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Abstract
We show how to sample in parallel from a distribution π over Rd that satisfies a log-Sobolev
inequality and has a smooth log-density, by parallelizing the Langevin (resp. underdamped Langevin)
algorithms. We show that our algorithm outputs samples from a distribution π̂ that is close to π in
Kullback–Leibler (KL) divergence (resp. total variation (TV) distance), while using only log(d)O(1)

parallel rounds and Õ(d) (resp. Õ(
√
d)) gradient evaluations in total. This constitutes the first

parallel sampling algorithms with TV distance guarantees.
For our main application, we show how to combine the TV distance guarantees of our algorithms

with prior works and obtain RNC sampling-to-counting reductions for families of discrete distribution
on the hypercube {±1}n that are closed under exponential tilts and have bounded covariance.
Consequently, we obtain an RNC sampler for directed Eulerian tours and asymmetric determinantal
point processes, resolving open questions raised in prior works.
Keywords: Langevin Monte Carlo, isoperimetry, parallel computation, sampling, underdamped
Langevin Monte Carlo

1. Introduction

In this paper, we study the problem of designing fast parallel algorithms for sampling from continuous
distributions π(x) ∝ exp(−V (x)) over x ∈ Rd. Designing efficient sampling algorithms is a
ubiquitous problem, but the focus of most prior works has been to minimize sequential efficiency
criteria, such as the total number of arithmetic operations or total queries to V and its derivatives
(see Chewi (2024) for an exposition). In contrast, in this work we focus on parallel efficiency;
roughly speaking, this means that we would like to have algorithms that sequentially take polynomial
time, but can be run on a pool of polynomially many processors (e.g., as in the PRAM model of
computation) in much less time, ideally polylogarithmic.

Our main result is to propose simple parallelizations of Langevin Monte Carlo (LMC) and
underdamped Langevin Monte Carlo (ULMC), two of the most widely studied sequential sampling
algorithms, and to prove that they run in log(d)O(1) parallel iterations, under standard tractability
criteria on π: that it satisfies a log-Sobolev inequality (LSI), and that its potential V is smooth, i.e.,
has Lipschitz gradients.

Theorem 1 (Informal main theorem) Suppose that π = exp(−V ) is a density on Rd that satisfies
a log-Sobolev inequality and has a smooth potential V . Assume that we are given (approximate)
oracle access to ∇V . Then, we can produce samples from a distribution π̂ with the following
guarantees.
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• For LMC, π̂ is close to π in Kullback–Leibler divergence, and the algorithm uses log2(d)
parallel iterations and Õ(d) processors and gradient evaluations.

• For ULMC, π̂ is close to π in total variation divergence, and the algorithm uses log2(d)
parallel iterations and Õ(

√
d) processors and gradient evaluations.

For formal statements, see Theorem 13 and Theorem 20. Throughout this paper, when we refer
to the number of iterations, we refer to the model of adaptive complexity: here, in each round, the
algorithm makes a batch of queries to a first-order oracle for π (i.e., given a set of finite points
X ⊆ Rd, the oracle outputs (V (x),∇V (x)) for each x ∈ X ), and the adaptive complexity measures
the number of rounds. The gradient complexity measures the total number of points at which the
first-order oracle is queried.

As an immediate corollary, we obtain parallel samplers for the class of well-conditioned log-
concave distributions, i.e., those which satisfy

βI ⪰ ∇2V ⪰ αI ,

for some constants α, β > 0, where β is the smoothness parameter, and α is the parameter of strong
log-concavity. This is because the LSI, a form of isoperimetric inequality, holds for all strongly
log-concave distributions, due to the Bakry–Émery criterion (Bakry and Émery, 2006). However, the
LSI is a weaker condition than strong log-concavity, and it applies to even many non-log-concave
distributions such as Gaussian convolutions of distributions with bounded support (Bardet et al., 2018;
Chen et al., 2021). In addition, unlike log-concavity, LSI is preserved under bounded perturbations
and Lipschitz transformations of the log-density function.

The state-of-the-art prior to our work was a fast parallel algorithm due to Shen and Lee (2019),
which produced Wasserstein-approximate samples from well-conditioned log-concave distributions.
We improve on the state-of-the-art in three ways:

• We replace the strong log-concavity assumption with the weaker assumption that π satisfies a
log-Sobolev inequality.

• We bound the error in KL divergence and TV distance, as opposed to the weaker notion of
Wasserstein error. This difference is crucial for our main application, as explained in Sec-
tion 1.3.

• Our results hold given only approximate access to ∇V , as opposed to exact access. This is
again crucial in some of our applications as explained in Section 1.3.

Concurrent work. The concurrent work of Yu and Dalalyan (2024) studies parallelized randomized
midpoint discretizations of LMC and ULMC, and we refer to the detailed discussion therein for a
comparison with the present work. Here, we simply note that their work focuses on Wasserstein
guarantees, whereas we focus on TV guarantees as needed for the applications in Section 1.3.

1.1. Algorithm

For the sake of exposition, here we describe the parallel LMC algorithm and defer the discussion of
parallel ULMC to Section 3.2.1.
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Our algorithm is based on a parallelized discretization of the Langevin diffusion. The continuous-
time Langevin diffusion is the solution to the stochastic differential equation

dXt = −∇V (Xt) dt+
√
2 dBt (1)

where (Bt)t≥0 is a standard Brownian motion in Rd. Langevin Monte Carlo (LMC) is a discretization
of the continuous Langevin diffusion, defined by the following iteration:

X(n+1)h −Xnh = −h∇V (Xnh) +
√
2 (B(n+1)h −Bnh) , (2)

where h > 0 is a parameter defining the step size.
If π satisfies a log-Sobolev inequality (LSI), then the law of the continuous-time Langevin

diffusion converges to the target distribution π at time t ≈ poly log(d). The discretization error,
measured for example in the total variation distance, between the continuous Langevin diffusion and
the discrete process, scales like ≈ dh, so the step size h is set to 1/d, causing LMC to take Õ(d)
iterations to converge. Our algorithm, explained in Algorithm 1, uses parallelization to speed up
LMC, so that the step size is Ω(1) and the parallel depth is of the same order as the convergence time
of the continuous Langevin diffusion, that is, of order poly log(d).

The input to the algorithm is a (potentially random) starting point X0, together with an “approxi-
mate score oracle” s, which is a function Rd → Rd that we can query, and which is assumed to be
uniformly close to the gradient∇V .

The main idea behind the algorithm is to turn the task of finding solutions to our (stochastic)
differential equation into the task of finding fixed points of what is known as the Picard iteration.
At a high level, Picard iteration takes a trajectory (Xt)t≥0 and maps it to another trajectory (X ′

t)t≥0

given by

X ′
t = X0 −

∫ t

0
∇V (Xu) du+

√
2Bt .

Now if X = X ′, then X is a solution to the Langevin diffusion. Thus, one might hope that
starting from some trajectory X0, and applying Picard iterations multiple times, the whole trajectory
converges to the fixed point. The main benefit of Picard iteration is that ∇V or s can be queried at
all points in parallel.

Note that the Picard iteration can be analogously defined for discrete-time dynamics such as
LMC. Our main result shows that Picard iteration applied to the discretized Langevin diffusion
(LMC) converges fast (in poly log(d) Picard iterations) for trajectories defined over intervals of
length at most h, where now h can be taken to be macroscopically large (h = Ω(1)). We repeat this
process until time poly log(d), which requires N = poly log(d)/h sequential iterations.

1.2. Analysis techniques

Many algorithms for solving stochastic differential equations, such as the Langevin dynamics
(X∗

t )t≥0, turn the problem into numerical integration. The main idea is to approximate the difference
between X∗

(n+1)h −X∗
nh using the trapezoidal rule, i.e.,

X∗
(n+1)h −X∗

nh = −
∫ (n+1)h

nh
∇V (X∗

s ) ds+
√
2 (B(n+1)h −Bnh)

≈ −
∑

h∇V (X∗
si) +

√
2 (B(n+1)h −Bnh) .
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Algorithm 1 Parallelized Langevin dynamics
Input: X0 ∼ µ0, approximate score function s : Rd → Rd (s ≈ ∇V )
for n = 0, . . . , N − 1 do

for m = 0, . . . ,M in parallel do
X

(0)
nh+mh/M ← Xnh

Sample Brownian motion Bnh+mh/M ← Bnh +N (0, (mh/M) I)

end
for k = 0, . . . ,K − 1 do

for m = 0, . . . ,M in parallel do
X

(k+1)
nh+mh/M ← Xnh − h

M

∑m−1
m′=0 s(X

(k)
nh+m′h/M ) +

√
2 (Bnh+mh/M −Bnh)

end
end
X(n+1)h ← X

(K)
nh+h

end

Since we cannot access the idealized process X∗, we instead start with a rough estimate X(0) and
iteratively refine our estimation to obtain X(1), . . . , X(K) that are closer and closer to the ideal X∗.
The refined estimations are obtained via another application of the trapezoidal rule, i.e., X(k)

si is
computed using

∫
s≤si
∇V (X

(k−1)
s ) ds. This framework can be easily parallelized: ∇V (X

(k)
si ) for

different i’s can be computed in parallel using one processor for each si.
In Shen and Lee (2019), the points si at which to evaluate ∇V (Xsi) are chosen randomly;

hence, their framework is known as the randomized midpoint method. Unfortunately, there seem
to be fundamental barriers to obtaining KL or TV accuracy guarantees for randomized midpoint
algorithms. To illustrate, while accuracy in 2-Wasserstein distance can be achieved using Õ(d1/3)
gradient evaluations using a randomized midpoint algorithm (Shen and Lee, 2019, Algorithm 1),
accuracy in KL or TV distance using o(d1/2) gradient evaluations is not known.

We deviate from the approach of Shen and Lee (2019) by keeping the si fixed. This greatly
simplifies the algorithm and its analysis and allows us to show that parallelized LMC converges to π
in KL divergence using the interpolation method (Vempala and Wibisono, 2019), at the cost of using
Õ(d) gradient evaluations instead of Õ(

√
d)1 as in Shen and Lee (2019, Algorithm 2). In Section 3.2,

we then show how to obtain a sampler, based on ULMC, which enjoys the same parallel complexity
but uses only Õ(

√
d) gradient evaluations, matching the state-of-the-art in Shen and Lee (2019).

For simplicity of exposition, assume that in Algorithm 1, the score function s is exactly∇V . We
will show via induction that

E[∥∇V (X(K)
si )−∇V (X(K−1)

si )∥2] ≲ exp(−3.5K) , (3)

where K is the depth of refinement. In other words, the approximation error decays exponentially
fast with the parallel depth.

1. While Shen and Lee (2019, Algorithm 1) needs only Õ(d1/3) gradient evaluations, its parallel round complexity
is also Θ̃(d1/3), which doesn’t align with our goal of getting poly log(d) parallel round complexity. On the other
hand, Shen and Lee (2019, Algorithm 2) uses poly log(d) parallel rounds but needs Θ̃(

√
d) gradient evaluations (see

Shen and Lee, 2019, Theorem 4).
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To obtain the KL divergence bound, note that

X
(K)
nh+(m+1)h/M −X

(K)
nh+mh/M = − h

M
∇V (X

(K−1)
nh+mh/M ) +

√
2 (Bnh+(m+1)h/M −Bnh+mh/M )

and ∇V (X
(K−1)
nh+mh/M ) only depends on Xnh and the Brownian motion Bt for t ≤ mh/M. Let Xt,

mh/M ≤ t− nh ≤ (m+ 1)h/M , be the interpolation of X(K)
nh+mh/M and X

(K)
nh+(m+1)h/M , i.e.,

Xt −X
(K)
nh+mh/M = −(t− nh−mh/M)∇V (X

(K−1)
nh+mh/M ) +

√
2 (Bt −Bnh+mh/M ) .

Then by a similar argument as in Vempala and Wibisono (2019), if µt := law(X
(K)
t ) we obtain

∂t KL(µt ∥ π) ≤ −
3α

2
KL(µt ∥ π) + E[∥∇V (X

(K)
t )−∇V (X

(K−1)
nh+mh/M )∥2]

≤ −3α

2
KL(µt ∥ π) + 2E[∥∇V (X

(K)
t )−∇V (X

(K)
nh+mh/M )∥2]

+ 2E[∥∇V (X
(K)
nh+mh/M )−∇V (X

(K−1)
nh+mh/M )∥2] ,

where α is the log-Sobolev constant (introduced in Definition 10). We can directly bound the third
term using eq. (3). The second term can be bounded via a standard discretization analysis, noting
that the time interval is only of size h/M . It leads to the bound

E[∥∇V (X
(K)
t )−∇V (X

(K)
nh+mh/M )∥2] ≲ dh

M
, (4)

where M is the number of discretization points, i.e., the number of parallel score queries in each
round. Thus, from eq. (3) and eq. (4), by setting K = Õ(1) and M = Õ(d), we can set the step
size h = Ω(1) so that the parallelized Langevin algorithm takes Õ(1) steps to converge to the target
distribution π.

To obtain the total gradient complexity, note that at each round k, each processor m makes a
single gradient query for∇V (X

(k)
nh+mh/M ). The queries are then stored in a shared memory, and the

sums
∑m−1

m′=0∇V (X
(k)
nh+m′h/M ) for m = 0, 1, . . . ,M can be computed with an additional parallel

depth of O(logM) (but this step does not require further gradient queries, and hence does not
contribute to the adaptive complexity).

Remark 2 One may wonder if our results apply to distributions satisfying a weaker functional
inequality such as the Poincaré inequality, instead of the LSI. Unfortunately, this is not the case since
our analysis relies on the fact that the continuous-time Langevin diffusion converges to the target
distribution π in time poly log(d), which holds under the LSI but not under the weaker Poincaré
inequality (see Chewi et al., 2021, for details).

The above strategy based on the interpolation method no longer works for ULMC, so here we
instead use an approach based on Girsanov’s theorem. See Section 3.2.2 for details.
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1.3. Applications

The main application of our results is to obtain fast parallel algorithms for several discrete sampling
problems by refining the framework obtained by Anari et al. (2023). Recently, Anari et al. (2023)
showed a parallel reduction from sampling to counting for discrete distributions on the hypercube
{±1}n, by combining a faithful discretization of stochastic localization and fast parallel sampling
algorithms for continuous distributions. For a discrete distribution µ over {±1}n, their reduction
involves log n iterations, each involving sampling from τwµ ∗N (0, cI) where τwµ is the exponential
tilt of µ by the vector w ∈ Rn, defined as:

τwµ(x) ∝ exp(⟨w, x⟩)µ(x) .

Anari et al. (2023) showed that for some appropriately chosen parameter c = O(1), τwµ∗N (0, cI) is
a continuous and well-conditioned log-concave distribution for a wide class of discrete distributions
µ of interest, i.e., those that are fractionally log-concave (see Alimohammadi et al., 2021, for a
survey on fractional log-concavity). In this way, they obtained a parallel reduction to the problem of
sampling from continuous and well-conditioned log-concave distributions.

The key technical challenge in their work is to control the propagation of errors resulting from
the continuous sampler. Samples in an iteration become part of the external field w at future steps.
Assuming only the bound on W2 guaranteed by Shen and Lee (2019), these errors can, in the worst
case, be blown up by a factor of poly(n) in each iteration, resulting in a quasipolynomial blowup
by the end. As a result, Anari et al. (2023) only manage to obtain log(n)O(1) parallel time by using
nO(logn), that is quasipolynomially many, processors (also known as a QuasiRNC algorithm). For
some specific distributions µ, specifically strongly Rayleigh distributions (Anari et al., 2023), they
circumvent this shortcoming by establishing a property they call transport-stability for the distribution
of interest, but several other notable distributions such as Eulerian tours and asymmetric determinantal
point processes fall outside the reach of this trick. Here, by replacing the W2 guarantee of Shen and
Lee (2019) with a TV distance guarantee, we entirely remove the need for transport-stability, turning
the previous QuasiRNC algorithms into RNC algorithms.

Hence, our result implies an RNC-time sampler for a fractionally log-concave distribution2 µ
given access to an oracle which, given input w ∈ Rn, approximately computes the partition function
of τwµ. This holds more generally for all µ whose tilts have constantly bounded covariance, i.e.,
cov τyµ ⪯ O(1) I , analogous to Anari et al. (2023).

The normalizing factor or partition function of τwµ is
∑

x∈{±}n exp(⟨w, x⟩)µ(x). Viewed as a
function of w, the partition function is also known as the Laplace transform of µ. We denote the log of
the partition function, a.k.a. the log-Laplace transform, by Lµw = log

∑
x∈{±}n exp(⟨w, x⟩)µ(x).

By an abuse of notation, we expand the definition of the Laplace transform to all vectors w ∈
(R ∪ {±∞})n as follows. Let S be the set of coordinates i where wi ∈ {±∞}, then:

Lµw = log
∑

x∈{±}n, signxS=signwS

exp(⟨w−S , x−S⟩)µ(x) .

2. A distribution µ : {±1}n → R≥0 is α-fractionally log-concave iff ∀y ∈ Rn
≥0 : cov τyµ ≤ 1

2α
(I+diagmean(τyµ)).

We note that since mean(τyµ) ∈ [−1, 1]n, this implies cov τyµ ≤ 1
α
I . See Alimohammadi et al. (2021); Anari et al.

(2023) for more background.
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Definition 3 (Approximate oracle for the Laplace transform) We say that the oracle O(·) ε-
approximately computes the log-Laplace transform at µ if on input w, O outputs exp(L̂) s.t.

|L̂ − Lµw| ≤ ε .

Theorem 4 Suppose that a distribution µ on {±1}n has cov τwµ ⪯ O(1) I for all w ∈ Rn, and
we have an oracle for O(ε/

√
n)-approximately computing the log-Laplace transform of µ. Then we

can sample from a distribution ε-close in total variation distance to µ, in log(n/ε)O(1) time using
(n/ε)O(1) processors.

Thus, we improve upon Anari et al. (2023)’s reduction from sampling to counting in two ways:

• We remove the assumption that the distribution needs to satisfy a transport inequality, which
is only known to hold for strongly Rayleigh distributions and partition-constraint strongly
Rayleigh distributions (Anari et al., 2023). Under the weaker assumption of fractional log-
concavity or bounded covariance under tilts, Anari et al. (2023) were only able to show a
QuasiRNC reduction from sampling to counting, i.e., their sampling algorithm uses ≈ nlogn

processors.

• We only require an approximate counting oracle (see Theorem 3) instead of the exact counting
oracle required by Anari et al. (2023).

Theorem 4 implies the following corollary about asymmetric determinantal point processes (DPPs)
and Eulerian tours. For completeness, we recall the definitions of asymmetric DPPs and (directed)
Eulerian tours.

Determinantal point processes. A determinantal point process (DPP) is a probability distribution
over subsets S ⊆ [n]. It is parameterized by a matrix L ∈ Rn×n with

P(S) ∝ det(LS,S) ,

with LS,S being the principal submatrix whose columns and rows are indexed by S. We call L the
ensemble matrix. Note that we need det(LS,S) ≥ 0 for all S for this definition to work. This is
satisfied by any symmetric PSD L, which yields the traditional (symmetric) DPPs (Kulesza and
Taskar, 2012), and more generally for any L whose symmetrization is PSD, that is L + L⊺ ⪰ 0,
which are called asymmetric DPPs (Gartrell et al., 2019). Given a cardinality k ∈ N, the k-DPP
parameterized by L is a distribution over subsets S of size k, defined by conditioning the samples
from the DPP to have size k.

We can view DPPs and k-DPPs as distributions over {±1}n by letting µ(x) ∝ det(LS,S) where
S = {i ∈ [n] : xi = 1}.

Eulerian tour. An Eulerian tour is a circuit in a finite graph that visits every edge exactly once
(revisiting vertices is allowed). A directed graph (or digraph) has an Eulerian tour if and only if every
vertex has equal in-degree and out-degree, and all of its vertices with non-zero degrees belong to a
single strongly connected component. Such graphs are called Eulerian digraphs. Sampling from the
uniform distribution over Eulerian tours in digraph can be reduced to sampling from asymmetric
DPPs in RNC-time (see Anari et al., 2023, §6).

7



ANARI CHEWI VUONG

Lemma 5 (Alimohammadi et al. (2021); Anari et al. (2023)) The asymmetric DPPs and asym-
metric k-DPPs satisfy the preconditions of theorem 4.

Corollary 6 Suppose that µ is an asymmetric DPP on a ground set of size n or the distribution of
uniformly random Eulerian tours in a digraph of size n. Then, we can sample from a distribution
ε-close in total variation distance to µ in time log(n/ε)O(1) using (n/ε)O(1) processors.

Hence, we resolve Anari et al. (2021)’s question about designing an RNC sampler for directed
Eulerian tours.

Note that for the distributions studied in Anari et al. (2023), counting can be done exactly via
determinant computations, or in other words, there is exact access to the log-Laplace transform. But
there are several non-exact approximate counting techniques in the literature that can be efficiently
parallelized. A notable one is Barvinok’s polynomial interpolation method (see, e.g., Barvinok and
Barvinok, 2021). As an example of a distribution where Barvinok’s method can be applied, consider
a distribution µ on the hypercube {±1}n defined by a polynomial Hamiltonian: µ(x) = exp(p(x)).
Barvinok and Barvinok (2021) showed that for quadratic and cubic polynomials p, assuming the
coefficients of degree 2 and 3 terms are not too large (see Barvinok and Barvinok (2021) for exact
conditions),

∑
x∈{±}n µ(x) can be approximately computed in quasipolynomial time. It can be

observed that the approximation algorithm can be parallelized into a QuasiRNC one since it simply
involves computing nlogn separate quantities. We note that because the condition on p does not
involve the linear terms, we can also apply the same algorithm to τwµ, whose potential differs from
µ only in the linear terms. In other words, Barvinok’s method gives us the oracle in Theorem 3. In
the same paper, Barvinok and Barvinok (2021) prove that the partition functions of these models
are root-free in a sector, a condition known as sector-stability, which is known to imply fractional
log-concavity (Alimohammadi et al., 2021). As a result, by plugging in Barvinok’s approximate
counting algorithm into our result, we obtain QuasiRNC sampling algorithms, which at least in the
case of cubic p were not known before.

2. Preliminaries

We let log denote the natural logarithm. For x ∈ Rd, ∥x∥ denotes the usual Euclidean norm of x.
For two distributions ρ and π, we use TV(ρ, π) to denote their total variation distance defined as

sup{ρ(E)− π(E) | E is an event}.
A stronger notion of distance is the Kullback–Leibler (KL) divergence.

Definition 7 (Kullback–Leibler divergence) For two probability densities ρ, π we define

KL(ρ ∥ π) = Eρ log(ρ/π) .

We have the following relation between the KL divergence and TV distance, known as the Pinsker
inequality.

TV(ρ, π) ≤
√

1

2
KL(ρ ∥ π) .
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2.1. Log-concave distributions

Consider a density function π : Rd → R≥0 where π(x) = exp(−V (x)). We call V the potential
function for π. Throughout the paper, we will assume that V is twice continuously differentiable for
simplicity of exposition.

Definition 8 (Smoothness) For β > 0, we say π is β-smooth if the gradients of the potential are
β-Lipschitz, that is

∥∇V (x)−∇V (y)∥ ≤ β ∥x− y∥ , for all x, y ∈ Rd .

For twice differentiable V , this is equivalent to

−βI ⪯ ∇2V ⪯ βI .

When V is convex, we call π a log-concave density. A strengthening of this condition is:

Definition 9 (Strong log-concavity) For α > 0, we say π is α-strongly log-concave if

0 ≺ αI ⪯ ∇2V .

2.2. Log-Sobolev and transport-entropy inequalities

Definition 10 (Log-Sobolev inequality) We say π satisfies a log-Sobolev inequality (LSI) with
constant α if for all smooth f : Rd → R,

entπ f
2 := Eπ[f

2 log(f2/Eπ(f
2))] ≤ 2

α
Eπ[∥∇f∥2] .

By the Bakry–Émery criterion (Bakry and Émery, 2006), if π is α-strongly log-concave then π
satisfies LSI with constant α. The right-hand side of the above inequality can also be written as the
relative Fisher information.

Definition 11 (Relative Fisher information) The relative Fisher information of ρ w.r.t. π is

FI(ρ ∥ π) = Eρ[∥∇ log(ρ/π)∥2] . (5)

The LSI is equivalent to the following relation between KL divergence and Fisher information:

KL(ρ ∥ π) ≤ 1

2α
FI(ρ ∥ π) for all probability measures ρ .

Indeed, take f =
√

ρ/π in the above definition of the LSI.

Definition 12 (Wasserstein distance) We denote by W2 the Wasserstein distance between ρ and π,
which is defined as

W 2
2 (ρ, π) = inf

{
E(X,Y )∼Π[∥X − Y ∥2] | Π is a coupling of ρ, π

}
,

where the infimum is over coupling distributions Π of (X,Y ) such that X ∼ ρ, Y ∼ π.

The log-Sobolev inequality implies the following transport-entropy inequality, known as Tala-
grand’s T2 inequality (Otto and Villani, 2000):

α

2
W 2

2 (ρ, π) ≤ KL(ρ ∥ π) . (6)
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3. Parallel sampling guarantees

In this section, we formally state our main parallel sampling guarantees.

3.1. LMC

We state the formal version of Theorem 1 for LMC as Theorem 13. Our assumption throughout is
that the score function s is a pointwise accurate estimate of∇V :

Assumption 1 The score function s : Rd → R satisfies ∥s(x)−∇V (x)∥ ≤ δ for all x ∈ Rd.

Theorem 13 Suppose that V is β-smooth and π satisfies a log-Sobolev inequality with constant α,
and the score function s is δ-accurate. Let κ := β/α. Suppose

βh ≤ 1/10 , δ ≤ 2
√
αε , M ≥ 7max{κd/ε2, κ2} ,

K ≥ 2 + logM , Nh ≥ α−1 log
2KL(µ0 ∥ π)

ε2
.

(7)

Then, the output distribution µNh of Algorithm 1 satisfies

max
{√α

2
W2(µNh, π),TV(µNh, π)

}
≤

√
KL(µNh ∥ π)

2
≤ ε.

To make the guarantee more explicit, we can combine it with the following well-known initial-
ization bound, see, e.g., Dwivedi et al. (2019, §3.2).

Corollary 14 Suppose that π = exp(−V ) with 0 ≺ αI ⪯ ∇2V ⪯ βI , and let κ := β/α. Let x⋆

be the minimizer of V . Then, for µ0 = N (x⋆, β−1I), it holds that KL(µ0 ∥ π) ≤ d
2 log κ.

Consequently, setting

h =
1

10β
, δ = 2

√
αε , M = 7max

{κd
ε2

, κ2
}
, K = 3 logM , N = 10κ log

d log κ

ε2
,

then Algorithm 1 initialized at µ0 outputs µNh satisfying

max
{√α

2
W2(µNh, π),TV(µNh, π)

}
≤

√
KL(µNh ∥ π)

2
≤ ε .

Also, Algorithm 1 uses a total of KN = Õ(κ log2(d/ε2)) parallel rounds and M δ-approximate
gradient evaluations in each round.

The proofs for this section are given in §A.

3.2. ULMC

In this section, we design a parallel sampler based on underdamped Langevin Monte Carlo (ULMC),
also called kinetic Langevin, which has similar parallel iteration complexity as LMC but requires
less total work. Since there are difficulties applying the interpolation method without higher-order
smoothness assumptions (see the discussion in Ma et al. (2021); Zhang et al. (2023)), we will use
a different proof technique based on Girsanov’s theorem, as in Zhang et al. (2023); Altschuler and
Chewi (2024). Note that since we seek TV guarantees, we cannot apply the coupling arguments
of Cheng et al. (2018); Dalalyan and Riou-Durand (2020).

10
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3.2.1. ALGORITHM

In continuous time, the underdamped Langevin diffusion is the coupled system of SDEs

dXt = Pt dt ,

dPt = −∇V (Xt) dt− γPt dt+
√
2γ dBt ,

where γ > 0 is the friction parameter. Throughout, we will simply set γ =
√
8β, where β is the

smoothness parameter.
The idea for developing a parallel sampler is similar as before: we parallelize Picard iteration.

However, in order to eventually apply Girsanov’s theorem to analyze the algorithm, the discretization
must be chosen so that dXt = Pt dt is preserved. Hence, we will use the exponential Euler integrator.

We use the following notation: τ(t) is the largest multiple of h/M which is less than t, i.e.,
τ(t) = ⌊t/ h

M ⌋
h
M . We define a sequence of processes (X(0), P (0)), (X(1), P (1)), etc., so that

dX
(k+1)
t = P

(k+1)
t dt ,

dP
(k+1)
t = −∇V (X

(k)
τ(t)) dt− γP

(k+1)
t dt+

√
2γ dBt .

This is a linear SDE, so it can be integrated exactly, yielding

X
(k+1)
nh+(m+1)h/M = X

(k+1)
nh+mh/M +

1− exp(−γh/M)

γ
P

(k+1)
nh+mh/M

− h/M − (1− exp(−γh/M))/γ

γ
∇V (X

(k)
nh+mh/M ) + ξXn,m , (8)

P
(k+1)
nh+(m+1)h/M = exp(−γh/M)P

(k+1)
nh+mh/M −

1− exp(−γh/M)

γ
∇V (X

(k)
nh+mh/M ) + ξPn,m ,

(9)

where (ξXn,m, ξPn,m) is a correlated Gaussian vector in Rd × Rd with law N (0,Σ), where

Σ =

[
2
γ [ hM −

2
γ (1− exp(−γh/M)) + 1

2γ (1− exp(−2γh/M))] ∗
1
γ (1− 2 exp(−γh/M) + exp(−2γh/M)) 1− exp(−2γh/M)

]
, (10)

and the upper-left entry marked ∗ is determined by symmetry.
Note that each processor m = 1, . . . ,M can independently generate a correlated Gaussian

vector according to the above law and store it. Then, the updates for the above discretization can be
computed quickly in parallel. We summarize the algorithm below as Algorithm 2.

3.2.2. ANALYSIS

We now give our guarantees for Algorithm 2. Compared to Theorem 13, it improves the number of
processors by roughly a factor of

√
κd/ε. Although it is stated for strongly log-concave measures

for simplicity, similarly to §3.1, the discretization guarantees only require π to satisfy a log-Sobolev
inequality and smoothness; see Theorem 20 for a more precise statement. The proof is given in §B.

11
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Algorithm 2 Parallelized underdamped Langevin dynamics
Input: (X0, P0) ∼ µ0, approximate score function s : Rd → Rd (s ≈ ∇V )
for n = 0, . . . , N − 1 do

for m = 0, . . . ,M in parallel do
(X

(0)
nh+mh/M , P

(0)
nh+mh/M )← (Xnh, Pnh)

Sample correlated Gaussian vectors according to eq. (10)
end
for k = 0, . . . ,K − 1 do

for m = 0, . . . ,M in parallel do
Compute (X

(k+1)
nh+mh/M , P

(k+1)
nh+mh/M ) using eq. (8) and eq. (9), replacing∇V with s

end
end
(X(n+1)h, P(n+1)h)← (X

(K)
nh+h, P

(K)
nh+h)

end

Algorithm 3 Framework for discrete sampling via continuous sampling
Initialize w0 ← 0
for i = 0, . . . , T − 1 do

xi+1 ← (approximate) sample from τwiµ ∗ N (0, cI)
wi+1 ← wi + xi+1/c

end
return signwT ∈ {±1}n

Theorem 15 Assume that V is α-strongly convex and β-smooth; let κ := β/α. Assume that V is
minimized at x⋆. Consider Algorithm 2 initialized at µ0 = N (x⋆, β−1I)⊗N (0, I) and with

h = Θ
(
1/

√
β
)
, δ ≤ Õ

( √αε√
log d

)
, M = Θ̃

(√κd
ε

)
, K = Θ

(
log

κd

ε2
)
, N = Θ̃

(
κ log

d

ε2
)
.

Then, the law of the output of Algorithm 2 is ε-close in total variation distance to π. The algorithm
uses a total of KN = Θ̃(κ log2(d/ε2)) parallel rounds and M δ-approximate gradient evaluations
in each round.

4. Implications for sampling from discrete distributions

In this section, we prove Theorem 4. For simplicity, we only state our parallel guarantees using
parallel LMC, for which the initialization is more straightforward, but it is easy to combine the
results of this section with parallel ULMC as well. For concreteness, we restate Anari et al. (2023)’s
sampling-to-counting reduction. Then, Theorem 4 is a consequence of Anari et al. (2023, Lemma 7),
our fast parallel sampler with TV guarantee, and a modified version of Anari et al. (2023, Proposition
27). We include the proofs for completeness in §C.

We give the overall algorithm as Algorithm 3. The following lemma shows that the step of
sampling from distributions of the form τwµ ∗ N (0, cI) is a well-conditioned log-concave sampling
problem, and moreover, that the score can be approximated quickly in parallel.

12
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Lemma 16 (Anari et al. (2023)) Let ν = τwµ ∗ N (0, cI). Then, ν ∝ exp(−V ) with

−∇V (y) =
mean(τy/c+wµ)

c
− y

c
=

1

c

∑
x∈{±}n x exp(⟨y/c+ w, x⟩)µ(x)∑
x∈{±}n exp(⟨y/c+ w, x⟩)µ(x)

− y

c

and
∇2V (y) = −

cov τy/c+wµ

c2
+

I

c
.

If cov τyµ ⪯ c
2I for all y ∈ Rn, then ν is well-conditioned strongly log-concave with condition

number κ = O(1), i.e., for all y ∈ Rn:

1

2c
I ⪯ ∇2V (y) ⪯ 1

c
I .

Furthermore, a δ-approximate score function s for ∇V can be computed in O(1) parallel
iterations using n machines, each making O(1) calls to an ε = O(δ

√
c/n)-approximate oracle for

the Laplace transform of µ.

The next lemma states that if the samples from the continuous densities τwµ ∗ N (0, cI) are
accurate, then the output of Algorithm 3 outputs an approximate sample from µ.

Lemma 17 (Anari et al. (2023, Lemma 7)) If the continuous samples are exact in Algorithm 3,
then for T = Ω(c log(n/ε)), the distribution of cwT /T is µ ∗ N (0, c

T I) and output of the algorithm
is ε-close in total variation distance to µ.

These results, together with an initialization bound (see Theorem 23), then yield the proof
of Theorem 4. Details are given in §C.
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Appendix A. Proofs for LMC

In this section, we give the proofs for §3.1. Let µnh := law(Xnh). We first need the following
recursive bound, which shows that the error decays exponentially fast in the parallel refinement.

Lemma 18 Suppose that V is β-smooth, and that the score function s is δ-accurate. Assume that
βh ≤ 1/10 and that π satisfies Talagrand’s T2 inequality with constant α. Then,

max
m=1,...,M

E[∥X(K)
nh+mh/M −X

(K−1)
nh+mh/M∥

2]

≤ 34 exp(−3.5K)
(
1.4dh+

8β2h2

α
KL(µnh ∥ π)

)
+ 8.2δ2h2 .

Proof Let

Ek := max
m=1,...,M

E[∥X(k)
nh+mh/M −X

(k−1)
nh+mh/M∥

2] .

For any m = 1, . . . ,M ,

E[∥X(k+1)
nh+mh/M −X

(k)
nh+mh/M∥

2] = E
[∥∥∥ h

M

m−1∑
m′=1

(
s(X

(k)
nh+m′h/M )− s(X

(k−1)
nh+m′h/M )

)∥∥∥2]
≤ h2m

M2

m−1∑
m′=1

E[∥s(X(k)
nh+m′h/M )− s(X

(k−1)
nh+m′h/M )∥2]

≤ 3h2 max
m′=1,...,m

E[∥∇V (X
(k)
nh+m′h/M )−∇V (X

(k−1)
nh+m′h/M )∥2] + 6δ2h2

≤ 3β2h2 Ek + 6δ2h2

and hence Ek+1 ≤ 3β2h2 Ek + 6δ2h2. Also,

E[∥X(1)
nh+mh/M −Xnh∥2] =

h2m2

M2
E[∥s(Xnh)∥2] +

dhm

M
≤ 2δ2h2 + 2h2 E[∥∇V (Xnh)∥2] + dh

and thus E1 is bounded by the right-hand side above. Iterating the recursion and using βh ≤ 1/10,

EK ≤ exp(−3.5 (K − 1)) E1 + 6.2δ2h2

≤ exp(−3.5 (K − 1)) {2δ2h2 + 2h2 E[∥∇V (Xnh)∥2] + dh}+ 6.2δ2h2 .

Also, by Vempala and Wibisono (2019, Lemma 10),

E[∥∇V (Xnh)∥2] ≤ 2βd+
4β2

α
KL(µnh ∥ π) .

Substituting this in and using βh ≤ 1/10 yields the result.

Proof [Proof of Theorem 13] We will use the interpolation method. Let Xnh+mh/M = X
(K)
nh+mh/M .

It is easy to see that

Xnh+(m+1)h/M = Xnh+mh/M −
h

M
s(X

(K−1)
nh+mh/M ) +

√
2 (Bnh+(m+1)h/M −Bnh+mh/M ) .
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Let X denote the interpolation of X(K), i.e., for t ∈ [nh+mh/M,nh+ (m+ 1)h/M ], let

Xt = Xnh+mh/M − (t− nh−mh/M) s(X
(K−1)
nh+mh/M ) +

√
2 (Bt −Bnh+mh/M ) .

Note that s(X(K−1)
nh+mh/M ) is a constant vector field given X

(K−1)
nh+mh/M . Let µt be the law of Xt.

The same argument as in Vempala and Wibisono (2019, Proof of Lemma 3) yields the differential
inequality

∂t KL(µt ∥ π) = −FI(µt ∥ π) + E
〈
∇V (Xt)− s(X

(K−1)
nh+mh/M ),∇ log

µt(Xt)

π(Xt)

〉
≤ −3

4
FI(µt ∥ π) + E[∥∇V (Xt)− s(X

(K−1)
nh+mh/M )∥2]

(11)

where we used ⟨a, b⟩ ≤ ∥a∥2 + 1
4 ∥b∥

2 and E[∥∇ log µt(Xt)
π(Xt)

∥2] = FI(µt ∥ π). Next, we bound

E[∥∇V (Xt)− s(X
(K−1)
nh+mh/M )∥2]

≤ 2E[∥∇V (Xt)−∇V (X
(K−1)
nh+mh/M )∥2 + ∥∇V (X

(K−1)
nh+mh/M )− s(X

(K−1)
nh+mh/M )∥2]

≤ 2E[∥∇V (Xt)−∇V (X
(K−1)
nh+mh/M )∥2] + 2δ2

≤ 2β2 E[∥Xt −X
(K−1)
nh+mh/M∥

2] + 2δ2 .

(12)

Moreover,

E[∥Xt −X
(K−1)
nh+mh/M∥

2] ≤ 2E[∥Xt −Xnh+mh/M∥2] + 2E[∥X(K)
nh+mh/M −X

(K−1)
nh+mh/M∥

2] .

(13)

The first term above is

E[∥Xt −Xnh+mh/M∥2] = (t− nh−mh/M)2 E[∥s(X(K−1)
nh+mh/M )∥2] + d (t− nh−mh/M)

≤ 2h2

M2
E[∥∇V (X

(K−1)
nh+mh/M )∥2] + 2δ2h2

M2
+

dh

M

≤ 4β2h2

M2
E[∥Xt −X

(K−1)
nh+mh/M∥

2] +
4h2

M2
E[∥∇V (Xt)∥2] +

2δ2h2

M2
+

dh

M
.

Substituting this into eq. (13) and using βh ≤ 1/10 yields

E[∥Xt −X
(K−1)
nh+mh/M∥

2] ≤ 4.4h2

M2
E[∥∇V (Xt)∥2] +

2.2δ2h2

M2
+

1.1dh

M

+ 2.2E[∥X(K)
nh+mh/M −X

(K−1)
nh+mh/M∥

2] .

Now, Chewi et al. (2021, Lemma 16) yields

E[∥∇V (Xt)∥2] ≤ FI(µt ∥ π) + 2βd .
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For the last term, we can apply Theorem 18.
Substituting everything into eq. (11) and cleaning up the terms yields

∂t KL(µt ∥ π) ≤ −0.66FI(µt ∥ π) + 2.5δ2

+ 2β2
[2dh
M

+ 75 exp(−3.5K)
(
1.4dh+

8β2h2

α
KL(µnh ∥ π)

)]
.

Assuming that K ≥ 1.3 + 0.3 logM , and using the LSI,

∂t KL(µt ∥ π) ≤ −1.3αKL(µt ∥ π) + 2.5δ2 +
6.8β2dh

M
+

16β4h2

αM
KL(µnh ∥ π) .

Integrating this inequality,

KL(µ(n+1)h ∥ π) ≤
[
exp(−1.3αh) + 16β4h3

αM

]
KL(µnh ∥ π) + 2.5δ2h+

6.8β2dh2

M
.

Provided M ≥ 6.4κ2, then exp(−1.3αh) + 16β4

h3 αM ≤ exp(−αh). Iterating,

KL(µNh ∥ π) ≤ exp(−αNh)KL(µ0 ∥ π) +
2.8δ2

α
+

7.5β2dh

αM
.

Thus we obtain the guarantee in KL divergence. The guarantees in TV and W2 distance follow from
Pinsker’s and Talagrand’s inequality respectively.

Appendix B. Proofs for ULMC

We turn towards the analysis of Algorithm 2. We start by bounding the discretization error between
the algorithm and the continuous-time process using Girsanov’s theorem. Throughout, let µNh denote
the law of the output of the algorithm, and let πt denote the marginal law of the continuous-time
Langevin diffusion at time t started from µ0.

First, we need a lemma.

Lemma 19 Let (Xt, Pt)t≥0 denote the continuous-time underdamped Langevin diffusion, started
at (X0, P0) ∼ µ0. Assume that V is β-smooth, and that πX ∝ exp(−V ) satisfies Talagrand’s T2

inequality with constant α. Let π = πX ⊗N (0, I). Then,

E[∥∇V (Xt)∥2] ≤ 2βd+
4β2

α
KL(µ0 ∥ π) , E[∥Pt∥2] ≤ 2d+ KL(µ0 ∥ π) .

Proof For the first bound, we use a similar proof as Vempala and Wibisono (2019, Lemma 10).
Namely, by Lipschitzness of∇V , the transport inequality, and the data-processing inequality,

E[∥∇V (Xt)∥2] ≤ 2EπX [∥∇V ∥2] + 2β2W 2
2 (law(Xt), π

X) ≤ 2βd+
4β2

α
KL(law(Xt) ∥ πX)

≤ 2βd+
4β2

α
KL(law(Xt, Pt) ∥ π) ≤ 2βd+

4β2

α
KL(µ0 ∥ π) .
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Similarly,

E[∥Pt∥2] ≤ 2EN (0,I)[∥·∥2] + 2W 2
2 (law(Pt),N (0, I)) ≤ 2d+ 4KL(µ0 ∥ π) .

This completes the proof.

We now state and prove our main discretization bound.

Theorem 20 Suppose that V is β-smooth and that πX ∝ exp(−V ) satisfies Talagrand’s T2

inequality with constant α. Let κ := β/α. Assume that the parallel depth satisfies K ≳ logM (for a
sufficiently large implied constant) and that h ≲ 1/

√
β (for a sufficiently small implied constant).

Then, it holds that

KL(πT ∥ µT ) ≲
T√
β

(
δ2 +

β2dh2

M2
+

β2h2

M2

(
1 +

κ

M2

)
KL(µ0 ∥ π)

)
.

Proof Let P denote the Wiener measure on [0, T ], under which (Bt)t∈[0,T ] is a standard Brownian
motion. Using this Brownian motion, we define the algorithm process, i.e.,

dX
(k+1)
t = P

(k+1)
t dt ,

dP
(k+1)
t = −s(X(k)

τ(t)) dt− γP
(k+1)
t dt+

√
2γ dBt .

We also drop the superscripts for parallel depth K, i.e., (X(K)
t , P

(K)
t ) = (Xt, Pt). We now write

dPt = −∇V (Xt) dt− γPt dt+
√

2γ dB̃t

where dB̃t = dBt − 1√
2γ

(s(X
(K−1)
τ(t) )−∇V (Xt)) dt. By Girsanov’s theorem (see Le Gall, 2016,

§5.6), if we define the path measure Q via

dQ

dP
= exp

( 1√
2γ

∫ T

0
⟨s(X(K−1)

τ(t) )−∇V (Xt), dBt⟩ −
1

8γ

∫ T

0
∥s(X(K−1)

τ(t) )−∇V (Xt)∥2 dt
)
,

(14)

then under Q the process B̃ is a standard Brownian motion. It follows readily that under Q, the
process (X,P ) is the continuous-time underdamped Langevin diffusion. By the data-processing
inequality and eq. (14),

KL(πT ∥ µT ) ≤ KL(Q ∥ P) = EQ log
dQ

dP

= EQ

[ 1√
2γ

∫ T

0
⟨s(X(K−1)

τ(t) )−∇V (Xt), dBt⟩ −
1

8γ

∫ T

0
∥s(X(K−1)

τ(t) )−∇V (Xt)∥2 dt
]

= EQ

[ 1√
2γ

∫ T

0
⟨s(X(K−1)

τ(t) )−∇V (Xt), dB̃t⟩+
1

8γ

∫ T

0
∥s(X(K−1)

τ(t) )−∇V (Xt)∥2 dt
]

=
1

8γ
EQ

∫ T

0
∥s(X(K−1)

τ(t) )−∇V (Xt)∥2 dt . (15)
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From now on, all expectations are taken under Q and we drop the subscript Q from the notation. We
focus on t lying in the interval [nh, (n+ 1)h].

Of course, using the fact that we have δ-accurate gradient evaluations,

E[∥s(X(K−1)
τ(t) )−∇V (Xt)∥2] ≲ δ2 + E[∥∇V (X

(K−1)
τ(t) )−∇V (Xt)∥2]

≤ δ2 + β2 E[∥X(K−1)
τ(t) −Xt∥2] . (16)

We split this into two terms:

E[∥X(K−1)
τ(t) −Xt∥2] ≲ E[∥Xt −Xτ(t)∥2] + E[∥Xτ(t) −X

(K−1)
τ(t) ∥2] . (17)

We begin with the recursive term (the second one).
For any k = 1, . . . ,K, let

Ek := max
m=1,...,M

E[∥X(k)
nh+mh/M −X

(k−1)
nh+mh/M∥

2] .

To bound this quantity, we start with

E[∥X(k)
nh+mh/M −X

(k−1)
nh+mh/M∥

2] = E
[∥∥∥∫ nh+mh/M

nh
(P

(k)
t − P

(k−1)
t ) dt

∥∥∥2]
≤ h

∫ nh+mh/M

nh
E[∥P (k)

t − P
(k−1)
t ∥2] dt . (18)

Next,

E[∥P (k)
t − P

(k−1)
t ∥2] = E

[∥∥∥∫ t

nh
{−(s(X(k−1)

τ(s) )− s(X
(k−2)
τ(s) ))− γ (P (k)

s − P (k−1)
s )} ds

∥∥∥2]
≲ h

∫ t

nh
E[∥s(X(k−1)

τ(s) )− s(X
(k−2)
τ(s) )∥2 + γ2 ∥P (k)

s − P (k−1)
s ∥2] ds .

By Grönwall’s inequality,

E[∥P (k)
t − P

(k−1)
t ∥2] ≲ h exp(O(γ2h2))

∫ t

nh
E[∥s(X(k−1)

τ(s) )− s(X
(k−2)
τ(s) )∥2] ds .

Recall that γ2 ≍ β. We assume throughout that h ≲ 1/
√
β for a sufficiently small implied constant,

so that γ2h2 ≲ 1. Therefore,

E[∥P (k)
t − P

(k−1)
t ∥2] ≲ h

∫ t

nh
E[∥s(X(k−1)

τ(s) )− s(X
(k−2)
τ(s) )∥2] ds

≲ δ2h2 + h

∫ t

nh
E[∥∇V (X

(k−1)
τ(s) )−∇V (X

(k−2)
τ(s) )∥2] ds

≲ δ2h2 + β2h

∫ t

nh
E[∥X(k−1)

τ(s) −X
(k−2)
τ(s) ∥

2] ds ≤ δ2h2 + β2h2 Ek−1 .

Substituting this into eq. (18), we obtain

Ek ≲ δ2h4 + β2h4 Ek−1 .
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Using h ≲ 1/
√
β and iterating this bound,

EK ≲ exp(−Ω(K)) E1 + δ2h4 . (19)

We must now bound E1. To do so, we note that

E[∥X(1)
nh+mh/M −Xnh∥2] = E

[∥∥∥∫ nh+mh/M

nh
P

(1)
t dt

∥∥∥2] ≤ h

∫ nh+mh/M

nh
E[∥P (1)

t ∥2] dt . (20)

Also,

E[∥P (1)
t ∥2] ≲ E[∥Pnh∥2] + E

[∥∥∥∫ t

nh
{−s(Xnh)− γP (1)

s } ds+
√
2γ (Bt −Bnh)

∥∥∥2]
≲ E[∥Pnh∥2] + h2 E[∥s(Xkh)∥2] + γ2h

∫ t

nh
E[∥P (1)

s ∥2] ds

+ γ E[∥B̃t − B̃nh∥2] + E
[∥∥∥∫ t

nh
(s(X

(K−1)
τ(s) )−∇V (Xs)) ds

∥∥∥2]
≲ P + h2δ2 + h2G + γ2h

∫ t

nh
E[∥P (1)

s ∥2] ds+ γdh+ h2∆ .

In the above bound, we were careful to recall that we are working under Q, for which B̃ is the
Brownian motion (not B). Also, we have defined the following quantities:

P := sup
t∈[0,T ]

E[∥Pt∥2] , G := sup
t∈[0,T ]

E[∥∇V (Xt)∥2] ,

and

∆ := sup
t∈[nh,(n+1)h]

E[∥s(X(K−1)
τ(t) )−∇V (Xt)∥2] .

Applying Grönwall’s inequality again,

E[∥P (1)
t ∥2] ≲ P + h2δ2 + h2G + γdh+ h2∆ .

Substituting this into eq. (20),

E1 ≲ h2P + h4δ2 + h4G + γdh3 + h4∆ .

Substituting this into eq. (19) now yields

EK ≲ exp(−Ω(K)) (h2P + h4G + γdh3 + h4∆) + δ2h4 .

Recalling the definition of ∆ and from eq. (16) and eq. (17), we have proven that

∆ ≲ δ2 + β2
(

sup
t∈[nh,(n+1)h]

E[∥Xt −Xτ(t)∥2]

+ exp(−Ω(K)) (h2P + h4G + γdh3 + h4∆) + δ2h4
)
.
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Using h ≲ 1/
√
β, this yields

∆ ≲ δ2 + β2
(

sup
t∈[nh,(n+1)h]

E[∥Xt −Xτ(t)∥2] + exp(−Ω(K)) (h2P + h4G + γdh3)
)
.

We also note that

E[∥Xt −Xτ(t)∥2] = E
[∥∥∥∫ t

τ(t)
Ps ds

∥∥∥2] ≤ h2

M2
P .

The quantities P , G are controlled via Theorem 19. Now assume that exp(−Ω(K)) ≤ 1/M4, which
only requires K ≳ logM for a sufficiently large absolute constant. When the dust settles,

∆ ≲ δ2 +
β2dh2

M2
+

β2h2

M2

(
1 +

κ

M2

)
KL(µ0 ∥ π)

Substituting this into eq. (15), and recalling that γ ≍
√
β, we finally obtain

KL(πT ∥ µT ) ≲
T√
β

(
δ2 +

β2dh2

M2
+

β2h2

M2

(
1 +

κ

M2

)
KL(µ0 ∥ π)

)
.

This completes the proof.

We must complement the discretization bound with a continuous-time convergence result, which
can be obtained from off-the-shelf results. See Zhang et al. (2023, Lemma 5) for a statement which is
convenient for our setting (adapted from Ma et al. (2021), which in turn followed the original entropic
hypocoercivity due to Villani (Villani, 2009); see also Monmarché (2024) for the corresponding
result for idealized Hamiltonian Monte Carlo).

Theorem 21 Assume that V is β-smooth and that πX ∝ exp(−V ) satisfies the LSI with constant
α. Consider the functional

F(µ ∥ π) := KL(µ ∥ π) + Eµ

[∥∥M1/2∇ log
µ

π

∥∥2] , M :=

[
1/(4β) 1/

√
2β

1/
√
2β 4

]
⊗ I .

Then, for all t ≥ 0,

F(πt ∥ π) ≤ exp
(
− αt

10
√
2β

)
F(π0 ∥ π) .

We are now ready to prove Theorem 15.

Proof [Proof of Theorem 15] Let us show that µ0 = N (x⋆, β−1I)⊗N (0, I) satisfies

F(µ0 ∥ π) ≤
d

2
(2 + log κ) .

From Theorem 14, we know that KL(µ0 ∥ π) ≤ d
2 log κ. Also,

Eµ0

[∥∥M1/2∇ log
µ0

π

∥∥2] = 1

4β
EN (x⋆,β−1I)

[∥∥∇ log
N (x⋆, β−1I)

πX

∥∥2]
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=
1

4β
Ex∼N (x⋆,β−1I)

[∥∥∇V (x)− β

2
(x− x⋆)

∥∥2]
≤ 1

2β
Ex∼N (x⋆,β−1I)

[
∥∇V (x)−∇V (x⋆)∥2 + β2

4
∥x− x⋆∥2

]
≤ β Ex∼N (x⋆,β−1I)[∥x− x⋆∥2] ≤ d .

The initialization bound follows.
The setting of parameters is such that from Theorem 20 and Theorem 21 respectively, we have

KL(πNh ∥ µNh) ≲ ε2 and KL(πNh ∥ π) ≲ ε2. The result now follows from Pinsker’s inequality
and the triangle inequality for TV.

Appendix C. Proofs for sampling from discrete distributions

We begin with the proof of Theorem 16.

Proof [Proof of Theorem 16] The first two statements are from Anari et al. (2023). We only need to
verify the last statement. We only need to show that we can approximate mean(τzµ) for all z ∈ Rn,
given the oracle for the Laplace transform of µ. Since µ is supported on the hypercube, we can
rewrite the j-th entry of mean(τzµ) in term of Laplace transforms of µ, i.e.,

(mean(τzµ))j = 2 τzµ(xj = +)− 1 =
2
∑

x∈{±}n, xj=+ exp(⟨z, x⟩)µ(x)∑
x∈{±}n exp(⟨z, x⟩)µ(x)

− 1

=
2 exp(zj)

∑
x∈{±}n, xj=+ exp(⟨z−j , x−j⟩)µ(x)∑
x∈{±}n exp(⟨z, x⟩)µ(x)

− 1

= 2 exp
(
zj + Lµz+ − Lµz

)
− 1 ,

where z+ (resp. z−) is a vector with all entries equal to z except for the j-th entry being +∞ (resp.
−∞). Using the oracle, we can compute Â+ s.t. |Â+ − (Lµz+ − Lµz)| ≤ O(ε). Thus,

|2 exp(zj + Â+)− 1− (mean(τzµ))j |
= 2 exp(zj) exp(Lµz+ − Lµz)

∣∣exp(Â+ − (Lµz+ − Lµz)
)
− 1

∣∣
≤ O(ε) exp(zj) exp(Lµz+ − Lµz) = O(ε)

(mean(τzµ))j + 1

2
= O(ε)

where the inequality follows from exp(x) − 1 ≤ 2x for x ∈ [0, 1/2). We use n machines, each
of which computes one entry of mean(τzµ) using 2 oracle calls and O(1) parallel iterations. The
estimated score function s satisfies ∥s(y)−∇V (y)∥ ≲

√
n
c ε

2 = δ.

We also need another initialization lemma, since Theorem 14 requires knowledge of the minimizer
of V which is not necessarily the case for the present application.

Lemma 22 Let µ0 = N (y, σ2I) for some fixed y ∈ Rn and σ2 > 0. If π ∝ exp(−V ) with
∇2V ⪯ βI , then

KL(µ0 ∥ π) ≤ V (y) + logZ +
n

2
(βσ2 − log(2πeσ2))

where Z =
∫
exp(−V (x)) dx.
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Proof By smoothness, V (x) ≤ V (y) + ⟨∇V (y), x− y⟩+ β
2 ∥x− y∥2, thus

Ex∼µ0 V (x) ≤ V (y) + ⟨∇V (y),Ex∼µ0 x− y⟩+ β

2
Ex∼µ0 ∥x− y∥2 = V (y) +

βσ2n

2

and

KL(µ0 ∥ π) = Ex∼µ0 logµ0(x) + V (x) + logZ = −n

2
log(2πeσ2) + V (y) +

βσ2n

2
+ logZ ,

which is the desired bound.

Lemma 23 Consider a density function ν : {±1}n → R≥0. Let π = ν ∗ N (0, cI) and µ0 =
N (0, cI). Then,

KL(µ0 ∥ π) ≤
n

2c
.

Proof We can write

π(y) = (2πc)−n/2
∑

x∈{±1}n
ν(x) exp

(
−∥y − x∥2

2c

)
.

This distribution is normalized so that Z = 1, and

π(0) = (2πc)−n/2
∑

x∈{±1}n
ν(x) exp

(
− n

2c

)
= (2πc)−n/2 exp

(
− n

2c

)
.

Thus, V (0) = − log π(0) = n
2 log(2πc) +

n
2c . By Theorem 16, ∇2V ⪯ I/c. Thus, we can apply

theorem 22 with β = c−1 and σ2 = c. Rearranging gives the desired inequality.

Proof [Proof of Theorem 4] Let c be such that cov τyµ ⪯ c
2I for all y ∈ Rn. Suppose we have two

executions of algorithm 3: one using the approximate continuous sampling algorithm resulting in
w0, . . . , wT , and one using exact samples resulting in w′

0, . . . , w
′
T . Note that wi = wi−1 + xi/c

where xi is the output of Algorithm 1 on input π = τwi−1µ ∗ N (0, cI) and w′
i = w′

i−1 + x′i/c where
x′i ∼ τw′

i−1
µ ∗ N (0, cI). We choose the parameter of Algorithm 1 so that

TV(law(xi), τwi−1µ ∗ N (0, cI)) ≤ η

for some η to be specified later.
Recall that the total variation distance is also characterized as the smallest probability of error

when we couple two random variables according to the two measures, i.e.,

TV(ρ1, ρ2) = inf
{
Π(X1 ̸= X2)

∣∣ Π is a coupling of (ρ1, ρ2)
}
.

On the first iteration, we can couple x1 with x′1 so that they are equal to each other with probability
at least 1− η. If x1 = x′1, then w1 = w′

1, and repeating the argument on this event we can couple x2
to x′2 so that x2 = x′2 with probability at least 1− η. After T iterations, by the union bound, we have
wT = w′

T with probability at least 1− Tη.
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By triangle inequality, the data-processing inequality, and Theorem 17,

TV(law(signwT ), µ) ≤ TV(law(signwT ), law(signw
′
T )) + TV(law(signw′

T ), µ)

≤ Tη + ε/2 ,

provided we choose T = Θ(c log(n/ε)) so that TV(law(signw′
T ), µ) ≤ ε/2. We then choose

η = ε/(2T ), which ensures that TV(law(signwT ), µ) ≤ ε.
In each iteration of the “for” loop in Algorithm 3, we want to approximately sample from

π = τw′
i−1

µ ∗ N (0, cI), which is (2c)−1-strongly log concave and c−1-log-smooth by Theorem 16.
By Theorem 23, KL(µ0 ∥ π) ≤ poly(n) for µ0 = N (0, cI). Thus, by Theorem 13, to sample x′i such
that TV(law(x′i), τw′

i−1
µ ∗ N (0, cI)) ≤ O(ε/(c log(n/ε))), Algorithm 1 uses P = O(log2(cn/ε))

parallel iterations, M = Õ(c2n/ε2) processors, and MP = Õ(c2n/ε2) δ-approximate gradient
evaluations with δ = Θ(ε/

√
c). By Theorem 16, each gradient evaluation can be implemented using

O(n) processors, O(1) parallel iterations, and O(n) total calls to O(δ
√
c/n) = O(ε/n)-approximate

Laplace transform oracles.
Hence, Algorithm 3 takes PT = O(c log3(cn/ϵ)) parallel iterations, M = Õ(c2n2/ε2) proces-

sors, and Õ(c2n2/ε2) total calls to O(ε/n)-approximate Laplace transform oracles.
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