(x)− f?(x))2

}]
≤ cεslow.

Taking τ = 2ε∞ and following the derivation used to prove Corollary 2.1, we get

Rtest(f̂
(n)
DBR) ≤ 10ε2

∞ + cεslow

(Note that this requires the non-negativity property provided by Lemma 3.1, which we still have.)

The next result considers adapting to an unknown misspecification level.

Proposition B.2 (Adapting to ε∞). Let δ ∈ (0, 1) and define S := {2i : τmin ≤ 2i ≤ τmax} where

τmin :=

√
160 log(|F||S|/δ)

3n and τmax := 1. Let τ? := min{τ ∈ S : τ ≥ 3ε∞}. Then there is an

algorithm that, without knowledge of ε∞ and with probability at least 1− δ, computes f̂ satisfying

Etrain

[
1{|f̂(x)− f?(x)| ≥ τ? + ε∞} ·

{
(f̂(x)− f?(x))2 − ε2

∞

}]
≤ 160 log(2|F||S|/δ)

3n
.

Note that when ε∞ � τmin, we are essentially in the realizable regime. Thus, via the proof
of Corollary 2.2 the above guarantee with τ? := τmin suffices. On the other hand if ε∞ ≥ 1/3 then
τ? is undefined, but due to Assumption 2.4 the guarantee in Theorem 2.1 is vacuous. Thus, the above
theorem recovers essentially the same result as Theorem 2.1, but without knowledge of ε∞.
Proof sketch. The algorithm is as follows. We run a slight variation of disagreement based regression
for each τ ∈ S: Instead of computing the minimizer of the objective in Eq. (2) we form the version
space of near-minimizers. Specifically, define

∀τ ∈ S : Fτ :=

{
f ∈ F : max

g∈F

1

n

n∑
i=1

W τ
f,g(xi)

{
(f(xi)− yi)2 − (g(xi)− yi)2

}
≤ εstat/2

}
,

where we define εstat = 80 log(|F||S|/δ)
3n . Note this is slightly inflated from the definition in the

statement of Lemma 3.2, which accounts for a union bound over all |S| runs of the algorithm. Next,
we define

τ̂ := arg min

τ ∈ S :
⋂

τ ′∈S:τ ′≥τ
Fτ ′ 6= ∅

,
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and return any function in this intersection, i.e., let f̂ be any function in
⋂
τ ′∈S:τ ′≥τ̂ Fτ ′ .

For the analysis, via the analysis of Theorem 2.1 and a union bound over the |S| choices for τ ,
we have

∀τ ≥ τ? : f̄ ∈ Fτ and f ∈ Fτ ⇒ Lτ (f ; f̄) ≤ εstat,

where Lτ (f ; g) is the population objective with parameter τ . The first statement directly implies that
τ̂ ≤ τ?. This in turn implies that f̂ ∈ Fτ? and so f̂ achieves the same statistical guarantee as if we
ran DBR with parameter τ? (up to the additional union bound).

Appendix C. Proofs for Section 4

C.1. Offline RL

Theorem 4.1 (DBR for offline RL). Fix δ ∈ (0, 1), assume that F is L∞-misspecified and µ satisfies
concentrability (as defined above). Consider the algorithm defined in Eq. (7) with τ = 3ε∞. Then,
with probability at least 1− δ we have

J(π?)− J(π̂) ≤ O

(
ε∞

1− γ
+

1

1− γ

√
Cconc

log(|F|/δ)
n

)
.

Proof of Theorem 4.1. For each “target” function ftrg ∈ F such that ftrg 6= f̄ , let us define
apx[ftrg] ∈ F to be any approximation to the Bellman backup T ftrg s.t. ‖apx[ftrg]−T ftrg‖∞ ≤ ε∞.
Define apx[f̄ ] = f̄ , which also satisfies ‖apx[f̄ ] − T f̄‖∞ ≤ ε∞ by assumption. Let us define the
empirical and population losses for the disagreement-based regression problem with regression
targets derived from ftrg.

(Empirical) L̂ftrg(f ; g) :=
1

n

n∑
i=1

W τ
f,g(si, ai)

{
(f(si, ai)− yftrg,i)

2 − (g(si, ai)− yftrg,i)
2
}
,

(Population) Lftrg(f ; g) := Eµ
[
W τ
f,g(s, a)

{
(f(s, a)− yftrg)2 − (g(s, a)− yftrg)2

}]
.

Here recall that yftrg := r+ maxa′ ftrg(s′, a′) is derived from the sample (s, a, r, s′). Also note that
we use Eµ[·] to denote expectation with respect to the data collection policy.

First, we apply Lemma 3.1 and Lemma 3.2 to each of the |F| regression problems. By approxi-
mate completeness and the definition of apx[ftrg] this yields

∀ftrg, f ∈ F : 0 ≤ Lftrg(f ; apx[ftrg]) ≤ 2L̂ftrg(f ; apx[ftrg]) + εstat, (11)

where εstat := 160 log(|F|/δ)
3n . The above uniform bound holds with probability 1− δ. Note that this

εstat is twice as large as the one in the proof of Theorem 2.1, which accounts for the additional union
bound over all |F| regression problems.

The main statistical guarantee for f̂ is derived as follows

Lf̂ (f̂ ; apx[f̂ ])
(i)

≤ 2L̂f̂ (f̂ ; apx[f̂ ]) + εstat

(ii)

≤ 2 max
g∈F
L̂f̂ (f̂ ; g) + εstat

(iii)

≤ 2 max
g∈F
L̂f̄ (f̄ ; g) + εstat

(iv)

≤ 2εstat.
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Here (i) is the second inequality in Eq. (11), (ii) follows since apx[f̂ ] ∈ F , (iii) uses the optimality
property of f̂ , and (iv) uses Eq. (11) again, noting the symmetry of Lf̄ (·; ·) and using apx[f̄ ] = f̄ .

Since the Bayes regression function defined by targets yf̂ is T f̂ , this yields

Eµ
[
1

{
|f̂(s, a)− apx[f̂ ](s, a)| ≥ 3ε∞

}
·
{

(f̂(s, a)− [T f̂ ](s, a))2 − (apx[f̂ ](s, a)− [T f̂ ](s, a))2
}]
≤ 2εstat.

(12)

We translate this to the squared Bellman error on any other distribution ν ∈ ∆(X × A) via a
slightly stronger argument than the one used to prove Corollary 2.1.

Eν
[∣∣∣f̂(s, a)− [T f̂ ](s, a)

∣∣∣] ≤ ε∞ + Eν
[∣∣∣f̂(s, a)− apx[f̂ ](s, a)

∣∣∣]
≤ 4ε∞ + Eν

[
1

{
|f̂(s, a)− apx[f̂ ](s, a)| ≥ 3ε∞

}
·
∣∣∣f̂(s, a)− apx[f̂ ](s, a)

∣∣∣]
≤ 4ε∞ +

√√√√Eµ

[(
ν(s, a)

µ(s, a)

)2
]
·

√
Eµ
[
1

{
|f̂(s, a)− apx[f̂ ](s, a)| ≥ 3ε∞

}
·
(
f̂(s, a)− apx[f̂ ](s, a)

)2
]

= 4ε∞ + ‖ν/µ‖L2(µ) ·

√
Eµ
[
1

{
|f̂(s, a)− apx[f̂ ](s, a)| ≥ 3ε∞

}
·
(
f̂(s, a)− apx[f̂ ](s, a)

)2
]

≤ 4ε∞ + ‖ν/µ‖L2(µ) ·
√

6εstat.

The last inequality is based on the “self-bounding” argument we used to control the variance in the
proof of Lemma 3.2, which showed that under the event |f̂(s, a)− apx[f̂ ](s, a)| ≥ 3ε∞:(

f̂(s, a)− apx[f̂ ](s, a)
)2
≤ 3 ·

{(
f̂(s, a)− [T f̂ ](s, a)

)2
−
(
apx[f̂ ](s, a)− [T f̂ ](s, a)

)2
}
.

Note that ‖ν/µ‖2L2(µ) ≤ ‖ν/µ‖∞ since Eµ[ν(s, a)/µ(s, a)] = Eν [1] = 1.
Finally, we appeal to the telescoping performance difference lemma (c.f., Xie and Jiang, 2020,

Theorem 2), which states that for an action-value function f ,

J(π?)− J(πf ) ≤ Edπ? [[T f ](s, a)− f(s, a)]

1− γ
+

Edπf [f(s, a)− [T f ](s, a)]

1− γ
,

where dπ := (1− γ)
∑∞

h=0 γ
hdπh. Both terms are controlled by the distribution shift argument above

and the concentrability coefficient, yielding the theorem.

C.2. Online RL

Theorem 4.2 (DBR for online RL). Fix δ ∈ (0, 1), and assume that F is L∞-misspecified and
coverability (as defined above) holds. Consider GOLF.DBR with τ = 3ε∞ and β = c log(TH|F|/δ).
Then, with probability at least 1− δ, we have

Reg ≤ O
(
ε∞HT +H

√
CcovT log(TH|F|/δ) log(T )

)
.
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Proof of Theorem 4.2. The proof makes essentially two modifications to the proof of Theorem
1 of Xie et al. (2023). The first step is a concentration argument, which is essentially a martingale
version of Theorem 2.1. The second is the distribution shift argument, which is very similar to the one
we used to prove Theorem 4.1. To keep the presentation concise, we focus on these arguments, and
explain how they fit into the analysis of Xie et al. (2023), but we do not provide a self-contained proof.

Notation. We adopt the following notation. Recall that F (t−1) is the version space used in episode t
and that f (t) ∈ F (t−1) induces the policy π(t) deployed in the episode. As before, let apx[fh+1] ∈ Fh
denote the L∞-approximation to Thfh+1. For each episode t let

δ(t)

h (·) := f (t)

h (·)− [Thf (t)

h+1](·) and

err(t)(·) := 1
{∣∣f (t)

h (·)− apx[f (t)

h+1](·)
∣∣ ≥ 3ε∞

}
·
{(
f (t)

h (·)− [Thf (t)

h+1](·)
)2 − (apx[f (t)

h+1](·)− [Thf (t)

h+1](·)
)2}

.

Let d(t)

h = dπ
(t)

h and define d̃(t)

h (x, a) =
∑t−1

i=1 d
(i)

h (x, a) and µ?h to be the distribution that achieves
the value Ccov for layer h.

Concentration. By a martingale version of Theorem 2.1, we can show that with probability at
least 1− δ, for all t ∈ [T ]:

(i) f̄ ∈ F (t), and (ii) ∀h ∈ [H] :
∑
s,a

d̃(t)

h (s, a)err(t)

h (s, a) ≤ O(β), (13)

where β = c log(TH|F|/δ). We do not provide a complete proof of this statement, noting that
it is essentially the same guarantee as in Eq. (12), except that (a) it is a non-stationary version
with a union bound over each time step h and episode t and (b) it uses martingale concentration
(i.e., Freedman’s inequality instead of Bernstein’s inequality). It is also worth comparing with the
concentration guarantee of (Xie et al., 2023) under exact realizability/completeness, which is that
Q? ∈ F (t) and that

∑
s,a d̃

(t)

h (s, a)(δ(t)

h (s, a))2 ≤ O(β).

Distribution shift. To bound the regret, first note that by a simple inductive argument, we have
that ‖f̄1 −Q?1‖∞ ≤ Hε∞. Thus, under the event in Eq. (13) which ensures that f̄ ∈ F (t) for each t,
we have that f (t) is approximately optimistic in the sense that

J(π?) := E[Q?1(s1, π
?
1(s1))] ≤ E[f̄1(s1, πf̄,1(s1))] +Hε∞ ≤ E[f (t)

1 (s1, πf (t),1(s1))] +Hε∞.

Thus, we can bound the regret by

Reg ≤ THε∞ +
T∑
t=1

H∑
h=1

E
(s,a)∼d(t)

h

[
δ(t)

h (s, a)
]
.

For distribution shift, we must translate the above on-policy Bellman errors to the “DBR” errors
on the historical data d̃(t)

h , which is controlled by Eq. (13). Following (Xie et al., 2023) we consider
burn-in and stable phases. Let

γh(s, a) := min
{
t : d̃(t)

h (s, a) ≥ Ccov · µ?h(s, a)
}
,
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and decompose
T∑
t=1

E
(s,a)∼d(t)

h

[
δ(t)

h (s, a)
]

=
T∑
t=1

E
(s,a)∼d(t)

h

[
δ(t)

h (s, a)1{t < γh(s, a)}
]

+ E
(s,a)∼d(t)

h

[
δ(t)

h (s, a)1{t ≥ γh(s, a)}
]
.

The first term is the regret incurred during the burn-in phase, which is bounded by 2Ccov following
exactly the argument of Xie et al. (2023). This contributes a total regret of 2HCcov.

The second term is the regret incurred during the stable phase, for which we must perform a
distribution shift argument. To condense the notation, define

δ̄(t)

h (·) := apx[f (t)

h+1](·)− [Thf (t)

h+1](·), and δ̃(t)

h (·) := f (t)

h (·)− apx[f (t)

h+1](·).

Note that, by assumption,
∣∣δ̄(t)

h (s, a)
∣∣ ≤ ε∞. Then,

T∑
t=1

E
d

(t)
h

[
δ(t)

h (s, a)1{t > γh(s, a)}
]

=
T∑
t=1

E
d

(t)
h

[(
δ̃(t)

h (s, a) + δ̄(t)

h (s, a)
)
1{t > γh(s, a)}

]
≤

T∑
t=1

E
d

(t)
h

[
δ̃(t)

h (s, a)1{t > γh(s, a)}
]

+ Tε∞

≤
T∑
t=1

E
d

(t)
h

[
1

{
|δ̃(t)

h (s, a)| ≥ 3ε∞, t > γh(s, a)
}
δ̃(t)

h (s, a)
]

+ 4Tε∞.

We proceed by applying the Cauchy-Schwarz inequality to the first term:
T∑
t=1

E
d

(t)
h

[
1

{
|δ̃(t)

h (s, a)| ≥ 3ε∞

}
δ̃(t)

h (s, a)1{t > γh(s, a)}
]

≤

√√√√ T∑
t=1

∑
s,a

(
1{t > γh(s, a)}d(t)

h (s, a)
)2

d̃(t)

h (s, a)
·

√√√√ T∑
t=1

∑
x,a

d̃(t)

h (x, a)1
{
|δ̃(t)

h (s, a)| ≥ 3ε∞

}
(δ̃(t)

h (s, a))2

≤

√√√√ T∑
t=1

∑
s,a

(
1{t > γh(s, a)}d(t)

h (s, a)
)2

d̃(t)

h (s, a)
·

√√√√3
T∑
t=1

∑
x,a

d̃(t)

h (x, a)err(t)

h (s, a).

The final inequality follows from the self-bounding property that we used in the proof of Lemma 3.2
and Theorem 4.1. In particular under the event that

∣∣∣δ̃(t)

h (s, a)
∣∣∣ ≥ 3ε∞, we can bound (δ̃(t)

h (s, a))2 ≤
3
(
(δ(t)

h (s, a))2 − (δ̄(t)

h (s, a))2
)
. Thus we have converted from the on-policy Bellman error to the

historical “DBR” errors, i.e., we bound the regret in the stable phase by

≤

√√√√ T∑
t=1

∑
s,a

(
1{t > γh(s, a)}d(t)

h (s, a)
)2

d̃(t)

h (s, a)
·O
(√

βT
)

+ 4Tε∞.

Meanwhile the density ratio term is bounded by O(
√
Ccov log(T )) via the analysis of Xie et al.

(2023). Repeating this analysis for each time step h proves the theorem.
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