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Abstract
We consider the problem of instance-optimal statistical estimation under the constraint of differ-
ential privacy where mechanisms must adapt to the difficulty of the input dataset. We prove a
new instance specific lower bound using a new divergence and show it characterizes the local min-
imax optimal rates for private statistical estimation. We propose two new mechanisms that are
universally instance-optimal for general estimation problems up to logarithmic factors. Our first
mechanism, the total variation mechanism, builds on the exponential mechanism with stable ap-
proximations of the total variation distance, and is universally instance-optimal in the high privacy
regime ε ≤ 1/

√
n. Our second mechanism, the T-mechanism, is based on the T-estimator frame-

work (Birgé, 2006) using the clipped log likelihood ratio as a stable test: it attains instance-optimal
rates for any ε ≤ 1 up to logarithmic factors. Finally, we study the implications of our results to
robust statistical estimation, and show that our algorithms are universally optimal for this problem,
characterizing the optimal minimax rates for robust statistical estimation.

1. Introduction

Private statistical estimation has become increasingly vital in contemporary data analysis, particu-
larly in light of growing concerns surrounding individual privacy. In this problem, given n samples
from a distribution P ∈ P over a space S, an algorithm aims to estimate a parameter of the distri-
bution θ(P ) under the constraint of differential privacy where θ : P → Θ ⊂ R.

A substantial amount of research has been dedicated to exploring differentially private statistical
estimation (Smith, 2011; Duchi et al., 2018; Canonne et al., 2018), mostly focusing on the design of
minimax optimal algorithms. This notion measures the performance of an algorithm for the family
of distributions P through its performance on the hardest distribution P ∈ P . As a result, the
performance of minimax optimal algorithms need not adapt to the difficulty of distribution P , and
hence might suffer from bad performance for easy distributions.

The concept of instance-optimality tackles these concerns: under this paradigm, an instance-
optimal algorithm must simultaneously obtain the best possible performance for every distribution,

© 2024 H. Asi, J.C. Duchi, S. Haque, Z. Li & F. Ruan.



ASI DUCHI HAQUE LI RUAN

hence adapting to the difficulty of each distribution. Existing work in statistical estimation study
instance-optimality through the notion of local minimax risk (Cai and Low, 2015), which allows to
measure the optimal instance-specific risk for a distribution P by comparing to its hardest alternative
distribution Q ∈ P .

Driven by its significance, there have been a significant interest in instance-optimality for privacy-
preserving algorithms (Asi and Duchi, 2020a,b; Huang et al., 2021; Dick et al., 2023; McMillan
et al., 2022). Asi and Duchi (2020a) study instance-optimality for estimating empirical quantities
of the input sample, and show that the inverse sensitivity mechanism is universally nearly instance-
optimal for any 1-dimensional function of interest (up to logarithmic factors). However, the inverse
sensitivity mechanism may not be instance-optimal for statistical estimation of parameters of the
population, leading several recent papers to propose new algorithms for statistical estimation (Huang
et al., 2021; Dick et al., 2023; McMillan et al., 2022).

In contrast to empirical estimation where universally nearly instance-optimal algorithms ex-
ist (Asi and Duchi, 2020a), existing work on instance-optimal statistical estimation is limited to
specific problems (Huang et al., 2021; Dick et al., 2023; McMillan et al., 2022). Indeed, Huang et al.
(2021) and Dick et al. (2023) propose instance-optimal procedures that work only for the problem
of mean-estimation, while the procedures of McMillan et al. (2022) are limited to restricted families
of distributions such as single-parameter exponential families with strict conditions on the moments
of the distribution.

To address these issues, in this work we study instance-optimality for general private estimation
problems, aiming to develop universally instance-optimal algorithms that work for any estimation
task. We accomplish this in two steps: first, we prove new lower bounds on the local minimax risk
for each distribution P ∈ P , characterizing the instance-specific risk for each distribution. Then, we
propose two new mechanisms that are universally (nearly) instance-optimal for general estimation
problems, matching our local-minimax lower bounds up to logarithmic factors.

1.1. Our contributions

We study private statistical estimation where we are given a dataset S = (S1, . . . , Sn) drawn from
a distribution P ∈ P on a space S. The goal is to estimate a parameter θ(P ) under the constraint of
ε-differential privacy where θ : P → Θ ⊂ R.

Tight characterization of local-minimax rates. Our main contribution in this work is establish-
ing a tight characterization of the local minimax rates for private statistical estimation problems. To
situate our work within the existing literature, it is instructive to review existing characterizations for
the rates of statistical estimation problems with and without privacy constraints. These rates are typ-
ically based on the notion of local modulus ωD with respect to a distance function D : P ×P → R
between two distributions. More precisely, we define the local modulus with respect to a distance:

ωD (δ, P0;P) := sup
P1∈P

{|θ(P1)− θ(P0)| | D(P1, P0) ≤ δ} . (1)

The local modulus ωD at P0 essentially measures the amount of change in the parameter θ(P0)
when the distribution P0 is allowed to shift by distance δ when the distance is measured by D.

This quantity proves extremely useful for determining the rates of convergence of estima-
tion problems: indeed, without privacy, the local modulus ωdhel(1/

√
n, P0;P) with respect to the
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Hellinger distance dhel provides tight convergence rates for the local risk for a distribution P0. Ad-
ditionally, the local modulus have been used to give tight rates in the privacy literature as well: Asi
and Duchi (2020a) show that the local modulus ωTV (1/nε, P̂0;P) with respect to the total varia-
tion distance provides tight rates for estimating functions of the empirical distribution P̂0. Moreover,
Duchi and Ruan (2018a) show that the TV local modululs ωTV (1/

√
nε2, P0;P) gives tight rates

for private statistical estimation in the local privacy model.
For private statistical estimation in the central model, McMillan et al. (2022) recently show

that for generalized exponential families with certain moment assumptions, the optimal risk for a
distribution P0 is roughly

ωdhel(1/
√
n, P0;P) + ωTV (1/nε, P0;P). (2)

While the local modulus in (2) is a valid lower bound for general estimation problems, it remained
unclear whether there exists a mechanisms that attains these bounds without additional conditions.

Our work resolves this and demonstrates that the rate (2) is not tight for general estimation
problems. Instead, we prove new tight rates for private statistical estimation that require a new
measure of distance Dε between two distributions

Dε(P,Q) :=

∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε

dx,

where [t]ba := max{a,min{t, b}} is the projection of t to the interval [a, b]. This distance can be
viewed as a symmetrized version of the clipped KL divergence between two distributions. Our rates
are then based on the local modulus with respect to Dε:

ωDε (δ, P0;P) = sup
P1∈P

{|θ(P1)− θ(P0)| | Dε(P1, P0) ≤ δ} . (3)

The central result of this paper is that the quantity ωDε(
1
n , P0;P) accurately captures the optimal

local minimax risk for general statistical estimation problems. We establish this result via improved
lower bounds for private estimation and new mechanisms that attain these lower bounds. Through-
out the paper, we will use the simpler notation ωε instead of ωDε .

Instance-specific lower bound (Section 2). We prove tight instance-specific lower bounds for
private statistical estimation using the notion of local minimax risk. In contrast from prior work
which proved lower bounds that depend on the total variation local modulus (McMillan et al., 2022),
our lower bounds are based on the local modulus with respect to Dε. We show that this lower
bound is always larger than the total-variation lower bound, and that the gap between them can be
arbitrarily large for certain problems. We also show super-efficiency about this lower bound.

Universal instance-optimality via the TV mechanism (Section 3). We propose a new total-
variation based framework for designing private algorithms for statistical estimation. This frame-
work is based on the exponential mechanism with stable approximations of the total variation dis-
tance. By carefully developing stable approximations of the TV distance, this framework yields a
mechanism that is universally nearly-instance-optimal (up to logarithmic factors) for any family of
distributions in the high privacy regime ε ≤ 1/

√
n.
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Universal instance-optimality via the T-mechanism (Section 4). Our main algorithm is the T-
mechanism which is based on the T-estimation framework (Birgé, 2006). The mechanism uses
T-estimators with clipped log-likelihood ratio as a stable score, and satisfies a strong universal
instance-optimality guarantee (up to logarithmic factors) for any statistical estimation problem and
all ε ≤ 1. As a result, we obtain near-optimal rates for multiple-hypothesis testing, extending prior
work (Canonne et al., 2018; McMillan et al., 2022) which holds only for binary hypothesis testing.

Implication for robust 1-dimensional estimation (Section 5). Finally, building on recent con-
nections between private and robust statistical estimation (Hopkins et al., 2022; Asi et al., 2023), our
results for private estimation imply a tight characterization for the rates of convergence of τ -robust
estimation problems where an adversary can corrupt nτ samples in the dataset. We show that our
local modulus ω1/nτ (up to logarithmic factors) governs the rates of convergence for τ -robust esti-
mation, demonstrating that the T-mechanism is universally nearly-optimal for robust estimation (up
to logarithmic factors). To the best of our knowledge, our work is the first to provide a precise char-
acterization of the rates for robust estimation problems. Previous studies (Donoho and Liu, 1988;
Zhu et al., 2022) achieved optimality results exclusively in the infinite sample regime. However,
as our results indicate, the total-variation rates presented in these papers do not capture the correct
rates for the finite-sample regime.

1.2. Problem Setting

We assume we have access to i.i.d. data S = (S1, . . . , Sn) drawn from a distribution P ∈ P on a
space S. We let θ : P → Θ ⊂ R be a parameter of the sampling distribution P that we wish to
estimate, so that θ(P ) denotes the target parameter (e.g. θ(P ) = ES∼P [S]). We also require that
diam(Θ) ≤ R which is a necessary condition for pure ε-DP estimation.

Our goal is to design differentially private mechanisms that estimate θ(P ) given S. We recall
the notion of differential privacy.

Definition 1 (Differential Privacy (Dwork et al., 2006)) A (randomized) algorithm A : Sn → Θ
is ε-differentially private (DP) if for all neighboring datasets S,S ′ ∈ Sn that differ in one sample
and any measurable output space T ⊆ Θ we have Pr[A(S) ∈ T ] ≤ eε Pr[A(S ′) ∈ T ].

Differentially private statistical estimation. In this problem, which is the main focus of this
paper, we are interested in differentially private algorithms for estimating a parameter θ(P ) of some
distribution P ∈ P , given n samples S = (S1, . . . , Sn) drawn from P . We require the following
two properties for an algorithm A : Sn → Θ for this problem:

1. (Privacy) A satisfies ε-DP for all input datasets S ∈ Sn (regardless of P ).

2. (Utility) We measure the error of the algorithm over inputs S ∼ Pn. The expected error of
the algorithm for a distribution P ∈ P is Err(A, P ) := ES∼Pn [|A(S)− θ(P )|].
Throughout the paper, we will usually consider upper bounds on the error |A(S)−θ(P )| that
hold with high probability for S ∼ Pn.

To measure the difficulty of a problem with respect the family of distributions, we use the
standard notion of global minimax risk.
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Definition 2 (Global Minimax Complexity) The global minimax complexity for a family of dis-
tributions P is

Mn(P,Aε) = inf
A∈Aε

sup
P∈P

EA,S∼Pn [|A(S)− θ(P )|] ,

where Aε is the family of all ε-DP algorithms.

Finally, to evaluate the instance-optimality guarantees of our algorithm, we measure the risk
of an algorithm over a specific distribution P0 through the local minimax risk, following classical
notions in statistics (Cai and Low, 2015), and existing papers on instance-optimality under privacy
constraints (Asi and Duchi, 2020a; McMillan et al., 2022). Throughout the paper, we let Aε be the
family of ε-differentially private algorithms.

Definition 3 (Local Minimax Complexity) The local minimax complexity for a distribution P0 ∈
P is defined as

Mloc
n (P0;P,Aε) := sup

P1∈P
inf

A∈Aε

max
P∈{P0,P1}

EA,S∼Pn [|A(S)− θ(P )|] ,

where Aε is the family of all ε-DP algorithms.

This definition originates from an observation made by Stein (1956), suggesting that a problem’s
difficulty should be comparable to its “most challenging one-dimensional sub-problem”. In this
definition, the algorithm A′ knows that the distribution can be either P0 or P1 for some P1 ∈ P ,
and its performance will be measured based on the hardest alternative P1.

Finally, we say that an algorithm A is instance-optimal if it attains the local minimax risk for
every distribution P0 ∈ P , that is, Err(A, P0) = O(Mloc

n (P0;P,Aε)).

1.3. Preliminaries

T-estimators. Birgé (2006) introduced T-estimators as an alternative to MLE for estimating a
distribution in a given distance d. The T-estimator takes a discretization M ⊂ P and for every pair
of distributions P,Q ∈ M , defines a test TP,Q : S⋆ → {0, 1}: given a dataset S iid∼ P0, the test
either accepts P in favour of Q (TP,Q(S) = 0) or rejects P in favour of Q (TP,Q(S) = 1). The
tests are required to satisfy the consistency condition that TP,Q = 1− TQ,P for all P,Q ∈M . The
T-estimator then outputs distribution P̂ ∈ M if for all other Q ∈ M , the test TP̂ ,Q favours P̂ to Q.
In the case of Hellinger- and TV-distance estimation, (Birgé, 2006, Proposition 6) chooses the tests
TP,Q to be of the form TP,Q = 1{ 1n

∑n
i=1 ψP,Q(Si) ≤ 0} for some function ψP,Q. This functional

form for the tests motivates our private T-mechanism, as we discuss in Section 4.

Exponential mechanism. Given an input S ∈ Sn and a distance function g : Θ × Sn → R
where Θ ⊂ R, the exponential mechanism is a private mechanism that aims to return t ∈ Θ that
approximately minimizes the distance g(t;S) (McSherry and Talwar, 2007). It uses the global
sensitivity of g, defines as ∆g := supθ,S,S′:dham(S,S′)≤1 |g(θ;S) − g(θ;S ′)|. Then, given an input
S ∈ Sn, the exponential mechanism outputs t ∈ θ using the following density function

fexp(t;S) ∝ exp

(
− ε

2∆g
· g(θ;S)

)
.

The following lemma summarizes the guarantees of the exponential mechanism.
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Lemma 4 (McSherry and Talwar (2007)) The exponential mechanism fexp is ε-DP.

We also require a smooth version of the exponential mechanism which provides better utility
bounds when Θ is not discrete. Following Asi and Duchi (2020a), given ρ > 0, we define the
ρ-smooth score of g to be gρ(t;S) = infs∈Θ:|s−t|≤ρ g(t;S). The ρ-smooth exponential mechanism
then applies the exponential mechanism with the smooth score gρ,

fsm−exp(t;S) ∝ exp

(
− ε

2∆g
· gρ(θ;S)

)
.

The smooth exponential mechanism also preserves privacy as the global sensitivity of gρ is also ∆g.

Lemma 5 (Asi and Duchi (2020a)) The ρ-smooth exponential mechanism fsm−exp is ε-DP.

2. Local Minimax Lower Bounds

In this section we introduce our local modulus and prove local minimax lower bounds. We begin by
defining the local modulus and proving a global minimax lower bound, and a local minimax lower
bounds. Key to our lower bounds is the new functional Dε

Dε(P,Q) :=

∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε

dx,

where [t]ba := max{a,min{t, b}}. We show several properties of Dε in Appendix B such as non-
negativity, finiteness, and connections to total variation and Hellinger distance. Our lower bounds
are then based on the local modulus ωε (3) of continuity with respect to the functional Dε:

ωε (δ, P0;P) = sup
P1∈P

{|θ(P1)− θ(P0)| | Dε(P1, P0) ≤ δ} .

We also provide lower bounds for the global minimax risk of a family of distribution P:

Mn(P,Aε) = inf
A∈Aε

sup
P∈P

EA,S∼Pn [|A(S)− θ(P )|] .

The following result presents our main lower bound, demonstrating that the local modulus ωε de-
termines the rates for local and global miniamx risks. We defer the proof to Appendix D.1.

Theorem 6 Let ε ≤ 1, P0 ∈ P , and Aε be the collection of ε-differentially private estimators.
Then for a universal constant C <∞

Mloc
n (P0;P,Aε) ≥

1

6
ωε

(
C

n
, P0;P

)
.

In particular, we also have

Mn(P,Aε) ≥
1

6
sup
P0∈P

ωε

(
C

n
, P0;P

)
.
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We show that this lower bound is always larger than the existing total variation lower bound
by McMillan et al. (2022) and the standard hellinger lower bound for non-private estimation (see
Proposition 39), showing that

ωε

(
9

n
, P0;P

)
≥ ωTV

(
1

nε
, P0;P

)
∨ ωdhel

(
1√
n
, P0;P

)
.

Moreover, in Example 1, we show that the gap between these lower bound can be arbitrarily large:
indeed, for certain distributions, we show that ωε(1/n, P0;P) = Θ

(
1

ε
√
n

)
which is significantly

larger than ωTV

(
1
nε , P0;P

)
∨ ωdhel

(
1√
n
, P0;P

)
= Θ

(
1

ε2n
+ 1√

nε

)
in the regime ε≪ 1.

Finally, we also prove a super-efficiency result (see Appendix D.3): any improvement over our
modulus of continuity lower bound at any distribution implies worse performance elsewhere.

3. Total Variation Framework

In this section, we begin our algorithmic contribution with a simple total-variation based framework
for private estimation that obtains nearly instance-optimal guarantees in the high-privacy regime
ε ≤ 1/

√
n. In this section we assume that P is discrete and we show how to handle the continuous

case in Section 4.2.
Our total variation framework builds on the observation that in order to match the optimal lower

bounds for the high-privacy regime, that is, the total variation local modulus, one can run the expo-
nential mechanism with the total variation score. However, to make this amenable to privacy, we
must guarantee that our approximation for the total variation distance has low sensitivity.

Given S iid∼ Pn, our framework requires a distance function distTV(t;S) with low sensitivity
and a good approximation of the total variation distance between P and the closest Q such that
θ(Q) = t, that is infQ∈P:θ(Q)=t ∥Q− P∥TV. More precisely, we require the following two condi-
tions:

(C1) (Stability) The distance function distTV(t;S) is 1
n -sensitive.

(C2) (Accuracy) For any P ∈ P and S iid∼ Pn, we have that for all t ∈ Θ with probability 1− β,

|distTV(t;S)− inf
Q∈P:θ(Q)=t

∥Q− P∥TV | ≤ ∆.

Given a stable (C1) and accurate (C2) distance function distTV, we consider its ρ-smooth ver-
sion distρTV(t) = infs:|s−t|≤ρ distTV(s). The total variation mechanism runs the ρ-smooth expo-
nential mechanism with distance distTV, resulting in the following density function for t ∈ Θ:

ATV(t;S) ∝ e−distρTV(t;S)·nε/2. (M.1)

The following theorem summarizes our guarantees for this mechanism.

Theorem 7 Let P be discrete and P be a distribution such that ∥P − P0∥TV ≤ η for some P0 ∈
P . Let θ : P → Θ such that diam(Θ) ≤ R. Assume the distance function distTV satisfies

conditions (C1) and (C2). For ρ > 0 and given an input S iid∼ Pn, the mechanism ATV (M.1) is
ε-DP and with probability 1− 2β returns θ̂ such that

|θ̂ − θ(P )| ≤ ωTV

(
2 log(R/ρβ)

nε
+ 2∆+ η, P ;P

)
+ ρ.
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Proof The privacy guarantee follows immediately from the guarantees of the smooth exponential
mechanism (Lemma 5). Now we proceed to prove accuracy. We will upper bound the probability
of returning θ̂ with large distance; let W = {t ∈ Θ : distρTV(t;S) ≥ K} for some K > 0 to be
chosen later.

To this end, let P0 ∈ P be such that ∥P − P0∥TV ≤ η. Note that distTV(θ(P0);S) ≤ ∆ + η
with probability at least 1 − β using the second property. This implies that distρTV(t;S) ≤ ∆+ η
for t ∈ Θ such that |t − θ(P0)| ≤ ρ. Now consider t such that distρTV(t;S) ≥ K. The density for
ATV(t;S) is upper bounded by ATV(t;S) ≤ e−Knε/2

ρe−(∆+η)nε/2 = e−(K−∆−η)nε/2/ρ. This implies that

P(θ̂ ∈W ) ≤ diam(Θ)e−(K−∆−η)nε/2/ρ ≤ β,

where the second inequality follows by setting K = ∆+ η + 2 log(2R/ρβ)/nε.
Overall, this implies that with probability 1−2β, the output θ̂ /∈W . Thus we have that distρTV(θ̂;S) ≤
K, which implies there is t ∈ Θ such that |θ̂ − t| ≤ ρ and distTV(t;S) ≤ K. Condition (C1) of
distTV now implies that

inf
Q∈P:θ(Q)=t

∥Q− P∥TV ≤ distTV(t;S) + ∆ ≤ K +∆.

This implies that |t− θ(P )| ≤ ωTV(K +∆;P ) and therefore the claim follows as

|θ̂ − θ(P )| ≤ |θ̂ − t|+ |t− θ(P )| ≤ ρ+ ωTV(K +∆;P ).

Having proved Theorem 7, the main challenge now is to design approximations for the total
variation distance that are 1/n-sensitive and accurate with ∆≪ 1. Then, applying Theorem 7 with
η ≪ 1/n and ρ ≪ 1/n results in instance-optimal rates up to logarithmic factors in n. In the next
sections, we provide several techniques for constructing such approximations for a wide family of
problems.

3.1. Approximations for distributions with monotone likelihood

In this section, we provide an approximation for families with monotone likelihood ratio.

Definition 8 A family of distributions P over R satisfies the monotone likelihood ratio property
(MLRP) if for any two distributions P,Q ∈ P , we have that P (x)

Q(x) is monotonically increasing or
decreasing as a function of x ∈ R.

This property is well studied in statistics (Borges and Pfanzagl, 1963; Zacks, 1970) and many natural
distributions satisfy it such as Gaussian, Binomial, or exponential families with a single parameter.

Given S = (S1, . . . , Sn)
iid∼ P , we consider a set A that has subsets of R and approximate the

total variation

∥Q− P∥TV = sup
A⊂R

P (A)−Q(A) ≈ sup
A⊂A

1

n

n∑
i=1

1{Si ∈ A} −Q(A)

8
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This approximation is 1/n-sensitive, hence satisfying the stability condition (C1). However, for
accuracy, we need certain structural properties of the set A in order to guarantee uniform concen-
tration. For MLRP families (Definition 8), the set A can be replaced by 1-dimensional intervals,
hence resulting in the following approximation:

distmon(t;S) = inf
Q∈P:θ(Q)=t

sup
s∈R

∣∣∣∣∣ 1n
n∑

i=1

1{Si ≤ s} − Pr
S∼Q

(S ≤ s)

∣∣∣∣∣ . (4)

We have the following guarantees for this approximation. We defer the proof to Appendix E.

Proposition 9 Let P be discrete and P such that ∥P − P0∥TV ≤ η for some P0 ∈ P . Let P ∪{P}
satisfy the MLRP property (Definition 8), and S iid∼ Pn. Then distmon is 1/n-sensitive and for all
t ∈ Θ ∣∣∣∣distmon(t;S)− inf

Q∈P:θ(Q)=t
∥Q− P∥TV

∣∣∣∣ ≤
√

log(2/β)

n
.

Using this approximation, Theorem 7 now implies the following guarantee for the total variation
mechanism with distmon.

Corollary 10 Let P be discrete and P such that ∥P − P0∥TV ≤ η for some P0 ∈ P . Let P ∪{P}
satisfy the MLRP property (Definition 8) Let θ : P → Θ such that diam(Θ) ≤ R. Set ρ = 1/nc

for c ≥ 1. Given an input S iid∼ Pn, the total variation mechanism (M.1) with the distance function
distmon (4) is ε-DP and with probability 1− 2β returns θ̂ such that

|θ̂ − θ(P )| ≤ ωTV

(√
4 log(2/β) + 1

n
+

2c · log(Rn/β)
nε

, P ;P

)
+

1

nc
.

When ε ≤ 1/
√
n, this theorem implies that the error is roughly ωTV

(
c·log(Rn/β)

nε , P ;P
)
+ 1

nc , which
matches the lower bounds in Section 2 up to logarithmic factors in n and a negligible additive term.

3.2. Approximation for general finite families

Moving beyond monotone likelihood distributions, in this section we propose another distance func-
tion for the total variation that works for any discrete family of distributions. This mechanism ap-
proximate the total variation distance via the notion of Scheffé sets, and is similar to the mechanism
developed by Bun et al. (2019) for private hypothesis selection in total-variation distance. Their
mechanism can be similarly used to obtain instance-optimal results for the high privacy regime
ε ≤ 1/

√
n; however, it may not be optimal for the regime ε ≥ 1/

√
n.

To this end, assume we are given a discrete family of distributions P over space S. For any two
distributions P,Q ∈ P , we define the Scheffé set A(P,Q) ⊂ S to be the set such that

∥P −Q∥TV = P (A(P,Q))−Q(A(P,Q)).

Then, we define the following set A(P) = {A(P,Q) : P,Q ∈ P}. Finally, we define our distance
approximation for general families to be

distgen(t;S) = inf
Q∈P:θ(Q)=t

sup
A∈A(P)

∣∣∣∣∣ 1n
n∑

i=1

1{Si ∈ A} −Q(A)

∣∣∣∣∣ . (5)

9
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Proposition 11 Let P be a discrete family of distributions and P such that ∥P − P0∥TV ≤ η for

some P0 ∈ P . Given S iid∼ Pn, distgen is 1/n-sensitive and for all t ∈ Θ∣∣∣∣distgen(t;S)− inf
Q∈P:θ(Q)=t

∥Q− P∥TV

∣∣∣∣ ≤
√

4 log(2|P|/β)
n

+ 2η.

We defer the proof to Appendix E. Note that Theorem 7 now immediately implies the following
guarantees for the total variation mechanism with distgen.

Corollary 12 Let P be a discrete family of distributions and P such that ∥P − P0∥TV ≤ η for
some P0 ∈ P where η ≤ 1/

√
n. Let θ : P → Θ such that diam(Θ) ≤ R. Set ρ = 1/nc for c ≥ 1.

Given an input S iid∼ Pn, the mechanism ATV (M.1) with the distance function distgen (5) is ε-DP
and with probability 1− 2β returns θ̂ such that

|θ̂ − θ(P )| ≤ ωTV

(√
6 log(2|P|/β)

n
+

2c · log(Rn/β)
nε

, P ;P

)
+

1

nc
.

Note that when ε ≤ 1/
√
n and |P| = O(poly(n)), this theorem implies that the error is roughly

ωTV

(
log(n/β)

nε ;P
)
+ 1/nc, which matches the lower bounds in Section 2 up to logarithmic factors

in n and a negligible additive term.

4. Private T-Mechanism

Moving beyond the high-privacy regime, in this section we present our main mechanism that obtains
instance-optimality for all ε ≤ 1. Our mechanism, the T-mechanism, builds on the T -estimator
framework for non-private estimation of distributions (Birgé, 2006). This framework follows the
estimation-via-testing paradigm where it outputs a distribution P̂ with an estimate θ(P̂ ). However,
unlike standard approaches for distribution testing with respect to the total variation distance, our
approach allows us to estimate distributions with respect to the new functional Dε, allowing to
obtain instance-optimal rates. Recall from Section 1.3 that the T-estimator outputs P̂ if and only if
ψP̂ ,Q(S) :=

1
n

∑n
i=1 ψP̂ ,Q(Si) > 0 for all Q ̸= P̂ , for some predefined score functions ψP,Q: this

function gives a score whether P or Q is more likely given the sample S.
Based on this, our T-mechanism instantiates the exponential mechanism (McSherry and Talwar,

2007) with the score function F (P ;S) = infQ∈P:Q ̸=P ψP,Q(S): this score will guarantee that the
T-mechanism outputs P̂ such that ψP̂ ,Q(S) is large for all Q. To guarantee privacy, our chosen
function ψP,Q(Si) have to be bounded. We first demonstrate our private T-mechanism in the case
of finite families P in Section 4.1 and then extend it to general families in Section 4.2. Finally, in
Section 4.3 we demonstrate the implications of our results to multiple hypothesis testing.

4.1. Private estimation for finite families

Beginning with the simpler setting where P is finite (P may not be in P), our aim is to design a
bounded score function ψP,Q(Si) that measures whether P is more likely than Q under Si. To this
end, we follow a useful tradition in robust statistics and privacy of clipping the log likelihood ratio,
defining

ψ̃ε(S;P,Q) :=

[
log

P (S)

Q(S)

]ε
−ε

.

10
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This score was used by Huber (1965) to develop robust algorithms for binary hypothesis testing, and
more recently by Canonne et al. (2018) and McMillan et al. (2022) to develop optimal algorithms
for private binary hypothesis testing. We will not directly use that score, but instead consider the
shifted version

ψε(S;P,Q) := 2ψ̃ε(S;P,Q)−
(
ES∼P [ψ̃ε(S;P,Q)] + ES∼Q[ψ̃ε(S;P,Q)]

)
.

Then for a dataset S ∈ Sn, we let ψε(S;P,Q) = 1
n

∑n
i=1 ψε(Si;P,Q) denote the empirical mean

of the sample pairwise scores. First observe that due to shifting, the score ψε has the property that

ES∼P [ψε(S;P,Q)] = −ES∼P [ψε(S;Q,P )] = Dε(P,Q).

Then, by concentration, given S ∼ Pn
0 , we expect that ψε(S;P0, Q) ≈ Dε(P0, Q) ≥ 0 for all

Q, whereas ψε(S;Q,P0) ≈ −Dε(P0, Q) ≤ 0. Based on this, we define the “distance” function
distPε : P → R,

distPε (P ;S) := − inf
Q∈P

ψε(S;P,Q).

We expect that distPε (P0;S) is small for the correct distribution P0 while distPε (Q;S) is large for
distributions Q where Dε(P0, Q) is large.

Finally, we obtain our private T-mechanism by running the exponential mechanism (McSherry
and Talwar, 2007) with the distance distPε (P ;S),

AT(P ;S) ∝ exp
(
−n
2
· distPε (P ;S)

)
. (M.2)

The following theorem summarizes the guarantees of this mechanism.

Theorem 13 There exists universal constants c1, c2 > 0 such that the following hold. Let P be a
discrete family of distributions and P such that ∥P − P0∥TV ≤ η for some P0 ∈ P . Given an input

S iid∼ Pn, Let ε ≤ 1 and β > 0 such that log(9|P|/β) > 6c1εηn. The T-mechanism AT (M.2) is
ε-DP and returns P̂ such that with probability at least 1− β,

|θ(P̂ )− θ(P )| ≤ ωε

(c2 log(|P|/β)
n

, P ;P
)
.

Before proving this upper bound, note that the error of the T-mechanism matches the lower
bounds of Section 2 up to logarithmic factors.
Proof Observe that distPε is ε/n-sensitive in S, so the privacy guarantees of the exponential mech-
anism (Lemma 4) imply that the T-mechanism is ε-DP.

We now turn to proving the utility claim. To this end, we will use the guarantees of the exponen-
tial mechanism which state that the mechanism will output a distribution P̂ such that distPε (P̂ ;S)
is close to the minimum. Then, we will show that bad distributions Q (far away from P ) have large
distPε (Q;S), while good distributions Q have small distPε (Q;S).

We begin with the following two lemmas, both of which we prove in Appendix F.

Lemma 14 (Bad distributions have large distance) There exists a universal constant c > 0 such
that if Q ∈ P with Dε(Q,P ) ≥ 10εη, then we have that distPε (Q;S) ≥ Dε(P,Q)/10 with proba-
bility at least 1− 4 exp(−cn ·Dε(Q,P )).

11
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Lemma 15 (Good distributions have small distance) There exists a universal constant c > 0
such that for B ≥ 4εη, we have distPε (P0;S) ≤ B with probability at least 1− 4|P| exp(−cnB).

Let γ > 4εηn be a quantity we decide later and define the set of bad distributions Pbad =
{Q ∈ P : Dε(Q,P ) ≥ 20γ/n}. Because 20γ/n > 10ηε, we may apply Lemma 14 to get that
distPε (Q;S) ≥ 2γ/n with probability at least 1 − 4 exp(−cγ). Taking a union bound over all
Q ∈ Pbad, we have that the event E1 = {distPε (Q;S) ≥ 2γ/n for all Q ∈ Pbad} occurs with
probability at least 1− 4|Pbad| exp(−cγ).

On the other hand, Lemma 15 applied with B = γ/n gives that E2 = {distPε (P0;S) ≤ γ/n}
holds with probability at least 1− 4|P| exp(−cγ).

Under the event E1 ∩ E2, we can bound the density AT(Q;S) for Q ∈ Pbad by

AT(Q;S) =
e−ndistPε (Q;S)/2∑

Q′∈P e
−ndistPε (Q;S)/2

≤ e−ndistPε (Q;S)/2

e−ndistPε (P0;S)/2
≤ exp(−γ/2).

Therefore, under the event E1 ∩ E2, the probability that P̂ ∈ Pbad is at most |Pbad| exp(−γ/2) ≤
|P| exp(−cγ). By picking γ = log(9|P|/β)/c and verifying that γ satisfies γ > 4εηn, we have the
desired result.

We briefly remark that this algorithm can be implemented in O(n|P|2) time by computing all
the pairwise scores between distributions.

4.2. Private estimation for unbounded families

In this section, we show how to extend our mechanisms to the non-discrete case where the size of
P might be unbounded. To this end, we will use discretizations Pη of P that are η-covers in total
variation distance: for all P ∈ P there is Pη ∈ Pη such that ∥P − Pη∥TV ≤ η. Given such a cover
Pη, we then run our mechanisms over the discrete family of distributions Pη.

Proposition 16 There exists a constant c > 0 such that the following holds. Let P be a family of
distributions and Pη be an η-cover of P in total variation distance where η ≤ cn−2. Let ε ≤ 1 and

β > 0. Given an input S iid∼ Pn for P ∈ P , the mechanismAT applied over Pη returns P̂ such that
with probability at least 1− β,

|θ(P̂ )− θ(P )| ≤ ωε

(
c · log(|Pη|/β)

n
, P ;P

)
Proof We first argue that we can apply Theorem 13 to the sub-family Pη. For a given η, by
definition of a covering we have that there exists P0 ∈ Pη such that ∥P − P0∥TV ≤ η. Also, for
η = 6cn−2, log(9|Pη|/β) > 6cεηn because log(9|Pη|/β) ≥ log 9 > 2 while 6cεηn ≤ 1/n ≤ 1.
Thus, all the requirements for applying Theorem 13 to P and Pη are met, and thus the T-estimator
returns P̂ such that with probability at least 1− β, Dε(P, P̂ ) ≤ c log(|Pη |/β)

n . The claim follows.

To discuss these implications further, we say that P has TV-dimension at most d if there exists a
constant C > 0 such that for all η > 0, there is an η-covering Pη in TV-distance with |Pη| ≤ Cη−d.
Proposition 16 implies that the mechanism outputs P̂ such thatDε(P, P̂ ) ≤ cd log(n)+log(1/β)

n . Also,

12
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by the final remark in Section 4.1, the runtime of the T-estimator in this case is O(n2d+1), which is
polynomial in n and exponential in d. In particular, when the TV-dimension d is of constant order,
we see that AT obtains, in polynomial time, estimation rates matching the local minimax lower
bounds for non-discrete families from Section 2 up to logarithmic factors.

Moreover, when ε ≤ 1/
√
n, Proposition 16 implies that Dε(P, P̂ ) ≤ cd log(n)+log(1/β)

n , which
in turn implies that ∥P̂ − P∥TV ≤ cd log(n)+1+log(1/β)

nε (see Lemma 25). For high-dimensional
Gaussian estimation with unknown mean and covariance, Bun et al. (2019, Lemma 6.8) shows
the TV-dimension of this family is O(d2) and so AT would have error of O(d

2 log(n)+log(1/β)
nε ) in

TV-distance. This is tight up to logarithmic factors in n by Alabi et al. (2023, Theorem 7.1).

4.3. Implications to multiple hypothesis selection

In this section, we briefly discuss the implications of our results to the setting of multiple hypothesis
testing. In this setting, we have a finite family of distributions P = {P1, . . . , Pm}, and we have
access to n i.i.d. samples from P ⋆ ∈ P . The goal is to privately estimate P ⋆. For the binary case
(m = 2), Canonne et al. (2018) provide tight characterization of the sample complexity needed
to guarantee that P̂ = P ⋆ with constant probability. Combined with Theorem 29, their results
essentially imply that

n = Θ̃

(
1

∆ε

)
, ∆ε = min{Dε(P, P

′) | P, P ′ ∈ P, P ̸= P ′}.

For the case of multiple hypothesism > 2, Bun et al. (2019) gives an algorithm that guarantees P̂ =
P ⋆ with constant probability when (see Lemma 3.4 in Bun et al. (2019) with minor modifications
to handle the well-specified case).

n = Ω̃

(
logm

∆2
TV

+
logm

∆TVε

)
, ∆TV = min{

∥∥P − P ′∥∥
TV
| P, P ′ ∈ P, P ̸= P ′}.

These rates are not optimal in general: indeed, they do not match the optimal rate of Canonne et al.
(2018) for the binary case.

On the other hand, the T-mechanism AT (M.2) outputs an estimate with an error bound in Dε

rather than total variation. As a consequence, the T-mechanism guarantees P̂ = P ⋆ with constant
probability when

n = Ω̃

(
logm

∆ε

)
, ∆ε = min{Dε(P, P

′) | P, P ′ ∈ P, P ̸= P ′}.

It is instructive to note that our rates match the optimal rates for binary hypothesis testing when
m = 2, implying that the sample complexity of the T-mechanism is optimal up to a factor of
logm: we conjecture that this rate is optimal and leave open the question of proving a better lower
bound that depends on logm. Moreover, in the high-privacy regime ε ≤ 1/

√
n, our rates and these

of Bun et al. (2019) have the same sample complexity becauseDε(P, P
′) = Θ(ε ∥P − P ′∥TV) (see

Lemma 25). However, in the regime ε ≥ 1/
√
n, the T-estimator gives better sample complexity for

families P where ∆2
TV < ∆ε.

13
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5. Implications to robust statistical estimation

We conclude the paper by discussing the implications of our results to robust statistical estimation
of one dimensional functions which was recently shown to be equivalent to private statistical es-
timation (Asi et al., 2023). As a result, we show that the optimal rates for robust estimation are
governed by our proposed local modulus ω1/nτ where τ is the robustness parameter, and that our
T-Mechanism is an optimal robust mechanism. This should be compared to existing work on robust
statistical estimation (Donoho and Liu, 1988; Zhu et al., 2022) which obtained optimality results
only in the infinite sample regime. The rates in these works are based on the total variation local
modulus and therefore do not provide a tight characterization for the finite-sample rates; indeed, our
results below show that ω1/nτ represents the accurate rate of convergence.

The notion of robust estimation requires the algorithm to estimate the parameter accurately even
when the input dataset has nτ corruptions. We formally define the notion of τ -robust estimation.

Definition 17 (τ -robust estimation) Let P be a family of distributions and θ : P → Θ ⊂ R be a
statistic of interest. Let A be a (randomized) algorithm for the estimation of statistic θ. We say that
A is a τ -robust estimator for distribution P with error α if we have that

Errτ (A, P ) := ES∼Pn

[
max

S′:dham(S,S′)≤nτ
EA[|A(S ′)− θ(P )|]

]
≤ α.

Asi et al. (2023) devise reductions between private and robust estimators which essentially show
that the optimal error for ε-DP statistical estimation matches the error for τ -robust estimation where
τ ≈ 1/nε under natural assumptions. This allows us to characterize the minimax optimal rates for
τ -robust estimation, defined as

Mn(P,Aτ ) := inf
A∈Aτ

sup
P∈P

Errτ (A, P )

where Aτ is the family of τ -robust estimators.
Using the fact that private algorithms are also robust, we have the following error for the T-

mechanism for robust estimation, giving an upper bound on the minimax error.

Theorem 18 There exists universal constants c1, c2 > 0 such that the following hold. Let 1/n ≤
τ ≤ 1 and suppose S iid∼ Pn ∈ P and S ′ such that dham(S,S ′) ≤ nτ . Let Pη be an η-covering of
P such that η ≤ c1/n. The T-estimator mechanismAT (M.2) with parameter ε = 1/nτ is τ -robust
with error Errτ (AT , P ) ≤ O

(
ω1/nτ

(
c2 log(|Pη |/β)

n ;P
))

+ β. In particular,

Mn(P,Aτ ) ≤ O
(
sup
P∈P

ω1/nτ

(
c2 log(n|Pη|)

n
;P

)
+

1

n2

)
.

Moreover, we have the following lower bound on the minimax risk for robust estimation. Our
lower bound requires the mild assumption that the minimax is lower bounded by a polynomial
which is usually the case in most statistical applications.

Theorem 19 Let τ ∈ (0, 1), P be a family of distributions, |θ(P )| ≤ 1 for all P ∈ P , and assume
Mn(P,Aτ ) ≥ 1/nC1 for some constant C1 < ∞. Then there is a constant C2 < ∞ such that the
minimax error for τ -robust estimation is

Mn(P,Aτ ) ≥ Ω

(
sup
P∈P

ωC2 log(n)/nτ

(
1

n
;P

))
.
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Appendix A. Helper Lemmas

In our upper bounds, we use the DKW inequality.

Lemma 20 (DKW inequality) Let S1, . . . , Sn
iid∼ P with a cumulative distribution functionF (s) =

PrS∼P (S ≤ s). Let Fn(s) = 1
n

∑n
i=1 1{Si ≤ s} be the empirical distribution function. Then for

all α > 0,

Pr

(
sup
s∈R
|Fn(s)− F (s)| > α

)
≤ 2e−2nα2

.

We use the following form of Bernstein’s inequality from (Boucheron et al., 2013, Corollary
2.11).

Lemma 21 (Bernstein’s inequality) Suppose X1, . . . , Xn are independent random variables with
mean 0 and variance σ2 such that |Xi| ≤ b almost surely. Then for all t > 0,

P

(
1

n

n∑
i=1

Xi ≥ t

)
exp

(
− nt2

2(σ2 + bt/3)

)
.

Lemma 22 For distributions P, P ′ such that ∥P − P ′∥TV ≤ η and a function f such that |f(t)| ≤
M for all M , we have |EP [f ]− EP ′ [f ]| ≤ 2Mη.

Proof Let µ be a dominating measure of P, P ′ and let p, p′ be the densities of P and P ′, respectively,
with respect to µ. Then,

|EP [f ]− EP ′ [f ]| =
∣∣∣∣∫ f(x)(p(x)− p′(x))dµ(x)

∣∣∣∣
≤
∫
|f(x)||p(x)− p′(x)|dµ(x)

≤M
∫
|p(x)− p′(x)|dµ(x)

= 2Mη,

proving the claim.

Appendix B. Properties of Dε

In this section we study and prove several properties of the functional Dε. Recall that

Dε(P,Q) :=

∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε

dx.

We begin by showing that Dε can be expressed in a form similar to f -divergences.

Lemma 23 (Divergence form of Dε) For any distributions P and Q,

Dε(P,Q) =

∫
fε

(
P (x)

Q(x)

)
Q(x)dx.
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In the above, the function fε : R+ → R is defined piecewise by:

fε(t) = (t− 1)[log t]ε−ε =


−ε(t− 1) t ∈ [0, e−ε)

log(t)(t− 1) t ∈ [e−ε, e+ε]

+ε(t− 1) t ∈ (e+ε,+∞]

.

Proof By definition of Dε,

Dε(P,Q) =

∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε

dx

=

∫ (
P (x)

Q(x)
− 1

)[
log

P (x)

Q(x)

]ε
−ε

Q(x)dx

=

∫
fε

(
P (x)

Q(x)

)
Q(x)dx.

Moreover, Dε enjoys many properties of distance metrics.

Lemma 24 (Properties of Dε) For any distributions P,Q:

1. (Non-negativity) Dε(P,Q) ≥ 0.

2. (Positivity) Dε(P,Q) = 0 if and only if P = Q.

3. (Finiteness) Dε(P,Q) ≤ 2ε ∥P −Q∥TV <∞.

4. (Symmetry) Dε(P,Q) = Dε(Q,P ).

Proof To prove non-negativity, note that fε(t) ≥ 0 is nonnegative. Thus,

Dε(P,Q) =

∫
fε

(
P (x)

Q(x)

)
Q(x)dx ≥ 0.

The positivity follows because fε(t) > 0 for every t ̸= 1.
To prove that Dε(P,Q) <∞, note that |fε(t)| ≤ ε|t− 1| for every t. Thus,

Dε(P,Q) =

∫
fε

(
P (x)

Q(x)

)
Q(x)dx ≤ ε

∫
|P (x)−Q(x)|dx = 2ε ∥P −Q∥TV <∞.

To prove symmetry, note that[
log

P (x)

Q(x)

]ε
−ε

= −
[
log

Q(x)

P (x)

]ε
−ε

.

Therefore,

Dε(P,Q) =

∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε

dx

=

∫
(Q(x)− P (x))

[
log

Q(x)

P (x)

]ε
−ε

dx = Dε(Q,P ).

Moreover, the functional Dε is closely connected to the total variation distance.
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Lemma 25 For all distributions P,Q:

2ε ∥P −Q∥TV − ε(e
ε − 1) ≤ Dε(P,Q) ≤ 2ε ∥P −Q∥TV .

Proof The upper bound follows from Lemma 24. For the lower bound, consider the function
hε(t) = ε|t − 1| − ε|eε − 1|. Note for all t ∈ [e−ε, eε], hε(t) ≤ 0 ≤ fε(t). On the other hand, for
t ≤ e−ε, h′ε(t) = fε(t) = −ε and for t ≥ eε, h′ε(t) = fε(t) = ε. Thus, we can conclude that for all
t > 0, hε(t) ≤ fε(t). Therefore,

Dε(P,Q) =

∫
fε

(
P (x)

Q(x)

)
Q(x)dx

≥
∫
hε

(
P (x)

Q(x)

)
Q(x)dx = 2ε ∥P −Q∥TV − ε(e

ε − 1).

Additionally, Dε is Lipschitz with respect to the total variation distance.

Lemma 26 (Lipschitzness w.r.t. TV Metric) For any given distribution Q:

|Dε(P1, Q)−Dε(P2, Q)| ≤ 4(eε − 1) ∥P1 − P2∥TV

holds for all distributions P1, P2.

Proof Note that fε is 2(eε−1) Lipschitz. To see this, the derivative of fε, denoted as f ′ε, is piecewise
defined with expressions:

f ′ε(t) =


−ε t ∈ [0, e−ε)

log(t) + 1− 1
t t ∈ (e−ε, e+ε)

+ε t ∈ (e+ε,+∞)

.

Using standard calculus, we can show that the derivative |f ′ε(t)| is always bounded by 2(eε − 1) on
its domain. Since fε is continuous, this proves that fε is 2(eε − 1) Lipschitz.

As its consequence, we deduce:

|Dε(P1, Q)−Dε(P2, Q)| =
∣∣∣∣∫ fε

(
P1(x)

Q(x)

)
− fε

(
P2(x)

Q(x)

)
Q(x)dx

∣∣∣∣
≤ 2(eε − 1)

∫ ∣∣∣∣P1(x)

Q(x)
− P2(x)

Q(x)

∣∣∣∣Q(x)dx = 4(eε − 1) ∥P1 − P2∥TV .

This completes the proof.

Lemma 27 (Triangle-like inequality of Dε) For ε ≤ 1,

Dε(P,Q) ≤ C(Dε(P,R) +Dε(R,Q))
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Proof Here, I am taking gε(t) =
∫ t
1 [log s]

ε
−εds, not the usual gε, but should be similar. This is so

that gε(0) = 1 and g′ε(t) = [log t]ε−ε.
We can express the desired inequality as∫

fε

(
dQ

dP

)
dP ≤ C

∫
fε

(
dR

dP

)
dP + C

∫
fε

(
dQ

dR

)
dR

=

∫
C

(
fε

(
dR

dP

)
+ fε

(
dQ

dP
· dP
dR

)
dR

dP

)
dP.

Therefore it suffices to show that for all x, y > 0,

fε(x) ≤ C(fε(y) + fε(x/y)y).

We first define g(t) =
∫ t
1 [log s]

ε
−εds and show that there exists universal constants c, c′ > 0

such that cg(t) ≤ fε(t) ≤ c′g(t) for all t > 0. After showing this, it suffices to show that for all
x, y > 0,

g(x) ≤ C(g(y) + g(x/y)y). (6)

To show g(t) = Θ(fε(t)), we first note that g(1) = fε(1) = 0, and so it suffices to show
c ≤ f ′(t)

g′(t) ≤ c′ for all t > 0. For t < e−ε, f ′(t) = g′(t) = −ε and so f ′(t)
g′(t) = 1. Similarly, for

t > eε, f ′(t) = g′(t) = ε and so f ′(t)
g′(t) = 1. For t ∈ [e−ε, eε], f ′(t) = log t+1− 1

t and g′(t) = log t.
This means that the ratio of the derivatives is

f ′(t)

g′(t)
= 1 +

1

log t
− 1

t log t
,

which standard calculus shows is between 1 and 3 for all ε ≤ 1 and t ∈ [e−ε, eε]. Thus, picking
c < 1 and c > 3 gives that cg(t) ≤ f(t) ≤ c′g(t), and now we turn to showing (6).

Fixing y > 0, we define h(x) = g(y) + g(x/y)y. First note that h(y) = g(y) and we have
derivatives

g′(x) = [log x]ε−ε

h′(x) = [log x− log y]ε−ε.

Consider the case y ≥ 1. Then log y > 0 and so h′(x) ≤ g′(x) for all x > 0. This combined
with h(y) = g(y) shows that h(x) ≥ g(x) for all x ≤ y. For x > y, we will show that for some
ȳ > y, g(x) ≤ Ch(y) for y ≤ x < ȳ and g′(x) ≤ Ch′(y) for x > ȳ, proving that g(x) ≤ Ch(x)
for all x ≥ y.

For x ≥ eεy we have g′(x) = h′(x) = ε and for x ≥ y2 we have g′(x) ≤ 2h′(x). Now take
ȳ = min{eε, y}y, so that g′(x) ≤ Ch′(x) for x > ȳ as long as C > 2. Because g and h are
increasing away from 1 and g(y) = h(y), if we show that g(ȳ) ≤ Cg(y), then we will have for
y ≤ x ≤ ȳ that g(x) ≤ g(ȳ) ≤ Cg(y) ≤ Ch(x). To show this, note that

g(ȳ)

g(y)
=

(min{eε, y}y − 1)[min{ε, log y}+ log y]ε−ε

(y − 1)[log y]ε−ε

which is bounded above by a constant for all y > 1 using standard calculus.
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Now consider the case y ≤ 1. Then log y < 0 and so h′(x) ≥ g′(x) for all x > 0 and hence
h(x) ≥ g(x) for all x ≥ y. For x < y, we will show that for some ȳ < y, g(x) ≤ Ch(y) for
ȳ < x ≤ y and g′(x) ≥ Ch′(y) for 0 < x ≤ ȳ, proving that g(x) ≤ Ch(x) for all x ≤ y.

For x ≤ e−εy we have g′(x) = h′(x) = −ε and for x ≤ y2 we have g′(x) ≥ 2h′(x). Now take
ȳ = max{e−ε, y}y, so that g′(x) ≥ Ch′(x) for x < ȳ as long as C < 2. Again because g and h
are increasing away from 1 and g(y) = h(y), if we show that g(ȳ) ≤ Cg(y), then we will have for
ȳ ≤ x ≤ y that g(x) ≤ g(ȳ) ≤ Cg(y) ≤ Ch(x). Then

g(ȳ)

g(y)
=

(max{e−ε, y}y − 1)[max{−ε, log y}+ log y]ε−ε

(y − 1)[log y]ε−ε

which is bounded above by a constant for all y < 1 using standard calculus.
Therefore, we have that for all y > 0 that g(x) ≤ Ch(x), which shows (6) and hence proves

the claim.

Appendix C. Binary hypothesis testing

The functional Dε is closely related to the minimax optimal sample size needed for binary hypoth-
esis testing under differential privacy constraints.

Consider the setting where we have i.i.d. samples S1, S2, . . . , Sn from either P or Q. We are
interested in ε-differentially private testing strategy T : Sn → {0, 1} that minimizes the sum of the
type I and type II error:

En(P,Q) = inf
T
P (T (S) ̸= 1) +Q(T (S) ̸= 0).

The minimax sample complexity for an ε-differentially private testing problem between two distri-
butions is then determined by finding the smallest sample size n necessary to ensure the sum of the
type I and type II errors is less than 1/3 (here 1/3 can be any absolute constant in (0, 1)):

N(P,Q) = min{n ∈ N : En(P,Q) ≤ 1/3}.

Canonne et al. (2018) determines the minimax sample complexity size N up to constants for
every private binary hypothesis problem. For any given distribution P and Q, they first define

τ = max

{∫
max{P − eεQ, 0},

∫
max{Q− eεP, 0}

}
.

Suppose τ is attained by the second argument (without loss of generality) and let ε′ ≥ 0 be such that
τ =

∫
max{P − eε′Q, 0}. They then further define two probability distributions P ′, Q′ by setting

dP ′ ∝ min{dP/dQ, eε}dQ and dQ′ ∝ min{dQ/dP, eε}dP . Finally, they set

Uε(P,Q) = τε+ (1− τ)H2(P ′, Q′).

Theorem 28 (Canonne et al. (2018)) For ε = O(1):

N(P,Q) = Θ (1/Uε(P,Q)) .

Although these definitions are apparently different, we demonstrate thatDε(P,Q) andUε(P,Q)
are respectively upper and lower bounded by each other, with constants solely determined by ε. In
particular, we have the following result.

Theorem 29 For ε = O(1),
Dε(P,Q) = Θ(Uε(P,Q)).
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C.1. Proof of Theorem 29

To prove this result, we introduce an intermediate quantity: for any two probability distribution P
and Q, we define

mε(P,Q) = min
P ′,P ′′,Q′,Q′′,τ∈[0,1]

τε
∥∥P ′′ −Q′′∥∥

TV
+ (1− τ)H2(P ′, Q′)

subject to P = τP ′′ + (1− τ)P ′, Q = τQ′′ + (1− τ)Q′,∥∥dP ′/dQ′∥∥
∞ ∨

∥∥dQ′/dP ′∥∥
∞ ≤ e

ε.

We shall prove that Dε(P,Q), Uε(P,Q),mε(P,Q) are respectively upper and lower bounded by
each other, with constants solely determined by by ε.

Proposition 30 For ε = O(1),

Dε(P,Q) = Θ(mε(P,Q)) = Θ(Uε(P,Q)).

Proof We prove in Lemma 31 that Dε(P,Q) = O(mε(P,Q)), and in Lemma 32 that mε(P,Q) ≤
Uε(P,Q), and Uε(P,Q) = O(Dε(P,Q)) in 33.

Lemma 31 For ε = O(1),
Dε(P,Q) ≤ 2(eε + 1)mε(P,Q).

Proof Consider any convex decomposition of the measure:

P = τP ′′ + (1− τ)P ′, Q = τQ′′ + (1− τ)Q′

with ∥dP ′/dQ′∥∞ ∨ ∥dQ′/dP ′∥∞ ≤ eε and τ ∈ [0, 1]. We prove for any such convex decomposi-
tion:

Dε(P,Q) ≤ 4(eε + 1)
(
τ
∥∥P ′′ −Q′′∥∥

TV
+ (1− τ)d2hel(P ′, Q′)

)
. (7)

The function fε(t) is piecewise defined, not convex, and is non-differentiable at points t = e−ε

and t = eε. For this reason, we introduce a function gε which is defined by:

gε(t) =


fε(e

+ε) + f ′ε(e
+ε)(t− e+ε) t ∈ (e+ε,+∞)

fε(t) t ∈ [e−ε, e+ε]

fε(e
−ε) + f ′ε(e

−ε)(t− e−ε) t ∈ (−∞, e−ε)

where we abuse the notation, and use

f ′ε(e
ε) = lim

t→(eε)−
fε(t), f ′ε(e

−ε) = lim
t→(e−ε)+

fε(t)

to denote the left and right derivative of fε at e+ε, e−ε respectively. This continuously differentiable
function gε agrees with fε when t ∈ (e−ε, eε), and is linear within (e+ε,+∞) and (−∞, e−ε).
Since fε(t) = (t − 1) log(t) is convex when t ∈ (e−ε, e+ε), this then implies that the derivative of
gε is monotonically increasing in t, and thus gε is convex in t. Additionally, one may verify that
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• fε(t) ≤ gε(t) for every t ∈ R. This is because gε(1) = fε(1) = 0, and g′ε(t) ≥ f ′ε(t) ≥ 0 for
every t ≥ 1, and g′ε(t) ≤ f ′ε(t) ≤ 0 for every t ≤ 1.

• gε(t) ≤ 2(eε − 1)|t − 1| for every t ∈ R. This is because gε(1) = 0, and supt |g′ε(t)| ≤
2(eε − 1).

Let us go back to the proof of equation (7). Since fε ≤ gε, we obtain for every distribution
P,Q:

Dε(P,Q) = Dfε(P ||Q) ≤ Dgε(P ||Q).

Given that gε is convex, the divergence Dgε(P ||Q) is jointly convex in (P,Q). Furthermore, since
P and Q are convex combinations of P ′′, P ′ and Q′′, Q′ respectively, it then follows that

Dgε(P ||Q) ≤ τDgε(P
′′||Q′′) + (1− τ)Dgε(P

′||Q′).

We further estimate the divergence measures on the right-hand side.
For the first term, by leveraging the bound gε(t) ≤ 2(eε − 1)ε|t− 1|, we deduce

Dgε(P
′′||Q′′) ≤ 4(eε − 1)

∥∥P ′′ −Q′′∥∥
TV

.

For the second term, since dP ′(x)/dQ′(x) ∈ [e−ε, eε], and gε(t) = (t − 1) log(t) for t ∈
[e−ε, eε], we obtain that

Dgε(P
′||Q′) = DKL(P

′||Q′) +DKL(Q
′||P ′) ≤ 4(eε + 1)d2hel(P

′, Q′).

where in the last inequality we utilize the bound (t−1) log(t) ≤ 2(eε+1)(
√
t−1)2 for t ∈ [e−ε, eε].

By integrating the established bounds, we successfully demonstrate equation (7) as intended.

Lemma 32 For ε = O(1),
mε(P,Q) ≤ Uε(P,Q).

Proof This immediately follows from the definition thatmε(P,Q) takes minimum over all possible
decompositions, while Uε(P,Q) is functional value from one possible decomposition.

Lemma 33 For ε = O(1),
Uε(P,Q) = O(Dε(P,Q)).

Proof Our proof adapts from the arguments in the proof of Theorem 2.5 (Canonne et.al. 2019’).
Let us pick ε′ ≤ ε such that

τ =

∫
max{P − eεQ, 0} =

∫
max{Q− eε′P, 0}.

We partition the space X by:

G = {x|P (x)− eεQ(x) > 0}, L = {x|Q(x)− eε′P (x) > 0}, J = S \ (G ∪ L).
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Since ε′ ≤ ε, we have by definition:

Dε(P,Q) =

∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε

dx

≥
∫
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε′

dx

= (P (G)−Q(G))ε+
∫
J
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε′

dx+ (Q(L)− P (L))ε′.

(8)

Since our two probability distributions P ′, Q′ are defined by dP ′ ∝ min{dP/dQ, eε}dQ and
dQ′ ∝ min{dQ/dP, eε}dP , we thereby have the identity:

(1− τ)P ′ = min{P, eεQ}, (1− τ)Q′ = min{Q, eε′P}.

In particular, we can see that

P (G) = (1− τ)P ′(G) + τ, Q(G) = (1− τ)Q′(G)
Q(L) = (1− τ)Q′(L) + τ, P (L) = (1− τ)P ′(L)

.

Also, for every x ∈ J , P (x) agrees with (1 − τ)P ′(x) and Q(x) agrees with (1 − τ)Q′(x).
Furthermore, for every x ∈ J , log(P (x)/Q(x)) ∈ [−ε′, ε].

Thereby, we have

P (G)−Q(G) = (1− τ)(P ′(G)−Q′(G)) + τ

Q(L)− P (L) = (1− τ)(Q′(L)− P ′(L)) + τ
,

and ∫
J
(P (x)−Q(x))

[
log

P (x)

Q(x)

]ε
−ε′

dx =

∫
J
(P ′(x)−Q′(x)) log

P ′(x)

Q′(x)
dx.

Substituting bounds into inequality (8) reveals that Dε(P,Q) is lower bounded by

(1− τ)(P ′(G)−Q′(G)) + (1− τ)(Q′(L)− P ′(L)) +
∫
J
(P ′(x)−Q′(x)) log

P ′(x)

Q′(x)
dx+ τ(ε+ ε′)

= (1− τ)(DKL(P
′||Q′) +DKL(Q

′||P ′)) + τ(ε+ ε′).

Since DKL(P
′||Q′) ≥ d2hel(P ′, Q′), this then yields the bound as desired:

Dε(P,Q) ≥ (1− τ)d2hel(P ′, Q′) + τε = Uε(P,Q).

This completes the proof of the theorem.

Appendix D. Missing proofs and details for Section 2

In this section, we provide proofs for our lower bounds. We begin in Section D.1 where we prove
our local minimax lower bounds, and then we prove our global minimax lower bound. We also
demonstrate the connection of this lower bound to the existing total variation and hellinger lower
bounds in Section D.4.
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D.1. Proof of Theorem 6

A standard argument lower bounds the minimax error of ε-DP estimation by the ε-DP testing error.
More specifically, consider V to be a random variable that have equal (prior) probability to be from
P0 or P1, Tε to be a testing function that satisfies ε-DP, then

inf
A∈Aε

max
P∈{P0,P1}

EA,S∼Pn [|A(S)− θ(P )|] ≥
∣∣∣∣θ(P0)− θ(P1)

2

∣∣∣∣ infTε

P (Tε(S) ̸= V )

By the definition of sample complexity N(P0, P1) in Cannone et al. (2019), we know that when
n ≤ N(P0, P1), for all ε-DP tests Tε, we have

P (Tε(S) ̸= V ) =
1

2
[P0(Tε(S) = θ(P1)) + P1(Tε(S) = θ(P0))] ≥

1

6

By Theorem 28 and Theorem 29, we have N(P1, P0) = Θ(1/Dε(P1, P0)). Therefore, for every
P1 chosen from the set of distribution

P1 =
{
Dε(P1, P0) = O

(
1

n

)}
we have

inf
A∈Aε

max
P∈{P0,P1}

EA,S∼Pn [|A(S)− θ(P )|] ≥ 1

6

∣∣∣∣θ(P0)− θ(P1)

2

∣∣∣∣
Now, taking supremum over P1 ∈ P1 on both sides yields

Mloc
n (P0;P,Aε) ≥

1

6
ωε

(
O

(
1

n

)
, P0;P

)
We can also prove an upper bound on the local minimax complexity.

Lemma 34
Mloc

n (P0;P,Aε) ≤
2

3
ωε

(
O

(
1

n

)
, P0;P

)
Proof Fixing any pair of distribution P0, P1 ∈ P , any ε-DP estimation algorithm A ∈ Aε can be
used to build an ε-DP testing function T̃ε. For instance, define T̃ε(S) = P0 if |A(S) − θ(P0)| ≤
|A(S)− θ(P1)|, and Tε(S) = P1 otherwise.

Similarly, any ε-DP testing function Tε can be used to build an ε-DP estimation algorithm Ã.
Namely, we just set Ã(S) = θ(P0) if Tε(S) = P0 and Ã(S) = θ(P1) otherwise.

Therefore, we see that ε-DP testing function and ε-DP estimation algorithm are equivalent to
each other in binary testing.

By Canonne et al. (2018), we know that when n = Θ(1/Uε), which by Theorem 29 is equivalent
to Dε = Θ(1/n), for all P1 ∈ P , there exists ε-DP testing function Tε that can distinguish between
P0 and P1, namely,

P0(Tε(S) = θ(P1)) + P1(Tε(S) = θ(P0)) ≤
1

3
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Then by the equivalence between testing function and estimation algorithm discussed above,
there exists ε-DP estimation algorithm Ã such that

max
P∈{P0,P1}

EÃ,S∼Pn

[
|Ã(S)− θ(P )|

]
≤ 1

3
|θ(P0)− θ(P1)|

So then

inf
A∈Aε

max
P∈{P0,P1}

EA,S∼Pn [|A(S)− θ(P )|] ≤ |θ(P0)− θ(P1)|
3

Next, by taking supremum over P1 we have

Mloc
n (P0;P,Aε) ≤

2

3
ωε

(
O

(
1

n

)
, P0;P

)

D.2. Chi-squared Divergence Bound

Theorem 35 Let P0, P1 be arbitrary distributions on a common space X , A be any ε differential
private channel (Def 1) andMα(·) =

∫
A(· | S)dPα(S) for α ∈ {0, 1} be the marginal distribution

on Θ. Consider any convex decomposition of the probability measure P0, P1:

P0 = (1− τ)P ′
0 + τP ′′

0 , P1 = (1− τ)P ′
1 + τP ′′

1

obeying ∥dP ′′
0 /dP

′′
1 ∥∞ ∨ ∥dP ′′

1 /dP
′′
0 ∥ ≤ eε. Here, P ′

0, P
′′
0 , P

′
1, P

′′
1 are probability measures. τ ∈

[0, 1]. Then, when ε = O(1), we have, for some constant C,

Dχ2(M1||M0) ≤ exp(Cn(ετ + (1− τ)d2hel(P ′
1, P

′
0)))− 1.

Our proof utilizes two different techniques in upper bounding the χ2 divergence.

Lemma 36 We have that

Dχ2(M1||M0) ≤ exp(nDχ2(P1||P0))− 1.

Proof By data processing inequality:

Dχ2(M1||M0) ≤ Dχ2(P⊗n
1 ||P

⊗n
0 ).

The conclusion then follows asDχ2(P⊗n
1 ||P

⊗n
0 )+1 = (Dχ2(P1||P0)+1)n ≤ exp(nDχ2(P1||P0)).
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D.2.1. PROOF OF THEOREM 35

For any pair of distribution P0, P1 ∈ P , fixing ε, following Canonne et al. (2018)’s definition about
τε(P0, P1) (we write τ for abbreviation), we have

τ = max

{∫
X
max{P0(x)− eεP1(x), 0}dx,

∫
X
max{P1(x)− eεP0(x), 0}dx

}
.

Assuming without loss of generality that the first term above is the larger one, we can then let
0 < ε′ < ε be the largest values such that∫

X
max{P0(x)− eεP1(x), 0}dx =

∫
X
max{P1(x)− eε

′
P0(x), 0}dx = τ

Finally, we define

P
′
0(x) =

min{P0(x), e
εP1(x)}

1− τ
, P

′′
0 (x) =

max{P0(x)− eεP1(x), 0}
τ

P
′
1(x) =

min{P1(x), e
ε′P0(x)}

1− τ
, P

′′
1 (x) =

max{P1(x)− eε
′
P0(x), 0}

τ
.

So we can decompose

P0 = (1− τ)P ′
0 + τP ′′

0 , P1 = (1− τ)P ′
1 + τP ′′

1

For a ∈ {0, 1}, if we generate W1, . . . ,Wn
iid∼ Ber(τ), pick Si ∼ P ′

a when Wi = 1, and Si ∼ P ′′
a

when Wi = 0, then marginally we will have S1, . . . , Sn
iid∼ Pa. Basing on this construction, define

set N = {i ∈ {1, . . . , n}|Wi = 1} and N c = [n] \N , then we can express the joint distribution as

Pa(X1:n) =
∑
N

τ |N |(1− τ)|Nc|P ′′
a (SN )P ′

a(SNc)

For τ = 0, the bound reduces to Lemma 36.
For τ > 0, first note that

Dχ2(P ′
1||P ′

0) =

∫ (
P

′
1(x)

P
′
0(x)

− 1

)2

P
′
0(x)dx

=

∫ (√
P

′
1(x)

P
′
0(x)

− 1

)2(√
P

′
1(x)

P
′
0(x)

+ 1

)2

P
′
0(x)dx.

Then by our assumption that log(P
′
0(x)/P

′
1(x)) ∈ [−ε′, ε], it follows that

(√
P

′
1(x)

P
′
0(x)

+1
)2
≤ (eε/2+

1)2 for all x and so Dχ2(P ′
1||P ′

0) ≤ 2(e
ε
2 + 1)2d2hel(P

′
1, P

′
0).

Then by Lemma 36,

Dχ2(M1||M0) ≤ exp(2n(e
ε
2 + 1)2d2hel(P

′
1, P

′
0))− 1 ≤ Cnd2hel(P ′

1, P
′
0).
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For general case of τ ∈ [0, 1]. By decomposition of Pa(S) discussed in the beginning of the
section, we naturally have

Ma(z) =
∑
N

τ |N |(1− τ)|Nc|MN,a(z),

where MN,a is the marginal distribution of the channel that corresponds to a specific set N . As the
Chi-squared divergence is convex in the pair of distribution, we then have

Dχ2(M1||M0) ≤
∑
N

τ |N |(1− τ)|Nc|Dχ2(MN,1||MN,0)

Note that we have

Dχ2(MN,1||MN,0) =

∫
(MN,1(z)−MN,0(z))

2

MN,0(z)
dz (9)

≤ 2

∫
(MN,1(z)−MN,2(z))

2

MN,0(z)
dz + 2

∫
(MN,2(z)−MN,0(z))

2

MN,0(z)
dz, (10)

where we define

MN,0(z) =

∫
A(z|S)P ′′

0 (SN )P ′
0(SNc)dS

MN,1(z) =

∫
A(z|S)P ′′

1 (SN )P ′
1(SNc)dS

MN,2(z) =

∫
A(z|S)P ′′

0 (SN )P ′
1(SNc)dS

For the first term in (10), we first define

Ã(z|SN ) =

∫
A(z|S)P ′

1(SNc)dSNc

Then by privacy of A, Ã is naturally ε-DP with respect to SN . Therefore, for all SN and S ′N and
all z, we have

A(z|SN )

A(z|S ′N )
≤ eε|N |

Letting S ′′N be a fixed dataset, we have

MN,1(z)

MN,2(z)
=

∫
A(z|S)P ′′

1 (SN )P ′
1(SNc)dS∫

A(z|S)P ′′
0 (SN )P ′

1(SNc)dS
≤ e2|N |ε

∫
Ã(z|S ′′N )P ′′

1 (SN )dSN∫
Ã(z|S ′′N )P ′′

0 (SN )dSN
= e2|N |ε.

So then
|MN,1(z)−MN,2(z)|2 ≤ (exp{4|N |ε} − 1)MN,2(z)

2

For the second term in (10), we apply Lemma 36 to get

Dχ2(MN,2||MN,0) ≤ exp
{
|N c|Dχ2(P ′

1||P ′
0)
}
− 1
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Now plugging these bounds to (10), we have

Dχ2(MN,1||MN,0) ≤ (exp{4|N |ε} − 1) exp
{
|N c|Dχ2(P ′

1||P ′
0)
}
+ (exp

{
|N c|Dχ2(P ′

1||P ′
0)
}
− 1)

(11)

= exp(4|N |ε+ |N c|Dχ2(P ′
1||P ′

0))− 1 (12)

So then by Cauchy-Schwarz

Dχ2(M1||M0) ≤ E[exp(4|N |ε+ |N c|Dχ2(P ′
1||P ′

0))]− 1

≤
√

E[exp(8|N |ε)]E[exp(2|N c|Dχ2(P ′
1||P ′

0))]− 1

Because |N | and |N c| are binomial random variables, referring to the moment generating func-
tion of binomial random variables, we have

E[exp(8|N |ε)] = (1 + τ(e8ε − 1))n

≤ exp(nτ(e8ε − 1))

≤ exp(2C ′nτε)

E[exp(2|N c|Dχ2(P ′
1||P ′

0))] = (1 + (1− τ)(e2Dχ2 (P ′
1||P ′

0) − 1))n

≤ exp(n(1− τ)(e2Dχ2 (P ′
1||P ′

0) − 1))

≤ exp(2C ′′n(1− τ)Dχ2(P ′
1||P ′

0))

for some constant C ′, C ′′, where we leverage ex − 1 ≤ ecx when x ∈ [0, c] in the last inequality
with ε = O(1) and Dχ2(P ′

1||P ′
0) ≤ e2ε − 1 = O(1).

Then we have

Dχ2(M1||M0) ≤ exp(C ′nτε+ C ′′n(1− τ)Dχ2(P ′
1||P ′

0))− 1

Now, by assumption, we have for all x,

dP ′
1(x)

dP ′
0(x)

∈ [e−ε, eε],

and so Dχ2(P ′
1||P ′

0) ≤ 2(eε/2 + 1)2d2hel(P
′
1, P

′
0). Thus

Dχ2(M1||M0) ≤ exp(C ′nτε+ C ′′n(1− τ)(eε/2 + 1)2d2hel(P
′
1, P

′
0))− 1

≤ exp(Cn(τε+ (1− τ)d2hel(P ′
1, P

′
0)))− 1

for some constant C because ε = O(1), which finishes the proof.

D.3. Super-efficiency

To provide our general super-efficiency result, we use constrained risk inequality (Brown and Low,
1996; Duchi and Ruan, 2020). The next proposition shows that improvement over modulus of
continuity lower bound at a point P0 implies worse performance elsewhere. The key technical
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ingredient central to the development of the proposition is a new information contraction inequality
which relates the χ2-divergence between the private measures M0,M1 to the form optimal sample
complexity (Canonne et al., 2018) defined in Theorem 28, whose presentation we defer to Theorem
35 in Appendix D.2.

Before going to the main theorem, we first denote some of the constants used in other theorem
and lemma. Suppose Theorem 35 is satisfied with constantC1, Theorem 29 is satisfied with constant
C2 and C3 (e.g. C2Dε ≤ Uε ≤ C3Dε) and Lemma 27 is satisfied with constant C4.

To state the result, we also need to specify an upper bound on the sensitivity of local modulus
ωL,Dε . The exact value of this bound can be computed under specific distribution family P; for
instance, it is satisfied with the parametric family introduced in Example 1 with λk =

√
k.

Condition 1 (Sensitivity Bound) For all k, δ ∈ R+, there exists λk <∞ such that

ωε (kδ, P0;P) ≤ λkωε (δ, P0;P) .

Theorem 37 Suppose Condition 1 is satisfied with value λ when k = 2C3C4/C2. Let A be any ε
differentially private channel (Def 1) with marginal distributions Mn

a (·) =
∫
A(·|S)dPn

a (S). If for
some η ∈ [0, 1] and some constant κ > C1C3 , the estimator A satisfies

R(A, θ0,M0) ≤ η · ωε

(
1

nκ
, P0;P

)
,

then for all t ∈ [0, 1], there exists a distribution P1 ∈ P and constant ζ = C1C2 such that,

R(A, θ1,M1) ≥
1

4λ

[
1− η

1−t
2

]2
+
ωε

(
t log 1

η

nζ
, P1;P

)
.

Roughly speaking, Theorem 37 states that, given a constant ε, for any small enough η, that if an
estimator A is super-efficient at P0, in that its risk is considerably smaller than the local modulus at
P0, then that same estimator A pays nontrivial price elsewhere.

D.3.1. PROOF OF THEOREM 37

The proof leverages a constrained risk inequality that extends Brown and Low (1996, Thm. 1). For
any two probability measures P0 and P1 we define the 2-affinity

ρ (P1||P0) := Dχ2 (P1||P0) + 1 = EP0

[
dP 2

1

dP 2
0

]
= EP1

[
dP1

dP0

]
,

which measures the similarity between distributions P0 and P1. Lemma 38 states the con-
strained risk inequality formally, which essentially says that, if an estimator has small risk under
P0, then its risk at P1 must be nearly the size of the distance between the associated parameters θ0
and θ1

Lemma 38 (Duchi and Ruan (2020, Theorem 1)) Let θ0 = θ(P0), θ1 = θ(P1), and define ∆ =
|θ0 − θ1|/2. If the estimator θ̂ satisfies R(θ̂, θ0, P0) ≤ δ for some δ ≥ 0, then

R(θ̂, θ1, P1) ≥
[
∆1/2 − (ρ(P1||P0) · δ)1/2

]2
+
.
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For notation shorthand, we introduce Ra(θ̂) = R(θ̂, θa,Ma). By Lemma 38, for any distribu-
tions P0 and P1, we have

R1(θ̂) ≥

[(
1

2
|θ0 − θ1|

) 1
2

−
(
ρ (M1||M0) ·R0(θ̂)

)1/2]2
+

.

Following Canonne et al. (2018), we define

τ = max

{∫
X
max{P0(x)− eεP1(x), 0}dx,

∫
X
max{P1(x)− eεP0(x), 0}dx

}
.

Assuming without loss of generality that the first term above is the larger one, we then let
0 < ε′ < ε be the largest values such that∫

X
max{P0(x)− eεP1(x), 0}dx =

∫
X
max{P1(x)− eε

′
P0(x), 0}dx = τε

Finally, we define

P
′
0(x) =

min{P0(x), e
εP1(x)}

1− τ
, P

′
1(x) =

min{P1(x), e
ε′P0(x)}

1− τ
Then by Theorem 35, we further have the following information contraction inequality

ρ (M1||M0) = Dχ2 (M1||M0) + 1 ≤ exp(C1(nτ + n(1− τ)d2hel(P ′
1, P

′
0))). (13)

This information contraction inequality is the key to the proof of Theorem 37. The rest follows the
same argument in Duchi and Ruan (2018b, Proposition 3).

For t ∈ [0, 1], let Pt be the collection of distributions

Pt :=

{
P ∈ P | Uε = ετ + (1− τ)d2hel(P ′, P ′

0) ≤
t log 1

η

2nC1

}
,

so that under the conditions of the proposition, any distribution P1 ∈ Pt satisfies

R1(θ̂) ≥

[(
1

2
|θ0 − θ1|

)1/2

− η
1−t
2 ωε

(
1

nκ
, P0;P

)1/2
]2
+

. (14)

Now, with inequalities (13) and (14), we see that for all t ∈ [0, 1], there exists P1 ∈ Pt such that

R1(θ̂) ≥

ωUε

(
t log 1

η

nC1
, P0;P

)1/2

− η
(1−t)

2 ωε

(
1

nκ
, P0;P

)1/2
2

+

.

Because δ 7→ ω(δ, P0;P) is non-decreasing, utilizing Theorem 29, if t ∈ [0, 1] we may choose
P1 ∈ Pt

R1(θ̂) ≥
[
1− η(1−t)/2

]2
+
ωε

(
t log 1

η

nC1C3
, P0;P

)

≥ 1

λ

[
1− η(1−t)/2

]2
+
ωε

(
2C4t log

1
η

nC1C2
, P0;P

)
, (15)
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where the last step is by Condition 1 and the definition of λ. Lastly, we lower bound the modulus of
continuity at P0 by a modulus at P1. Following the same argument in the proof of Duchi and Ruan
(2018b, Proposition 3), we claim that by Lemma 27, any P1 with Dε(P1, P0) ≤ δ satisfies

ωε(2C4δ, P0;P) ≥
1

4
ωε(δ, P1;P). (16)

Hence, if we take δ = t log 1
η/(nζ), all P1 ∈ Pt satisfy Uε(P0, P1) ≤ C2δ. By Theorem 29

they also satisfy Dε(P0, P1) ≤ δ. Then Eq. (15), inequality (16) imply for some P1 ∈ Pt

R1(θ̂) ≥
1

λ

[
1− η(1−t)/2

]2
+
ωε (2C4δ, P0;P)

≥ 1

4λ

[
1− η(1−t)/2

]2
+
ωε

(
t log 1

η

nζ
, P1;P

)
.

Let us return to the claim (16). For distributions P0, P1, P2 with parameters θa = θ(Pa),∣∣∣∣θ1 − θ22

∣∣∣∣ ≤ |θ0 − θ1|+ |θ0 − θ2| ≤ 2

∣∣∣∣θ0 − θ12

∣∣∣∣+ 2

∣∣∣∣θ0 − θ22

∣∣∣∣
Next for any δ ≥ 0, conditioned on Dε(P0, P1) ≤ δ, for any P that Dε(P1, P ) ≤ δ, by Lemma 27
we have Dε(P0, P ) ≤ C4Dε(P0, P1) + C4Dε(P1, P ) ≤ 2C4δ, therefore

ωε(2C4δ, P0,P) = sup
Dε(P0,P )≤2C4δ

∣∣∣∣θ0 − θ(P )2

∣∣∣∣ ≥ sup
Dε(P1,P )≤δ

∣∣∣∣θ0 − θ(P )2

∣∣∣∣
≥ sup

Dε(P1,P )≤δ

{∣∣∣∣θ1 − θ(P )4

∣∣∣∣− ∣∣∣∣θ0 − θ12

∣∣∣∣}
≥ 1

2
ωε(δ, P1,P)− ωε(δ, P0,P)

Rearranging, we have inequality (16), as for any distribution P1 such that Dε(P0, P1) ≤ δ,

2ωε(2C4δ, P0,P) ≥ ωε(δ, P0,P) + ωε(2C4δ, P0,P) ≥
1

2
ωε(δ, P1,P)

D.4. Connection with Total Variation Bound and Hellinger Distance Bound

In this section, we compare our new Dε-based lower bound to existing lower bounds based on the
total variation metric and the Hellinger metric McMillan et al. (2022). First, we show in Proposi-
tion 39 that our lower bound is always larger than the one in McMillan et al. (2022). Morevoer,

we show our Dε-based lower bound is always larger than existing lower bounds based on the
total variation metric and the Hellinger metric McMillan et al. (2022). We provide an example (see
Example 1) where our lower bound can be arbitrarily larger than existing lower bounds.

To this end, recall the local modulus of continuity with respect to the total variation metric and
the Hellinger metric:

ωTV(δ, P0;P) = sup
P1∈P

{|θ(P1)− θ(P0)| | ∥P1 − P0∥TV ≤ δ} .

ωdhel(δ, P0;P) = sup
P1∈P

{|θ(P1)− θ(P0)| | dhel(P1||P0) ≤ δ} .
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Proposition 39 Let ε ≤ 1 and P0 ∈ P . Then

ωε

(
9

n
, P0;P

)
≥ ωTV

(
1

nε
, P0;P

)
∨ ωdhel

(
1√
n
, P0;P

)

Proof Fixing P0 and for any P1 ∈ P , by Lemma 24 we have

Dε(P0, P1) ≤ 2ε ∥P0 − P1∥TV .

Then, ∥P0 − P1∥TV = 1
nε implies that Dε(P0, P1) =

2
n . Taking supremum over P1’s that satisfy

the condition, we get

ωε

(
2

n
, P0;P

)
≥ ωTV

(
1

nε
, P0;P

)
For the other side, consider the divergence form of the function Dε from (23) and the divergence
from of d2hel. Then we have

Dε(P,Q) =

∫
fε

(
P (x)

Q(x)

)
Q(x)dx.

d2hel(P,Q) =

∫
fhel

(
P (x)

Q(x)

)
Q(x)dx.

where fε(t) = (t− 1)[log t]ε−ε and fhel(t) = 1
2(
√
t− 1)2.

When t ≥ 0, we can piece-wisely compare the function values and deduct that

fε(t)

fhel(t)
≤ 2ε(e

ε
2 + 1)

e
ε
2 − 1

≤ 2(e
1
2 + 1)

e
1
2 − 1

≤ 9,

for ε ≤ 1. Thus we have Dε(P,Q) ≤ 9d2hel(P,Q). Therefore if dhel(P,Q) = 1√
n

then we get that

Dε(P,Q) ≤ 9
n . Overall taking supremum over P1 we have

ωε

(
9

n
, P0;P

)
≥ ωdhel

(
1√
n
, P0;P

)

Next, we will provide an example where we can strictly separate the bounds in Proposition 39.

Example 1 We first share some intuition about how to build this example. For the lower bounds
introduced in Proposition 39, when fixing a bounding value of 1

n on the metrics, we are essentially
comparing f -divergence metrics basing on the following functions (disregard the constants):

fε(x) = (x− 1)[log x]ε−ε, εfTV (x) = ε|x− 1|, and fhel2(x) = (
√
x− 1)2
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From the plot of these functions we see that to make Dε (which based on fε) much smaller than
ε× TV distance and d2hel, we can
(1) pick some mass p1 with likelihood ratio value x1 ∈ [e−ε, eε] so then fε(x1)p1 << εfTV (x1)p1.
(2) pick some mass p2 with likelihood ratio value x2 ≈ 0 or x2 >> eε so then fε(x2)p2 <<
fhel2(x2)p2.
(3) finally to ensure that the relative size comparison is still valid after considering the sum of sep-
arate parts above, we want fε(x1)p1 ≈ fε(x2)p2.

Basing on these ideas, we consider a parametric family of distributions {Pθ}θ∈R, whereP0(x) =
Ix∈[0,1] and

Pδ(x) =



1
2 , x ∈

[
0, εδ2

1+2εδ2

]
1− ε|δ|, x ∈

(
εδ2

1+2εδ2
, 12

]
1 + ε|δ|, x ∈

(
1
2 ,

1+εδ2

1+2εδ2

]
3
2 , x ∈

(
1+εδ2

1+2εδ2
, 1
]

Then making use of approximation log(1 + x) ≈ x and
√
1 + x ≈ 1 + x

2 when x ≈ 0, we have

Dε(Pδ, P0) = ε
εδ2

1 + 2εδ2
+

1

2
ε|δ|(log(1 + ε|δ|)− log(1− ε|δ|)) 1

1 + 2εδ2
= Θ(ε2δ2)

∥Pδ − P0∥TV =
1

2

(
εδ2

1 + 2εδ2
+ ε|δ| 1

1 + 2εδ2

)
= Θ(ε|δ|)

d2hel(Pδ, P0) =
1

2

(
((
√
6− 1)2 + (2−

√
2)2)εδ2

4(1 + 2εδ2)
+
(
(1−

√
1− ε|δ|)2 + (

√
1 + ε|δ| − 1)2

) 1

2 + 4εδ2

)
= Θ(εδ2).

So then
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ωε

(
1

n
, P0;P

)
= Θ

(
1

ε
√
n

)
ωTV

(
1

nε
, P0;P

)
= Θ

(
1

ε2n

)
ωdhel

(
1√
n
, P0;P

)
= Θ

(
1√
nε

)
.

Now, consider a sequence of positive real numbers {εn} such that εn → 0 and ε2nn → ∞, we
have

lim
n→∞

ωTV

(
1

nεn
, P0;P

)
∨ ωdhel

(
1√
n
, P0;P

)
ωεn

(
1
n , P0;P

) = 0.

Appendix E. Missing proofs for Section 3

E.1. Proof of Proposition 9

First, it is clear from the definition that distmon is 1/n-sensitive. Thus, it remains to argue about the
accuracy guarantees of it. First, note that for any two distributions P, P ′ ∈ P∥∥P − P ′∥∥

TV
= sup

A⊂R
P (A)− P ′(A),

where A ⊂ R that maximizes P (A) − P ′(A) is A = {s ∈ R : P (s)
P ′(s) ≥ 1}. Since P (s)/P ′(s) is

monotone, this implies that either A = [s0,∞) or A = (−∞, s0] for some s0 ∈ R. Thus, we get
that∥∥P − P ′∥∥

TV
= max

(
sup
s∈R

Pr
S∼P

(S ≤ s)− Pr
S∼P ′

(S ≤ s), sup
s∈R

Pr
S∼P

(S ≥ s)− Pr
S∼P ′

(S ≥ s)
)
,

= max

(
sup
s∈R

Pr
S∼P

(S ≤ s)− Pr
S∼P ′

(S ≤ s), sup
s∈R

Pr
S∼P ′

(S ≤ s)− Pr
S∼P

(S ≤ s)
)
,

= sup
s∈R
| Pr
S∼P

(S ≤ s)− Pr
S∼P ′

(S ≤ s)|.

Now, let ρs = 1
n

∑n
i=1 1{Si ≤ s} − PrS∼P (S ≤ s) and ρ = sups∈R |ρs|, and note that

distmon(t;S) = inf
Q∈P:θ(Q)=t

sup
s∈R

∣∣∣∣∣ 1n
n∑

i=1

1{Si ≤ s} − Pr
S∼Q

(S ≤ s)

∣∣∣∣∣
= inf

Q∈P:θ(Q)=t
sup
s∈R

∣∣∣∣ρs + Pr
S∼P

(S ≤ s)− Pr
S∼Q

(S ≤ s)
∣∣∣∣

≤ ρ+ inf
Q∈P:θ(Q)=t

sup
s∈R

∣∣∣∣ PrS∼P
(S ≤ s)− Pr

S∼Q
(S ≤ s)

∣∣∣∣
= ρ+ inf

Q∈P:θ(Q)=t
∥Q− P∥TV
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Similarly, we can show that distmon(t;S) ≥ infQ∈P:θ(Q)=t ∥Q− P∥TV − ρ, hence∣∣∣∣distmon(t;S)− inf
Q∈P:θ(Q)=t

∥Q− P∥TV

∣∣∣∣ ≤ ρ.
Finally, the DKW inequality (Lemma 20) implies that ρ ≤

√
log(2/β)/n with probability 1 − β.

The claim now follows from Theorem 7 where we can set ∆ =
√

log(2/β)/n.

E.2. Proof of Proposition 11

The claim will follow by showing that for S iid∼ P , with probability 1− β for all A ∈ A we have∣∣∣∣∣ 1n
n∑

i=1

1{Si ∈ A} − P (A)

∣∣∣∣∣ ≤
√

4 log(2|P|/β)
n

. (17)

Indeed, let P0 ∈ P be such that ∥P − P0∥TV ≤ η. We have that

distgen(t;S) = inf
Q∈P:θ(Q)=t

sup
A∈A(P)

∣∣∣∣∣ 1n
n∑

i=1

1{Si ∈ A} −Q(A)

∣∣∣∣∣
≤ sup

A∈A(P)

∣∣∣∣∣ 1n
n∑

i=1

1{Si ∈ A} − P (A)

∣∣∣∣∣+ inf
Q∈P:θ(Q)=t

sup
A∈A(P)

|P (A)−Q(A)|

≤
√

4 log(2|P|/β)
n

+ ∥P − P0∥TV + inf
Q∈P:θ(Q)=t

sup
A∈A(P)

|P0(A)−Q(A)|

≤
√

4 log(2|P|/β)
n

+ η + inf
Q∈P:θ(Q)=t

∥P0 −Q∥TV

≤
√

4 log(2|P|/β)
n

+ 2η + inf
Q∈P:θ(Q)=t

∥P0 −Q∥TV .

Similarly, we can show that distgen(t;S) ≥ infQ∈P:θ(Q)=t ∥Q− P∥TV −
√

4 log(2|P|/β)
n − 2η.

It remains to prove the concentration (17). Note that for S iid∼ Pn and any given A ∈ A(P),
the variable 1{Si ∈ A} is 1/4-sub-gaussian, hence Hoeffding inequality (Duchi, 2018, Corollary
4.1.10) implies that

Pr

(∣∣∣∣∣ 1n
n∑

i=1

1{Si ∈ A} − P (A)

∣∣∣∣∣ >
√

4 log(2|P|/β)
n

)
≤ β/|P|2.

Applying union bound over all A ∈ A(P) proves our desired concentration (17).

Appendix F. Proofs for Section 4

Lemma 40 For any distributions P, P ′, Q and ε > 0 such that ∥P − P ′∥TV ≤ η,

|EX∼P ′ [ψε(X;P,Q)]−Dε(P,Q)| ≤ 2εη

VarX∼P ′(ψε(X;P,Q)) ≤ 4eεDε(P,Q) + 8ε2η.
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Proof By definition of ψε, it follows that EX∼P [ψε(X;P,Q)] = Dε(P,Q). The first claim then
follows from Lemma 22 because |ψε(·;P,Q)| ≤ ε.

For the variance,

VarX∼P ′(ψε(X;P,Q)) = 4VarX∼P ′(ψ̃ε(X;P,Q))

≤ 4EX∼P ′ [ψ̃ε(X;P,Q)2]

≤ 4EX∼P [ψ̃ε(X;P,Q)2] + 8ε2η,

where the last inequality again follows from Lemma 22. Then,

EX∼P [ψ̃ε(X;P,Q)2] =

∫
P (x)

([
log

P (x)

Q(x)

]ε
−ε

)2

dx.

=

∫
P (x)

([
log

Q(x)

P (x)

]ε
−ε

)2

dx.

≤ eε
∫
P (x)

∣∣∣∣Q(x)

P (x)
− 1

∣∣∣∣ ∣∣∣∣[log Q(x)

P (x)

]ε
−ε

∣∣∣∣ dx
= eε

∫
|Q(x)− P (x)|

∣∣∣∣[log Q(x)

P (x)

]ε
−ε

∣∣∣∣ dx
= eε

∫
(Q(x)− P (x))

[
log

Q(x)

P (x)

]ε
−ε

dx

= eεDε(Q,P ),

where the inequality follows by observing that | [log t]ε−ε | ≤ eε|t − 1|. The claim then follows
because Dε(Q,P ) = Dε(P,Q) from Lemma 24.

Lemma 41 (Concentration of pairwise scores) Suppose Si
iid∼ P0 ∈ P and ε ≤ 1. If P,Q ∈ P

and t ∈ R are such that ∥P − P0∥TV ≤ η and t ≥ max{4εη,Dε(P,Q)/2}, then

P (|ψε(S;P,Q)−Dε(P,Q)| > t) < 2 exp(−nt/100).

Proof Let µ = EP0 [ψε(X;Q,P )] and σ2 = VarP0(ψε(X;Q,P )). By Lemma 40, |µ−Dε(P,Q)| ≤
2εη and σ2 ≤ 4eεDε(P,Q) + 8ε2η. Using Bernstein’s inequality (Lemma 21),

P (|ψε(S;P,Q)−Dε(P,Q)| > t) ≤ P (|ψε(S;P,Q)− µ| > t− 2εη)

= P

(∣∣∣∣∣ 1n
n∑

i=1

ψε(Si;Q,P )− µ

∣∣∣∣∣ > t− 2εη

)

≤ 2 exp

(
−

1
2n(t− 2εη)2+

σ2 + 1
3ε(t− 2εη)+

)
.

Now using t ≥ max{4εη,Dε(P,Q)/2}, σ2 ≤ 4eεDε(P,Q) + 4ε2η ≤ (8eε + 2ε)t and 1
2 t ≤

(t− 2εη)+ ≤ t, which gives us that

P (|ψε(S;P,Q)−Dε(P,Q)| > t) ≤ 2 exp

(
−

1
4nt

2

(8eε + 2ε+ 1
3ε)t

)
.
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Because 8eε + 2ε+ 1
3ε ≤ 25 for ε ≤ 1, the claim follows.

Proof [Proof of Lemma 14] Notice by definition that distPε (Q;S) ≥ −ψε(S;Q,P0). We apply
Lemma 41 with P ← Q, Q← P0 and t = Dε(Q,P0)/2 to get that |ψε(S;Q,P0)−Dε(Q,P0)| ≤
Dε(Q,P0)/2 with probability at least 1− exp(−cnDε(Q,P0)/2).

Under this event, distPε (Q;S) ≥ −ψε(S;Q,P0) ≥ Dε(Q,P0)/2. Now, noting that Lemma 26
implies |Dε(Q,P0) −Dε(Q,P )| ≤ 4(eε − 1)η ≤ 8εη, the assumption Dε(Q,P ) ≥ 10εη implies
that 2

10 ≤
Dε(Q,P0)
Dε(Q,P ) ≤

18
10 .

Therefore, by changing constants as necessary, we have with probability at least 1−exp(−cnDε(Q,P ))
that distPε (Q;S) ≥ Dε(Q,P0)/2 ≥ Dε(Q,P )/10.

Proof [Proof of Lemma 15] ConsiderQ ∈ P such thatDε(P0, Q) ≥ 2B. Applying Lemma 41 with
t = Dε(P0, Q)/2, we see that |ψε(S;P0, Q)−Dε(P0, Q)| ≤ Dε(P0, Q)/2 with probability at least
1 − 4 exp(−cnDε(P0, Q)) ≥ 1 − 4 exp(−cnB). By assumption on Dε(P0, Q), |ψε(S;P0, Q) −
Dε(P0, Q)| ≤ Dε(P0)/2 implies that ψε(S;P0, Q) ≥ B ≥ 0.

Now consider Q ∈ P such that Dε(P0, Q) < 2B. By applying Lemma 41 with t = B, we
see that |ψε(S;P0, Q) − Dε(P0, Q)| ≤ B with probability at least 1 − 4 exp(−cnB). Moreover,
|ψε(S;P0, Q)−Dε(P0, Q)| ≤ B implies that ψε(S;P0, Q) > −B.

By a union bound over all Q ∈ P , we have with probability at least 1− 4|P| exp(−cnB) that

distPε (P0;S) = − inf
Q∈P

ψε(S;P0, Q) ≤ B.

Appendix G. Missing results for Section 5

Lemma 42 (Private to robust) Let ε ≤ 1. Assume Ap is a ε-DP algorithm such for any P ∈ P ,

given S iid∼ Pn

E
Siid∼Pn,Ap

[|Ap(S)− θ(P )|] ≤ α.

Then Ap is τ -robust with τ = 1/nε and error

ES∼Pn

[
max

S′:dham(S,S′)≤nτ
EAp [|Ap(S ′)− θ(P )|]

]
≤ eα.

Proof Note that for S and S ′ such that dham(S,S ′) ≤ nτ = 1/ε, we have that

EAp [|Ap(S ′)− θ(P )|] =
∫
t∈Θ

Pr(Ap(S ′) = t)|t− θ(P )|

≤
∫
t∈Θ

ePr(Ap(S) = t)|t− θ(P )|

≤ eEAp [|Ap(S)− θ(P )|].

Thus we have that

ES∼Pn

[
max

S′:dham(S,S′)≤nτ
EAp [|Ap(S ′)− θ(P )|]

]
≤ eES∼Pn

[
EAp [|Ap(S)− θ(P )|]

]
≤ eα.
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Lemma 43 (Robust to private) Assume Ar is a τ -robust algorithm such for any P ,

ES∼Pn

[
max

S′:dham(S,S′)≤nτ
EAr [|Ar(S ′)− θ(P )|]

]
≤ α.

Then there is an ε-DP algorithm Ap where ε =
C·log(R

α )
nτ for a constant 1 ≤ C < ∞ such that for

S iid∼ Pn we have
E
Siid∼Pn,Ap

[|Ap(S)− θ(P )|] ≤ 5α.

Proof The proof follows the same arguments as the proof of Theorem 3.1 in Asi et al. (2023),
except that we use expectations instead of high probability bounds.

G.1. Proof of Theorem 18

The proof follows directly from the guarantees of the T-mechanism (Theorem 13) and the fact that
any ε-DP mechanism is also τ -robust with robust error eα for τ = 1/nε (Lemma 42).

G.2. Proof of Theorem 19

Assume Mn(P,Aτ ) = α/2. Otherwise assume α ≤ 1. Then there is a τ -robust algorithm Ar with
error α, that is, we have that for any P ∈ P

ES∼Pn

[
max

S′:dham(S,S′)≤nτ
EAr [|Ar(S ′)− θ(P )|]

]
≤ α.

Then, Lemma 43 implies that there is an ε-DP algorithm Ap where ε =
C·log( 1

α)
nτ for 1 ≤ C ≤ ∞

such that for any P ∈ P , given S iid∼ Pn,

E
Siid∼Pn,Ap

[|Ap(S)− θ(P )|] ≤ 5α.

Lower bounds for ε-DP estimation now imply that α ≥ Ω
(
supP∈P ωC·log( 1

α)/nτ
(
1
n ;P

))
. Fi-

nally, the claim follows as we know that ωε1(1/n;P ) ≥ ωε2(1/n;P ) whenever ε1 ≤ ε2 and the
assumption that α ≥ 1/nC1 .
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