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Abstract
The quintessential learning algorithm of empirical risk minimization (ERM) is known to fail in
various settings for which uniform convergence does not characterize learning. Relatedly, the prac-
tice of machine learning is rife with considerably richer algorithmic techniques, perhaps the most
notable of which is regularization. Nevertheless, no such technique or principle has broken away
from the pack to characterize optimal learning in these more general settings.

The purpose of this work is to precisely characterize the role of regularization in perhaps the
simplest setting for which ERM fails: multiclass learning with arbitrary label sets. Using one-
inclusion graphs (OIGs), we exhibit optimal learning algorithms that dovetail with tried-and-true
algorithmic principles: Occam’s Razor as embodied by structural risk minimization (SRM), the
principle of maximum entropy, and Bayesian inference. We also extract from OIGs a combinatorial
sequence we term the Hall complexity, which is the first to characterize a problem’s transductive
error rate exactly.

Lastly, we introduce a generalization of OIGs and the transductive learning setting to the ag-
nostic case, where we show that optimal orientations of Hamming graphs — judged using nodes’
outdegrees minus a system of node-dependent credits — characterize optimal learners exactly. We
demonstrate that an agnostic version of the Hall complexity again characterizes error rates exactly,
and exhibit an optimal learner using maximum entropy programs.
Keywords: Regularization, PAC Learning, Classification, One-inclusion Graphs

1. Introduction

The purpose of a machine learning algorithm is to generalize sample information into an effective
model for future prediction. The poster-child of learning algorithms, empirical risk minimization
(ERM), proceeds by simply selecting an element of the underlying hypothesis class with best fit to
the training data. Despite its success over an impressive array of learning problems, ERM is known
to fail catastrophically for many learnable problems, including even mild generalizations of binary
classification (Shalev-Shwartz et al., 2010; Alon et al., 2022).

Relatedly, machine learning has a rich algorithmic history of formulating learning as an opti-
mization problem with a more carefully chosen objective function expressing the interplay between
sample performance and generalization, bias and variance, or various other learning desiderata. In
particular, a heavily used algorithmic principle is that of regularization, the most familiar and ex-
plicit form of which is structural risk minimization (SRM). SRM adds a regularization term to the
empirical risk when defining the objective to be minimized over the underlying hypothesis class.
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Informally, the regularizer is often meant to encode some notion of hypothesis complexity, such
that the combined objective function can be viewed as an implementation of the principle of Oc-
cam’s Razor. The practice of machine learning is chock full of such regularization techniques for
controlling model capacity, with impressive scientific and societal impact. Nonetheless, no such
algorithmic technique or principle has broken away from the pack to characterize optimal learning
in these more general settings. In particular, it is not known whether SRM or any particular regu-
larization technique is sufficiently powerful to characterize optimal learning. It is this gap between
theory and practice which motivates our work.

The purpose of this paper is to characterize the power of regularization in possibly the sim-
plest setting for which ERM fails: multiclass learning. We are inspired by the result of Daniely
and Shalev-Shwartz (2014) that there are learnable problems in multiclass learning that are not
learnable by any proper learner (i.e., a learner that always emits an element of the underlying hy-
pothesis class). This impossibility result has direct ramifications to the framework of structural risk
minimization. In particular, it implies that any learner witnessed as an optimization problem over
the underlying hypothesis class H is obligated to fail on some multiclass problems. Notably, this
includes the standard toolkit of SRM.

This motivates us to address the following fundamental question:

What is the minimal augmentation to classical SRM that allows it to learn all
(learnable) multiclass problems?

Our first augmentation, necessary in order to bypass the properness obstruction of Daniely and
Shalev-Shwartz (2014), is to grant regularizers access to the test point as input. Formally, such a
local regularizer is a map ψ : H×X → R≥0 for X the domain set. We demonstrate, however, that
local regularizers remain insufficiently expressive to learn certain multiclass problems. We proceed
to consider regularizers that furthermore receive as input the sequence of unlabeled datapoints in the
training set. We call these regularizers local unsupervised regularizers — formally, they are defined
as maps ψ : H×X n ×X → R≥0 for training sets of size n. Intuitively, the local and unsupervised
modifications to the regularizer allow its induced learner to (1) be improper; and (2) perform an
unsupervised pre-training step in which it uses the unlabeled sample data in order to establish local
preferences over hypotheses in H.

Contributions. As our primary technical contribution, we demonstrate that local unsupervised
regularizers characterize multiclass learnability and, in fact, optimal learning. That is, a multiclass
problem is learnable if and only if there exists a local unsupervised regularizer whose SRM learners
all learn the problem. Furthermore, in this event there is guaranteed to exist an unsupervised regu-
larizer whose SRM learners are all optimal. Importantly, we also demonstrate that our modification
of SRM is minimal: disallowing the regularizer access to either the test point or the unlabeled train-
ing set leads to the existence of learnable problems which cannot be learned by SRM using either
of these weaker regularizers.

Techniques and broad connections. Our characterization of local unsupervised regularization is
enabled by the beautiful and insightful one-inclusion graphs (OIGs), which have been used to model
classification in the transductive setting starting with the work of Haussler et al. (1994). Through
Hall’s theorem and its generalization to infinite graphs, we derive from OIGs a complexity measure
which exactly characterizes the optimal transductive error of a classification problem — we aptly
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name this the Hall complexity. We then use OIGs to derive learners which follow tried-and-true
algorithmic principles: Occam’s razor as embodied by structural risk minimization (SRM), the
principle of maximum entropy, and Bayesian inference.

We provide two instantiations of an optimal algorithm within the local unsupervised SRM
framework. The first is a deterministic learner implicit in the work of Daniely and Shalev-Shwartz
(2014), whose regularization function we show to exist abstractly. We derive the second optimal
learner, which is randomized, as the dual of a maximum-entropy convex program for orienting the
OIG. Its regularization function is the relative entropy to a prior over hypotheses obtained through
unsupervised learning. In addition to validating the maximum entropy principle in learning, this
second algorithm can also be interpreted as a Bayesian learner which samples from a posterior
distribution over labels, relative to a prior derived through unsupervised learning.

Most of our contributions extend from the realizable to the agnostic setting, including the char-
acterization of optimal transductive errors through the (agnostic) Hall complexity and the design of
an optimal Bayesian learner. To enable this extension, we adapt OIGs to the agnostic case so as to
characterize agnostic multiclass learning in the transductive model.

1.1. Related Work

We give a brief overview of related work and defer a full discussion to Appendix F. The impor-
tance of multiclass learners beyond the classical paradigm of empirical risk minimization (ERM)
was discussed by Shalev-Shwartz et al. (2010), who exhibited a learnable class that is not learnable
by any ERM learner. The history of one-inclusion graphs in learning theory commences with the
seminal work of Haussler et al. (1994), who employed the transductive learning setting and the OIG
algorithm proposed by Alon et al. (1987) to obtain error guarantees for VC classes. Daniely and
Shalev-Shwartz (2014) advanced the theory of multiclass learning on several fronts by demonstrat-
ing that proper learners fail on learnable hypothesis classes, improving the analysis of transductive
error rates, and introducing the DS dimension.

More recently, Brukhim et al. (2022) used OIGs to prove that the DS dimension characterizes
multiclass learnability, whereas the Natarajan dimension does not. OIGs also form a key ingredient
in the study of learnability for partial concept classes (Alon et al., 2022; Kalavasis et al., 2022)
as well as recent advances in PAC bounds for various problems (Aden-Ali et al., 2023a), a char-
acterization of learnability for realizable regression (Attias et al., 2023), and the design of optimal
learners in the robust setting (Montasser et al., 2022), to name only a few contributions.

Regarding regularization, perhaps most related to our theoretical formalization of regularizers
is Hopkins et al. (2022), who consider the task of transforming realizable learners into agnostic
learners. In particular, the agnostic learners they produce can be seen as a type of unsupervised
regularization, though not described as so in their work. Their learners use unlabeled sample data
to restrict focus to a collection of hypotheses F on which they perform ERM. When F ⊆ H,
this restriction can be seen as a “hard” regularizer assigning value ∞ to hypotheses in F and zero
otherwise. Note, however, that F ⊆ H only if the original realizable learner is proper. (And, as we
have seen, there exist learnable multiclass problems without any proper learners.) Furthermore, they
use distinct datasets for regularization and risk minimization, while we do not. Lastly, their work
begins with a realizable learner, whereas we are primarily concerned with the design of learners
“from scratch.”
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2. Preliminaries

2.1. Notation

For m ∈ N, we use [m] to denote the set {1, . . . ,m}. For a predicate P , we let [P ] denote the
Iverson bracket of P , i.e., [P ] = 1 if P is true and 0 if P is false. When Z is a set, we use Z<ω to
denote the collection of all finite sequences in Z, i.e., Z<ω =

⋃∞
i=1 Z

i. When Z is finite, we use
∆Z to denote the set of all probability measures over Z,

∆Z =

{
P : Z → R≥0 :

∑
Z

P (z) = 1

}
.

For a tuple S = (z1, . . . , zn), we let S−i denote S with its ith entry removed, as in
S−i = (z1, . . . , zi−1, zi+1, . . . , zn). For x ∈ R, ⌊x⌋ denotes the greatest integer weakly less than x.

2.2. Learning Theory

We first recall the standard toolkit of supervised learning. A learning problem is determined by a
domain X , a label set Y , and a hypothesis class H ⊆ YX . We will refer to any function X → Y
as a hypothesis or predictor. Learning also requires a loss function ℓ : Y × Y → R to quantify a
predictor’s quality, perhaps the most fundamental of which is the 0-1 loss: ℓ0−1(y, y

′) = [y ̸= y′].

We refer to learning problems with the 0-1 loss as multiclass classification problems when
|Y| > 2 and binary classification problems when |Y| = 2. A labeled datapoint is a pair (x, y) ∈
X×Y , and an unlabeled datapoint is an element of X . We will occasionally refer to an (un)labeled
datapoint merely as a datapoint when clear from context. A training set S is a finite tuple of labeled
datapoints, i.e., S ∈ (X × Y)<ω. We may refer to them as training samples or simply samples.

A learner A is a (possibly randomized) function from training sets to hypotheses, i.e.,
A : (X × Y)<ω → YX . The true error, or simply error, incurred by a hypothesis h ∈ YX

with respect to a distribution D over X × Y is the average loss its predictions incur on labeled
datapoints drawn from D, i.e., LD(h) = E(x,y)∼D ℓ(h(x), y). The empirical error incurred by a
hypothesis h on a sample S =

(
(x1, y1), . . . , (xn, yn)

)
is the average loss it suffers over datapoints

in S, as in

LS(h) =
1

n

n∑
i=1

ℓ(h(xi), yi).

Definition 1 A learnerA is an empirical risk minimizer (ERM) with respect to H if for all samples
S, we have that A(S) ∈ argminH LS(h).

A related technique is structural risk minimization (SRM), which amounts to empirical risk
minimization along with an inductive bias favoring certain hypotheses in H over others.

Definition 2 A regularizer for a hypothesis class H is a function ψ : H → R≥0. A learner A is a
structural risk minimizer (SRM) with respect to H if there exists a regularizer ψ for H such that,
for all samples S, we have that

A(S) ∈ argmin
H

LS(h) + ψ(h).
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A learning problem is also defined by a criterion for success, the most celebrated of which is
certainly Valiant’s PAC learning framework (Valiant, 1984).

Definition 3 Let D be a collection of probability measures over X ×Y and H ⊆ YX a hypothesis
class. A learner A is a PAC learner for H with respect to D if there exists a sample function
m : (0, 1)2 → N such that the following condition holds: for any D ∈ D and ϵ, δ ∈ (0, 1), a
D-i.i.d. sample S with |S| ≥ m(ϵ, δ) is such that, with probability at least 1− δ over the choice of
S and any internal randomness in A,

LD(A(S)) ≤ inf
H
LD(h) + ϵ.

In Definition 3, when D consists of all probability measures over X × Y , one says that A is an
agnostic PAC learner for H. When D consists of all probability measure D such that LD(h) = 0
for some h ∈ H, one says that A is a realizable PAC learner for H. Hereafter, we will suppress
dependence on the family D and trust that it be established clearly in the surrounding context.

Definition 4 The sample complexity of a learner A with respect to a hypothesis class H,
mPAC,A : (0, 1)2 → N, is the minimal sample function it attains as a learner for H. The
sample complexity of a class H is the pointwise minimal sample complexity attained by any of
its learners, i.e., mPAC,H(ϵ, δ) = minAmPAC,A(ϵ, δ).

It will be useful to note that ERM and SRM learners are proper learners, as we now define.

Definition 5 A learner A is said to be proper with respect to H if the guarantee A(S) ∈ H holds
for all samples S.

We remark briefly that we take a rather hands-off approach to measure-theoretic details through-
out, adopting standard assumptions from e.g. Shalev-Shwartz and Ben-David (2014). See, e.g.,
Blumer et al. (1989), (Pollard, 2012, Appendix C) for a more precise treatment.

2.3. Error: High-probability, Expected, and Transductive

The PAC learning framework demands high-probability guarantees of its learners, as presented in
Definition 3. Though certainly the most standard framework for assessing learners, it is by no
means the only one. Perhaps the most straightforward measure of a learner’s quality is simply
its expected error. This is the prediction model of learning proposed by Haussler et al. (1994).
Here, we require learners to attain vanishingly small expected error when trained on increasingly
large samples, and endow such learners with corresponding sample complexities mExp(ϵ). A third
notion of error is that of the transductive error, to be described precisely shortly, which captures a
learner’s performance in the transductive model of learning. This is a somewhat more adversarial
version of the prediction model, and is in fact also described and used by Haussler et al. (1994).1

Once again, this framework requires vanishing transductive error of its learners, thereby equipping
them with sample complexities mTrans(ϵ).

A natural question to ask of these learning criteria is as follows: How do the sample complexities
they induce on classes H differ? Does there exist a class H whose sample complexities mExp(ϵ)

1. See also prior discussion of transductive learning by Vapnik and Chervonenkis (1974) and Vapnik (1982).
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and mPAC(ϵ, δ) scale considerably differently with ϵ (or δ) than its transductive sample complexity
mTrans(ϵ)? For the case of realizable learning with bounded loss, the three frameworks turn out
to be essentially equivalent. Notably, this places our study of one-inclusion graphs — which are
tailored to minimizing transductive error — on firmer theoretical footing.

Definition 6 The transductive learning setting is that in which the following steps take place:

1. An adversary chooses a collection of n unlabeled datapoints S = (x1, . . . , xn) ∈ X n, along
with a hypothesis h ∈ H.

2. The unlabeled data S is revealed to the learner.

3. One datapoint xi is selected uniformly at random from S. The remaining datapoints S−i and
their labels under h are displayed to the learner. That is, the learner receives (xj , h(xj))j ̸=i.

4. The learner is prompted to predict the label of xi, i.e., h(xi).

We refer to xi as the test datapoint, and the remaining S−i as the training datapoints. The
transductive error incurred by a learner A on the instance (S, h) is its expected error over the
uniformly random choice of xi. That is,

LTrans
S,h (A) =

1

n

∑
i∈[n]

ℓ
(
A(S−i, h)(xi), h(xi)

)
,

where A(S−i, h) denotes the output of A on the sample of datapoints in S−i labeled by h.

Intuitively, transductive error can be thought of as a fine-grained form of expected error that
demands favorable performance on each individual sample S, and that furthermore “hard-codes” a
uniform distribution over the datapoints of S. In particular, note the lack of an underlying distribu-
tion D in the transductive setting.

The transductive error rate of a learner A or class H is defined respectively as

ϵA,H(n) = max
S∈Xn,h∈H

LTrans
S,h (A), and ϵH(n) = min

A
ϵA,H(n).

We show that the sample complexities of learning in the PAC, expected, and transductive settings
differ by at most logarithmic factors in the realizable case. We emphasize that the content of this
claim is neither novel nor particularly profound. Nevertheless, we believe that the community may
benefit from a singular, organized treatment of the topic, which — to our knowledge — does not at
present appear in the literature. See Appendix A for further detail, along with Dughmi et al. (2024).

Proposition 7 (Informal Proposition 32) Fix a hypothesis class H ⊆ YX and a loss function
taking values in [0, 1]. Let mPAC,H, mExp,H, and mTrans,H be the sample complexities of learn-
ing H in the realizable PAC, expected, and transductive settings, respectively. Then the following
inequalities hold for all ϵ, δ ∈ (0, 1) and the constant e ≈ 2.718.

1. mExp,H(ϵ+ δ) ≤ mPAC,H(ϵ, δ) ≤ O (mExp,H(ϵ/2) · log(1/ϵ)).

2. mExp,H(ϵ) ≤ mTrans,H(ϵ) ≤ mExp,H(ϵ/e).

So far, we have restricted attention to realizable learning. We describe agnostic analogues of trans-
ductive learning and of Proposition 7 in Section 5.
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3. One-inclusion Graphs and the Hall Complexity

One-inclusion graphs (OIGs) are powerful combinatorial objects that capture the structure of realiz-
able learning under the 0-1 loss. They are particularly well-suited for analyzing transductive error,
as defined in Definition 6. We begin the section by briefly reviewing OIGs, and refer the reader to
Appendix B for a more complete (and self-contained) treatment. We then introduce the Hall com-
plexity derived from OIGs, which we show exactly characterizes a problem’s optimal transductive
error rate. Throughout the section, we remain in the setting of realizable multiclass classification.

Definition 8 Let X be a domain, Y a label set, and H ⊆ YX a hypothesis class. The one-inclusion
graph of H with respect to S ∈ X n, denoted G(H|S) = (V,E), is the following hypergraph:

• V = H|S , and

• E =
⋃n

i=1H|S−i , where e = h ∈ H|S−i is incident to all g ∈ H|S such that g|S−i = h.

Intuitively, each edge e in G(H|S) corresponds to a labeled training sample and an unlabeled
test point xtest. A learner chooses a manner of completing e into a fully labeled dataset by predicting
a label for xtest; this is precisely a choice of node incident to e (i.e., an orientation of e). In this
view, the transductive error incurred on an instance (S, h) equals the number of edges incident to
h|S ∈ V which were not oriented towards h|S — that is, the number of times the learner “should
have” completed the label of xtest in accordance with the ground truth h|S but did not. This is
simply the outdegree of the node h|S . Let us formalize these concepts in the following definition.

Definition 9 An orientation of a hypergraph G = (V,E) is a function f : E → V such that f(e)
is incident to e for all e ∈ E. The outdegree of v ∈ V in orientation f is the number of edges e
incident to v with f(e) ̸= v. The indegree of v in f is the number of edges e with f(e) = v. We say
G is α-orientable if it can be oriented so that the in-degree of each vertex is at least α. Similarly,
G is α-coorientable if it can be oriented so that the out-degree of each vertex is at most α. We refer
to orientations satisfying these conditions as α-orientations and α-coorientations, respectively.

We will also consider randomized orientations of OIGs, in which case we naturally extend Def-
inition 9 so that a randomized α-orientation is one which satisfies expected in-degree requirements,
and likewise for coorientations. The following lemma formalizes the equivalence between learners
attaining low transductive error and orientations of the OIG with low outdegree.

Lemma 10 Let A be a transductive learner for H. The following conditions are equivalent:

1. A incurs transductive error at most ϵ on all samples of size n;

2. For each h ∈ H and S ∈ X n, A induces an (ϵ · n)-coorientation on G(H|S); and

3. For each h ∈ H and S ∈ X n, A induces an ((1− ϵ) · n)-orientation on G(H|S).

Proof sketch Conditions (2.) and (3.) are equivalent as G(H|S) is regular; each node has degree
|S| = n. Conditions (1.) and (2.) are equivalent by our previous reasoning, i.e., the outdegree of a
node h ∈ G(H|S) (with respect to the orientation induced by A) counts the number of errors made
by A when h is the underlying transductive instance. See Lemma 42 for the formal proof.

We now define the Hall complexity, which characterizes transductive error rates exactly. When
G = (V,E) is an undirected hypergraph and U ⊆ V , we let E[U ] ⊆ E denote the collection of
edges with at least one incident node in U .

7



ASILIS DEVIC DUGHMI SHARAN TENG

Definition 11 The Hall density of a graph G = (V,E) is Hall(G) = inf U⊆V,
|U |<∞

|E[U ]|
|U | .

Definition 12 The Hall complexity of a hypothesis class H is the function πH : N → N defined

πH(n) = max
S∈Xn

n− Hall
(
G(H|S)

)
.

Proposition 13 (Informal Proposition 46) The Hall complexity of a class H exactly characterizes
the optimal transductive error rate of learning H. That is, ϵH(n) =

πH(n)
n for all n ∈ N.2

The proof is essentially an application of Hall’s theorem to the (bipartite) edge-vertex incidence
graph of the one-inclusion graph. For a discussion of the Hall complexity’s relation to other dimen-
sions and sequences related to transductive error, we refer the reader to Remark 47.

4. Structural Risk Minimization

In this section, we establish our main results in Theorems 20 and 21: realizable multiclass learn-
ability is characterized by generalized regularizers granted access to the test point and unlabeled
training points as input. That is, a multiclass problem is learnable precisely when it can be learned
by such a regularizer, in which case one such regularizer is guaranteed to produce optimal learners.
We term these regularizers local unsupervised regularizers, and support our central theorem using
results from Sections 4.1, 4.2, and 4.3, which establish both sufficiency and — in a precise sense
— minimality of this generalized regularizer. Our proofs also help to illustrate the role of unsu-
pervised methods in multiclass learning. Notably, our insights rely crucially on the machinery of
one-inclusion graphs. Throughout the section, we remain in the setting of realizable classification.

4.1. Impossibility Results

We begin by collecting impossibility results concerning learning techniques which learn all multi-
class classification problems possible. The first result, due to Daniely and Shalev-Shwartz (2014),
establishes that proper learners are in general insufficient for multiclass classification problems.

Proposition 14 (Daniely and Shalev-Shwartz (2014, Lemma 2)) There exists a PAC learnable
hypothesis class H ⊆ YX , for infinite label set Y , that is not learnable by any proper learner.

Notably, this eliminates the possibility that ERM or SRM learners are sufficiently expressive to
learn all multiclass problems possible. To see why a proper learner may be insufficient, imagine
a setting in which a class H contains hypotheses whose “complexities” vary considerably over the
domain X . For instance, h0 ∈ H acts “simply” on X0 ⊆ X and with complexity on X1 ⊆ X ,
while h1 ∈ H does the opposite. Then, intuitively, a regularizer ψ would like to alternate between
favoring the functions h0 and h1, depending upon the location being queried. See Figure 1.

2. We note briefly that the Hall complexity exactly characterizes the error rate of learning with arbitrary learners, which
are permitted to use internal randomness. Introducing a floor in the definition of the Hall density begets a version of
the Hall complexity which characterizes error rates with respect to deterministic learners.
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h0

h1

Figure 1 : Hypotheses h0 and h1, depicted in
red and yellow respectively. A local
regularizer may favor the simplicity of h0 on
test points drawn from the right region of the
domain, and the simplicity of h1 on test points
drawn from the left region.

This reasoning naturally gives rise to the no-
tion of a local regularizer that is non-uniform with
respect to X .

Definition 15 A local regularizer for a hypoth-
esis class H is a function ψ : H × X → R≥0.
A learner A is a local structural risk minimizer
with respect to H if there exists a local regularizer
ψ for H such that, for all samples S and x ∈ X ,

A(S)(x) ∈
{
h(x) : h ∈ argmin

H
LS(h)+ψ(h, x)

}
.

In this case, we say that A is a learner induced by
ψ. We say that ψ learns the class H if all learners
it induces are PAC learners for H.

We note that local regularizers (or similar
ideas) have been previously considered in com-
puter vision (Wolf and Donner, 2008; Prost et al.,
2021) and in the learning theory community (Bot-
tou and Vapnik, 1992). Nonetheless, we demon-
strate that this augmention is insufficient: even
local regularizers are required to fail on some
learnable classification problems.

Proposition 16 There exists a PAC learnable class H which no local regularizer can learn.

We defer the proof to Appendix D.1, and note that it employs the first Cantor class of Daniely
and Shalev-Shwartz (2014). Having already equipped regularizers with the information of the test
point, there remains only one additional source of information with which to empower regularizers:
the sample S itself. If we were to grant local regularizers full access to S, it is straightforward to see
that they could induce any learner, rendering the characterization meaningless (see Appendix C.1).
We should ask, then, what is the weakest summary statistic of S which can be supplied to regulariz-
ers in order to increase their power? Perhaps the most simple is |S|, the cardinality of S. Equipping
regularizers with this information is both a powerful tool in the practice of machine learning3 and,
notably, would allow them to learn the class H∞ used in the proof of Proposition 16.

Definition 17 A local size-based regularizer for a hypothesis class H is a function
ψ : H × N × X → R≥0. A learner A is said to be induced by a local size-based regularizer
ψ if for all samples S and datapoints x ∈ X ,

A(S)(x) ∈
{
h(x) : h ∈ argmin

H
LS(h) + ψ(h, |S|, x)

}
.

We say that ψ learns the class H if all learners it induces are PAC learners for H.

3. There is evidence in both theory and practice which suggests that sample size plays a crucial role in calibrating regu-
larizers; see e.g. the sample-size dependent regularizer from Shalev-Shwartz et al. (2010) or the SVM regularization
in Wainer and Cawley (2017); Shalev-Shwartz and Srebro (2008).
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We now articulate a conjecture: local size-based regularizers are insufficient for classification.

Conjecture 18 There exists a PAC learnable class H that is not learned by any local size-based
regularizer.

In Appendix C.2 we provide a learnable hypothesis class which we suspect cannot be learned
by any local size-based regularizer, towards justifying the conjecture. Furthermore, we note that a
negative resolution to the conjecture would somewhat undermine the structure of OIGs themselves.
That is, there would exist learners for all multiclass problems which use strictly less information
than OIGs (i.e., |S| rather than all its unlabeled data). Given the volume of work on OIGs and their
insights for learning, such an outcome could be considered surprising.

4.2. Deterministic Learning with Acyclic Orientations

Given the collection of impossibility results above and our suspicion about the insufficiency of size-
based regularizers, we turn to providing a regularizer which utilizes not only the cardinality of |S|,
but indeed the entire unlabeled sample set. For a sample S = ((xi, yi))i∈[n], we let SX denote the
sequence of unlabeled datapoints in S, i.e, SX = (xi)i∈[n].

Definition 19 A local unsupervised regularizer, or simply unsupervised regularizer, for a hy-
pothesis class H is a function ψ : H × X<ω × X → R≥0. A learner A is a local unsupervised
structural risk minimizer with respect to H if there exists a local unsupervised regularizer ψ such
that the following guarantee holds for all samples S and datapoints x ∈ X :

A(S)(x) ∈
{
h(x) : h ∈ argmin

H
LS(h) + ψ(h, SX , x)

}
.

In this case, we say that A is a learner induced by ψ. We say that ψ learns the class H if all
learners it induces are PAC learners for H.

The central result of this section is that local unsupervised regularizers are indeed sufficiently
expressive to optimally learn all multiclass problems with the 0-1 loss. We note that the proof is
constructive when Y is finite and employs a compactness argument for infinite Y .

Theorem 20 Let Y be a finite or countable label set and H ⊆ YX a hypothesis class. Then H has
an unsupervised local regularizer ψ whose induced learners all attain optimal transductive error
up to a constant factor of 2.

Proof sketch The full proof is given in Appendix D.2. First suppose that Y is finite. It suffices to
demonstrate that for each S ∈ X n there exists an acyclic orientation of G(H|S) that is optimal to
within a factor of 2. (From the acyclic orientation, one can topologically sort G(H|S) and define
an unsupervised local regularizer that is decreasing on layers.) The acyclic orientation, implicit
in the work of Daniely and Shalev-Shwartz (2014), arises from the following k-core algorithm:
repeatedly remove the vertex of lowest degree from G(H|S) and place it in the last layer of a
topological ordering. The outdegree of any vertex in this ordering is precisely its degree in the
undirected (sub)graph of G(H|S) before it was removed. This is bounded above by the maximum
subgraph density of G(H|S), which in turns bounds the error of its best learner up to a factor of 2.
The case of infinite Y requires a compactness argument.
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Note that local unsupervised regularizers are minimal in the following sense: If we were to
disallow the test point x from a regularizer’s input, its induced learners would be proper and thus
fail on learnable problems by Proposition 14. If we restricted access of the regularizer to SX , its
corresponding learners would again fail on learnable problems by Proposition 16.

4.3. Randomized Learning with Maximum Entropy Distributions

The deterministic learner from the previous section serves as a tool for implementing principled
tie-breaking between hypotheses attaining zero empirical risk. In this section, we propose a tie-
breaking rule for randomized learners based upon the maximum entropy principle. This rule also
has the property of being Bayesian in nature: it corresponds to learning a Bayesian prior using
the unlabeled samples SX and test datapoint xtest, which is then updated to a suitable posterior
distribution over H|SX∪{xtest} once the labeled data is revealed to the learner. We derive this learner
from the solution of a certain maximum-entropy convex program. Hereafter, we let S+

X denote the
collection of unlabeled training datapoints alongside the test datapoint, i.e., S+

X = SX ∪ {xtest}.
We restrict attention to finite but arbitrarily large label sets Y in this section, as a consequence

of certain measurability issues. However, none of our results are parameterized by the size of the
underlying label set, suggesting that they may admit extension to infinite label spaces (perhaps
via compactness arguments, as in (Asilis et al., 2024; Brukhim et al., 2022; Daniely and Shalev-
Shwartz, 2014)).

Theorem 21 There exists an optimal randomized learner which can be summarized as follows.

1. Upon receiving the unlabeled datapoints S+
X = (x1, . . . , xn), including the test point, use a

convex program to compute an optimal randomized orientation of G(H|S+
X
) with maximum

entropy, then derive a prior distribution ρ over H|S+
X

by normalizing the dual variables.

2. Given the index i of the test point, and labels yj for all datapoints xj ̸=i, apply a Bayes update
to ρ in order obtain a posterior ρ′. This posterior corresponds to restricting the prior to
hypotheses consistent with the provided labels, and rescaling accordingly.

3. Sample a hypothesis h from ρ′ and output h(xi) as the predicted label of xi.

Proof sketch The full proof is given in Appendix D.3. First, we draw an equivalence between
the OIG G(H|S+

X
) and a certain bipartite representation of the OIG, GBP. The graph GBP has the

property that assignments from its left-hand side are equivalent to orientations in G(H|S+
X
). We

define a convex program akin to Singh and Vishnoi (2014) which (randomly) assigns the left-hand
side of GBP so as to guarantee optimal error while maximizing entropy subject to this constraint.
Due to the fact that dual variables enforce local decisions in convex matching programs, we are able
to back out a Bayesian update step from the learner while preserving optimal error guarantees.

By Theorem 21, we have that when the true labels for the training datapoints are revealed, the
randomized optimal (maximum entropy) learner is Bayesian in that it updates its posterior over
hypotheses to have minimum relative entropy to the prior ρ, constrained on outputting hypotheses
consistent with the training data. We argue that this is a local unsupervised SRM in a natural
generalized sense. In particular, we expand the space of hypotheses to include distributions over
hypotheses, and have our regularizer assign a complexity to each such randomized hypothesis.

11
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Definition 22 Let ψ : ∆H×X<ω ×X → R≥0 be a local unsupervised regularizer for randomized
hypotheses.4 A (randomized) learner A is said to be induced by the regularizer ψ if for all samples
S and datapoints x ∈ X ,

A(S)(x) = h(x) where h ∼ D for D ∈ argmin
∆H

E
h∼D

[
LS(h)

]
+ ψ(D,S, x).

Corollary 23 The learner from Theorem 21 can be realized as a local unsupervised regularizer for
randomized hypotheses.

We defer the proof to Appendix D.4 and note that the regularizer of Corollay 23 depends upon
the relative entropy (i.e., KL divergence) between the distribution D and the Bayesian prior ρ. In
addition to being an SRM in the generalized sense just described, our learner can also be interpreted
as an instantiation of the maximum entropy principle. In particular, if the prior ρ were uniform, then
indeed our learner would sample from the maximum entropy distribution over hypotheses consistent
with the training data. More generally, sampling from the distribution which hues most closely to
the prior subject to the provided labels, as measured by relative entropy, is the natural generalization
of the maximum entropy principle to incorporate prior knowledge. That is, our learner deviates as
little as possible from the prior subject to consistency with the provided labels.

Discussion. A priori, the value of a randomized learner may be unclear given that the previous
section derives a deterministic one. The pioneering work of Jaynes (1957) states the principle of
maximum entropy: one should choose prior probabilities consistent with available information so as
to maximize the entropy of the system. Jaynes (1957) further states: “it is unreasonable to assign
zero probability to any event unless our data really rules out the case.” Coupled with the fact that
the previous deterministic learners are highly contingent upon the choice of optimal orientation, it
is natural to ask for a (randomized) learner making fewer arbitrary choices. Yet another advantage
of the randomized learner from this section is that it generalizes to the agnostic setting, as we will
see shortly, whereas the deterministic strategy of Section 4.2 does not appear to.

5. Agnostic Learning

Our discussion of learning and one-inclusion graphs has thus far pertained to the realizable case.
Indeed, the structure of one-inclusion graphs and the transductive learning setting depends crucially
upon guarantees provided by the realizability assumption.

We devote this section to the generalization of the one-inclusion graph and its accompanying
insights to the agnostic case. In particular, we define an agnostic version of the OIG and demonstrate
that our previous results holds for the agnostic OIG, with the exception of the deterministic learner
from Theorem 20. A more complete discussion of the agnostic OIG, including precise statements
of results and their proofs, is deferred to Appendix E.

Definition 24 (Informal Definition 57) Transductive learning in the agnostic case is defined as
in the realizable case (Definition 6), except that the adversary can arbitrarily label their datapoints.

4. Technically, for any (SX , xtest) ∈ X<ω ×X , we need only consider distributions over H|S′ for S′ = SX ∪{xtest},
i.e., elements of ∆H|S′ . As Y is taken to be finite in this section, H|S′ ⊆ YS′

will always be finite.

12
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To compensate for the increased difficulty of the agnostic case, and in accordance with the PAC
definition of agnostic learning, an agnostic transductive learner A is only judged relative to the
best-in-class performance across H:

LTrans
S (A) =

1

n

∑
i∈[n]

ℓ(A(S−i)(xi), yi)− inf
h∈H

1

n

∑
i∈[n]

ℓ(h(xi), yi).

Unfortunately, the sample complexities of transductive and PAC learning are not known to be
as closely related in the agnostic case as they are in the realizable case. With a simple of simple
use of Markov’s inequality and a repetition argument, one can show that agnostic PAC sample
complexities exceed their transductive counterparts by at most a factor of 1/ϵ. This is, of course,
not a lower order factor, but it may be a loose bound. See Dughmi et al. (2024) for further discussion
of the relationship between agnostic PAC and transductive learning.

Definition 25 Let H ⊆ YX be a hypothesis class. The agnostic one-inclusion graph of H with
respect to S ∈ X n, denoted GAg(H|S) = (V,E), is the hypergraph with:

• V = Yn, one node for each possible labeling of the n datapoints, and

• E =
⋃n

i=1 Yn|S−i , where e ∈ Yn|S−i is incident to each v ∈ Yn such that v|S−i = e.

The agnostic OIG is sometimes referred to as the Hamming graph (Brouwer and Haemers, 2011).
We note that Long (1998) use a similarly expanded OIG to study binary classification under distri-
bution shift, but to our knowledge no previous work has fully expanded upon the idea to analyze
learning in the agnostic case (see Appendix F for further discussion).

Analagously to the realizable case, agnostic learners are in close correspondence with orien-
tations of the agnostic OIG (c.f. Lemma 10). A crucial difference, however, is that each vertex v
in an agnostic OIG is endowed with a number of Hamming credits reflecting its distance from the
underlying class H. Informally, the Hamming credits are subtracted from the outdegree of v in any
orientation of the OIG, so that learners (equivalently, orientations) are judged only upon the “excess
outdegree” they induce on vertices. Semantically, the Hamming credits reflect the fact that learners
for the agnostic case need only compete with the performance of the best hypothesis in H. In Defi-
nition 66 we use Hamming credits to define a suitable generalization of the Hall complexity which
retains the exact transductive error characterization of its realizable counterpart.

Proposition 26 (Informal Proposition 67) The agnostic Hall complexity of a class H exactly char-
acterizes the optimal agnostic transductive error rate of learning H.

Lastly, we demonstrate that the randomized learner of Section 4.3 generalizes to the agnostic
case. Informally, the convex program used to produce the maximum entropy learner in Theorem 21
applies to the agnostic case with nearly identical reasoning, as it is robust to the addition of nodes
to the OIG and to non-uniform out-degree requirements (i.e., to the presence of Hamming credits).

Proposition 27 (Informal Proposition 70) The Bayesian randomized learner from Theorem 21
and its associated randomized regularizer from Corollary 23 can be extended to the agnostic case.
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6. Conclusion

In pursuit of an algorithmic template for multiclass classification, we study the role of regularization
in multiclass learning. We first observe that classical regularizers ψ : H → R≥0 are insufficient
to learn multiclass problems owing to the work of Daniely and Shalev-Shwartz (2014), and extend
this impossibility result to the more powerful local regularizers which are given access to the test
datapoint. We then consider unsupervised local regularizers, which are regularizers granted access
to both the unlabeled test datapoint and the collection of all unlabeled training points. By exploiting
the connection between unsupervised local regularizers and acyclic orientations of one-inclusion
graphs (OIGs), we provide deterministic transductive learners that are nearly optimal (up to a factor
of 2) for all multiclass problems in the realizable case. We then demonstrate an optimal random-
ized transductive learner for both the realizable and agnostic settings by way of a certain maximum
entropy program, and show it to be an unsupervised local SRM as well as a pre-trained Bayesian
learner. As part of our efforts, we also generalize the one-inclusion graph to the agnostic case and
define the Hall complexity associated to a class H, which is the first to provide an exact combinato-
rial characterization of transductive error rates. Future work includes resolving our conjecture that
local size-based regularizers, which are of intermediate power between local regularizers and unsu-
pervised local regularizers, are insufficient to learn multiclass problems. It would also be of interest
to design optimal (or nearly optimal) multiclass learners which are computationally efficient, and to
study the role of regularization (local, unsupervised, and otherwise) beyond classification.
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Appendix Organization

Appendices A and B are self-contained sections expanding upon claims already mentioned in the
main body: the equivalence between the PAC, transductive, and expected learning frameworks (Ap-
pendix A), and the Hall complexity of one-inclusion graphs (Appendix B). Appendix C briefly
expands upon two points mentioned in Section 4.1: the triviality of local regularizers permitted
access to all of S, and our conjecture concerning the insufficiency of local size-based regularizers.

Appendix D is devoted to proofs which were omitted from the main text. Appendix E extends
the machinery of one-inclusion graphs and Hall complexity to the agnostic case in a self-contained
manner, as advertised briefly in Section 5. We conclude in Appendix F with an expanded discussion
of related work.

Appendix A. Equivalence of Errors

The PAC learning framework demands high-probability guarantees of its learners, as presented in
Definition 3. Though certainly the most standard framework for assessing learners, it is by no
means the only one. Perhaps the most straightforward measure of a learner’s quality is simply its
expected error. This is the prediction model of learning proposed by Haussler et al. (1994). Here,
we require learners to attain vanishingly small expected errors when trained on increasingly large
samples, and endow such learners with corresponding sample complexitiesmExp(ϵ). A third notion
of error is that of the transductive error, to be described precisely shortly, which captures a learner’s
performance in the transductive model of learning. This is a somewhat more adversarial version of
the prediction model, and is in fact also described and used by Haussler et al. (1994). Once again,
this framework requires vanishing transductive error of its learners, thereby equipping them with
sample complexities mTrans(ϵ).

The most natural question to ask of these criteria for learning is whether they determine the
same collection of learnable classes. That is, does there exist any hypothesis class H learnable
under one such framework but not another? In the case of realizable learning with a bounded loss
function — as we primarily consider — it can be shown with little difficulty that the frameworks
coincide in this sense. A central concern of learning theory, however, is not merely whether a given
hypothesis class H can be learned, but moreover the sample complexity with which it can be learned.
Consequently, one should ask of the three learning criteria: How do the sample complexities they
induce on classes H differ? Does there exist a class H whose sample complexities mExp(ϵ) and
mPAC(ϵ, ϵ) scale considerably differently with ϵ than its transductive sample complexitymTrans(ϵ)?
For a given learning problem, how do guarantees at the level of one error correspond to guarantees
for the others, if at all?

The purpose of this section is to review these concepts and study the conditions under which
one can favorably transform a learner with guarantees in one such error regime into a learner with
guarantees in another (i.e., with only a modest effect on sample complexity). This is a topic which
has received relatively little attention from the learning theory community, and which we believe
would benefit from a clear collection of existing results. Furthermore, it will place our study of
one-inclusion graphs — which are tailored to minimizing transductive error — on firmer theoretical
footing. In particular, we will show for the case of realizable learning with bounded loss that the
three learning frameworks are essentially equivalent, by providing modest bounds (at most logarith-
mic) on the extent to which their sample complexities may differ.
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A.1. A Simple Equivalence

Throughout the section, we fix an arbitrary domain X , label set Y , hypothesis class H ⊆ YX , and a
bounded loss function ℓ, which we normalize to take values in [0, 1]. We also direct our attention to
learning in the realizable case, and let DH denote the collection of all H-realizable distributions over
X × Y . That is, DH consists of those distributions D for which some h ∈ H satisfies LD(h) = 0.

Definition 28 The sample complexity mExp,A : (0, 1) → N of a learner A in the expected error
framework is the function mapping ϵ to the minimal m for which the following condition holds:

(∀D ∈ DH)(∀m′ ≥ m) E
S∼Dm′

LD

(
A(S)

)
≤ ϵ.

That is, mExp,A tracks the minimal number of samples required by A to attain a desired level
of expected error, with respect to any D ∈ DH. Definition 28 forms an appropriate definition at
the level of individual learners, but our interest ultimately lies in proving claims at the level of
hypothesis classes. That is, we require a notion of sample complexity for a class H.

Definition 29 The sample complexity of a hypothesis class H in the expected error framework is
the optimal sample complexity attained by its learners, i.e.,

mExp,H(ϵ) = min
A
mExp,A(ϵ),

where A ranges over all learners.

Definition 30 The transductive learning setting is that in which the following steps take place:

1. An adversary chooses a collection of n unlabeled datapoints S = (x1, . . . , xn) ∈ X n, along
with a hypothesis h ∈ H.

2. The datapoints S are displayed to the learner.

3. One datapoint xi is selected uniformly at random from S. The remaining datapoints

S−i = (x1, . . . , xi−1, xi+1, . . . , xn)

and their labels under h are displayed to the learner. That is, the learner receives the data of(
xj , h(xj)

)
xj∈S−i

.

4. The learner is prompted to predict the label of xi, i.e., h(xi).

We refer to xi as the test datapoint, and the remaining S−i as the training datapoints. The
transductive error incurred by a learner A on the instance (S, h) is its expected error over the
uniformly random choice of xi. That is,

LTrans
S,h (A) =

1

n

∑
i∈[n]

ℓ
(
A(S−i, h)(xi), h(xi)

)
,

where we use A(S−i, h) to denote the output of A on the sample consisting of datapoints in S−i

labeled by h. The transductive error rate incurred by A is the function ϵA,H : N → R defined by

ϵA,H(n) = max
S∈Xn, h∈H

LTrans
S,h (A).
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Intuitively, transductive error can be thought of as a fine-grained form of expected error that
demands favorable performance on each individual sample S, and that furthermore “hard-codes” a
uniform distribution over the datapoints of S. In particular, note the lack of an underlying distribu-
tion D in the transductive setting.

Definition 31 The transductive sample complexity mTrans,A : (0, 1) → N of a learner A is the
function mapping δ to the minimal m for which ϵA,H(m

′) < δ for all m′ ≥ m. That is,

mTrans,A(δ) = min{m ∈ N : ϵA,H(m
′) < δ, ∀m′ ≥ m}.

We are now equipped to present the central claim of the section: these sample complexities
differ by at most logarithmic factors. We emphasize again that the content of the claim is neither
novel nor particularly profound. Nevertheless, we believe that the community may benefit from a
singular, organized treatment of the topic, which — to our knowledge — does not at present appear
in the literature.

Proposition 32 Fix an arbitrary domain X , label set Y , and hypothesis class H ⊆ YX . Use a loss
function taking values in [0, 1]. Then the following inequalities hold for all ϵ, δ ∈ (0, 1) and the
constant e ≈ 2.718.

1. mExp,H(ϵ+ δ) ≤ mPAC,H(ϵ, δ) ≤ O (mExp,H(ϵ/2) · log(1/ϵ)).

2. mExp,H(ϵ) ≤ mTrans,H(ϵ) ≤ mExp,H(ϵ/e).

Proof The first inequality of claim (1.) follows directly from the fact that the loss function is
bounded above by 1. That is, any learner attaining error ≤ ϵ with probability ≥ (1 − δ) on sample
of size n automatically incurs an expected error of at most

ϵ · (1− δ) + 1 · δ ≤ ϵ+ δ.

For the second inequality in (1.), letA be a learner attaining expected error ≤ ϵ/2 on samples of size
n, from which we would like to extract a high-probability guarantee. The key observation is that A
can be boosted to attain expected error ≤ ϵ with probability ≥ 1− ϵ using only an additional factor
of O(log(1/ϵ)) many examples. In particular, a sample of size n · O(log(1/ϵ)) can be divided into
units of size n, half of which are used to train A and produce candidate hypotheses h1, . . . , hℓ, and
half of which are used as a single validation set to select the best such hi, as described in Daniely
and Shalev-Shwartz (2014).

The first inequality of claim (2.) follows from the standard leave-one-out argument of Haussler
et al. (1994). In particular, if A is a learner incurring transductive error ≤ ϵ, then the same can be
said of its expected error. For a sample S =

(
(x1, y1), . . . , (xn, yn)

)
, recall that S−i denotes the

sample consisting of all labeled examples in S other than (xi, yi).

E
S∼Dm

LD

(
A(S)

)
= E

S∼Dm

(x,y)∼D

ℓ
(
A(S)(x), y

)
= E

S∼Dm+1
ℓ
(
A(S−(m+1))(xm+1), ym+1

)
= E

S∼Dm+1
E

i∈R[m+1]
ℓ
(
A(S−i)(xi), yi

)
≤ sup

S
E

i∈R[m+1]
ℓ
(
A(S−i)(xi), yi

)
= ϵA,H(m+ 1).
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The second inequality in (2.) is claimed without proof by Daniely and Shalev-Shwartz (2014); in
the interest of completeness, we provide a proof in Lemma 34.

We note briefly that Theorem 2.2 of Aden-Ali et al. (2023a) provides tighter bounds than Propo-
sition 32 for transforming a learner with optimal transductive error into one with PAC error guaran-
tees. Notably, however, the theorem is phrased only for finite label sets, in contrast to the generality
of Proposition 32. The ability to quantify over arbitrary label sets is crucial for our purposes, as
it is primarily over infinite label sets that the theory of multiclass classification departs from bi-
nary classification (e.g., uniform convergence fails to characterize learnability, ERM learners fail
for learnable problems, etc.). As such, we are best served with the slightly looser but considerably
more general statement of Proposition 32.

Remark 33 It was recently shown in Aden-Ali et al. (2023b) that one-inclusion graphs, which
attain optimal transductive error, do not always provide optimal high-probability guarantees. We
note that this is compatible with Proposition 32, which quantifies over all learners for a given
class H and does not claim that a learner attaining optimal error in one regime need do so for the
others as well. Proposition 32 instead demonstrates that the levels of performance attained by the
(possibly distinct) optimal learners for the three notions of error are comparable. This suffices to
justify a focus on any of the three errors — in our case, transductive — as the sample complexities
enjoyed by optimal learners in the other regimes will be comparable. (And in fact, the proof of
Proposition 32 provides a simple recipe for transforming optimal transductive learners into near-
optimal high-probability learners.)

Lemma 34 Fix an arbitrary domain X , label set Y , and hypothesis class H ⊆ YX . Then for all
ϵ ∈ (0, 1), mTrans,H(ϵ) ≤ mExp,H(ϵ/e).

Proof Fix ϵ, set n = mExp,H(ϵ), and let A be a learner attaining expected error ≤ ϵ on samples of
size n. We will extract from A a learning attaining transductive error at most e · ϵ, completing the
proof. First, an intermediate result.

Lemma 35 For each n ∈ N, there exists an mn ∈ N such that mn independent draws
from a uniform distribution over n items results in seeing exactly n−1 unique elements
with probability at least 1

e .

Proof Let
{
a
b

}
denote Stirling numbers of the second kind. Then for m many draws

from the uniform distribution over n elements, the probability of seeing exactly n − i
unique elements is

1

nm

{
m

n− i

}
n!

i!
.

We refer to this event as Ei, when n and m are clear from context. For the moment
let us shift our perspective so that m is the variable of interest and our asymptotics
are taken with respect to m. That is, for each given m, can we find an n such that m
uniform draws result in exactly n− 1 unique elements with constant probability?

Given m, let km be a value maximizing
{
m
i

}
over i ∈ [m]. Then take nm = km + 1.

For each i ∈ [m], we have that P (Ei) ∝
{

m
nm−i

}
· 1
i! . By definition of nm, the first
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factor in this product is maximized for i = 1. Therefore, we can lower bound P (Ei)
by imagining instead that P (Ei) ∝ 1

i! . And in this case, clearly, P (Ei) ≥ 1
e .

Lastly, by Dobson (1968), each n ∈ N appears as km for some m, completing the
argument.

We will now design a randomized learner B that attains transductive error ≤ e · ϵ on samples of
size n. In particular,B acts as follows upon receiving sample S =

(
(x1, y1), . . . , (xn−1, yn−1)

)
and

test datapoint xn: it randomly generates a uniform sample of size mn from the uniform distribution
over S, call it S′, and returns A(S′).

To analyze the transductive error of B, fix a transductive learning instance (S, h). Let S =
(x1, . . . , xn), and have D denote the uniform distribution over (x1, h(x1)), . . . , (xn, h(xn)). Call a
sample drawn from D good if it contains exactly n − 1 unique elements. The crucial observation
is as follows: the probability that B errs, averaged over a uniformly random test point xi ∈ S and
the randomness internal to B, equals precisely the probability that A errs conditioned on receiving
good samples of size mn. By Lemma 35, the latter quantity is at most e · ϵ. This completes the
argument.

Appendix B. One-inclusion Graphs and the Hall Complexity

One-inclusion graphs (OIGs) are powerful combinatorial objects that capture the structure of re-
alizable learning under the 0-1 loss. They are particularly well-suited for analyzing transductive
error, as defined in Definition 30. In particular, it was demonstrated in Daniely and Shalev-Shwartz
(2014) that for a given hypothesis class H, a combinatorial sequence µH : N → N associated to
the one-inclusion graphs of H provides a constant factor approximation to the optimal transductive
error of its learners. The central result of this section is the introduction of a new sequence associ-
ated to the OIGs of H, which we term the Hall complexity, that characterizes optimal transductive
error exactly. To this end, we recall the appropriate definitions concerning one-inclusion graphs in
Section B.1, and present the Hall complexity in Section B.2.

Throughout the section we restrict focus to realizable learning under the 0-1 loss, over arbitrary
domain and label sets X ,Y .

B.1. One-inclusion Graphs (with a Bipartite Perspective)

Recall the basic structure of transductive learning: a learner is presented with n unlabeled datapoints
S = (x1, . . . , xn), one such datapoint i is removed uniformly at random from S, and the learner is
asked to guess h(i) from the data of h|S−i , for some h ∈ H. Finally, the learner is judged on its
average performance over the randomness of i ∈ [n], with respect to the 0-1 loss function. Note
that, equipped with this loss function, the transductive error incurred by learner A on the instance
(S, h) is

LTrans
S,h (A) =

1

n

∑
i∈[n]

[
A(S−i, h)(xi) ̸= h(xi)

]
.

Now let us take the perspective of a transductive learner for the moment, and imagine that
we have just been given the data of the n datapoints S = (x1, . . . , xn), including the yet-to-be-
selected test point. Our objective is to minimize the worst-case transductive error we incur over
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any possible “ground truth” h ∈ H|S . First, a simple observation: upon observing h|S−i , we ought
to output g(xi) for g ∈ H|S a function such that g|S−i = h|S−i . Otherwise, it is guaranteed that
g(xi) ̸= h(xi) and thus that we incur a loss of 1, the maximal possible loss. That is, in realizable
learning with the 0-1 loss, any sensible learner ought to be an ERM. Hereafter, we will only consider
(transductive) learners obeying this mild property.

We now introduce some notation. Let us represent each g ∈ H|S as a fully labeled dataset(
(x1, g(x1)), . . . , (xn, g(xn))

)
, i.e., by its graph. Similarly, we can represent each h ∈ H|S−i as

a partially labeled dataset
(
(x1, h(x1)), . . . , (xi, ?), . . . , (xn, h(xn))

)
, i.e., by its graph augmented

by a “?” accompanying the test datapoint xi. For g ∈ H|S a fully labeled dataset and h ∈ H|S−i

a partially labeled dataset, we say that g completes h (or is compatible with h) when they agree on
S−i.

In this light, by our previous reasoning, the task of a transductive learner is to complete each
partially labeled dataset into a fully labeled dataset from among H|S . Note also the following
observations:

1. Each fully labeled dataset (i.e., ground truth g ∈ H|S) is compatible with exactly n partially
labeled datasets, each corresponding to one location for the “?”.

2. Upon making a choice of fully labeled dataset for each partially labeled dataset, the transduc-
tive error incurred on the ground truth g ∈ H|S is proportional to the number of compatible
partially labeled datasets that are not assigned to g. Equivalently, n minus the number of
partially labeled datasets that are assigned to g.

These insights are perhaps best expressed in the form of a bipartite graphGBP = (A,B, E). Let
the partially labeled datasets and fully labeled datasets form A and B, respectively. We then have
an edge (u, v) ∈ E precisely when v is a fully labeled dataset completing u, as depicted in Figure
2. The following claims follow immediately from our previous reasoning: a transductive learner on
S is precisely a choice of assignment in GBP (mapping each u ∈ A to an incident v ∈ B), and the
worst-case transductive error it incurs over h ∈ H|S is determined by the minimal indegree of a
node in B under this assignment.

In short, transductive learning devolves to finding assignments in bipartite graphs that maximize
minimal indegrees in B. With only a slight change in perspective, we will arrive at one-inclusion
graphs. Namely, given GBP = (A,B, E), consider the hypergraph G whose vertex set is B and
edge set is A, such that a ∈ A is incident to precisely those vertices in G (as an edge) with which it
is incident in G (as a node). Simply put, view each a ∈ A as an edge rather than a node!

This is formalized by the following definition.

Definition 36 Let X be a domain, Y a label set, and H ⊆ YX a hypothesis class. The one-
inclusion graph of H with respect to S ∈ X n, denoted G(H|S), is the hypergraph defined by the
following vertex and edge sets:

• V = H|S , and

• E =
⋃n

i=1H|S−i , where e = h ∈ H|S−i is incident to all g ∈ H|S such that g|S−i = h.

We will sometimes write such an edge e as e(h,i), with h ∈ H|S and i ∈ [n]. Under this representa-
tion, e(h,i) is incident to all nodes g ∈ H|S such that g|S−i = h|S−i .
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Let us now formally define the bipartite view of one-inclusion graphs, GBP, which we have
informally discussed. We will return frequently to this view of one-inclusion graphs throughout the
work.

Definition 37 Let X be a domain, Y a label set, and H ⊆ YX a hypothesis class. The bipartite
view of the one-inclusion graph of H with respect to S ∈ X n, denoted GBP(H|S), is defined as
follows. Let G(H|S) = (V,E) be the usual one-inclusion graph of H with respect to S. Then
GBP(H|S) = (L,R,E′) is the bipartite graph in which L = E, R = V , and (e, v) ∈ E′ precisely
when e is incident to v inG(H|S). In other words, GBP(H|S) is precisely the edge-vertex incidence
graph of G(H|S). We may denote it simply by GBP when H and S are clear from context.

Remark 38 There are various non-equivalent definitions of one-inclusion graphs in the literature.
Ours is equivalent to that of (Brukhim et al., 2022, Definition 9), and allows for hyperedges to have
size 1 (i.e., to be self-loops), which crucially results in each node having degree exactly n = |S|.
Originally, OIGs were defined by Haussler et al. (1994) with the requirement that edges have size
at least 2 (see also Alon et al. (1987)). For our purposes, this has the unfavorable consequence
of permitting nodes to have different degrees, which prevents us from establishing an equivalence
between maximizing nodes’ indegrees and minimizing nodes’ outdegrees (to be seen shortly). In
addition to the usual graph-theoretic definitions of OIGs, it will be often be useful to retain the
bipartite interpretation of Figure 2 as a supplementary perspective. In particular, it will form the
basis for analyzing the Hall complexity in a few moments, and for generalizing OIGs to the agnostic
case in Appendix E.

Recall now the notion of an orientation of a hypergraph.

Definition 39 An orientation of a hypergraph G = (V,E) is a function f : E → V such that
f(e) is incident to e for all e ∈ E. The outdegree of v ∈ V in orientation f is the number of
edges e incident to v with f(e) ̸= v. Similarly, the indegree of v in f is the number of edges e with
f(e) = v.

The following is immediate from our previous reasoning.

Lemma 40 There is a one-to-one correspondence between (deterministic) transductive learners
for H and orientations of G(H|S) for all S ∈ X<ω. Furthermore, a transductive learner A incurs
transductive error ≤ ϵ on the instance (h, S) if and only if h|S has outdegree ≤ ϵ · |S| in the graph
G(H|S) oriented by A.

Proof Fix a learner A and S ∈ X n. The action of A on partially labeled datasets induces an ori-
entation on G(H|S), such that each hyperedge e =

(
(x1, y1), . . . , (xi, ?), . . . , (xn, yn)

)
is oriented

toward
(
(x1, y1), . . . , (xi, yi), . . . , (xn, yn)

)
for yi the output of A on input e. We write e → h if e

is oriented towards h and e ̸→ h otherwise. Now, for any h ∈ H|S we have:

LTrans
S,h (A) =

1

n

∑
i∈[n]

[
A(S−i, h)(xi) ̸= h(xi)

]
=

1

n

∑
i∈[n]

[e(h,i) ̸→ h]

=
1

n
· outDeg(h).
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The previous lemma justifies a focus on orientations that minimize nodes’ outdegrees. For one-
inclusion graphs, in which every node has undirected degree exactly |S|, this amounts precisely to
maximizing nodes’ indegrees.

Definition 41 Let G be an undirected hypergraph. We say G is α-orientable if it can be oriented
so that all its vertices’ indegrees are at least α. G is α-coorientable if it can be oriented so that
all its vertices’ outdegrees are at most α. We will refer to orientations satisfying these conditions as
α-orientations and α-coorientations, respectively.

We may sometimes use randomized orientations to describe randomized learners. In these cases,
we naturally extend Definition 41 so that a randomized α-orientation is one which satisfies expected
in-degree requirements, and likewise for coorientations.

Lemma 42 Let A be a transductive learner for H. The following conditions are equivalent.

1. A incurs transductive error at most ϵ on all samples of size n.

2. For each h ∈ H and S ∈ X n, A induces an (ϵ · n)-coorientation on G(H|S).

3. For each h ∈ H and S ∈ X n, A induces an ((1− ϵ) · n)-orientation on G(H|S).

Proof Conditions (2.) and (3.) are patently equivalent, as any node in the undirected graph G(H|S)
has degree exactly n = |S|, one for each point in S that can be omitted. The equivalence between
(1.) and (2.) follows immediately from Lemma 40.

B.2. The Hall Complexity

Given a framework for learning and a hypothesis class H, perhaps the most pressing question is:
How quickly can H be learned, if at all? For transductive learning, progress was first made on the
issue by Haussler et al. (1994), who demonstrated an upperbound on the transductive error rate of
learning H based upon the maximum subgraph density of its one-inclusion graphs. (See Remark 47
for further detail). Subsequently, Daniely and Shalev-Shwartz (2014) introduced a sequence char-
acterizing optimal transductive errors up to constant factors. We now introduce a combinatorial
sequence that characterizes the errors of optimal transductive learners exactly.

Definition 43 Let G = (V,E) be an undirected hypergraph. For a set of nodes U ⊆ V , let
E[U ] ⊆ E denote the collection of edges with at least one incident node in U . The Hall density of
G is

Hall(G) = inf
U⊆V,
|U |<∞

|E[U ]|
|U |

.

Proposition 44 Let G be an undirected hypergraph in which each node has finite degree. Then
Hall(G) is the supremum of all α for which G is α-orientable.
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(0, 0, ?)

A

(1, 0, ?)

(0, 1, ?)

(0, ?, 0)

(1, ?, 0)

(?, 0, 0)

(?, 1, 0)

(0, 0, 0)

B

(1, 0, 0)

(0, 1, 0)

Figure 2: Bipartite graph GBP representing transductive learning on a traning set S of three data-
points, for which H can express the binary strings (0, 0, 0), (1, 0, 0), and (0, 1, 0). We fix
an ordering of the unlabeld data in S and represent each fully or partially labeled dataset
using only its labels. Note that each fully labeled dataset has degree exactly 3 = |S|. An
optimal transductive learner amounts precisely to an assignment of G (i.e., choice of in-
cident edge for each vertex in A) that maximizes the minimal indegree in B. Here, the
best indegree that can be attained is 2.

Proof An orientation of G = (V,E) is precisely a (possibly randomized) assignment E → V in
which each edge is assigned to an incident node. In order for there to exist such an assignment
in which each v ∈ V receives α in-degree, it is clearly necessary that for each finite U ⊆ V ,
|E[U ]| ≥ α · |U |. We now demonstrate sufficiency through cases.

Case 1. When Hall(G) ∈ N, and G is finite, sufficiency follows from the classical statement
of Hall’s theorem Hall (1935) combined with a standard splitting argument. (I.e., creating Hall(G)
many copies of each right-hand side node in the bipartite view of G.)

Case 2. When Hall(G) ∈ N and G is infinite, sufficiency follows from the generalization of
Hall’s theorem to infinite collections of finite sets, as described in (Hall Jr, 1948, Theorem 1).5 In
particular, each set in the set system corresponds to the collection of edges incident to a given node
in G, and is thus finite as a consequence of each node’s degree being finite.

Case 3. When Hall(G) = p
q ∈ Q, let GBP be the bipartite edge-incidence graph of G, i.e.,

G = (L,R,E′) with L = E, R = V , and (e, v) ∈ E′ when e is incident to v in G. (See
Definition 37.) Then create a graph G′

BP resembling GBP but with q copies of each left-hand side

5. We remark briefly that (Hall Jr, 1948, Theorem 1) appears to be phrased for countable collections of finite sets, but
that its proof nevertheless holds for arbitrary collections of finite sets obeying Hall’s condition.
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vertex, each of which has the same incidence relations as inGBP. By design of q, the resulting graph
has an assignment such that each right-hand side node receives indegree at least q·Hall(G) = p ∈ N.
Then interpret each left-hand side node inG′

BP as being in charge of a 1
q -fraction of an edge inGBP.

This gives a fractional/randomized assignment in GBP for which each right-hand side receives at
least Hall(G) quantity of edges. Interpreting this assignment as an orientation in the original graph
G, perhaps randomized, yields the desired result.

Case 4. When Hall(G) ̸∈ Q, for any ϵ > 0 there exists p
q ∈ Q such that 0 < Hall(G)− p

q < ϵ.
Take ϵ → 0: for any given p

q , apply the argument from Case 3. We then obtain a sequence of
α-orientations for which α→ Hall(G).

Definition 45 The Hall complexity associated to a hypothesis class H is the function πH : N → N
defined

πH(n) = max
S∈Xn

n− Hall
(
G(H|S)

)
.

Recall now the transductive error rate of a learner A, as defined in Definition 30, i.e.,

ϵA,H(n) = max
S∈Xn,h∈H

LTrans
S,h (A).

We analagously define the transductive error rate of a class H as the pointwise minimal error rate
attained by any of its learners, i.e.,

ϵH(n) = min
A
ϵA,H(n).

Proposition 46 Fix any domain X , label set Y , and hypothesis class H ⊆ YX . We have that
ϵH(n) =

πH(n)
n for all n ∈ N.

Proof First note that πH(n) is the smallest α for which the graphs G(H|S) are all α-coorientable,
by Proposition 44 and the fact that each G(H|S) is α-coorientable if and only if it is (n − α)-
orientable. Now, by Lemma 42, H has a learner attaining transductive error ≤ ϵ on samples of size
n if and only if G(H|S) is (ϵ · n)-coorientable for all S ∈ X n. The claim follows.

Remark 47 The astute reader may notice the similarity between the Hall complexity, the maximum
subgraph density from Haussler et al. (1994), and the maximum average degree from Daniely and
Shalev-Shwartz (2014). In binary classification, the Hall complexity and the maximum subgraph
density are equal, and hence both exactly characterize the transductive error, whereas the maximum
average degree is a factor of 2 larger. When there are k labels, the maximum subgraph density serves
as a loose lowerbound on the transductive error, and can be up to a factor of k − 1 smaller. The
maximum average degree, on the other hand, serves as an upperbound of the transductive error,
and can be up to a factor of 2 larger. The Hall complexity, in exactly characterizing the transductive
error, is sandwiched between the maximum subgraph density and the maximum average degree. We
also point out that using Hall’s theorem seems to be implicit in the proof of Lemma 57 in Rubinstein
et al. (2009), although they are still focused on maximum density, and do not indicate that Hall’s
theorem permits an exact characterization of transductive error.
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Appendix C. Structural Risk Minimization: Supplement

C.1. Regularizer Using S Can Induce Any Learner

If regularizers are permitted to access the full data of S, it is easy to see that the picture degenerates
completely: any learner can be witnessed as SRM with respect to a regularizer of this form. In
particular, an arbitrary learner A can be recovered as SRM with respect to the following regularizer:

ψ : H× (X × Y)<ω ×X −→ R≥0

(h, S, x) 7−→

{
0 A(S)(x) = h(x),

∞ A(S)(x) ̸= h(x).

In particular, given a sample S and test point x, the regularizer can simply deduce A(S) and output
extremely large values for hypotheses disagreeing with A(S) on x. Note that this argument relies
crucially upon the regularizer’s access to the test point in X as an input; any regularizer which is
uniform with respect to X (even if granted full information of S) begets proper learners, which are
insufficient by Proposition 14.

Note also that the guarantee A(S)(x) ∈ H(x) holds for all x ∈ X when A is any sensible
learner, as we are learning in the realizable case with respect to the 0-1 loss. (In particular, any
learner A violating this condition of “local properness” can be improved by obligating it to be
locally proper, in any way.) Further, as our losses are bounded by 1, a regularizer’s output of
∞ /∈ R≥0 in this example is equivalent to simply outputting c for any c > 1.

C.2. Support for Conjecture 18

We now present a candidate hypothesis class H which may justify our Conjecture 18. That is, we
will define a class H which is PAC learnable, and for which we suspect that H cannot be learned
by a local size-based regularizer. Let X be an infinite set, say X = N, and Y = {∗} ∪ 2X , where
we use 2X to denote the power set of X .

Before defining H, let J ⊆ (2X )3 be the collection of all triples of subsets (R,S, T ) such that:

1. |R| = |S| = |T | =: k ∈ 2N

2. |R ∩ S| = |R ∩ T | = |S ∩ T | = k/2. In particular, R ∩ S ∩ T = ∅.

For each (R,S, T ) ∈ J , we will define 8 hypotheses in H. Namely, all those hypotheses h ∈ YX

satisfying:

1. h(x) = ∗ for all x /∈ R ∪ S ∪ T .

2. h is constant on each of R ∩ S, R ∩ T , and S ∩ T .

3. For x ∈ R ∩ S, h(x) ∈ {R,S}; for x ∈ R ∩ T , h(x) ∈ {R, T}; and for x ∈ S ∩ T ,
h(x) ∈ {S, T}.

Informally, each such h is simply the constant function 7→ ∗ outside of R ∪ S ∪ T , and on the
regions R ∩ S, R ∩ T , and S ∩ T has the choice of acting as a constant function taking a value in
{R,S}, {R, T}, or {S, T} respectively. Geometrically, one can think of such a function as choosing
how to layer the regions S, T , andR ontop of each other. (I.e., sheets of paper over each of S, T , and
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R bearing the names of their corresponding sets; a function h is equivalent to a choice of layering
the sheets of paper with respect to each other. The output of h at input x is the label at x seen from
above, i.e., of the topmost sheet of paper.)

We define the class H to be the union of all such functions over all triples (R,S, T ) ∈ J . One
can see that that H is PAC learnable by the learner which defaults to outputting ∗ at x ∈ X unless
the label S ∋ x has been observed in the sample, in which case it outputs S.6 Informally, consider
any function h arising from an (R,S, T ) ∈ J and a realizable distribution D with marginal DX
over X . Then the previous learner incurs true error 0 once unlabeled datapoints have been seen in
each of R ∩ S, S ∩ T , and T ∩ R. Any such region either has negligible mass under DX or will
quickly be observed in a training set.

Let us now argue why we suspect H not to be learnable by a local size-based regularizer. First
note that ERM learners fail miserably to learn H: fix a large set S ⊆ X and let D be the uniform
distribution over points of the form {(x, S) : x ∈ S}. Then D is a realizable distribution, and
consider the output of an ERM learner on a training set Strain ∼ D with |Strain| < |S|/2. With
probability > 1/2, a test point (xtest, S) ∼ D will be such that xtest was not seen in Strain. In this
case, there exists a hypothesis h ∈ H with empirical error 0 such that h(xtest) ̸= S. Namely, an h
arising from a triple of sets (R,S, T ) such that Strain ∩

(
R ∩ S

)
= ∅ and xtest ∈ R ∩ S. An ERM

learner is free to predict label R at such an xtest, there incurring constant error at test time. As the
original set S may be chosen to be arbitrarily large, the problem affects ERM learners trained on
arbitrarily large training sets Strain.

Informally, any learner A equipped with only the information of xtest and the empirical errors of
all h ∈ H would seem to suffer from such a problem on uniform distributions over {(x, S) : x ∈ S}.
That is, the great amount of symmetry inherent in H prevents A from recognizing that S is the most
“natural” prediction for xtest, in contrast to any of the setsR which contain xtest yet avoid Strain. In
short, it seems that a learner must peek into the training set Strain in order to learn the geometry of
the underlying distribution and have a chance of learning. Local size-based regularizers, however,
are not permitted to peek into the training set.

Appendix D. Omitted proofs

D.1. Proof of Proposition 16

Proof We use the first Cantor class of (Daniely et al., 2015; Daniely and Shalev-Shwartz, 2014).
In particular, let {Xd}d∈2N be a disjoint collection of sets with |Xd| = d. Furthermore, let Yd =
2Xd ∪ {∗} for each d ∈ 2N. For each A ⊆ Xd, define hA : Xd → Yd by

hA(x) =

{
A x ∈ A,

∗ x /∈ A.

Now let X∞ = ∪d∈2N Xd and Y∞ =
(
∪d∈2N 2Xd

)
∪ {∗}. We can extend each hA : Xd → Yd to a

function X∞ → Y∞ by simply definining it to return ∗ outside of Xd. Lastly, set

H∞ =
{
hA : A ⊆ Xd for some d, |A| = d

2

}
.

6. If two such labels S ∋ x and R ∋ x have been seen in the training sample, and this information reveals the true label
of x (i.e., one label was seen on S ∩ T ), then simply predict this label. If two such labels were seen but this does not
reveal the true label of x, arbitrarily choose either of S or T ).
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Then H∞ is PAC learnable as a consequence of (Daniely and Shalev-Shwartz, 2014, Lemma 20),
i.e., by the learner that returns the constant function ∗ if it attains zero empirical risk and the unique
hA attaining zero empirical risk otherwise. Note that this constant function is not in H∞.

We now show that H∞ cannot be learned by any local SRM learner. Fix a local regularizer
ψ : H×X → R≥0. Now define ψH : X × Y → R≥0 as follows,

ψH(x, y) = inf
h∈H,
h(x)=y

ψ(h, x).

Informally, ψH captures the local preferences over labels, rather than entire hypotheses, induced by
ψ. We will say that ψ weakly prefers y to y′ at x if ψH(x, y) ≤ ψH(x, y

′).
Suppose now that the following property P holds of ψ: for each x ∈ X∞, ψ weakly prefers

every set A containing x to ∗. We show that there is a learner A induced by ψ that is not a PAC
learner for H∞. Pick some A ⊆ Xd of size d

2 . Let DA be the uniform measure over the finite set{
(x, ∗) : x ∈ Xd \ A

}
. Note that DA is an H∞-realizable distribution, as hA ∈ H∞ attains a true

error of zero with respect to it. Now let S ∼ Dm
A be a sample of size m < d/4. As |Xd \A| = d

2 , S
does not contain the full support of DA. In particular, for any x ∈ Xd \ S, there exists an Ax ⊆ Xd

of size d
2 such that x ∈ Ax and Ax ∩ S = ∅.

For such x,LS(Ax) = 0, asAx avoids S. Furthermore, by definition of propertyP , ψH(x,Ax) ≤
ψH(x, ∗), meaning ψ(hAx , x) ≤ ψ(hB, x) for every B such that x /∈ B. Thus A can be taken such
that A(S)(x) ̸= ∗. As this holds for all x ∈ Xd \ S, A misclassifies all points in Xd \ A that are
not in S. Consequently, A incurs an expected true error of at least 1

2 . And d can be taken to be
arbitrarily large by ranging across {Xd}d∈2N ⊆ X∞, meaning A is not a PAC learner.

Suppose now that ψ does not satisfy property P . Then there exists an x ∈ Xd and A ∋ x such
that ψH(x,A) > ψH(x, ∗). In particular, as hA is the only function in H∞ with A in its image, we
have ψ(hA, x) > ψ(hB, x) for any B such that x /∈ B. Set c2 = ψH(x,A) and c1 = ψH(x, ∗).
Now let D be the distribution placing min( c2−c1

2 , 1) mass on the point (x,A) and its remaining
mass uniformly across datapoints in Xd \ A with label ∗. For increasingly large samples S drawn
from D, the proportion pS of sample points taking the form (x,A) will satisfy p < c2 − c1 with
high probability. Consequently, at point x, hA will attain greater structural risk than some hB with
x /∈ B. That is, A(S)(x) ̸= A, and thus A incurs constant true error over arbitrarily large samples.
This completes the proof.

D.2. Proof of Theorem 20

Before commencing with the proof, it will be useful to establish a basic fact: local regularizers of
any kind should serve only to “tie-break” between hypotheses attaining zero empirical risk.

Lemma 48 Let ψ : H×X<ω ×X → R≥0 be a local unsupervised regularizer. Then, without loss
of generality, ψ can be assumed to obey the following property for all S ∈ X n and x ∈ X :

ψ(h, S, x) <
1

|S|
∀h ∈ H.

Proof As we are learning in the realizable case with respect to the 0-1 loss, any learner A can
be assumed to satisfy A(S)(x) ∈

{
h(x) : h ∈ argminH LS(h)

}
. In particular, for the underlying
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distributionD, there exists an h ∈ H with LD(h) = 0. Then on any sample S, h ∈ argminH LS(h)
with probability 1. IfA violates the previous property, then with probability 1,A(S)(x) ̸= h(x) and
thus ℓ0−1

(
A(S)(x), h(x)

)
= 1, meaning A incurs the maximal loss possible (for any underlying

distribution D).
Consequently, any regularizer ψ should be such that{

h(x) : h ∈ argmin
H

LS(h) + ψ(h, SX , x)
}
⊆
{
h(x) : h ∈ argmin

H
LS(h)

}
=
{
h(x) : LS(h) = 0

}
.

In particular, the action of ψ should only help compare hypotheses attaining equal empirical risk.
As LS(h) ∈ { 1

|S| , . . . ,
|S|
|S|} for any h ∈ H, it suffices to show that an arbitrary ψ can be compressed

to the interval [0, 1
|S|) by a strictly increasing function. And indeed this can be achieved, by such a

function as x 7→ 2
π|S| tan

−1(x).

Perhaps the most important ingredient to our central result is the relationship between unsu-
pervised regularizers and acyclic orientations of OIGs. In particular, to demonstrate that an OIG
can be oriented favorably by an unsupervised regularizer (i.e., by its induced learners), it suffices to
demonstrate that it can be oriented favorably in an acyclic manner.

Proposition 49 Let Y be a finite or countable label set, H ⊆ YX a hypothesis class, and A a
learner for H ⊆ YX , corresponding to a collection of orientations for the one-inclusion graphs
{G(H|S)}S∈X<ω . If A begets acyclic orientations on all the one-inclusion graphs of H, then it is a
local unsupervised SRM learner for some ψ.

Proof Suppose that Y is finite and that A gives rise to acylic orientations of all one-inclusion
graphs for H. We claim that a local unsupervised regularizer for H can be thought of as an arbitrary
function ϕ : V∞ → R≥0, for V∞ the union of vertices across all the one-inclusion graphs of H. This
can easily be seen by observing that a local unsupervised regularizer ψ can choose to judge each
h ∈ H based only upon the information of its restriction to SX ∪ {xtest}. Now fix one such graph
G(H|S) = (V,E) for S ∈ X n, directed by the action of A. As it is acyclic, it can be topologically
ordered, so that each vertex v ∈ V lies in layer ℓv ∈ N.

It thus suffices to exhibit a function ϕ : V → R≥0 such that A orients each e ∈ E toward an
incident vertex with maximal output under ϕ. This is achieved by, for instance,

ϕ : v 7→ 1

2|S|
·
(
1− 1

ℓv

)
.

Notably, ϕ satisfies each of the two properties we require of it: that it be strictly increasing with
nodes’ layers in the topological ordering of G(H|S), and that it be bounded above by 1

2|S| , in accor-
dance with Lemma 48.

The case for countable Y is slightly more involved. Let Y be countably infinite and A a learner
for H ⊆ YX that induces acyclic orientations on all the one-inclusion graphs of H, {G(H|S)}S∈X<ω .
Fix one such S ∈ X n and G(H|S) = (V,E) the accompanying one-inclusion graph. Note that V
is at most countable, as it has cardinality at most |Yn| = |Y|. The acyclic orientation on G endows
its vertex set V with a partial order P , defined by u ≤ v if u = v or if there exists a path p : u→ v.
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Appealing to Zorn’s lemma, P can be completed into a total order on V . Furthermore, V then
embeds into R as a totally ordered set owing to its countability. That is, one can embed V = {vi}i∈N
into R inductively, beginning with v0 7→ 0. Once (vi)i<k have been embedded as (ri)i<k, vk can be
mapped to maxi<k ri + 1 if vk > maxi<k vi, to mini<k ri − 1 if vk < mini<k vi, and otherwise to
ri+rj

2 for vi and vj the least upper bound and greatest lower bounds of vk in (vi)i<k.
Lastly, by post-composing such an embedding with an isomorphism of ordered sets R →

(0, 1
|S |), such as x 7→ 2

π|S| tan
−1(x), we have that V embeds into (0, 1S ) as a totally ordered set.

Call this embedding ϕ. As in the proof for finite Y , ϕ gives rise to a local unsupervised regularizer
ψ that recovers precisely the action of A. That is, ψ(h, S, x) chooses to judge h based upon its
restriction to S ∪ {x}, at which point it acts as the embedding ϕ.

Notably, ψ satisfies the two crucial properties required of it: that it be bounded above by 1
|S| ,

in accordance with Lemma 48, and that it be compatible with the acyclic orientation of G(H|S)
induced by A.

We are now ready to prove Theorem 20.

Proof By Proposition 49, it suffices to demonstrate the following claim: for any S ∈ X n, there
exists an acylic orientation ofG(H|S) that is optimal within a factor of 2, i.e., that minimizes nodes’
maximal outdegrees to within a factor of 2. In particular, note that the unsupervised regularizer ψ
described in Proposition 49 induces a unique learner. We will use the density of a finite undirected
graph to refer to the average degree of its nodes. Now suppose that G(H|S) is α-coorientable,
as described in Definition 41. Then the maximal density of any finite subgraph of G(H|S) is at
most 2α, by (Daniely and Shalev-Shwartz, 2014, Theorem 2). When G(H|S) = (V,E) is finite,
this allows us to design an acyclic (2α)-coorientation by employing the following k-core algorithm
implicit in (Daniely and Shalev-Shwartz, 2014, Lemma 3): for i ∈ [|V |], compute the vertex v ∈
G(H|S) of lowest degree, remove it from G(H|S), and place it in the ith layer of a topological
ordering of G(HS). The outdegree of any vertex in this topological ordering is precisely its degree
in the undirected graph G(H|S) before it was removed, which is at most 2α owing to the maximal
subgraph density of G(H|S).

When G(H|S) is infinite, the claim follows from the compactness theorem of propositional
calculus (see Daniely and Shalev-Shwartz (2014); Brukhim et al. (2022)), which, for completeness,
we detail as follows.

Let G(H|S) = (V,E) be infinite and β the maximal density of any of its finite subgraphs (i.e.,
the average degree of nodes). By (Daniely and Shalev-Shwartz, 2014, Theorem 2), it suffices to
show that G(H|S) can be β-cooriented. Let |S| = n, and for any (v, e) ∈ V × E let Ev denote
the set of all edges incident to v and Ve the set of all vertices incident to e. For vertices u, v ∈ V ,
let Pu,v denote the set of all paths from u to v, i.e., of finite sequences p =

(
(e1, v1), . . . , (eℓ, vℓ)

)
such that e1 is incident to u, ei is incident to each of vi and vi−1 (when they exist), and vℓ = v.

Now consider the set of propositional variables {Pe,v : e ∈ E, v ∈ Ve}. Intuitively, Pe,v will be
true if the edge e is oriented to v and false otherwise. We define a set of sentences Σ as follows.

1. ¬(Pe,v ∧ Pe,v′) for all e ∈ E and pairs of nodes v, v′ both incident to e.

2.
∨

E′
v⊆Ev ,

|E′
v |≥n−β

∧
e′∈E′

v

Pe′,v for all v ∈ V .

34



REGULARIZATION AND OPTIMAL MULTICLASS LEARNING

3.

¬
∧

(e,s)∈p

Pe,s

 ∨

¬
∧

(e′,s′)∈p′
Pe′,s′

 for all u, v ∈ V and (p, p′) ∈ Pu,v × Pv,u.

Sentences from (1.) correspond to the requirement that each edge be oriented to at most one incident
vertex, those from (2.) demand that each node have indegree at least n− β (equivalently, outdegree
at most β), and those from (3.) demand that G(H|S) never contain both a path u → v and v → u
(i.e., a cycle). Note that sentences from (2.) are finite because each vertex v has finite degree exactly
n in the undirected graphG(H|S), and sentences from (3.) are finite because paths in Pu,v are finite.

Let us now demonstrate that Σ is finitely satisfiable. Suppose we impose a finite collection of
sentences Σ′ ⊆ Σ, involving only the variables Pe,v for the finite set V ′ ⊆ V . Let G[V ′] ⊆ G(H|S)
be the subgraph ofG(H|S) with vertex set V ′ and edge setE′ ⊆ E consisting of those edges with at
least two incident nodes in V ′. As G[V ′] is a finite subgraph of G(H|S), its density is at most β. By
our previous work from the proof of Theorem 20 for finite Y , G[V ′] can β-cooriented acyclically.
Such an acyclic β-coorientation amounts precisely to a choice of Pe,v for each (e, v) ∈ E′ × V ′

satisfying sentences (1.), (2.), and (3.) restricted to G[V ′]. Setting all the remaining variables to
false continues to satisfy Σ′, thus demonstrating that Σ is finitely satisfiable.

Then, by compactness, Σ is satisfiable, meaning there exists a partial orientation σ of G(H|S)
such that each node has outdegree at most β and there are no directed cycles. In particular, there
may be an e ∈ E such that Pe,v is false for all v ∈ Ve. Such a partial orientation on G(H|S) endows
its vertex set V with a partial order P , defined by u ≤ v if u = v or if there exists a directed path
p : u→ v. Appealing to Zorn’s lemma, P can be completed into a total order on V . Embedding V
into (0, 1

|S|) as a totally ordered set — as in the proof of Proposition 49 — defines a regularizer ψ.
Notably, ψ recovers the action of σ on the respective edges, and any manner of completing σ into
a total orientation can only increase nodes’ indegrees (i.e., reduce their outdegrees), completing the
argument.

Remark 50 The unsupervised regularizer employed in Propositions 49 and 20 does not distinguish
between xtest and the elements of SX . In particular, it is symmetric with respect to xtest and any
element of SX . This has two central consequences:

1. Propositions 49 and 20 hold for a regularizer that factors through SX ∪{xtest}, i.e., that may
as well be defined to receive SX ∪{xtest} as input. This demonstrates sufficiency of a regular-
izer receiving even less information than the local unsupervised regularizers of Definition 19.

2. Semantically, this implies the existence of near-optimal transductive learners based on regu-
larizers that decide their values in the transductive setting merely after observing the collec-
tion of unlabeled datapoints (including test point). Furthermore, it demonstrates that an OIG
G = (V,E) can always be oriented near-optimally by assigning a value to each node v ∈ V ,
rather than by assigning an incident node to each e ∈ E. This achieves another central aim
of this section: to describe optimal orientations of OIGs more parsimoniously, using global
structure rather than local structure.

D.3. Proof of Theorem 21

Before proving Theorem 21, we introduce the notion of an assignment for a bipartite graph G,
which will replace our discussion of orientations in G(H|S), as the two are equivalent.
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Definition 51 Let G = (A,B, E) be a bipartite graph. An assignment in G is a function σ : A →
B such that (a, σ(a)) ∈ E for all a ∈ A.

The following is immediate from the definitions of OIGs and their bipartite counterparts.

Lemma 52 Fix a hypothesis class H ⊆ YX and sequence S ∈ X n. Let G(H|S) be the OIG of H
with respect to S and GBP = (A,B, E) its bipartite counterpart, as defined in Definition 37. Then
the following are equivalent for any α ∈ N.

1. There exists an (n− α)-orientation of G(H|S); and

2. There exists an assignment σ of GBP such that each v ∈ B receives at least n − α degree,
i.e., |σ−1(v)| ≥ n− α.

With the language of assignments, we can begin discussion of our maximum entropy convex
program.

Proposition 53 Let H be a hypothesis class, and recall the optimal transductive error rate ϵH(n) =
πH(n)

n . For any S ∈ X n, let G(H|S) be the one-inclusion graph of H on S and D the collection
of all orientations of G(H|S) (equivalently, the collection of assignments in GBP = (A,B, E), the
bipartite analogue ofG(H|S)). Then there is a unique distribution over assignments P ∗ ∈ ∆D such
that each v ∈ B receives at least n · (1 − ϵH(n)) = n − πH(n) in-degree in expectation, and the
following conditions hold simultaneously:

1. P ∗ achieves maximum entropy among all P ∈ ∆D subject to the degree requirements.

2. P ∗ induces a randomized transductive learner A which, in expectation over the randomness
of the learner, achieves optimal error rate ϵH(n).

Proof (2.) follows immediately from the connection between in-degree and transductive error, as
established in Lemma 42.

(1.) is proven using the maximum entropy convex program of Singh and Vishnoi (2014), with a
slight modification owing to the fact that we are in a more general multiset setting. Let D be the set
of all assignments in GBP. Recall that such assignments can be thought of as learners, as discussed
in Section B.1. We will think of each d ∈ D as a |A| × |B| matrix with 0-1 entries, where all row
sums are exactly 1 (that is, every partially labeled dataset in A is oriented toward one fully labeled
dataset in B). We will index entries of this matrix as d(u, v) for u ∈ A, v ∈ B.

Let n be fixed. Our goal is to find a maximum entropy distribution over assignments P ∗ ∈ ∆D
such that each v ∈ B is allocated at least c = (1−ϵH(n))n in-degree in expectation. By Lemma 42,
this would suffice to define a (randomized) learner induced by P ∗ which achieves error at most
ϵH(n).
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Therefore, we want the solution to the following maximum entropy optimization problem,
which we term MaxEnt.

MaxEnt = max
pd: d∈D

∑
d∈D

pd ln
1

pd

s.t.
∑
d∈D

pd
∑
u∈A

d(u, v) ≥ c ∀v ∈ B∑
d∈D

pd = 1

pd ≥ 0 ∀d ∈ D

Notice that MaxEnt is a convex program with a concave objective and linear constraints. The
number of variables is equal to the number of assignments in the graph GBP.

Let us confirm that the program is feasible and, in fact, enjoys a unique optimal solution. Fea-
sibility arises as a consequence of the fact that some randomized learner attains error rate ϵH(n),
corresponding to a randomized orientation of the OIG that satisfies the degree bounds required
by our program. Uniqueness of the solution follows from strict concavity of the objective. This
completes the proof of (1.).

Theorem 21 demonstrates that the maximum entropy learner can furthermore be interpreted as
Bayesian in the following sense: First, it learns a prior over hypotheses from the unlabeled data. (In
particular, over the projection of H to the unlabeled data.) Second, given the labels of all but the
test point, it performs a Bayes update to form a posterior over the hypotheses consistent with these
labels. Third, it samples a hypothesis from this posterior, which it then uses to predict a label for
the test point.

The proof of Theorem 21 will build upon the dual characterization of the maximum entropy
convex program MaxEnt defined in Proposition 53. To ensure that this program (and its dual) are
well-defined, we need to check three things: feasibility, uniqueness of the optimal solution, and
strong duality. The proof of Proposition 53 already addresses feasibility and uniqueness. Strong
duality follows from the following observation: Notice that the inequality constraints of MaxEnt
are affine (linear) in the variables. Therefore, we can directly apply the weak version of Slater’s
condition to get that strong duality holds. Recall that weak Slater’s condition requires strict feasi-
bility only in non-affine inequality constraints (of which we have none). Then, feasibility is enough
to prove strong duality.

The final key ingredient to the proof of Theorem 21 is the following lemma which relates the
(optimal) primal and dual variables of MaxEnt.

Lemma 54 Let λv ∈ R for all v ∈ B and z ∈ R be the optimal dual variables. Then, for each
d ∈ D, the associated optimal primal variable pd can be written as p∗d = e−1−z

∏
(u,v)∈d exp(−λv).

Proof Since strong duality of MaxEnt holds, we will derive the dual problem similar to Singh and
Vishnoi (2014) (see their Appendix A.1). First, we find the Lagrangian.

L(p, λ, z) =
∑
d∈D

pd ln(
1

pd
) +

∑
v∈B

λv(c−
∑
d∈D

pd
∑
u∈A

d(u, v)) + z(1−
∑
d∈D

pd) (1)

=
∑
d∈D

pd ln(
1

pd
) + c

∑
v∈B

λv −
∑
d∈D

pd
∑
v∈B

λv
∑
u∈A

d(u, v) + z − z
∑
d∈D

pd (2)
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Now take partials and set to zero.

∂L

∂pd
= pd ·

1
1
pd

· ∂

∂pd
(
1

pd
)−

∑
v∈B

λv
∑
u∈A

d(u, v)− z + ln(
1

pd
) = 0 (3)

−1−
∑
v∈B

λv
∑
u∈A

d(u, v)− z + ln(
1

pd
) = 0 (4)

Therefore,

ln( 1
pd
) = 1 +

∑
v∈B

λv
∑
u∈A

d(u, v) + z

pd = exp

(
−1−

∑
v∈B

λv
∑
u∈A

d(u, v)− z

)
. (5)

Summing over all d ∈ D,

∑
d∈D

pd = e−1−z
∑
d∈D

exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

)
.

This obtains the characterization of the probability of an assignment in terms of the dual variables,
as we required.

For completeness, we finish the derivation of the dual optimization problem. Multiply each (4)
by pd and sum over all A to get that

∑
d∈D

(
−pd − pd

∑
v∈B

λv
∑
u∈A

d(u, v)− zpd + pd ln(
1
pd
)

)
= 0,

implying that

∑
d∈D

pd =
∑
d∈D

(
−pd

∑
v∈B

λv
∑
u∈A

d(u, v)− zpd + pd ln(
1
pd
)

)
.

Plug these two facts into (2):

L(p, λ, z) = c
∑
v∈B

λv + z +
∑
d∈D

pd = c
∑
v∈B

λv + z + e−1−z
∑
d∈D

exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

)
.

Which is only a function of λ, z. Take partial with respect to z and set to zero:

∂L

∂z
= 1− e−1−z

∑
d∈D

exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

)
= 0

z = −1 + ln

(∑
d∈D

exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

))
.
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Therefore, the dual optimization problem then becomes:

min
∀v∈B, λv∈R

c
∑
v∈B

λv + ln
∑
d∈D

exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

)
.

Notice that (5) gives us the optimal value for each pd:

pd = e−1−z exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

)
= e−1−z

∏
v∈B

∏
u∈A

exp (−λvd(u, v)) = e−1−z
∏

(u,v)∈d

exp(−λv),

where the last equality follows from the fact that d(u, v) ̸= 0 only for (u, v) which exist in the
assignment d.

We now prove Theorem 21.

Proof Let GBP = (A,B, E) be the bipartite OIG associated to the unlabeled datapoints
S+
X = (x1, . . . , xn). Let D denote the collection of assignments in GBP. For a given assignment
d ∈ D, we say that (u, v) ∈ d if the edge (u, v) ∈ E is selected in d, and write d(u, v) = 1. From
the dual derivation of MaxEnt in Lemma 54, within the optimal randomized maximum entropy
learner P ∗, each d ∈ D has an associated probability given by:

p∗d = e−1−z
∏

(u,v)∈d

exp(−λv)

where λv are dual variables corresponding to each v ∈ B, and the final dual variable z has identical
value for each d ∈ D given by:

z = −1 + ln

(∑
d∈D

exp

(
−
∑
v∈B

λv
∑
u∈A

d(u, v)

))
.

For all v ∈ B, let γv = exp(−λv), and define ρv = γv/
∑

v∈B γv. Then we can rewrite p∗d as
follows.

p∗d = e−1−z
∏

(u,v)∈d

γv = e−1−z

(∑
v∈B

γv

)n ∏
(u,v)∈d

γv∑
v∈B γv

= e−1−z

(∑
v∈B

γv

)n

︸ ︷︷ ︸
(A)

·
∏

(u,v)∈d

ρv ∝
∏
v∈B

(ρv)
degd(v)

We let degd(v) denote the degree of vertex v ∈ B in the assignment d. The final proportionality
claim holds because (A) is fixed and takes the same value for any d. We can interpret this as saying
that the probability that P ∗ selects a certain assignment is exactly proportional to the product of the
normalized dual variables ρv for the fully labeled datasets v ∈ B present in that assignment.

Using the optimal dual variables of the maximum entropy convex program, we have effectively
defined a prior distribution ρ on hypotheses as ρv = γv/

∑
v∈B γv for all v ∈ B.

We will argue that the optimal (randomized) learner implied by P ∗ takes the following special
form. Consider the distribution over assignments P ′ generated by the following random process
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where for each u ∈ A, we sample an incident v ∈ B, independently and with probability propor-
tional to ρv. Then, for any assignment d ∈ D, the probability of observing d under the random
process is given by the following.

p′d =
∏

(u,v)∈d

ρv∑
(u,v′)∈E ρv′

=
∏
v∈B

(ρv)
degd(v)

∏
u∈A

1∑
(u,v′)∈E ρv′︸ ︷︷ ︸
(B)

∝
∏
v∈B

(ρv)
degd(v)

Where the proportional follows from the fact that (B) is identical for all assignments d. Notice
that p∗d and p′d are proportional to the same quantity for all d ∈ D, and therefore the distributions
P ′ and P ∗ are identical. This shows that the optimal randomized learner is in reality, for a given
partially labeled dataset u, sampling from the previously defined prior over hypotheses, subject to a
restriction to only the consistent hypotheses.

Since each hypothesis consistent with u gives rise to u with equal probability 1/n, a sim-
ple application of Bayes’ theorem implies that the optimal learner is sampling from the posterior
ρ′ = ρ|u induced by the partially labeled dataset u.

D.4. Proof and Discussion of Corollary 23

We now argue that the maximum entropy randomized learner can be viewed as an SRM, and also
as an instantiation of the principle of maximum entropy. Recall that for two distributions P and Q
supported on a finite set Ω, the relative entropy from Q to P is defined as

DKL(P | Q) =
∑
x∈Ω

P (x) log

(
P (x)

Q(x)

)
.

Lemma 55 Given a distribution Q with finite support Ω, and a subset Ω′ ⊂ Ω, the distribution P
supported on Ω′ which has minimum relative entropy from Q is exactly the restriction of Q to Ω′.

Proof Consider the following optimization problem describing the distribution with minimum rel-
ative entropy from Q, subject to the constraint that it only have non-zero support on elements of
Ω′.

min
P∈∆Ω′

∑
x∈Ω′

P (x) log

(
P (x)

Q(x)

)

The partial derivative of the objective with respect to P (x) is log
(
P (x)
Q(x)

)
+ 1. Given the constraint

to probability distributions on Ω′, the KKT conditions state that all partial derivatives are equal. The
unique distribution satisfying the KKT conditions is the restriction of Q to Ω′.

We are now equipped to prove Corollary 23.

Proof Using Lemma 55, we have that when the ground truth for n − 1 datapoints is revealed as
some u∗ ∈ A, the randomized optimal (maximum entropy) learner is Bayesian in that it updates its
posterior over hypotheses to have minimum relative entropy to the prior ρ, constrained on outputting
hypotheses consistent with u∗.
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Now, consider the learner induced by the following regularizer:

ψ(H,S−i, x) =
1

K
tan−1(DKL(H | ρ)),

where K > 0 is a parameter, and ρ corresponds to the previously defined re-normalized dual vari-
ables of the maximum entropy convex program. As K grows large, this learner places more relative
importance on empirical risk. Recall that our maximum entropy learner minimizes DKL(H | ρ)
subject to empirical risk equaling exactly zero. (Equivalently, it minimizes tan−1DKL(H | ρ),
which has the favorable property of being bounded above.) Therefore, as K → ∞ the output of the
learner induced by ψ converges in total variation distance to the output of our maximum entropy
learner.

In addition to being an SRM in the generalized sense just described, our learner can also be in-
terpreted as an instantiation of the maximum entropy principle. In particular, if the prior ρ were uni-
form, then indeed our learner would sample from the maximum entropy distribution over hypotheses
consistent with the supervised training data. More generally, sampling from the distribution which
hues most closely to the prior subject to the provided labels — as measured by relative entropy —
is the natural generalization of the maximum entropy principle to incorporate prior knowledge. In
other words, our learner deviates as little as possible from the prior subject to being consistent with
the provided labels.

The fact that our learner simultaneously instantiates SRM and the maximum entropy principle
may appear counter-intuitive or even contradictory. Indeed, SRM is the embodiment of Occam’s
razor, which prefers the most simple hypotheses consistent with the data. On the other hand, max-
imizing entropy might appear to be the opposite of this, as high entropy distributions are arguably
more “complex.” However, taking the perspective of relative entropy from the uniform distribution
(or from a high entropy prior ρ), the maximum entropy principle can be viewed as making as few
assumptions as possible beyond those substantiated by the data. This is, in fact, fully in accordance
with the spirit of Occam’s razor.

Appendix E. Extension to Agnostic Learning

Our discussion of learning and one-inclusion graphs has thus far been restricted to the realizable
case. Indeed, the structure of one-inclusion graphs, and of the transductive learning setting, depends
crucially upon the guarantees provided by learning in the realizable case. In the agnostic case, any
notions analogous to the OIG or to transductive learning would be obligated to look considerably
different: the fully and partially labeled datasets of Figure 2 would no longer be required to agree
with a function in H, and the adversary of Definition 30 would likewise be permitted to label its
datapoints arbitrarily. But how exactly should an agnostic one-inclusion graph be defined, and
how would its optimal orientations be judged? How would this relate to an agnostic notion of
transductive learning, if at all?

We devote this section precisely to the development such concepts, and introduce an agnostic
one-inclusion graph whose optimal orientations — judged using vertices’ outdegrees minus their
“credits” — correspond precisely to learners attaining optimal agnostic transductive error. We also
demonstrate that an agnostic version of the Hall complexity again characterizes the optimal error
rates of hypothesis classes exactly, and exhibit one such optimal learner using maximum entropy
programs.
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Throughout the section, we employ the 0-1 loss function.

E.1. Transductive Learning

A crucial tool in our endeavor will be the notion of Hamming distance between functions.

Definition 56 Let S ∈ (X × Y)n be a sample and h ∈ YX a hypothesis. The Hamming distance
between S and h, denoted ||S − h||0, is the empirical error incurred by h on S, i.e.,

||S − h||0 =
n∑

i=1

[
h(xi) ̸= yi

]
.

When H ⊆ YX is a hypothesis class, the Hamming distance between S and H is the minimal
Hamming distance incurred between S and any h ∈ H, i.e.,

||S −H||0 = min
h∈H

||S − h||0.

We are now equipped to define the problem of transductive learning in the agnostic case.

Definition 57 The agnostic transductive learning setting is that in which the following steps take
place:

1. An adversary chooses a collection of n labeled datapoints, S =
(
(x1, y1), . . . (xn, yn)

)
.

2. The unlabeled datapoints in S are revealed to the learner, i.e., the data of (x1, . . . , xn).

3. One datapoint xi is selected uniformly at random from S as the test point. The information of

S−i =
(
(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)

)
is revealed to the learner.

4. The learner is prompted to predict the label of xi, i.e., yi.

Definition 58 The agnostic transductive error incurred by a learner A on the labeled sample S is
its expected error over the uniformly random choice of xi, relative to the performance of the best
hypothesis in H, i.e.,

LTrans
S (A) =

 1

n

∑
i∈[n]

[A(S−i)(xi) ̸= yi]

− 1

n
∥S −H∥0.

Let us briefly justify that Definitions 57 and 58 are the appropriate generalizations of their
realizable counterparts. We impose two key alterations:

1. The data S selected by the adversary is no longer required to be labeled according to an
h ∈ H. This agrees precisely with the notion of agnostic PAC learning, in which a learner is
required to perform well with respect to any distribution D over X × Y .
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2. The learner is judged based only on its performance relative to the best hypothesis in H. This
again corresponds to the PAC criterion for agnostic learners, in which learners are bench-
marked with respect to hypotheses in H.

We now define error rates in the standard manner.

Definition 59 The agnostic transductive error rate incurred by a learner A is the function

ϵAg
A,H(n) = max

S∈(X×Y)n
LTrans
S (A).

The agnostic transductive error rate of a hypothesis class H is the pointwise minimal error rate
enjoyed by any of its learners, i.e.,

ϵAg
H (n) = inf

A
ϵAg
A,H(n),

where the infimum ranges over all learners for H.

E.2. Agnostic One-inclusion Graphs

We now present a simple modification of the one-inclusion graph that captures the problem of trans-
ductive learning in the agnostic case. We note that similar techniques were introduced in the work
of Long (1998) to analyze binary classification for realizable learning with distribution shift. Our
analysis, however, applies to multiclass classification in the agnostic case over arbitrary label sets,
and demonstrates an equivalence between (optimal) transductive learners and (optimal) orientations
of agnostic one-inclusion graphs. We also introduce an agnostic Hall complexity, akin to the Hall
complexity introduced in Section 3, that exactly characterizes the errors of optimal transductive
learners.

Definition 60 Let H ⊆ YX be a hypothesis class. The agnostic one-inclusion graph of H with
respect to S ∈ X n, denoted GAg(H|S), is the hypergraph given by the following vertex and edge
sets:

• V = Yn, one node for each possible labeling of the n datapoints.

• E =
⋃n

i=1 Yn|S−i , where e ∈ Yn|S−i is incident to each v ∈ Yn such that v|S−i = e.

As in Definition 8, we will sometimes write such an edge e as e(g,i), with g ∈ Yn and i ∈ [n]. Under
this representation, e(g,i) is incident to all nodes v ∈ Yn such that g|S−i = v|S−i .

In the setting of binary classification, with Y = {0, 1}, Gag(H|S) is simply the |S|-dimensional
boolean hypercube. Larger label sets Y give rise to analogues of the boolean hypercube sometimes
referred to as Hamming graphs (Brouwer and Haemers, 2011, Section 12.3.1). Though the vertex
and edge sets of the agnostic one-inclusion graph GAg(H|S) do not explicitly depend on the class
H itself — only S — we will think of GAg(H|S) as containing the information of which vertices
v ∈ V are members of H|S and which are not. This will be useful information to retain when
handling such graphs and, for instance, allows one to deduce ||v −H||0 for any vertex v using only
the information in GAg(H|S).
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Lemma 61 Let H be a hypothesis class, S ∈ (X × Y)n a sample, and SX ∈ X n the sequence of
unlabeled datapoints in S. Then the following conditions are equivalent for any learner A.

1. A incurs agnostic transductive error at most ϵ on the instance S.

2. S, thought of as a vertex in GAg(H|SX ), has outdegree at most n · ϵ+ ∥S−H∥0 in the graph
oriented by A.

Proof Let v ∈ V be the node of S in GAg(H|S). For an edge e incident to g, we write e → g if e
is oriented towards g (by the action of A) and e ̸→ g otherwise. Then,

LTrans
S (A) = − 1

n
· ∥S −H∥0 +

1

n

∑
i∈[n]

[A(S−i)(xi) ̸= yi]

= − 1

n
· ∥S −H∥0 +

1

n

∑
i∈[n]

[e(g,i) ̸→ g]

= − 1

n
· ∥S −H∥0 +

1

n
· outDeg(g).

The correspondence between (agnostic) transductive error and vertices’ outdegrees again justi-
fies a focus on orientations of one-inclusion graphs that control nodes’ outdegrees. Note, however,
that degree requirements should no longer be uniform, as they were in Definition 41. Each node is
instead judged on the basis of its outdegree minus the credits it receives as compensation for being
distant from H. This is formalized by the following definition.

Definition 62 Let H ⊆ YX be a hypothesis class and S ∈ X n. We say that GAg(H|S) is (α,H)-
agnostic-orientable if it can be oriented so that all its vertices v have indegrees at least α−∥v−H∥0.
Similarly, G is (α,H)-agnostic-coorientable if it can be oriented so that all its vertices v have
outdegrees at most α + ∥v − H∥0. We will suppress H when it is clear from context, and write
simply α-agnostic-(co)orientable.

Lemma 63 Let A be a learner for H. The following conditions are equivalent.

1. A incurs agnostic transductive error at most ϵ on all samples of size n.

2. For each h ∈ H and S ∈ X n, A induces an (nϵ)-agnostic-coorientation on GAg(H|S).

3. For each h ∈ H and S ∈ X n, A induces an ((1− ϵ) · n)-agnostic-orientation on GAg(H|S).

Proof Conditions (2.) and (3.) are equivalent as a consequence of each node in the undirected
graph GAg(H|S) having degree exactly n = |S|, one for each point in S that can be omitted. In
particular, for any fixed orientation of GAg(H|S) we have:

(2.) ≡ outDeg(v) ≤ n · ϵ+ ∥v −H∥0
⇐⇒ n− inDeg(v) ≤ n · ϵ+ ∥v −H∥0
⇐⇒ inDeg(v) ≥ n(1− ϵ)− ∥v −H∥0
≡ (3.).
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The equivalence between (1.) and (2.) follows immediately from Lemma 61, applied pointwise to
all S ∈ (X × Y)n.

We now generalize the Hall density and Hall complexity of Section 3, describing agnostic ana-
logues that provide an exact combinatorial characterization of the optimal agnostic transductive
error that can be attained on samples of size n. (That is, of the transductive error rate of H.) The
central ingredient is to incorporate the non-uniform degree requirements into the Hall arguments
of Section 3. Crucially, Hall’s theorem and its generalizations are robust to non-uniform degree
requirements, allowing us to transfer our reasoning from Section 3 in a relatively routine manner.

Definition 64 Let H ⊆ YX be a hypothesis class, S ∈ X n a sequence of unlabeled datapoints, and
GAg(H|S) = (V,E) the agnostic one-inclusion graph of H with respect to S. For a set of nodes
U ⊆ V , let E[U ] ⊆ E denote the collection of edges with at least one incident node in U . The
agnostic Hall density of GAg(H|S) is

HallAg(G) = inf
U⊆V,
|U |<∞

|E[U ]|+ ∥U −H∥0
|U |

:= inf
U⊆V,
|U |<∞

|E[U ]|+
∑

u∈U ||u−H||0
|U |

.

Proposition 65 Let H ⊆ YX be a hypothesis class, S ∈ X n a sequence of unlabeled datapoints,
andGAg(H|S) the agnostic one-inclusion graph of H on S. Then HallAg

(
GAg(H|S)

)
is the greatest

α for which GAg(H|S) is α-agnostic-orientable.

Proof The claim follows immediately from the proof of Proposition 44 and the observation that
Hall’s theorem is robust to non-uniform degree requirements. That is, an α-agnostic-orientation of
GAg(H|S) = (V,E) is a function E → V such that each edge is assigned to an incident node
and each v ∈ V receives at least α − ||v − H||0 edges. In order for such a function to exist, it is
clearly necessary that for each finite U , |E[U ]| ≥ |U | · α − ||U − H||0. The classical statement
of Hall’s theorem — along with a cloning argument to handle non-uniform degree requirements
— demonstrates sufficiency when GAg(H|S) is finite (Hall, 1935). When GAg(H|S) is infinite,
sufficiency follows from the generalization of Hall’s theorem to infinite bipartite graphs in which
all nodes on the right side have finite degree (and the recollection that each node in GAg(H|S)
has degree |S|) (Hall Jr, 1948). See the proof of Proposition 44 for further detail on the splitting
argument.

Definition 66 The agnostic Hall complexity of a hypothesis class H is the function πAg
H : N → N

defined:

πAg
H (n) = max

S∈(X×Y)n
n− HallAg(GAg(H|S)).

We now demonstrate that the agnostic Hall complexity exactly characterizes the agnostic transduc-
tive error rate, i.e., the transductive error attained by an optimal learner.
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Proposition 67 Fix any domain X , label set Y , and hypothesis class H ⊆ YX . Then

ϵAg
H (n) =

πAg
H (n)
n for all n ∈ N.

Proof First note that πAg
H (n) is the minimal α for which all {G(H|S)}S∈Xn are α-coorientable,

by Proposition 65 and the equivalence between conditions (2.) and (3.) of Lemma 63. Invoke the
equivalence between conditions (1.) and (2.) of Lemma 63 to complete the proof.

E.3. Equivalence of Errors and Orienting the Agnostic OIG

A central feature of our work in the realizable case was the equivalence between high-probability,
expected, and transductive errors, as established in Section 2.3. In particular, it permitted us to
freely restrict focus to one-inclusion graphs and their optimal orientations, which are suited to the
minimization of transductive error. For learning in the agnostic case, however, the equivalence
between errors is not nearly as tight. Informally, the sensitivity of agnostic errors to multiplicative
factors renders ineffective many of the arguments from the realizable case. (E.g., doubling the error
of a learner for the realizable case is a benign operation, but lethal for an agnostic learner subject to
an additive constraint.)

Using different arguments, however, we are able to demonstrate that the sample complexities
corresponding to the expected and transductive errors differ by a factor of at most 3/ϵ. Let us first
state the necessary definitions.

Definition 68 The agnostic transductive sample complexity mAg
Trans,A : (0, 1) → N of a learner

A is the function mapping δ to the minimal m for which ϵAg
A,H(m

′) < δ for all m′ ≥ m. That is,

mAg
Trans,A(δ) = min{m ∈ N : ϵAg

A,H(m
′) < δ, ∀m′ ≥ m}.

The agnostic transductive sample complexity of a hypothesis class H is the pointwise minimal sam-
ple complexity attained by any of its learners, i.e.,

mAg
Trans,H(ϵ) = min

A
mAg

Trans,A(ϵ),

where A ranges over all learners for H.

Proposition 69 Let X be an arbitrary domain, Y a finite label set, and H ⊆ YX a hypothesis
class. Then mAg

Exp,H(ϵ) ≤ mAg
Trans,H(ϵ) ≤ mAg

Exp,H(ϵ/2) ·
3
ϵ .

Proof In pursuit of the first inequality, let n = mAg
Trans,H(ϵ) and let A be a learner for H attaining

this transductive error guarantee. Fix a distributionD over X ×Y . We show thatA attains favorable
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expected error on samples of size n− 1.

E
S∼Dn−1

LD

(
A(S)

)
= E

S∼Dn−1,
(x,y)∼D

[
A(S)(x) ̸= y

]
= E

S∼Dn

[
A(S−n)(xn) ̸= yn

]
= E

S∼Dn
E

i∈[n]

[
A(S−i)(xi) ̸= yi

]
= E

S∼Dn

1

n
outDeg(S)

≤ E
S∼Dm

(
ϵ+

1

n
min
h∈H

∣∣∣∣∣∣S − h|S
∣∣∣∣∣∣
0

)
≤ ϵ+ inf

h∈H
E

S∼Dm

1

n

∣∣∣∣∣∣S − h|S
∣∣∣∣∣∣
0

= ϵ+ inf
h∈H

LD(h)

Conversely, let A be a learner attaining agnostic expected error at most ϵ on samples of size ≥ n.
We will extract from A a learner attaining agnostic transductive error at most 2ϵ on samples of size
n′ = 3n

ϵ . Fix an S ∈ X n′
; we will design an (n′ · ϵ)-agnostic-orientation of GAg(H|S) = (V,E).

In fact, we will design a fractional orientation, i.e., an assignment from each edge e ∈ E to several
of its incident vertices, in non-negative amounts summing to 1.

Let e be incident to vertices Ve = {v1, . . . , vk}. Let x′ ∈ X be the unique datapoint on which
the vertices Ve disagree, when thought of as functions S → Y . Furthermore, let Dvi be the uniform
distribution over the entries of vi, thought of as a sequence of labeled datapoints. For vertices vi, vj
and S ∼ Dvi , let Ex′ denote the event that S does not contain x′.

We now define our fractional orientation by assigning pi units of e to vi, where

pi = P
S∼Dn

vi

(
A(S)(x′) = vi(x

′)
∣∣ Ex′

)
.

Note that
∑

i pi = 1 as a consequence of the fact that A(S)(x′) ∈ Y = {v1(x′), . . . , vk(x′)}. Now
fix an arbitrary vertex v ∈ GAg(H|S). LetN(v) denote the set of edges incident to v, corresponding
to some datapoint x′e on which v disagrees with the other nodes incident to e. Then,

outDeg(v)

n
=

1

n

∑
e∈N(v)

P
S∼Dn

v

(
A(S)(x′e) ̸= v(x′e)

∣∣ Ex′
e

)
≤ 1

P(Ex′
e
)
· 1
n

∑
e∈N(v)

P
S∼Dn

v

(
A(S)(x′e) ̸= v(x′e)

)
≤
(
1 +

ϵ

2

)
· E
S∼Dn

v

LDv

(
A(S)

)
≤
(
1 +

ϵ

2

)
·
(
ϵ+ inf

h∈H
LDv(h)

)
≤ 2ϵ+ inf

h∈H
LDv(h)

= 2ϵ+ inf
h∈H

||h− v||0.
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In the third line, we make use of the fact that

P
S∼Dn

v

(Ex′
e
) =

(
1− 1

n′

)n

≥ 1− n

n′
≥ 1− ϵ

3
.

The second-to-last line uses the fact that our loss function is bounded above by 1, and thus
infh∈H LDv(h) as well.

Given the importance of agnostic OIGs, it is once again natural to ask for characterizations
of — and computational insights on — their optimals orientations. We now demonstrate that the
maximum entropy learner introduced in Section 4.3 generalizes to the agnostic case with analagous
guarantees.

Proposition 70 Let X be a domain, Y a finite label set, and H ⊆ YX a hypothesis class. Recall

the optimal agnostic transductive error rate ϵAg
H (n) =

πAg
H (n)
n . For any S ∈ X n, let GAg(H|S) be

the agnostic one-inclusion graph of H on S and D the collection of all orientations in GAg(H|S)
(equivalently, the collection of assignments in the bipartite analogue GAg

BP = (A,B, E), where A
denotes partially labeled datasets and B fully labeled datasets7.).

Then there is a unique distribution over assignmentsP ∗ ∈ ∆D such that each v ∈ B receives at least
n−πAg

H (n)−∥v−H∥0 in-degree in expectation, and the following conditions hold simultaneously:

1. P ∗ achieves maximal entropy among all P ∈ ∆D satisfying the in-degree requirements.

2. P ∗ corresponds to a randomized transductive learner A which, in expectation over its inter-
nal randomness, attains optimal error rate ϵAg

H (n).

3. A can be described as follows:

• Upon receiving the unlabeled datapoints S+
X = (x1, . . . , xn), including the test point,

construct an appropriate prior distribution ρ over H|S+
X

.

• Given the index i of the test point, and labels yj for all datapoints xj ̸=i, apply a Bayes
update to ρ in order obtain a posterior ρ′. This posterior corresponds to restricting the
prior to hypotheses consistent with the provided labels, and rescaling accordingly.

• Sample a hypothesis h from ρ′, and output h(xi) as the prediction for the label of xi.

Proof To prove (1.) and (2.), we define a feasible maximum entropy convex program which finds a
randomized assignment equivalent to an (n − πAg

H (n))-agnostic-orientation. The program is iden-
tical to MaxEnt defined in Proposition 53, but rather than having a fixed c lower bound on the
indegree for each fully labeled dataset v ∈ B, we have a varying cv on the RHS constraint in the

7. I.e., the edge-vertex incidence graph of GAg(H|S). See the analagous Definition 37
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convex program.

max
pd: d∈D

∑
d∈D

pd ln
1

pd

s.t.
∑
d∈D

pd
∑
u∈A

d(u, v) ≥ cv = n− πAg
H (n)− ∥v −H∥0 ∀v ∈ B∑

d∈D
pd = 1

pd ≥ 0 ∀d ∈ D

Feasibility of this program holds due to the fact that ϵAg
H (n) is the optimal error rate, and that by

Lemma 63 it therefore corresponds to a (n − πAg
H (n))-agnostic-orientation. Uniqueness follows

from strict concavity of the objective. These suffice to prove (1.) and (2.).
To address (3.), we need to again take the dual of the program. Strong duality still holds from

the weak version of Slater’s condition, as the constraints are still affine. We omit the full dual
derivation as it is straightforward and similar to that of MaxEnt from the proof of Theorem 21
in Appendix D.3, replacing c with cv everywhere. Since cv falls away when we take the partial
derivative w.r.t. pd or z, the rest of the dual derivation is identical. Therefore, (3.) follows from the
proof of Theorem 21, which makes no use of c.

Note that both the number of edges and nodes will be much larger in the agnostic Hamming
graph GAg(H|S) than the realizable OIG G(H|S). The number of assignments in their bipartite
counterparts will reflect this. Although the dual of the agnostic and realizable max entropy programs
may appear to take the same value for any fixed assignment d, since the dual does not have a
dependence on c, the agnostic max entropy convex program primal actually has a much larger
number of primal and dual variables which will impact their associated optimal values.

Proposition 70 demonstrates that the randomized learner from the agnostic case can be viewed
as Bayesian, just as the randomized learner from the realizable case. Furthermore, this indicates
the existence of an SRM for randomized agnostic learners, as discussed in the closing discussion of
Section 4.3 for the realizable setting. In particular, the associated regularizer tracks KL divergence
from the prior ρ defined in (3.) of Proposition 70.

Appendix F. Related Work

Learnability and optimal learning rates. The importance of learners beyond the classical paradigm
of empirical risk minimization (ERM) was discussed by Shalev-Shwartz et al. (2010), who exhibit
a learnable class that is not learnable by any ERM learner. The authors propose a notion of stable
learning rules, which they demonstrate characterizes learnability in this setting. Notably, however,
they work in Vapnik’s general learning setting, which generalizes Valiant’s PAC framework in some
respects but restricts learners to be proper. Consequently, it would deem as unlearnable such prob-
lems as (Daniely and Shalev-Shwartz, 2014, Theorem 1), a learnable multiclass problem whose
learners are all improper. These problems are of central interest to us, and thus the proper learn-
ing techniques for achieving stability from Shalev-Shwartz et al. (2010) do not resolve our central
inquiry.
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There is a rich history of related work for one-inclusion graphs, commencing with the seminal
work of Haussler et al. (1994), who used the OIG algorithm of Alon et al. (1987) to obtain error
guarantees for VC classes. Subsequently, many follow-up works have studied OIGs and their error.
Rubinstein et al. (2009) propose a combinatorial technique called shifting to obtain better (sub)graph
density bounds for the OIG, and by extension, better mistake bounds. Within their work, they make
use of Hall’s theorem, but fall short of characterizing the transductive error exactly with any notion
similar to the Hall complexity which we propose in Section 3. We note, however, that they were
indeed the first to observe the connection between the OIG, the bipartite OIG variant, and Hall’s
theorem, and as such do not make the claim that our perspective is completely novel.

Our generalized one-inclusion graph proposed in Appendix E is designed to capture learning in
the agnostic setting, by extending the vertex set to include all vertices in the Hamming graph, not
only those labelings of sample points realizable by an h ∈ H. This modification closely resembles
that proposed by Long (1998) for the case of binary classification, though they study realizable
learning with distribution shift (rather than learning in the agnostic case). Daniely and Shalev-
Shwartz (2014) made several notable advances in the understanding of one-inclusion graphs for
multiclass learning, including by exhibiting a learnable problem without any proper learners, im-
proving the analysis of errors incurred by optimal OIG learners, and introducing the DS dimension
for measuring the complexity of a hypothesis class. Recently, the breakthrough result of Brukhim
et al. (2022) used OIGs to prove that the DS dimension indeed characterizes PAC learnability for
multiclass classification over arbitrary label sets. They also demonstrate that the related Natarajan
dimension, in contrast, does not characterize learnability.

OIGs are also a key ingredient in the proof of learnability for partial concept classes, as studied
in Alon et al. (2022); Kalavasis et al. (2022). More recently, Aden-Ali et al. (2023b) demonstrated
that optimal orientations of OIGs, despite attaining optimal transductive error, do not necessarily
attain optimal PAC error, resolving in the negative a conjecture of Warmuth (2004). The same
authors demonstrate in Aden-Ali et al. (2023a) that although OIGs are not sample optimal in the
PAC model, a simple aggregation of OIGs is optimal for multiclass classification over finite label
sets. In realizable regression, the recent work of Attias et al. (2023) employed OIGs to define the
scaled γ-OIG dimension and demonstrate that it characterizes learnability (unlike the fat shattering
dimension). In robust learning, Montasser et al. (2022) designed an optimal learner using their
global one-inclusion graph.

Regularization. Trading off empirical risk with a notion of model complexity harks back to at
least the work of Tikhonov (1943). Structural risk minimization, the formalization of this notion
within the statistical learning theory community, is usually credited to the celebrated work of Vapnik
and Chervonenkis (1974). There is a large body of work examining how regularizers can impact the
speed and stability across learning and optimization (see Zhou et al. (2024); Rosset et al. (2007);
Lee et al. (2010); Sridharan et al. (2008) and references therein). More recently, there is good reason
to believe that popular algorithms such as gradient descent, when applied on neural networks, act
as implicit (and perhaps data-dependant) regularizers (Smith et al., 2021; Neyshabur et al., 2017).

Our local unsupervised regularizer, however, is unusual in that it can be thought of as an unsu-
pervised pre-training algorithm in the transductive setting, which first examines only the unlabeled
datapoints in the training set (including the test point), and then uses this to construct a regularizer
with which to perform SRM. The connection between regularization and unsupervised pre-training
was proposed at least as far back as Erhan et al. (2010). There, the authors demonstrate empirically
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that in the context of deep learning (as it existed in 2010), unsupervised pre-training can be thought
of as an implicit form of regularization through initialization.

Unsupervised pre-training has also seen a reasonable amount of practical success in domains
such as computer vision (Carreira et al., 2016; Chen et al., 2017) and natural language processing
(Radford et al., 2018). On the theoretical side, Ge et al. (2023) perform a study of unsupervised
pre-training in which they assume the existence of an underlying latent variable model, and perform
maximum likelihood parameter estimation as the unsupervised step. They then perform empiri-
cal risk minimization with the pre-trained model. This setup is somewhat similar in flavor to our
algorithms, where the local unsupervised regularizers can be viewed as a form of unsupervised pre-
training, and where we perform ERM on the training data plus regularizer. However, their setup
generally differs from ours and they do not focus on characterizing the learnability of multiclass
problems. While there is a modest amount of attention from the community in understanding theo-
retical properties of unsupervised pre-training as viewed through the lens of self-supervised learning
(Lee et al., 2021; HaoChen et al., 2021) — especially as it relates to language models (Saunshi et al.,
2021) — this work usually does not take place in the fundamental setting of supervised multiclass
learning. Furthermore, unsupervised pre-training usually employs separate datasets for the super-
vised and unsupervised training phases, whereas our unsupervised regularizer employs the same
dataset for both phases of training.

Perhaps most related to our formalization of regularizers from the perspective of the theory com-
munity is the work of Hopkins et al. (2022), who consider the task of extending arbitrary realizable
learners into learners for the agnostic case. In the context of our framework, the extension they pro-
vide can be seen as a type of regularization (though not described as so in their work). In particular,
their recipe for transforming realizable learners into agnostic learners can be seen as using an unsu-
pervised regularizer in order to restrict focus to a collection of certain hypotheses, on which it then
performs empirical risk minimization. Note that restricting focus to certain hypotheses can be im-
plemented as a “hard” regularizer assigning value ∞ to the omitted hypotheses and value zero to the
others. This deviates, however, from our setting in several important respects. First, the predictors
to which this procedure restricts focus are only elements of H if the realizable learner used as input
in the reduction is a proper learner. (And, as we have seen, there exist learnable multiclass problems
without any proper learners.) Secondly, the technique uses distinct datasets for regularization and
minimization of empirical risk, in contrast to our transductive setting. Lastly, and most notably, the
result relies on one’s being supplied a realizable learner to begin with, whereas we are primarily
concerned with the design of learners “from scratch.”
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