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Abstract
The combination of lightly supervised pre-training and online fine-tuning has played a key

role in recent AI developments. These new learning pipelines call for new theoretical frameworks.
In this paper, we formalize core aspects of weakly supervised and active learning with a simple
problem: the estimation of the mode of a distribution using partial feedback. Variations of this
problem naturally occur in many instances where exhaustive information on a dataset is either too
expensive or downright impossible to obtain, e.g. due to the limitations of human annotators, but
partial, hierarchical information is available (Ziegler et al., 2020; Zhu et al., 2023; Cabannes et al.,
2022; Cesa-Bianchi et al., 2019; Jamieson and Nowak, 2011; Braverman et al., 2019; Cesa-Bianchi
et al., 2006; Gangaputra and Geman, 2006; Fiez et al., 2019).

More formally, the practitioner has access to samples (Yj) drawn iid from a discrete distribu-
tion p ∈ P(Y), where Y = {y1, . . . , ym} and p(yi) ≥ p(yi+1), but cannot directly observe the
realizations Yj ; instead, at each time t ∈ N, they select an index jt and a set St ⊂ Y and observe
the value of the query 1Yjt∈St . The task is to accurately estimate the mode y1 = argmaxy∈Y p(y)
of the distribution p using as few queries as possible.

A naive solution is to simply identify each sample Yj exactly through a binary search consum-
ing ⌈log2(m)⌉ queries, and to output the most frequent class among the identified samples as an
estimation of the true mode at any time t. The asymptotic number T of queries needed by this
algorithm to identify the mode with probability of error at most δ, as δ → 0, is

T ≤ (∆−2
2 +∆−2

2 log2(m)) log(1/δ),

where ∆2
i := − ln(1− (

√
p(y1)−

√
p(yi))

2) and we ignore multiplicative constants. We improve
upon this baseline by combining three ideas.

• We identify samples using a learnt, asymptotically optimal entropy-based dichotomic search tree
(Huffman, 1952; Vitter, 1987). This allows us to replace log2(m) by −

∑
p(yi) log2(p(yi)).

• We do not fully identify each sample; instead, we stop our search at a depth in the tree roughly equal to
that of the mode. Nodes below this depth correspond to sets S of classes whose estimated probability
is smaller than that of the mode. This allows us to replace log2(p(yi)) by log2(p(y1)).

• We use bandits-inspired techniques to discard classes y ∈ Y as soon as they seem unlikely to be the
mode (Even-Dar et al., 2006; Bubeck et al., 2010). This allows us to replace ∆−1

2 by ∆−1
i .

The asymptotic expected number of queries required by the resulting algorithm to identify the mode
with probability of error at most δ satisfies

E[T ] ≤ (∆−2
2 + (

∑
i≥1

p(yi)∆
−2
i )| log2 p(y1)|) log(1/δ),

once again ignoring multiplicative constants. All our algorithms and some code to run experiments
are available online at https://github.com/VivienCabannes/mepf.
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