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Abstract
We study the statistical hardness of estimating two basic representations of uncertainty in predictive
inference: prediction sets and calibration error. First, we show that conformal prediction sets cannot
approach a desired weighted conformal coverage level—with respect to a family of binary witness
functions with VC dimension d—at a minimax rate faster than O(d1/2n−1/2). We also show that
the algorithm in Gibbs et al. (2023) achieves this rate and that extending our class of conformal sets
beyond thresholds of non-conformity scores to include arbitrary convex sets of non-conformity
scores only improves the minimax rate by a constant factor. Then, under a similar VC dimension
constraint on the witness function class, we show it is not possible to estimate the weighted weak
calibration error at a minimax rate faster than O(d1/4n−1/2). We show that the algorithm in Kumar
et al. (2019) achieves this rate in the particular case of estimating the squared weak calibration error
of a predictor that outputs d distinct values.
Keywords: Lower Bounds, Conformal Prediction, Calibration, Uncertainty Quantification

1. Introduction

The goal of predictive inference is to produce a model whose output encodes not only a point
prediction of a desired target but also an estimate of the prediction’s reliability. To achieve this
goal, we usually define a measure to quantify how well a model represents its own uncertainty,
and develop algorithms guaranteeing that this measure is small. Conformal prediction provides a
concrete example: given a training dataset {(Xi, Yi)}ni=1 and a test point (Xn+1, Yn+1) drawn i.i.d.
from an unknown distribution, we seek to construct prediction sets C(Xn+1) such that P(Yn+1 ∈
C(Xn+1)) = 1 − α. In this example, we know from Vovk et al. (2005) and Lei et al. (2018)
that if our unknown distribution is continuous, then the intervals obtained via the split-conformal
algorithm satisfy

|P(Yn+1 ∈ C(Xn+1))− (1− α)| ≤ 1

n+ 1
.
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Gibbs et al. (2023) propose weighted conformal coverage as a more general (and more difficult to
achieve) notion of coverage: C has valid coverage with respect to a class of binary witness functions
W ⊆ X → R if

E [w(Xn+1) (1{Yn+1 ∈ C(Xn+1)} − (1− α))] = 0 ,

Calibration error is another example: a binary predictor f : X → [0, 1] is calibrated if f(X) ≈
E [Y | f(X)] almost surely. There are various ways of quantifying the miscalibration of a predictor
f , including the expected calibration error

ece(f) := E [|E [Y | f(X)]− f(X)|] .

Lee et al. (2023) and Arrieta-Ibarra et al. (2022) show that estimating the expected calibration error
is hard in general, which motivates the relaxed notion of weak calibration error with respect to a
class of binary witness functions W ⊆ X → R as

CE(f,W) := sup
w∈W

E [w(S)(Y − S)] .

Conformal prediction and calibration are the two most widely-adopted frameworks for uncer-
tainty quantification. Our contributions are fundamental lower bounds illustrating the statistical
hardness of developing models under each framework. For the former, we provide sample com-
plexity lower bounds on the weighted conformal coverage gap of conformal sets. For the latter,
we focus on the complexity of testing calibration through tight lower bounds for the estimation of
weak calibration error. Observe testing calibration is in general harder than producing a calibrated
predictor, since one can always trivially achieve the latter by designing a predictor that only re-
turns the sample mean of the outputs. In practice, we generally want to find a calibrated model
that is somehow close to an existing model, which is fundamentally tied to determining the level of
miscalibration of the original model.

1.1. Organization

We split our paper into two main sections corresponding to lower bounds for conformal prediction
and (weak) calibration, respectively. For our conformal results, Sections 2.1 and 2.2 provide an
overview of the problem and cover related work and definitions. Section 2.3 develops our main
lower bound result for quantile sets of non-conformity scores, and Section 2.4 develops a matching
upper bound. Finally, Section 2.5 discusses how considering the larger class of convex sets of
non-conformity scores impacts the minimax rate.

For weak calibration, Section 3.1 provides an overview of the problem and discusses related
work. Section 3.2 contains our main lower bound result for binary function classes with fixed VC
dimension. Finally, Sections 3.3 and 3.4 discuss how to obtain a matching upper bound as well as
other consequences of our main result.

We defer the technical proofs to the appropriate sections of the Appendix.

2. Conformal prediction

2.1. Overview

Given calibration datapoints {(Xi, Yi)}ni=1 and a confidence level α ∈ (0, 1), conformal predic-
tion methods seek to construct a confidence set mapping C : X ⇒ Y so that for a new point
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(Xn+1, Yn+1) then Yn+1 ∈ C(Xn+1) with probability 1−α. The typical approach for constructing
this confidence set is to associate a non-conformity score s : X × Y → R to predictions and return
the set of all predictions whose scores fall below some threshold; the idea is to set the threshold so
that the coverage of the set always exceeds the conformal guarantee. For example, the original split
conformal method Vovk et al. (2005) takes the standard 1− α quantile regression estimator

q̂ = argmin
q

1

n

n∑
i=1

(1− α)(s(Xi, Yi)− q)+ + α(q − s(Xi, Yi))+ ,

and makes it slightly more conservative by defining q̂c as the ⌈(n+1)(1−α)⌉/n quantile to construct
C(x) = {y ∈ Y | s(x, y) ≤ q̂c}. This conformal set guarantees P (Yn+1 ∈ C(Xn+1)) ≥ 1 − α
without distributional assumptions and |P (Yn+1 ∈ C(Xn+1))−(1−α)| ≤ 1

n when the scores Si =
s(Xi, Yi) are distinct Lei et al. (2018). The first guarantee is a result of the conformal correction, but
the second one is intuitively a consequence of the underlying quantile estimators being – with high
probability – very accurate. The split conformal example illustrates how the overall performance of
conformal methods is heavily tied to the quality of underlying estimators, so we seek to explore the
fundamental limits of these estimation problems beyond the marginal case.

The original split conformal algorithm is very useful in practice but its guarantees turn out to
be somewhat unsatisfying as they allow our confidence set to have wildly varying coverage levels
for different values of Xn+1. As a possible solution we can impose the stronger conditional cov-
erage condition P (Yn+1 ∈ C(x) | Xn+1 = x) ≥ 1 − α for all x ∈ X , but Barber et al. (2021)
show that this goal is impossible to achieve in any meaningful sense when Y has a density as
the only sets satisfying this condition have infinite expected Lebesgue measure. A natural middle
ground between full conditional coverage a marginal coverage is the idea of group conditional cov-
erage where algorithms seek to guarantee P (Yn+1 ∈ C(x) | Xn+1 ∈ G) = 1 − α for G in some
set of target groups G. When using quantile sets of non-conformity scores some algorithms also
define these groups in terms of the threshold function used to construct the conformal intervals,
namely if C(x) = {y | s(x, y) ≤ f(x)} we can define groups Gτ = {x | f(x) = τ} and set
Gc = {Gτ | τ ∈ R}, we often refer to this type of guarantee as a threshold calibrated guarantee.
Using this setup Jung et al. (2023) provides an algorithm to obtain both group conditional coverage
guarantees with respect to some finite collection G and threshold calibrated guarantees simultane-
ously. Several algorithms such as those in Gupta et al. (2022) and Bastani et al. (2022) also provide
similar guarantees in the adversarial setting.

Gibbs et al. (2023) propose a framework encapsulating these approaches via a dual weighted
coverage condition where for a class W ⊆ X → R, C has valid coverage if

E [w(Xn+1) (1{Yn+1 ∈ C(Xn+1)} − (1− α))] = 0 ,

for all w ∈ W . Note that using appropriate function classes W allows us to recover the coverage
guarantees discussed earlier, so we can use this general type of guarantee to explore the properties
of many techniques used to approach full conditional validity. These refined notions of coverage
mitigate some of the issues with the original conformal guarantee but still seem to promote some
arguably undesirable sets by allowing averaging over the randomness of C which is usually a func-
tion of the random datapoints {(Xi, Yi)}ni=1. As a trivial example, for any calibration split we can
simply ignore the data and choose our interval based on a sample of the auxiliary random variable
V ∼ Bernoulli(1 − α) so that for all x ∈ X if V = 1 then C(x) = Y and C(x) = ∅ other-
wise. This satisfies all the notions of coverage discussed so far including conditional coverage and
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it’s corresponding trivial achievability result (since the proposed interval will have infinite expected
Lebesgue measure for Y = Rk), but is not useful in any practical sense. For this reason we focus
on a measure of conformal error that takes this phenomenon into account

D(C) = |P (Y ∈ C(X))− (1− α)| ,

and its weighted variant

DW,p(C) = sup
w∈W

E

[
w(X)

∥w(X)∥p
(1{Y ∈ C(X)} − (1− α))

]
,

where we take C as fixed, our expectation is only over (X,Y ), and ∥·∥p is the Lp norm on the
probability space (X ,B(X ), PX) for p ∈ [1,∞]. In fact, it can now be shown that under an i.i.d.
assumption (rather than solely exchangeability) and similar regularity conditions, the original split
conformal procedure with standard quantile estimators achieves D(Ĉn) ≤ O(n−1/2) with high
probability (an immediate consequence of our main achievability result in Theorem 2). Moreover,
this new framework now allows us to derive minimax lower bounds to determine whether these
procedures are optimal to approach a desired coverage level.

The general conformal prediction framework does not impose restrictions on the class of allow-
able sets C, but in practice we usually care about sets that minimize some optimality criterion over
all sets with 1−α coverage. We will use the notion of perfectability to represent this idea, where we
say a score is perfectable for a distribution P with respect to some loss φ if the sets defined through
quantiles of the score minimize the loss over all sets with 1−α coverage for any α ∈ (0, 1). In fact,
if we assume that our optimal set mappings C1−α are nested and inner-semicontinuous for all α we
can always construct them using the standard quantile form Cq(x) = {y ∈ Y | s(x, y) ≤ q(x)}. It
is also the case that any score function can be associated with an optimality criterion under which
the quantile sets Cq(x) are optimal. In our setup we emulate the second stage of the split conformal
procedure so we assume that the score function s is pre-specified, which implies that the corre-
sponding quantile sets are always optimal with respect to some criterion. Therefore, as long as our
target set mappings are nested we can limit our analysis to quantile sets without loss of generality as
their optimality is solely determined by the choice of score function. For example, if our objective
is to produce minimum length intervals as measured by Leb(C(x)) with X ∈ Rk and Y ∈ Rm then
for any distribution on (X,Y ) with a density f(y|x) we can use the score s(x, y) = exp [−f(y|x)]
to produce the optimal intervals through quantiles. For a more precise definition of optimality and
perfectability, and further discussion of these results, including proofs, refer to Sections 2.2 and
Appendix C.

Restricting our analysis to sets of the form Cq(x) we focus on the case where W ⊆ X →
{−1, 1} as this is sufficient to approach the conditional coverage guarantee. In this context we pro-
vide lower bounds for the weighted conformal error of any estimator q and argue that the underlying
estimator in the algorithm proposed by Gibbs et al. (2023) achieves this rate. We also show that the
minimax rate remains unchanged even when considering the larger class of convex sets of scores
Ca,b(x) = {y ∈ Y | s(x, y) ∈ [a(x), b(x)]}, which implies that adding complexity to our intervals
in this way does not improve coverage in the minimax sense.
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2.2. Formal problem definitions

As described in the previous section we focus on a setting with covariates Xi ∈ X and targets
Yi ∈ Y where (Xi, Yi)

i.i.d.∼ PX,Y . We also have a pre-specified bounded score function s : X×Y →
[0, 1] that allows us to define Si = s(Xi, Yi) so that (Xi, Si) are still i.i.d. We now define the class
of quantile sets of scores

C1 := {Cq : X ⇒ Y | Cq(x) = {y ∈ Y | s(x, y) ≤ q(x)}, q : X → [0, 1]} , (1)

and the class of convex sets of scores

C2 := {Ca,b : X ⇒ Y | Ca,b(x) = {y ∈ Y | s(x, y) ∈ [a(x), b(x)]}, a, b : X → [0, 1]} . (2)

In practice, we usually care about problems where the score function is designed to produce reason-
ably good confidence intervals, so we define the notion of perfectability to make this requirement
more specific. We say a score s is φ-perfectable with respect to a distribution PX,Y for some loss
φ : X × Y → R+ if for all α ∈ (0, 1) there exists C1−α ∈ C1 such that

P (Y ∈ C1−α(x) | X = x) ≥ 1− α ,

and C1−α minimizes the loss

Lφ(C) =

∫
X

∫
Y
φ(x, y)1{y ∈ C(x)}dP (x, y)

across all set mappings C : X ⇒ Y with P (Y ∈ C(x) | X = x) ≥ 1 − α. We note that for
any score there exists a φ so that s is perfectable for all distributions PX,Y with no point masses.
Conversely, for any nested inner-semicontinuous set mapping minimizing Lφ(C) among C with
valid conditional coverage, we can find a score function producing those sublevel sets as shown in
Appendix C.

We now define the weighted conformal error when sets are constructed through quantiles or
intervals as

DW,p(q) := sup
w∈W

E

[
w(X)

∥w(X)∥p
(1{S ≤ q(X)} − (1− α))

]
(3)

DW,p(a, b) := sup
w∈W

E

[
w(X)

∥w(X)∥p
(1{S ∈ [a(X), b(X)]} − (1− α))

]
, (4)

respectively. Note that in both cases W = {1,−1} recovers the marginal conformal error, while
by choosing W to be all measurable functions X → {−1, 1} we obtain the conditional conformal
error. The minimax errors with respect to a class of distributions P now become

Mn(C1) := inf
q̂

sup
P∈P

E [DW,p(q̂)] (5)

Mn(C2) := inf
â,b̂

sup
P∈P

E
[
DW,p(â, b̂)

]
, (6)

where q̂, â, b̂ are our estimators.
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2.3. Minimax lower bound for quantile score sets

Our first result shows how to obtain a lower bound for (5). The first step is to define the class of
distributions of interest which must be restricted enough to allow matching achievability results. In
this case we focus on the class of distributions P where S|X has a continuous density with respect
to the Lebesgue measure on the unit interval, as well as uniform upper and lower bounds. The key
insight in this case is to note that if our function class W satisfies VC(W) = d then we can find
x ∈ X d such that for all v ∈ {−1, 1}d there exists w ∈ W with (w(x1), · · · , w(xd)) = v. In this
case, for any distribution P ∈ P such that X is uniformly distributed on x

DW,p(q) ≥
1

d

d∑
i=1

|P (S ≤ q(xi) | X = xi, q)− (1− α)| .

If we now use p0i to denote the uniform lower bound of the density corresponding to S|X = xi
under P it is clear that

DW,p(q) ≥
minj p

0
j

d

d∑
i=1

|q(xi)− q⋆i | ,

where q⋆i is the true 1 − α quantile of S|X = xi. We can now simply treat q as a d-dimensional
vector q = [q(x1), · · · , q(xd)] – with some notational overloading – to lower bound our weighted
conformal error with the estimation error associated with our conditional quantile estimators

DW,p(q) ≥
minj p

0
j

d
∥q − q⋆∥1 ,

which is significantly easier to handle using classical lower bound techniques.
We would also like to incorporate the notion of optimality we introduced in Section 2.2 and

ensure that our lower bounds capture the fundamental complexity of relevant practical confor-
mal problems, rather than relying on a scores and optimality criteria that would never be used
in practice. For this reason we construct our distributions so that the quantile sets minimize the
score dependent mean loss for φ(x, y) = s(x, y) and the distribution dependent mean loss for
φ(x, y) = exp [−f(s|x)] (where f(s|x) is the density of S|X), simultaneously. This optimality
criterion is reasonable since it is equivalent to minimizing Leb({s(x, y)|y ∈ C(x)}) and matches
the traditional goal of minimizing the size of our sets as measured by Leb(C(x)) in standard setups
such as when Y ∈ R with score s(x, y) = |y − f(x)| and Y has a unimodal symmetric distribution
centered at f(x). However, it is important to note that this is not always equivalent to the goal of
minimizing Leb(C(x)), it simply illustrates that our lower bound relies on scores and distributions
on those scores that are compatible with standard notions of optimality at least in some instances.
We can now present the main theorem of this section.

Theorem 1 Let W be a binary function class with VC(W) = d and P be the class of distributions
on (X,S) where S|X has a continuous density with uniform upper and lower bounds f(s|x) ∈
[12 ,

3
2 ] , and with respect to which s is exp [−f(s|x)]-perfectable. In this case

Mn(C1) ≥ c1

√
dα(1− α)

n
,

for n ≥ cd
α(1−α) and numerical constants c, c1.
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Proof Refer to Sections B.2 and B.3 in Appendix B.

This result implies that even when our score s satisfies a perfectability definition that matches the
traditional goal of minimizing Leb(C(x)) in standard setups, our lower bound holds.

2.4. A corresponding upper bound for quantile score sets

It is now important to compare our minimax lower bound with upper bounds for existing algorithms
to verify whether it is achievable. In particular, if we assume W = {Φ(·)Tβ : β ∈ Rd} is a class
of linear functions over the basis Φ : X → Rd, Gibbs et al. (2023) argue that by appropriately
computing

ĝSn+1 := argmin
g∈W

1

n+ 1

n+1∑
i=1

(1− α)(Si − g(Xi))+ + α(g(Xi)− Si)+ ,

we can define intervals C(x) = {y ∈ Y : s(Xn+1, y) ≤ ĝs(Xn+1,y)(x)} that satisfy

|E [w(Xn+1)(1{Yn+1 ∈ C(Xn+1)} − (1− α))]| ≤ d

n+ 1
E
[

max
1≤i≤n+1

|w(Xi)|
]
,

for all w ∈ W when S|X is continuous. This convergence result has the interesting feature of
depending on the expectation of a maximum which could potentially be very large, so it is natural
to ask if this result is a feature of the underlying estimator or a product of the conformal correction.
In fact, we show that the underlying estimator essentially matches the minimax rate for p ≥ 2 up
to higher order terms under mild regularity conditions when W contains a function class with VC
dimension d, so at least in this case it seems unlikely that the convergence result can be improved
by using a better underlying estimator.

Theorem 2 Let W be a function vector space with the usual inner product

⟨w1, w2⟩ = E [w1(X)w2(X)] =

∫
X
w1(x)w2(x)dP (x) ,

that admits a d-dimensional orthonormal basis (w̃1, · · · , w̃d) such that ∀i : supx∈X w̃i(x) ≤ M .
Then the estimator

ĝ = argmin
g∈W

1

n

n∑
i=1

(1− α)(Si − g(Xi))+ + α(g(Xi)− Si)+ ,

satisfies

E [DW,2(ĝ)] ≤ C1

√
d

n
+ C2

d3/2M

n
,

for numerical constants C1, C2 as long as S|X is continuous.

This result always matches the lower bound in Theorem 1 with respect to n – up to higher order
terms and a factor of cα(1−α) – and also matches the minimax optimal rate for d when W contains
a function class with VC dimension d.
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2.5. Minimax optimality beyond quantile score sets

It is standard for conformal algorithms to focus solely on quantile score sets similar to (1) as these
are often easier to compute and analyze than more expressive confidence set classes, while providing
robust conformal guarantees. However, the effects of such simplifications on the performance of
conformal algorithms is unclear. One natural way to approach this question is using the minimax
conformal error as defined in section 2.2 and ask how increasing the complexity of our confidence
set class impacts the minimax rate. We believe this is a hard question to answer in general as
identifiability issues quickly arise for larger confidence set classes where we can have multiple
distinct sets in our class providing 1 − α coverage for a given distribution, as in such cases the δ-
separation condition required by most standard lower bound techniques becomes difficult to enforce.
In this section we provide a partial answer to this question by arguing that extending our confidence
set classes to include all convex sets of scores – rather than only quantile sets – only improves
the minimax rate by a constant factor, even when restricting distributions to those where intervals
minimize Leb({s(x, y)|y ∈ C(x)}) under 1 − α coverage constraints in analogy to our argument
justifying perfectability in the quantile case.

Theorem 3 Let W be a binary function class with VC(W) = d and P be the class of distributions
on (X,S) with respect to which intervals of scores minimize Leb({s(x, y)|y ∈ C(x)}) under 1−α
coverage constraints, and S|X has a continuous density with uniform upper and lower bounds
f(s|x) ∈ [12 ,

3
2 ]. In this case

Mn(C2) ≥ c2

√
α(1− α)d

n
,

for n ≥ cd and numerical constants c and c2 < c1.

Proof Refer to Sections B.5 and B.7 in Appendix B.

3. Calibration

3.1. Overview

We focus our study of calibration on the setting of binary prediction, where the forecaster’s goal is
to develop a prediction model f : X → [0, 1] which for any covariates x ∈ X satisfies f(x) ≈
E [Y |X = x] = P (Y = 1|X = x). Achieving this goal is a tall order as such a classifier would of
course have perfect predictive accuracy. A weaker but still desireable requirement is that we should
at least be able to interpret f as a probability, i.e., f is calibrated if f(X) ≈ E [Y | f(X)]. Defining
the random variable S = f(X), the most natural calibration measure is the expected calibration
error defined as

ece(f) := E [|E [Y |S]− S|] .

This naturally generalizes to arbitrary norms on the ([0, 1],B([0, 1]), PS) probability space

ece∥·∥(f) := ∥E [Y |S]− S∥ ,
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which more directly point to the dual formulation

ece∥·∥(f) = sup
∥w∥∗≤1

E [w(S)(Y − S)] .

This naturally prompts the definition of a – potentially – weaker notion of calibration error, namely
the calibration error relative to a function class W ⊆ X → R or weak calibration error,

CE(f,W) := sup
w∈W

E [w(S)(Y − S)] .

This quantity will be – for the most part – the focus of our analysis.
At first glance estimating quantities similar to ece(f) might seem straightforward as we could

simply use the naive plug-in estimator

êceplug-in(f) :=
1

n

∑
s∈S

∣∣∣∣∣
n∑

i=1

(Yi − s)1{Si = s}

∣∣∣∣∣ =∑
s∈S

p̂s|ŷs − s| ,

where S is the set of observed scores and p̂s, ŷs are the standard estimators for P (S = s) and
E [Y |S = s]. The most glaring flaw with this approach is its reliance on the convergence of p̂s, ŷs
which is evidently impossible if S supported on a set of non-zero Lebesgue measure, as we will
rarely observe samples with the same score. This naive estimator arises naturally from the dual
witness function definition of ece(f) by simply replacing the true expectation with an empirical
expectation

êceplug-in(f) = sup
∥w∥∞≤1

EPn [w(S)(Y − S)] ,

which is part of the larger family of estimators

ĈE(f, Ŵ) = sup
w∈Ŵ

EPn [w(S)(Y − S)] .

In fact, any of these estimators could potentially be used to estimate ece(f) and the overall error
will be bounded by the classic approximation/estimation error decomposition

|ĈE(f, Ŵ)− ece(f)| ≤ |ĈE(f, Ŵ)− CE(f,W)|+ |CE(f,W)− ece(f)| .

In most practical applications when estimating ece(f) the function classes Ŵ,W are taken to be
binning function classes

WB = ŴB =

{
d∑

i=1

vi1{s ∈ Bi}, v ∈ {−1, 1}d
}

,

where B1, · · · , Bd are convex sets that partition [0, 1] and more generally

WBp =

{
d∑

i=1

vi1{s ∈ Bi}, ∥v∥Lq(P ) ≤ 1

}

ŴBp =

{
d∑

i=1

vi1{s ∈ Bi}, ∥v∥Lq(Pn)
≤ 1

}
,
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for q such that 1
p + 1

q = 1 when estimating ece∥·∥p(f).
It is usually hard to provide valid upper bounds in this general setup, but when S has a distri-

bution supported on a finite number of scores {s1, · · · , sd} and B = {{s1}, · · · , {sd}} standard
concentration arguments by Kumar et al. (2019) show that∣∣∣ĈE(f, ŴB2)2 − CE(f,WB2)2

∣∣∣ ≤ Õ

(√
CE(f,WB2)2

nmini P (S = si)
+

d

n

)
,

with high probability under certain regularity conditions. However, Ferro and Fricker (2012) and
Roelofs et al. (2022) point out that ĈE(f, ŴBp) is a biased estimator and discuss strategies to
mitigate this bias, with Kumar et al. (2019) proposing a debiased variant Ê2

db that satisfies∣∣∣Ê2
db − CE(f,WB2)2

∣∣∣ ≤ Õ

(√
CE(f,WB2)2

nmini P (S = si)
+

√
d

n

)
, (7)

with high probability under the same conditions. These results suggest that even in this basic setup
the estimator has at least two regimes with different rates. If our model is perfectly calibrated
the debiased variant achieves a surprisingly fast rate of Õ(d1/2n−1), whereas for any uncalibrated
model the rate will drop to Õ(d1/2n−1/2) in the best case. In light of this result, tight lower bounds
are of particular interest as they would allow us to determine if these different regimes and rates are
a fundamental property of the estimation problem or of this estimator in particular, so we explore
this problem in the next section.

3.2. Minimax lower bounds for weak calibration error

Due to the similarities in the formulation of weak calibration problem and weighted conformal
objectives, it is not surprising that the first step to develop our lower bounds is to impose a condition
that allows us to control the complexity of the function class W , and since W ⊂ X → {−1, 1}
is once again sufficient to approximate ece(f) we restrict our focus to binary function classes.
However, in this case we assume that W can shatter at most d points in [ϵ, 1− ϵ] for ϵ > 0, or more
explicitly

∃(s1, · · · , sd) ∈ [ϵ, 1− ϵ]d, ∀v ∈ {−1, 1}d,∃w ∈ W : (w(s1), · · · , w(sd)) = v .

This is very similar to the VC dimension requirement we used to control the complexity of the
function class in the weighted conformal case, with the crucial difference that the shattered points
cannot be too close to the edges of the unit interval. The reason for this correction will become
evident in our lower bound construction, but it is intuitively related to the fact that it is easier to test
if a model f is perfectly calibrated if it only outputs extreme values. With these constraints in mind
we now present the main result of this section.

Theorem 4 Given a function class W ⊆ [0, 1] → {−1, 1} that can shatter at most d points in
[ϵ, 1− ϵ] for ϵ ∈ (0, 12), then

inf
θ̂

sup
P∈P

EP

[
|CE(f,W)− θ̂|

]
≥ c1

d1/4

n1/2

√
ϵ(1− ϵ) ,

for n ≥ c
√
d

ϵ(1−ϵ) and numerical constants c, c1 where P is the set of distributions on outputs and
scores (Y, S).

10
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Proof Refer to Section D.1 in Appendix D.

It is important to point out that this theorem not only provides a global lower bound, but also
a local lower bound for the perfectly calibrated distribution P0 as we chose it to be one of the two
tilts in our Le Cam two-point construction. Interestingly, we see that this lower bound shares some
of the features of the upper bound for the debiased estimator (7) as the optimal rate when our model
is perfectly calibrated is O(d1/4n−1/2) rather than the standard O(d1/2n−1/2). However, our result
as presented in Theorem 4 is not compatible with the upper bounds in Kumar et al. (2019) so we
provide the following corollary to make the comparison explicit.

Corollary 5 Let PS be the set of distributions on outputs and scores (Y, S) such that S is supported
on S = {s1, · · · , sd} with si ∈ [ϵ, 1− ϵ] for ϵ > 0, and B = {{s1}, · · · , {sd}} then

inf
θ̂

sup
P∈PS

EP

[
|CE(f,WB2)2 − θ̂|

]
≥ c1

d1/2

n
ϵ(1− ϵ) ∨ c2

√
ϵ(1− ϵ)CE(f,WB2)2

n
,

for n ≥ cmax
{ √

d
ϵ(1−ϵ) ,

1
CE(f,WB2 )2ϵ

}
and numerical constants c, c1, c2, as long as the weak cali-

bration error satisfies CE(f,WB2) ≤ 1
2 − ϵ.

Proof Refer to Section D.2 in Appendix D.

It is now clear that our result matches the upper bound for the debiased estimator up to logarith-
mic factors when the model is perfectly calibrated, but is missing a factor of at least

√
d when this

is not the case. We will see in the next section that this is not in fact looseness of our lower bound,
but rather of the existing upper bound. However, before shifting our focus to the achievability result
we provide one more consequence of our main theorem.

Note that the witness functions used to obtain the separation condition in our proof of Theorem
4 satisfy ∥w∥Lq(P ) = 1 for q = p

1−p ∈ [1,∞] so they also belong to the function class WBp and
since our lower bound scales with d we can make the task of estimating ece∥·∥p(f) arbitrarily hard as
shown in the following corollary. The proof for part (i) follows immediately from our construction
in Theorem 4 and the remaining two are direct consequences of taking d ↑ ∞. These last two
parts provide a new proof for the impossibility of estimating ece∥·∥p(f) in general. Lee et al. (2023)
use calibration curves to show a related result on the impossibility of testing the null hypothesis
of calibration against the alternative hypothesis of ε0 mis-calibraton, by arguing that any test must
have worst case test risk equal to 1.

Corollary 6 Let Zi = (f(Xi), Yi) and define the worst-case test risk for the testing problem
between classes H0 : P ∈ P0 and H1 : P ∈ P1 as

Rn(Ψ|P0,P1) := sup
P∈P0

P (Ψ(Zn
1 ) ̸= 0) + sup

P∈P1

P (Ψ(Zn
1 ) ̸= 1) ,

and let Pp,δ = {P |eceP,∥·∥p(f) = δ}.

(i) If there exists ϵ ∈ (0, 12) such that f(X ) ∩ [ϵ, 1− ϵ] has cardinality at least d, then there is a
distribution P0 such that eceP0,∥·∥p(f) = 0 and for any 0 ≤ δ ≤ ϵ

inf
Ψ

Rn(Ψ|Pp,0, Pp,δ) ≥ 1− nδ2

2
√
d

1

ϵ(1− ϵ)
.

11
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(ii) If there exists ϵ ∈ (0, 12) such that f(X )∩[ϵ, 1−ϵ] has infinite cardinality then P0 is non-empty
and for any 0 ≤ δ ≤ ϵ

lim inf
n

inf
Ψ

Rn(Ψ|Pp,0, Pp,δ) = 1 .

(iii) If there exists a neighborhood U of 1
2 such that U ⊂ f(X ) then P0 is non-empty and for any

δ < 1
2

lim inf
n

inf
Ψ

Rn(Ψ|Pp,0, Pp,δ) = 1 .

3.3. A corresponding upper bound

As discussed in the previous section our lower bound in corollary 5 does not fully match the upper
bounds as presented in Kumar et al. (2019). However, we propose the following refinement of their
argument to show that their debiased estimator actually achieves this minimax rate.

Theorem 7 Let pi = P (S = si) > 0 for all i. Then the debiased estimator

Ê2
db =

d∑
i=1

p̂s

[
(si − ŷsi)

2 − ŷs(1− ŷs)

p̂sn− 1

]
,

satisfies

|E2
db − CE(f,WB2)2| ≤ C1

√
CE(f,WB2)2

n
log

(
2

δ

)
+ C2

√
d

n
log
(n
δ

)
,

with probability at least 1 − 4δ for some numerical constants C1, C2 and sufficiently large n ≥
c log(dδ ) with 1

c ≤ log
(

1
mini pi

)
.

Proof Refer to Section D.3 in Appendix D.

Combining the results of Theorem 7 and Corollary 5 now shows that even in a basic setting where
S has finite support, the problem of estimating CE(f,WB2)2 – and thus also ece∥·∥2(f)

2 – has two
different regimes with different rates.

3.4. Some more consequences of our lower bound for weak calibration error

3.4.1. A LESS ADVERSARIAL LOWER BOUND

Theorem 4 lower bounds the calibration error with respect to general binary function classes. In the
case of binning function classes WB , which are a specific instance of a binary function class, the
result implies the complexity of the problem in this case scales according to the cardinality of the set
Bϵ of bins contained in [ϵ, 1− ϵ]. Whereas Theorem 4 gives a worst-case result over the distribution
of scores S and outcomes Y , if we restrict our analysis to binning function classes with |Bϵ| = d
then we can adapt the same ideas to obtain a more fine-grained result which holds instance-wise for
any fixed distribution of scores.

12
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Theorem 8 Given a binning function class WB with |Bϵ| = d for some ϵ > 0 the for any predefined
distribution Q on scores S such that minB∈Bϵ Q(S ∈ B) = q0 and q1 = maxB∈Bϵ Q(S ∈ B)

inf
θ̂

sup
P∈P

EP

[
|CE(f,WB)− θ̂|

]
≥ c1

q0
q1

· d
1/4

n1/2

√
ϵ(1− ϵ) ,

for n ≥ c
ϵ(1−ϵ)q1d1/2

and numerical constants c, c1, where P is the set of distributions on outputs Y .

Proof Refer to Section D.4 in Appendix D.

This setup is less general than our original problem (the result applies only to binning function
classes) but is still relevant to practical applications and provides a less adversarial perspective that
illustrates how the complexity of estimating calibration measures depends on the distribution of
the scores S. Perhaps not surprisingly, our result suggests that without further assumptions the
problems becomes easier when the probability of each of the bins differs a lot. This is reasonable
since even in the case where we have strong regularity conditions that makes estimation of ece(f)
possible, the lower bound is only capturing the difficulty of estimating CE(f,W) and not how good
of a proxy for ece(f) it is, so we would expect that estimating CE(f,W) becomes easier as the
effective number of bins decreases but the result is a progressively worse approximation of ece(f).
In practice, bins are often chosen to have roughly the same probability so our new Theorem 8 is
essentially equivalent to Theorem 4.

3.4.2. A LOWER BOUND FOR SMOOTH CALIBRATION

So far we have solely focused on calibration error with respect to binary witness function classes,
but many papers such as Blasiok et al. (2023) show interest in the smooth calibration error where
the function class WL is the set of all [−1, 1] bounded L-Lipschitz functions. It is now natural
to wonder if we can obtain sharp lower bounds for estimation in this case, and in fact Theorem 4
already provides a lower bound for this situation by simply noting that WL can shatter ⌊L(1−2ϵ)

2 ⌋
scores in [ϵ, 1− ϵ].

Theorem 9 Let WL be the function class containing all [−1, 1] bounded L-Lipschitz functions
then

inf
θ̂

sup
P∈P

EP

[
|CE(f,WL)− θ̂|

]
≥ c1

L1/4(1− 2ϵ)1/4

n1/2

√
ϵ(1− ϵ) ,

for n ≥ c

√
L(1−2ϵ)

ϵ(1−ϵ) , numerical constants c, c1 and L ≥ 4
1−2ϵ , where P is the set of distributions on

outputs and scores (Y, S).

The smooth calibration algorithm proposed by Blasiok et al. (2023) seems to match the minimax
rate with respect to n but not with respect to L, and it is unclear if this mismatch is due to looseness
in our lower bound or suboptimality of the algorithm.

4. Discussion

We have shown tight lower bounds illustrating the fundamental hardness of developing uncertainty
quantification models using conformal prediction and calibration. Yet, a number of questions remain
open.

13
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First, all of our lower bound techniques for both settings rely on bounding the VC dimension of
the witness function class; this approach produces tight lower bounds for commonly used witnesses
classes such as binning functions, but it may be overly restrictive in general. For example, Theorem
9 provides some insight for the case when our function class satisfies a Lipschitz constraint, but
requires Lipschitz constants L ≫ 1 in general and it is unclear if the minimax rate O(L1/4n−1/2)
is indeed tight. We believe it might be possible to obtain tighter lower bounds by developing lower
bound techniques specialized for Lipschitz function classes.

For the specific case of weighted conformal validity, we discuss in Section 2.5 how allowing
convex intervals of non-conformity scores only improves the minimax rate by a constant factor. It is
unclear whether this result holds in general; specifically, it would be interesting to further motivate
the usual choice of quantile sets of non-conformity scores by showing that they are optimal in some
sense with respect to a larger family of confidence set mappings.

Finally, for the case of weak calibration, Blasiok et al. (2023) provide a unifying theory de-
veloped to understand calibration via the notion of distance to calibration; it would be interesting
to explore what the fundamental limits are for those metrics. For example, one of these metrics
is lower-distance to calibration, which Blasiok et al. (2023) show to be equivalent to smooth cal-
ibration error with L = 1 up to constant factors, and is thus not covered by our lower bounds.
Additionally, they propose interval calibration as a binning-based measure of calibration that uses
randomized bins, for which our lower bounds are also not applicable. Tight lower bounds for esti-
mation of these quantities could not only improve our understanding of calibration, but also suggest
potential improvements to existing estimators to make them more efficient in practice.
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Appendix A. Overview of lower bound techniques for weighted conformal prediction

As a starting point to motivate the techniques used to obtain our lower bounds – particularly the
one for (6) – we introduce some well known lower bounding methods. For this purpose we define a
mapping θ : P → Θ from distributions to their relevant parameters, a semimetric ρ : Θ×Θ → R+

on the space Θ, and a non-decreasing function Φ : R+ → R+ with Φ(0) = 0. The most fundamental
technique that can be applied to this setup is Le Cam’s two point method.

Theorem 10 [Adapted from Wainwright (2019) (15.4)] Let P1, P2 ∈ P be two distributions such
that

ρ(θ(P1), θ(P2)) ≥ 2δ ,

15
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for some δ > 0. Then

inf
θ̂

sup
P∈P

E
[
Φ
(
ρ(θ(P ), θ̂)

)]
≥ Φ(δ)

2
[1− ∥P1 − P2∥TV] .

Interestingly, this simple method is sufficient to obtain a lower bound when W = {−1, 1} (i.e.
for the marginal conformal error), but we intuitively know that the problem must become harder
as the complexity of W grows since achieving small conditional conformal error in finite samples
is impossible. In fact, Le Cam’s two point method’s reliance on only two alternatives turns out to
be too restrictive to capture the effects of the complexity of W on the minimax rate, so we turn to
Assouad’s method for a more powerful approach.

Theorem 11 [Adapted from Assouad (1983)] Let V = {−1, 1}d and {Pv}v∈V ⊂ P be a family
of distributions indexed by the hypercube, then if there exists a function v̂ : θ(P) → {−1, 1}d such
that

Φ (ρ(θ, θ(Pv))) ≥ 2δ
d∑

j=1

1{v̂(θ)j ̸= vj} ,

for some δ > 0 then

inf
θ̂

sup
P∈P

E
[
Φ
(
ρ(θ(P ), θ̂)

)]
≥ δ

d∑
j=1

[
1− ∥P+j − P−j∥TV

]
≥ δd

[
1− max

dham(v,v′)≤1
∥Pv − Pv′∥TV

]
,

where P+j = 21−d
∑

v:vj=1 Pv.

This technique is quite similar to Le Cam’s two point method, as it essentially imposes a separa-
tion condition that allows us to split the problem into d-dimensions and propose two tilts for each
dimension. Intuitively, this is enough to provide a lower bound for (5) as our confidence intervals
only have one degree of freedom so we will usually be unable to perfectly cover two distributions
simultaneously. However, this is not the case for (6) where we now have 2 degrees of freedom,
which will often allow us to cover two distributions simultaneously. As a simple example consider
the distributions with densities

p1(s) =
5

4
1{s ∈ [0, 1/2]}+ 3

4
1{s ∈ (1/2, 1]}

p2(s) =
3

4
1{s ∈ [0, 1/2]}+ 5

4
1{s ∈ (1/2, 1]} ,

where it is clear that there are unique intervals [0, q1], [0, q2] with q1 ̸= q2 that provide 1−α coverage
for each distribution, but the interval [12 − 1−α

2 , 12 + 1−α
2 ] perfectly covers both. This suggests that

a valid lower bound for (6) should provide more than one tilt per dimension, so we propose a novel
lower bound technique to deal with this situation.
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Theorem 12 Let V = {1, · · · ,K}d and {Pv}v∈V ⊂ P . Given loss functions LP,i : θ(P) → R+

so that for all i ∈ {1, · · · , d} and v′ in

V ′
i = {(v1, · · · , vi, · · · , vd)|vi = 0 and vj ∈ {1, · · · ,K} for j ̸= i}

the following property is satisfied

inf
θ∈θ(P)

1

K

K∑
k=1

LPv′+kei
,i(θ) ≥ δ ,

where ei is the i-th canonical basis vector, then

inf
θ̂

sup
P∈P

E

[
d∑

i=1

LP,i(θ̂)

]
≥ δ

Kd

d∑
i=1

∑
v′∈V ′

i

(
1−

K∑
k=2

∥Pv′+ei − Pv′+kei∥TV

)
.

We defer the proof of this result to a later section in this appendix but note that this technique is
very similar to Assouad’s method in spirit, with the key difference that our separation condition is
much weaker. In essence, our result does not require any two distributions with different tilts in the
i-th dimension to be separated, but simply that we cannot simultaneously approximate parameters
for all tilts in a given dimension. We will naturally pay a rate penalty because of this weakening
– as seen in the following corollary – but this technique will return a non-trivial bound when our
estimators can approximate 2 parameters simultaneously, but not arbitrarily many.

Corollary 13 If the conditions for Theorem 12 are satisfied and for all i ∈ {1, · · · , d}, k ∈
{2, · · · ,K}, v′ ∈ V ′

i

∥Pv′+ei − Pv′+kei∥TV ≤ 1

2(K − 1)
,

then

inf
θ̂

sup
P∈P

E

[
d∑

i=1

LP,i(θ̂)

]
≥ dδ

2K
.

This corollary nicely illustrates that our weaker requirements cause our lower bound to be strictly
looser than Assouad’s by a constant factor when K = 2, and that we usually have to pay a penalty
proportional to 1

K2 by allowing K tilts with weak separation.

Appendix B. Deferred proofs for weighted conformal prediction

B.1. Proof of Theorem 12

Start by observing that if we let nature sample V from V = {1, · · · ,K}d uniformly at random and
draw (X,S) according to distribution PV we get the lower bound

Mn = inf
θ̂

sup
P∈P

E

[
d∑

i=1

LP,i(θ̂)

]
≥ inf

â,b̂

1

Kd

∑
v∈V

EPv

[
d∑

i=1

LPv ,i(â, b̂)

]

≥ inf
â,b̂

δ

Kd

∑
v∈V

d∑
i=1

EPv

[
1
{
LPv ,i(â, b̂) ≥ δ

}]
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We now define V ′
i = {(v1, · · · , vi, · · · , vd)|vi = 0 and vj ∈ {1, · · · ,K} for j ̸= i} so that if ei is

the i-th canonical basis vector

Mn ≥ inf
â,b̂

δ

Kd

d∑
i=1

∑
v′∈V ′

i

K∑
k=1

EPv′+kei

[
1
{
LPv′+kei

,i(â, b̂) ≥ δ
}]

≥ inf
â,b̂

δ

Kd

d∑
i=1

∑
v′∈V ′

i

(
EPv′+ei

[
K∑
k=1

1
{
LPv′+kei

,i(â, b̂) ≥ δ
}]

−
K∑
k=2

∥Pv′+ei − Pv′+kei∥TV

)
.

It is evident by our separation condition that for any â, b̂ at least one k ∈ {1, · · · ,K} satisfies
LPv′+kei

,i(â, b̂) ≥ δ so that our lower bound becomes

inf
θ̂

sup
P∈P

E

[
d∑

i=1

LP,i(θ̂)

]
≥ inf

â,b̂

δ

Kd

d∑
i=1

∑
v′∈V ′

i

(
1−

K∑
k=2

∥Pv′+ei − Pv′+kei∥TV

)
.

B.2. Proof of Theorem 1 without continuous density requirement

Start by defining the sub-class of distributions P ′ ⊂ P where X is uniformly distributed on the
set {x1, · · · , xd} shattered by W , and S|X has density uniformly lower bounded by 1

2 . Under this
setup it is clear that

Mn(C1) ≥
1

2d
inf
q̂

sup
P∈P ′

E [∥q̂ − q∗∥1] .

We can now define the perturbation function

g(s) =
1

α
1{s > (1− α)} − 1

1− α
1{s ≤ (1− α)} ,

and define a family of distributions in P ′ indexed by v ∈ {−1, 1}d with conditional densities

pv(s|xi) = 1 + δmin{vi, 0}g(s)

for δ ∈ (0, α(1−α)
2 ]. It is straightforward to verify that these conditional densities are always non-

increasing so that our score function s is quantile perfectable with respect to all distributions in P ′.
Moreover, these have conditional quantiles

q⋆vi =

{
(1− α) vi = 1

(1− α)− δ
1+δ/(1−α) vi = −1

.

The next step is to use the notation in Theorem 11, choosing Φ(x) = x, ρ(θ, θ′) = ∥θ − θ′∥1, and
noting that for coordinate-wise testing function

v̂j(q) = argmin
vj∈{−1,1}

|qj − q⋆vj | ,
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then

2|qj − q⋆vj | ≥ |qj − q⋆v̂j |+ |qj − q⋆vj |
≥ |q⋆v̂j − q⋆vj |

≥ 1{v̂j ̸= vj}
(

δ

1 + δ/(1− α)

)
≥ 2δ

3
1{v̂j ̸= vj} ,

where we have used the fact that δ ≤ α(1−α)
2 . This result naturally implies that

∥q − q⋆∥1 ≥ 2 ·
(
δ

6

) d∑
j=1

1{v̂j(q) ̸= vj} ,

as required by Assouad’s method. The only remaining step is to bound the TV distance, for which
we note that if dham(v, v′) ≤ 1 then

dhel(Pv, Pv′)
2 ≤ 1

d

(√1− δ

α
− 1

)2

α+

(√
1 +

δ

1− α
− 1

)2

(1− α)


≤ 1

d

[
δ2

α
+

δ2

1− α

]
=

δ2

dα(1− α)
,

and since dhel(Pv, P
′
v) ≤ 1/

√
2 by our choice of δ we also have that

dhel(P
n
v , P

n
v′) =

√
2− 2(1− dhel(Pv, Pv′)2)n

≤
√
2− 2e−2ndhel(Pv ,Pv′ )

2
.

We now choose δ2 = dα(1−α)
16n to conclude that

∥Pn
v − Pn

v′∥TV ≤ 1

2
,

and by Theorem 11

Mn(C1) ≥
1

24

√
dα(1− α)

16n
≥ 1

96

√
dα(1− α)

n
,

as long as n ≥ d
4α(1−α) to ensure that δ ≤ α(1−α)

2 .

B.3. Proof of Theorem 1 with continuous conditional density

In order to enforce a continuous conditional density we will simply take our original perturbation
function and modify the sharp transition to occur smoothly, namely

g(s) =



− δ
1−α t ≤ (1− α)− (1−α)δ

1+δ/α
1+δ/α
(1−α)2

(t− (1− α)) t ∈
(
(1− α)− (1−α)δ

1+δ/α , 1− α
]

1+δ/α
α2 (t− (1− α)) t ∈

(
1− α, (1− α) + αδ

1+δ/α

]
δ
α t > (1− α) + αδ

1+δ/α

.
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It is easy to check that this choice of perturbation function still ensures the densities are non-
increasing so the quantile perfectability condition still holds. It also has the interesting feature
of preserving the quantiles from our original construction, as well as the uniform lower and upper
bounds for our conditional density. This implies that our original expression for the separation holds
and

∥q − q⋆∥1 ≥ 2 ·
(
δ

6

) d∑
j=1

1{v̂j(q) ̸= vj} ,

for the same function v̂. It is also evident that this linear interpolation step can only reduce the
pointwise separation between densities when computing the Hellinger distance, so our previous
bound must also hold. Finally, combining these two results and applying Assouad’s method yields
the same bound of

Mn(C1) ≥
1

96

√
dα(1− α)

n
,

for n ≥ d
4α(1−α) even when enforcing a continuous conditional density.

B.4. Proof of Theorem 2

The key insight for this proof is to note that using the orthonormal basis our estimator is defined by

β̂ = argmin
β∈Rd

fn(β)

= argmin
β∈Rd

1

n

n∑
i=1

F (β,Xi, Si)

= argmin
β∈Rd

1

n

n∑
i=1

(1− α)(Si − βT w̃(Xi))+ + α(βT w̃(Xi)− Si)+ ,

via ĝ = β̂T w̃, which is the stochastic approximation of the true minimizer

β⋆ = argmin
β

f(β) = argmin
β

E [F (β,X, S)] .

We can now observe that fn not always differentiable, but the fact that S|X has a continuous density
guarantees that f is differentiable everywhere with

∂βi
f(β) = E

[
w̃i(X)

(
1{S ≤ βT w̃(X)} − (1− α)

)]
,

so that for any function w = γT w̃

E
[

w(Xn+1)

∥w(Xn+1)∥2
(1{Sn+1 ≤ ĝ(Xn+1)} − (1− α))

∣∣∣∣ ĝ] = γT∂βf(β̂)

∥γ∥2
.

Moreover, since β̂ is the empirical minimizer we know that for all j∑
i:Si ̸=β̂T w̃(Xi)

∂βj
F (β̂,Xi, Si) +

∑
i:Si=β̂T w̃(Xi)

si,j = 0 ,
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for si,j ∈ [M(α − 1),Mα] as F is subdifferentiable but not differentiable when Si = β̂T w̃(Xi).
Therefore, if we pick a subgradient at random from [M(α − 1),Mα] when Si = β̂T w̃(Xi) we
know that

∂βj
fn(β̂) ≤

M

n

n∑
i=1

1{Si = β̂T w̃(Xi)} ,

and by the proof of Theorem 2 in Gibbs et al. (2023) with probability 1

∂βj
fn(β̂) ≤

dM

n
,

and

γT∂βf(β̂)

∥γ∥2
≤

γT (∂βf(β̂)− ∂βfn(β̂))

∥γ∥2
+

d3/2M

n
.

We can use this result to bound 3 as

DW,2(ĝ) ≤
d3/2M

n
+max

v∈Bd
2

vT (∂βfn(β̂)− ∂βf(β̂)),

where Bd
2 is the euclidean ball in d-dimensions. We now take a minimal cover N1/2 of this ball in

its corresponding norm so that ∀v ∈ Bd
2, ∃u ∈ N1/2 : ∥v − u∥2 ≤ 1/2, so that

max
v∈Bd

2

vT (∂βfn(β̂)− ∂βf(β̂)) ≤ max
u∈N1/2

uT (∂βfn(β̂)− ∂βf(β̂)) + max
v∈ 1

2
Bd
2

vT (∂βfn(β̂)− ∂βf(β̂)) ,

or equivalently

max
v∈Bd

2

vT (∂βfn(β̂)− ∂βf(β̂)) ≤ 2 max
u∈N1/2

uT (∂βfn(β̂)− ∂βf(β̂)) ,

so that our inequality becomes

DW,2(ĝ) ≤
d3/2M

n
+ 2 max

u∈N1/2

uT (∂βfn(β̂)− ∂βf(β̂)) .

It now only remains to bound this second quantity for which we note that

|uT (∂βF (β̂, x, s)− ∂βf(β̂))| ≤ 2
√
dM ∥u∥2 ≤ 2

√
dM ,

and

E
[
|uT (∂βF (β̂,X, S)− ∂βf(β̂))|2

]
= E

[
(uT∂βF (β̂,X, S))2

]
− (uT∂βf(β̂))

2

≤ E
[
(uT∂βF (β̂,X, S))2

]
≤ ∥u∥22 ≤ 1 .
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This implies that for any u ∈ Bd
2 the zero mean random variables

Tu,i = uT (∂βF (β̂,Xi, Si)− ∂βf(β̂)) ,

are (1, 2
√
dM) sub-exponential and independent, and

Tu =
n∑

i=1

Tu,i = nuT (∂βfn(β̂)− f(β̂)) ,

is (n, 2
√
dM) sub-exponential. We now have the bound

E
[
max

u∈N1/2

Tu

]
≤
√
2n log(|N1/2|) + 2

√
dM log(|N1/2|) ,

from Corollary 2.6 in Boucheron et al. (2013). To finish the proof of the upper bound we recall that
|N1/2| ≤ 5d and thus

E [DW,2(ĝ)] ≤
d3/2M

n
+

√
8 log(5)d

n
+

4 log(5)d3/2M

n

≤ 4

√
d

n
+

8d3/2M

n
.

Observe that this result is always consistent with the lower bound in Theorem 3 since the VC-
dimension of the subgraph satisfies VC(S(W)) ≤ d by Proposition 4.20 in Wainwright (2019) so a
vector space of dimension d cannot contain a function class with VC dimension larger than d, and
the result is tight in d and n when W does contain a function class with VC dimension d.

B.5. Proof of Theorem 3 without continuous density requirement

The first steps in this proof are essentially identical to Theorem 1 as we use the VC dimension of
W to argue that we can find points {x1, · · · , xd} such that for any distribution P ∈ P ′ ⊂ P where
X is uniformly distributed on this set

DW,p(a, b) ≥
1

d

d∑
i=1

|P (Sn+1 ∈ [a(xi), b(xi)]|X = xi, q)− (1− α)| .

We now take on the notation of Theorem 12 and define the loss functions

LP,i(a, b) = |P (Sn+1 ∈ [a(xi), b(xi)]|X = xi, q)− (1− α)| ,

so that our lower bound becomes

DW,p(a, b) ≥
1

d

d∑
i=1

LP,i(a, b) ,

and thus

Mn(C2) ≥
1

d
inf
â,b̂

sup
P∈P ′

E

[
d∑

i=1

LP,i(â, b̂)

]
.

22



TWO FUNDAMENTAL LIMITS FOR UNCERTAINTY QUANTIFICATION IN PREDICTIVE INFERENCE

Our construction will now use K = 5 and define a family of tilts indexed by v ∈ {1, · · · ,K}d
where X is uniformly distributed on the set {x1, · · · , xd} and S has conditional density

pv(s|xi) = 1 + δgvi(s) , (8)

for δ ≤ 1/2 where the perturbation function gk(s) is defined as

gk(s) =


Dk,1 s ∈ [0, 1/3)

Dk,2 s ∈ [1/3, 2/3)

Dk,3 s ∈ [2/3, 1]

.

using the matrix

D =


−1 0 1
−1 1 0
0 0 0
0 1 −1
1 0 −1

 .

It is easy to verify that using these perturbation functions s is interval perfectable with respect to all
distributions in our family. We now use the following fact

Fact 14 Let D, gk(s), {Pv} be as defined in the preceding proof sketch, then for all i ∈ {1, · · · , d}
and v′ in V ′

i = {(v1, · · · , vi, · · · , vd)|vi = 0 and vj ∈ {1, · · · ,K} for j ̸= i}

inf
â,b̂

K∑
k=1

LPv′+kei
,i(â, b̂) ≥ δ

√
α(1− α)

7
.

In order to apply Theorem 12 it only remains to upper bound the total variation distance for which
we note that for δ ∈ [0, 1/2]

sup
(b1,b2)∈[−1,1]2

(√
1 + b1δ −

√
1 + b2δ

)2
≤ 2δ2 ,

and thus

dhel(Pv′+ei ||Pv′+kei)
2 ≤ 2

[
1−

(
1− δ2

d

)n]
≤ 2

[
1− e−

2nδ2

d

]
,

which naturally implies

∥Pv′+ei − Pv′+kei∥TV ≤
√

2− 2e−
2nδ2

d ,

and if we choose δ2 = d
256n then for all i ∈ {1, · · · , d}, k ∈ {2, · · · ,K}, v′ ∈ V ′

i

∥Pv′+ei − Pv′+kei∥TV ≤ 1

2(K − 1)
.

We now simply apply Corollary 13 to conclude that

Mn(C2) ≥
1

850

√
α(1− α)d

n
,

for n ≥ d
64 .
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B.6. Proof of Fact 14

We start by observing that for any xi the set of allowable estimators R = {(a, b) ∈ [0, 1]2|a ≤ b}
can be expressed as

R =
3⋃

i=1

Ri ,

for

R1 = {(a, b) ∈ [0, 2/3]2|a ≤ b}
R2 = {(a, b) ∈ [1/3, 1]2|a ≤ b}
R3 = {(a, b) ∈ [0, 1/3]× [2/3, 1]} .

It is now sufficient to lower bound the optimal function value in each of these 3 regions to obtain a
lower bound over R. We now define DI for any I ⊆ {1, 2, 3} as the matrix in RK×|I| constructed
from the corresponding columns of D and analyze the optimization problem in the 3 distinct regions.
Region 1: If (â(xi), b̂(xi)) ∈ R1 then

Pv(S ∈ [â(xi), b̂(xi)]|X = xi) = (1 + δDvi,1)β1 + (1 + δDvi,2)β2 ,

with

β1 =

[(
1

3
− â(xi)

)
+

−
(
1

3
− b̂(xi)

)
+

]
β2 =

[(
b̂(xi)−

1

3

)
+

−
(
â(xi)−

1

3

)
+

]
,

so that for any i

inf
â(xi),b̂(xi)∈R1

K∑
k=1

LPv′+kei
,i(â, b̂) ≥ inf

β∈R2

∥∥(1K×2 + δD{1,2})β − (1− α)1K×1

∥∥
1

≥ inf
β∈R2

∥∥(1K×2 + δD{1,2})β − (1− α)1K×1

∥∥
2
.

Region 2: If (â(xi), b̂(xi)) ∈ R2 then identical reasoning shows that the optimal function value is
also lower bounded by the same convex optimization problem.
Region 3: If (â(xi), b̂(xi)) ∈ R3 then

Pv(S ∈ [â(xi), b̂(xi)]|X = xi) =(1 + δDvi,1)β1 +
(1 + δDvi,2)

3
+ (1 + δDvi,3)β2 ,

with

β1 =
1

3
− â(xi)

β2 =

(
b̂(xi)−

2

3

)
,
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so that for any i

inf
â(xi),b̂(xi)∈R3

K∑
k=1

Lv′+kei(â, b̂) ≥ inf
β∈R2

∥∥∥∥(1K×2 + δD{1,3})β −
(
(1− α)1K×1 −

1

3
D{2}

)∥∥∥∥
1

≥ inf
β∈R2

∥∥∥∥(1K×2 + δD{1,3})β −
(
(1− α)1K×1 −

1

3
D{2}

)∥∥∥∥
2

.

Combining the 3 results: In this case we can conclude that for all i ∈ {1, · · · , d} and v′ in
V ′
i = {(v1, · · · , vi, · · · , vd)|vi = 0 and vj ∈ {1, · · · ,K} for j ̸= i} the optimal objective value is

lower bounded by the minimum of two least squares problems

inf
â,b̂

1

K

K∑
k=1

LPv′+kei
,i(θ) ≥

1

K
inf

j∈{1,2}
inf
β∈R2

∥Ajβ − yj∥2 .

Using duality to further lower bound the inner infimum we now obtain

inf
â,b̂

K∑
k=1

LPv′+kei
,xi(â, b̂) ≥ inf

j∈{1,2}
sup

ν:AT
j ν=0

|νT yj |
∥ν∥2

and since δ ≤ 1/3

νT1 =
[
− 2

1−δ ,
1

1−δ , 1, 0, 0
]
∈ Null(AT

1 )

νT2 =
[

1
1−δ ,−

2
1−δ , 1, 0, 0

]
∈ Null(AT

2 ) ,

for all i ∈ {1, · · · , d}, v′ ∈ V ′
i

inf
â,b̂

K∑
k=1

LPv′+kei
,xi(â, b̂) ≥ δ

√
α(1− α)

7
.

B.7. Proof of Theorem 3 with continuous conditional density

In order to extend our result to allow for continuous conditional densities we define the smoothed
perturbation function

h̃k(s) =



Dk,1 s ∈ [0, 1/3− ϵ/2)

Dk,1

(
1− s−(1/3−ϵ/2)

ϵ

)
+Dk,2

(
s−(1/3−ϵ/2)

ϵ

)
s ∈ [1/3− ϵ/2, 1/3 + ϵ/2)

Dk,2 s ∈ [1/3 + ϵ/2, 2/3− ϵ/2)

Dk,2

(
1− s−(2/3−ϵ/2)

ϵ

)
+Dk,3

(
s−(2/3−ϵ/2)

ϵ

)
s ∈ [2/3− ϵ/2, 2/3 + ϵ/2)

Dk,3 s ∈ [2/3 + ϵ/2, 1]

,

where ϵ = 32δ2α(1−α)
7K2 . It is now important to note that our bound on the total variation distance is

still valid, as once again the smoothing can only bring the conditional densities closer together, so

25



ARECES CHENG DUCHI KUDITIPUDI

it only remains to analyze the weak separation condition. If we denote P̃v as the smoothed version
of Pv we can see that

K∑
k=1

LPv′+kei
,xi(â, b̂) =

K∑
k=1

∣∣∣Pv′+kei(S ∈ [â(xi), b̂(xi)]|X = xi)− (1− α)
∣∣∣

≤
K∑
k=1

∣∣∣P̃v′+kei(S ∈ [â(xi), b̂(xi)]|X = xi)− (1− α)
∣∣∣

+
∥∥∥Pv′+kei − P̃v′+kei

∥∥∥
TV

,

or equivalently

K∑
k=1

LP̃v′+kei
,xi
(â, b̂) ≥

K∑
k=1

LPv′+kei
,xi(â, b̂)−

K∑
k=1

∥∥∥Pv′+kei − P̃v′+kei

∥∥∥
TV

.

We finally bound the total variation distance between the smoothed and non-smoothed variants
using the same technique as before

dhel(P̃v′+kei ||Pv′+kei)
2 ≤ 2

[
1−

(
1− 2δ2ϵ

d

)n]
≤ 2

[
1− e−

4nδ2ϵ
d

]
≤ 2

[
1− e−

ϵ
512

]
so that ∥∥∥Pv′+kei − P̃v′+kei

∥∥∥
TV

≤ 1

16

√
2ϵ =

δ

2K

√
α(1− α)

7
,

and thus

K∑
k=1

LP̃v′+kei
,xi
(â, b̂) ≥ δ

2

√
α(1− α)

7
,

leading to the minimax lower bound

MCa,b
≥ 1

1700

√
α(1− α)d

7n
,

for n ≥ d
64 .

Appendix C. Optimality guarantees in conformal prediction

In Section 2.2 we discussed that choosing the best among all sets attaining 1 − α coverage is a
key issue when constructing confidence sets. In fact, there are two somewhat equivalent ways of
defining optimal sets: score functions and optimality measures. We prove this equivalence through
the following two lemmas.
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Lemma 15 Let {C1−α} be φ-perfectable nested sets with conditional coverage 1−α. If the nested
sets C1−α are inner-semicontinuous for every α, namely

lim
α′↓α

C1−α′ = C1−α ,

then there exists a score function s : X × Y → [0, 1] such that

C1−α(x) = {y|s(x, y) ≤ 1− α} .

Proof Define

s(x, y) = inf{τ |y ∈ Cτ (x)} ,

where it is clear that s(x, y) ∈ [0, 1] since any y ∈ Y satisfies y ∈ C1(x) and y /∈ C0(x). We
now take y ∈ {y | s(x, y) ≤ 1 − α} and note that this implies y ∈ C1−α′(x) for all α′ > α and
thus it is clear that y ∈ C1−α(x) by the nesting and inner-semicontinuity assumption. Conversely,
if y ∈ C1−α(x) then inf{τ |y ∈ C1−α(x)} ≤ 1− α and thus y ∈ {y | s(x, y) ≤ 1− α}. Therefore,
we have found a score so that C1−α(x) = {y | s(x, y) ≤ 1− α}.

Lemma 16 For any score function s : X×Y → [0, 1] there exists φ(x, y) so that s is φ-perfectable
with respect to any distribution PX,Y with no point masses.

Proof For φ(x, y) = s(x, y) we get

Lφ(C) =

∫
X

∫
C(x)

s(x, y)dP (y|x)dP (x) .

We now define

q−1−α(x) = inf{q ∈ R s.t. P (s(x, Y ) ≤ q | X = x) = 1− α}
q+1−α(x) = sup{q ∈ R s.t. P (s(x, Y ) ≤ q | X = x) = P

(
s(x, Y ) ≤ q−1−α(x) | X = x

)
} ,

and for any q(x) ∈ [q−1−α(x), q
+
1−α(x)] construct C⋆

1−α(x) = {y | s(x, y) ≤ q(x)}. For any other
C(x) with 1 − α conditional coverage define the set E to be all values of x such that ϵ(x) :=
P
(
Y ∈ C⋆

1−α(x) \ C(x) | X = x
)
> 0 so if E has positive measure∫

E
ϵ(x)dP (x) > 0 .

However, as P
(
Y ∈ C⋆

1−α(x) | X = x
)
= 1− α for all x ∈ E we have

P
(
Y ∈ C(x) \ C⋆

1−α(x) | X = x
)
≥ ϵ(x) > 0 .

In this case on y ∈ C(x) \ C⋆
1−α(x) we know that s(x, y) > q(x) so

∆(x) =

∫
C⋆

1−α(x)
s(x, y)dP (y|x)−

∫
C(x)

s(x, y)dP (y|x) ,
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satisfies

∆(x) ≤
[
P
(
C⋆
1−α(x) \ C(x) | X = x

)
− P

(
C(x) \ C⋆

1−α(x) | X = x
)]

q(x)

≤ 0 .

Thus we have shown that C⋆
1−α(x) minimizes the chosen loss for any distribution with no point

masses.

These lemmas illustrate why we cannot fix both an arbitrary optimality criterion and an arbitrary
score when studying conformal prediction without distributional assumptions, as both notions are
intimately linked. In practice, practitioners often seek to obtain the shortest possible intervals as
measured by Leb(C(x)) so the usual approach is to assume some properties of the observed data
distribution and choose scores with quantile sets that provide minimum length intervals under these
assumptions. However, it is evident that this approach can only yield minimum length intervals in
all cases if the score is chosen in a distribution dependent manner as shown in the following fact.

Fact 17 For any distribution on (Y,X) ∈ (Rk,Rm) with conditional density f(y|x) the quantile
sets Cq(x) = {y|s(x, y) ≤ q(x)} defined by the distribution dependent score

s(x, y) = exp [−f(y|x)] ,

minimize Leb(C(x)) over sets with 1− α coverage.

Proof The proof follows immediately from the fact that since a density exists the sets with minimum
Lebesgue measure are of the form Ca(x) = {y|f(y|x) > a(x)} by definition, and these match the
sublevel sets of s(x, y) = exp [−f(y|x)].

Appendix D. Deferred proofs for weak calibration

D.1. Proof of Theorem 4

The general plan for this proof is to construct a base tilt P0 and a family of alternate tilts {Pδv}
indexed by v ∈ V = {−1, 1}d and δ ≥ 0, so that these two sets are δ-separated. In this case we can
apply the convex hull Le Cam method (Lemma 15.9 in Wainwright (2019)) to conclude that

inf
θ̂

sup
P∈P

EP

[
|CE(f,W)− θ̂|

]
≥ δ

2

[
1−

∥∥Pn
0 − P̄n

δ

∥∥
TV

]
,

where P̄n
δ = 1

|V|
∑

v∈V Pn
δv. We start by constructing our perfectly calibrated tilt P0 where S is

uniformly distributed on {s1, · · · , sd} and Y |S = si ∼ Bernoulli(si). To construct the particular
members of the alternative family Pδv, for each j ∈ {1, · · · , d} we define the “tilting” function

ϕj(y, s) :=

(
y

sj
− 1− y

1− sj

)
1{y = 1, s = sj} .

Then EP0 [ϕj(Y, S)] = 0 while

VarP0 (ϕj(Y, S)) =
1

sjd
+

1

(1− sj)d
=

1

sj(1− sj)d
.
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Note that |ϕj(s, y)| ≤ 1
ϵ as ϵ < 1

2 and if we define the vector ϕ(y, s) = (ϕ1(y, s), · · · , ϕd(y, s)),
then ∥ϕ(y, s)∥0 ≤ 1, as the number of non-zero entries is at most 1. Now for δ ∈ [0, ϵ] for each
v ∈ {−1, 1}d we may define the tilted distribution Pδv with

Pδv(Y = y, S = s) = (1 + δ⟨v, ϕ(y, s)⟩)P0(Y = y, S = s) ,

which is valid whenever δ ≤ c as |⟨v, ϕ(y, s)⟩| ≤ 1
ϵ . We now compute the calibration error for

distributions Pδv by noting that S is still uniform on {s1, · · · , sd} so that

EPδv
[Y |S = sj ] = sj + δvjEP0 [ϕj(Y, sj)Y |S = sj ] = sj + δvj ,

and so by our shattering assumption

CE(f,W) = sup
w∈W

EPδv
[w(S)(Y − S)] ≥ 1

d

d∑
j=1

|sj + vjδ − sj | = δ ,

so our family {Pδv} is δ-separated from P0.
Lastly, we compute a bound on testing error. We start by recalling that in the case of our mixture

distribution the χ2-divergence satisfies

Dχ2

(
P̄n
δ ||Pn

0

)
+ 1 =

1

22d

∑
v,v′

EP0

[
(1 + δ⟨v, ϕ(y, s)⟩)(1 + δ⟨v′, ϕ(y, s)⟩)

]n
=

1

22d

∑
v,v′

(1 + δ2vTCovP0(ϕ(Y, S))v
′),,

because our sampling is i.i.d. By our variance calculation for ϕ and that each ϕj has disjoint support,

we have that CovP0(ϕ(Y, S)) =
1
ddiag

([
1

sj(1−sj)

]n
j=1

)
and so

Dχ2

(
P̄n
δ ||Pn

0

)
+ 1 = E

1 +
δ2

d

d∑
j=1

VjV
′
j

sj(1− sj)

n ≤ E

exp
nδ2

d

d∑
j=1

VjV
′
j

sj(1− sj)

 ,

where the expectation is over V, V ′ i.i.d.∼ Uniform({±1}d). Clearly, since VjV
′
j are i.i.d. random

signs they are 1-sub-Gaussian and

Dχ2

(
P̄n
δ ||Pn

0

)
+ 1 ≤ exp

n2δ4

2d2

d∑
j=1

1

s2j (1− sj)2

 ≤ exp

[
n2δ4

2dϵ2(1− ϵ)2

]
,

because sj ∈ [ϵ, 1 − ϵ]. It is now easy to see that for δ4 = dϵ2(1−ϵ)2

2n2 then Dχ2

(
P̄n
δ ||Pn

0

)
≤ 1

2 and
thus

∥∥Pn
0 − P̄n

δ

∥∥
TV ≤ 1

2 so that

inf
θ̂

sup
P⊆P

EP

[
|CE(f,W)− θ̂|

]
≥ d1/4

5n1/2

√
ϵ(1− ϵ) ,

for n ≥ 1
ϵ(1−ϵ)

√
d
2 .
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D.2. Proof of Corollary 5

We start by observing that given the conditions in this corollary and under the same construction of
our proof for Theorem 4

CE(f,WB2)2 = ece∥·∥2(f)
2 =

1

d

d∑
j=1

δ2v2j = δ2 ,

so by just using the same logic we get a lower bound of

inf
θ̂

sup
P⊆P

EP

[
|CE(f,W)2 − θ̂|

]
≥ d1/2

6n
ϵ(1− ϵ) ,

for n ≥ 1
ϵ(1−ϵ)

√
d
2 . For the remaining lower bound we use a simple two-point construction with tilts

P0, P1 such that both are uniformly distributed on {s1, · · · , sd} and for γ ∈ (0, 1/2− ϵ), δ ∈ (0, ϵ)
then

P0(Y = 1|S = si) =

{
si + γ si ≤ 1/2

si − γ si > 1/2 ,

and

P1(Y = 1|S = si) =

{
si + γ(1 + δ) si ≤ 1/2

si − γ(1 + δ) si > 1/2 .

In this case it is easy to see that

CEP0(f,WB2)2 = γ2 CEP1(f,WB2)2 = (1 + δ)2γ2 ,

and thus P0, P1 are 2δγ2 separated. It now only remains to bound the probability of testing error,
so we note that if si ≤ 1/2

− log

(
1 +

δγ

si + γ

)
(si + γ) ≤ −

(
δγ

si + γ
− δ2γ2

(si + γ)2

)
(si + γ)

≤ −δγ +
δ2γ2

si + γ
,

and since − δγ
1−(si+γ) ≥ −1

2 we also know that

− log

(
1− δγ

1− (si + γ)

)
(1− (si + γ)) ≤ −

(
− δγ

1− (si + γ)
− δ2γ2

1− (si + γ)

)
(1− (si + γ))

≤ δγ +
δ2γ2

1− (si + γ)
.
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An identical argument shows that these bounds also hold when si > 1/2 so we can conclude that

Dkl (P0||P1) ≤
1

d

d∑
i=1

δ2γ2

(1− (si + γ))(si + γ)
≤ δ2γ2

ϵ(1− ϵ)
, (9)

and

∥Pn
0 − Pn

1 ∥TV ≤

√
nδ2γ2

2ϵ(1− ϵ)
.

We can now pick δ2 = ϵ(1−ϵ)
2γ2n

to guarantee that ∥Pn
0 − Pn

1 ∥TV ≤ 1
2 and apply the standard Le Cam

two-point method to obtain

inf
θ̂

sup
P⊆P

EP

[
|CE(f,W)2 − θ̂|

]
≥ 1

4

√
ϵ(1− ϵ)γ2

2n
≥ 1

6

√
ϵ(1− ϵ)CE(f,WB2)2

n
,

for n ≥ 1
2CE(f,WB2 )2ϵ

recalling that γ2 = CE(f,W)2 for one of our tilts.

D.3. Proof of Theorem 7

Using identical reasoning to the original proof in appendix F of Kumar et al. (2019) we know that
the debiased estimator satisfies the decomposition

E2
db =

d∑
i=1

p̂ie
2
i︸ ︷︷ ︸

(C1)

− 2

d∑
i=1

p̂iei(ŷi − y∗i )︸ ︷︷ ︸
(C2)

+

d∑
i=1

p̂i

[
(ŷi − y∗i )

2 − ŷi(1− ŷi)

p̂in− 1

]
︸ ︷︷ ︸

(C3)

,

where y∗i = E [Y |S = si], pi = P (Sk = si) and ei = si − y∗i . Therefore,

|E2
db − CE(f,WB2)2| ≤ |(C1)− CE(f,WB2)2|+ |(C2)|+ |(C3)|

Bounding the first term: Note that

d∑
i=1

p̂ie
2
i =

1

n

d∑
i=1

n∑
k=1

1{Sk = si}e2i =
1

n

n∑
k=1

E2
i ,

where {E2
k}nk=1 are the i.i.d. random variables with distribution

P
(
E2

k = e2i
)
= P (Sk = si) ,

as they simply return the true conditional calibration error ei if Sk = si. It is clear that

E
[
E2

k

]
=

d∑
i=1

pie
2
i = CE(f,WB2)2
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and |E2
k | ≤ 1 so that Var(E2

k) ≤ E
[
E4

k

]
≤ E

[
E2

k

]
= CE(f,WB2)2. We can now use Bernstein’s

inequality to argue that

P

(∣∣∣∣∣ 1n
n∑

k=1

E2
i − CE(f,WB2)2

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−nmin

{
t2

3CE(f,WB2)2
,
t

4

}]
,

and thus with probability at least 1− δ

|(C1)− CE(f,WB2)2| ≤

√
3CE(f,WB2)2

n
log

(
2

δ

)
+

4

n
log

(
2

δ

)
.

Bounding (C2): We start by observing that

P (p̂i = 0) = (1− pi)
n = exp

[
−n log

(
1

1− pi

)]
≤ exp

[
−n log

(
1

1−mini pi

)]
,

so using a union bound since n ≥ c log(dδ ) for 1
c ≤ log

(
1

mini pi

)
P (∃i : p̂i = 0) ≤ δ .

Therefore, conditioning on the event that we see at least one sample from each score (A1) and the
random variable Z = (S1, · · · , Sn) we know that

E [ ŷi − y∗i |Z,A1] = 0 .

We now observe that given Z the samples (Y1, · · · , Yn) are still independent but not identically
distributed as their distribution depends on the corresponding Sk. Moreover, since ŷi − y∗i |Z,A1

has absolute value bounded by 1, we know that it is sub-Gaussian with parameter 1
4p̂in

. Note that
p̂i is a constant given Z. It is now easy to see that p̂iei(ŷi − y∗i )|Z,A1 is also mean zero and sub-

Gaussian with parameter p̂ie
2
i

4n , and the full term (C2) conditioned on Z,A1 also has expected value
0 with sub-Gaussian parameter

σ2 =
d∑

i=1

p̂ie
2
i

4n
=

(C1)

4n
≤ CE(f,WB2)2 + |(C1)− CE(f,WB2)2|

4n
.

Therefore, if our bound on the previous term holds we can use the sub-Gaussian tail inequality to
conclude that with probability at least 1− δ

|(C2)| ≤

√
2CE(f,WB2)2 +O(n−1/2)

n
log

(
2

δ

)
.

This holds for any Z conditioned on our bound for the first term and the event A1 so it must hold
after marginalizing over Z.
Bounding (C3): This bound follows from Lemma F.8. in Kumar et al. (2019) with the only modi-
fication that the condition p̂i > 0 is achieved via event A1 in the previous part. Therefore, we can
conclude that with probability at least 1− 2δ

|(C3)| ≤ 3
√
d

n
log
(n
δ

)
+

δ

n
.
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Combining all our bounds: We now see that for n ≥ c log(dδ ) with 1
c ≤ log

(
1

mini pi

)
with

probability at least 1− 4δ

|E2
db − CE(f,WB2)2| ≤ C1

√
CE(f,WB2)2

n
log

(
2

δ

)
+ C2

√
d

n
log
(n
δ

)
,

for some numerical constants C1, C2 and sufficiently large n.

D.4. Proof of Theorem 8

The proof of this theorem follows the logic laid out in our previous proof of Theorem 4. We first
construct the perfectly calibrated tilt P0 where S follows a predefined distribution Q and

P0(Y = 1|S = s) = s .

For Bϵ = {B1, · · · , Bd} we now define the functions

ϕj(s, y) =
1

s
1{y = 1, s ∈ Bj} −

1

1− s
1{y = 0, s ∈ Bj} .

These have mean 0 since EP0 [ϕj(s, Y )|S = s] = 0 and variance

VarP0 (ϕj(S, Y )) =

∫
Bj

1

s(1− s)
dQ(s) ≤ q1

ϵ(1− ϵ)
.

The supports of our functions ϕj are once again disjoint so we can define our family of alternative
tilts indexed by v ∈ V = {−1, 1}d as

dPδv(s, y) = (1 + δ⟨v, ϕ(s, y)⟩)dP0(s, y) ,

for 0 < δ ≤ min{ϵ, 1− ϵ}. Our assumptions now guarantee that the new construction satisfies

CE(f,W) ≥ dq0δ ,

so our family {Pδv} is dq0δ
2 -separated from P0. It is now easy to see that following the same logic

for our previous χ2-divergence bound we get that for δ4 = ϵ2(1−ϵ)2

2dq21n
2∥∥Pn

0 − P̄n
δ

∥∥
TV ≤ 1

2
.

Le Cam’s convex hull method in this case now yields

inf
θ̂

sup
P⊆P

EP

[
|CE(f,W)− θ̂|

]
≥ q0√

q1
· d3/4

5n1/2

√
ϵ(1− ϵ)

≥ q0d√
q1d

· d1/4

5n1/2

√
ϵ(1− ϵ)

≥ q0
q1

· d1/4

5n1/2

√
ϵ(1− ϵ) ,

for n ≥ 1√
2ϵ(1−ϵ)q1d1/2

.
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