
Proceedings of Machine Learning Research vol 247:1–48, 2024 37th Annual Conference on Learning Theory

The Best Arm Evades: Near-optimal Multi-pass Streaming
Lower Bounds for Pure Exploration in Multi-armed Bandits

Sepehr Assadi sepehr@assadi.info
University of Waterloo

Chen Wang cw200@rice.edu
Rice University and Texas A&M University

Editors: Shipra Agrawal and Aaron Roth

Abstract
We give a near-optimal sample-pass trade-off for pure exploration in multi-armed bandits
(MABs) via multi-pass streaming algorithms: any streaming algorithm with sublinear mem-
ory that uses the optimal sample complexity of O(n/∆2) requires Ω(log (1/∆)/ log log (1/∆))
passes. Here, n is the number of arms and ∆ is the reward gap between the best and
the second-best arms. Our result matches the O(log(1/∆)) pass algorithm of Jin et al.
[ICML’21] (up to lower order terms) that only uses O(1) memory and answers an open
question posed by Assadi and Wang [STOC’20].

1. Introduction

Pure exploration in multi-armed bandits (MABs) is a fundamental problem in machine
learning (ML) and theoretical computer science (TCS). The classical setting of the problem
is as follows: we are given n arms with unknown sub-Gaussian reward distributions, and
we want to find the best arm, defined as the arm with the highest expected reward, with
a high probability and a small number of arm pulls. The problem has been extensively
studied in the learning theory community (e.g. Even-Dar et al. (2002); Mannor and Tsitsiklis
(2004); Kalyanakrishnan and Stone (2010); Agarwal et al. (2017); Chen et al. (2017)), and it
has found applications in various fields like online advertisement Bertsimas and Mersereau
(2007); Schwartz et al. (2017), clinical trials Villar et al. (2015); Aziz et al. (2021), content
optimization Agarwal et al. (2009); Li et al. (2010), among others.

Under the classical (RAM) setting, the sample complexity of Θ(n
∆2) is shown to be

necessary and sufficient to find the best arm with high constant probability (Even-Dar et al.
(2002); Even-Dar et al. (2006); Mannor and Tsitsiklis (2004), cf. Karnin et al. (2013);
Jamieson et al. (2014)). Here, and throughout, ∆ is used to denote the gap between the mean
of the best and the second-best arms. On the flip side, all the classical algorithms require the
entire set of arms to be stored for repeated visit. In modern large-scale applications, such
a memory requirement may render the algorithms inefficient. In light of this, Assadi and
Wang (2020) introduced the streaming multi-armed bandits model, in which the arms arrive
one-by-one in a stream, and the algorithm is only allowed to store o(n) arms, and ideally
much smaller, like O(1) or polylog (n) arms, at any time. Perhaps surprisingly, Assadi and
Wang (2020) showed that if we are given the value of ∆ a priori, there exists a single-pass
streaming algorithm that finds the best arm with high constant probability, uses O(n

∆2)
samples, and only maintains a memory of a single extra arm.

© 2024 S. Assadi & C. Wang.

Assadi Wang

The results of Assadi and Wang (2020) led to a nascent line of work on MABs in the
streaming modelMaiti et al. (2021); Jin et al. (2021); Assadi and Wang (2022); Agarwal et al.
(2022); Wang (2023); Li et al. (2023). For the pure exploration problem, it has been shown
by Assadi and Wang (2022) that the prior knowledge of ∆ is necessary for the single-pass
algorithm: if this piece of information is not available and only the stream of arms itself is
provided, then any single-pass algorithm with o(n)-arm memory that finds the best arm with
high constant probability can incur an unbounded sample complexity (as a function of ∆).
On the positive side, Jin et al. (2021) designs an algorithm with O(n

∆2) sample complexity
and a memory of a single arm in log(1

∆) passes, even if the knowledge of ∆ is not given a
priori 1. This large gap between the positive results with log(1

∆) passes and the lower bound
in the single-pass setting presents us with the exciting open question:

If no additional knowledge is given apart from the stream, how many passes are necessary
for streaming MABs algorithms with o(n)-arm memory to find the best arm with O(n

∆2)
samples?

The open question was initially mentioned by Assadi and Wang (2020) and was later
re-formulated in Assadi and Wang (2022)2. The quest of the tight pass bound is similar-
in-spirit to the lower bounds in collaborative learning Tao et al. (2019) and multi-pass
regret minimization MABs Agarwal et al. (2022); however, none of the techniques in the
aforementioned lower bounds can be directly used for this problem (see Section 1.1 for a
detailed discussion), which renders the open problem even more fascinating.

In this work, we provide the answer to the open question: we show that (almost)
Ω(log(1/∆)) passes are necessary (up to exponentially smaller factors) for any algorithms
with o(n) memory to find the best arm. More formally, our main result can be presented as
follows.

Result 1 (Informal version of Corollary 2) Any streaming algorithm that finds the
best arm with probability at least 1999

2000 using a memory of o
(

n
log3(1/∆)

)
arms and a sample

complexity of C · n
∆2 for any constant C has to use Ω

(
log(1

∆
)

log log(1
∆
)

)
passes.

Our lower bound asymptotically matches the pass bound of the algorithm in Jin et al.
(2021) up to the exponentially smaller O(log log(1/∆)) term. Furthermore, as long as
∆ ⩾ 1/2n

1/3−Ω(1) , which is a quite natural assumption, our result demonstrates a sharp
dichotomy on the pass-memory trade-off: if we use slightly less than O(log(1/∆)) passes, no
algorithm with even slightly less than n-arm memory can succeed with a good probability;
however, if we slightly increase the number of passes to O(log(1/∆)), it is possible to find
the best arm with high constant probability with only a single arm of memory.

1.1. Our Techniques

The proof of our result is based on a novel inductive argument that explicitly keeps track of
the information revealed to the algorithm in each pass. This is in sharp contrast with all other

1. The algorithm actually achieves a stronger instance-sensitive sample complexity – see Section 1.2 for a
discussion.

2. The problem is discussed at multiple open problem sessions of conferences and workshops, e.g, WALD(O)
2021.

2

https://waldo2021.github.io/
https://waldo2021.github.io/

Near-optimal Multi-pass Streaming MABs Lower Bounds

lower bounds that address ‘rounds’ or ‘passes’ for MABs in similar contexts (e.g., Agarwal
et al. (2017); Tao et al. (2019); Karpov et al. (2020); Agarwal et al. (2022); Karpov and
Zhang (2023)) that are based on round/pass elimination ideas. To elaborate, let us take a
closer look at Agarwal et al. (2022), which studied multi-pass streaming lower bounds in
MABs for regret minimization. Roughly speaking, both Agarwal et al. (2022) and our lower
bound instances divide the stream into equal-sized batches. Each batch contains a single arm
with mean reward either 1

2 or > 1
2 , and the rest of the arms in the batch have mean reward

1
2 . The intuition here is that by arranging the batches that may have higher mean rewards
to arrive later, the algorithm is forced to be ‘conservative’ at each pass to only ‘eliminate’
the last batch. To this end, the main technical step of Agarwal et al. (2022) is to reduce
proving the lower bound for P -pass algorithms to proving a lower bound for (P − 1)-pass
algorithms—this is the so-called round/pass elimination idea. However, as the algorithm can
gain information in each pass, the instance distribution from the algorithm’s internal view is
inevitably ‘more biased’. As such, a key part of the analysis in Agarwal et al. (2022) is a
delicate handling of the change in the distribution of instances from one round to the next,
and ensures the change is not too much.

For our purpose, round elimination seems to ask too much from the argument to make
sure that the distribution only slightly changes. As such, we proceed differently by allowing
the instance distribution to significantly change between rounds. Concretely, for a P -pass
algorithm, we divide the arms into (P + 1) equal-sized batches, and arrange them in the
reversed order of the stream arrival, i.e., the stream is composed of (BP+1, BP , · · · , B1).
Each batch may contain an arm with mean reward 1

2 + ηp, and the rest of the arms are
‘flat’, i.e., with mean reward 1

2 . The parameter ηp decreases by a polynomial factor of 1/P ,
i.e., ηp+1 ⩽ (1/P 15) · ηp. At each pass p, we show that the algorithm so far has not gained
enough “knowledge” about the batch Bp such that even if the algorithm knows that none of
the batches B1, . . . , Bp−1 contain any arm with mean reward more than 1

2 , it still cannot
decide whether Bp has such an arm or not. This means that if the algorithm uses too many
samples in the first p passes, it risks breaking the guarantee on the sample complexity (if Bp

turns out to have a high reward arm), and otherwise if it does not make enough samples, it
will not gain enough “knowledge” for batch Bp+1 and the subsequent pass.

What has changed in this argument compared to prior approaches, say, in Agarwal et al.
(2022), is on how we interpreted this gain of knowledge: for us, it is quite likely that the
distributions of the batches change dramatically from the original distribution after each pass;
we instead explicitly account for the ability of the algorithm in (1) determining whether a
batch contains a high reward arm, and (2) storing any high reward arm inside its memory. We
shall track the probability of these events throughout the passes, sometimes even ‘revealing’
extra information to the algorithm that are ‘not interesting’, and use them inductively to
establish our lower bound. This approach may be of independent interest in other settings
as well that target proving multi-pass/round lower bounds on sample-space tradeoffs for
learning problems.

Apart from the novel inductive argument, our techniques are distinct from Agarwal et al.
(2022) on two other aspects. First, in Agarwal et al. (2022), each batch may contain the arm
with reward > 1

2 with constant probability. For the pure exploration problem, this means
the best arm is among the last log (P) batches with very high probability, which makes the
instance not hard. In contrast, our construction only uses O(1/P) probability for each batch

3

Assadi Wang

to have an arm that is ‘not flat’ . Second, the techniques in Agarwal et al. (2022) do not
factor in the dependence on number of arms n (namely, their bounds only hold for fixed
values of n); we extend a novel ‘arm-trapping’ tool developed by Assadi and Wang (2022) to
remedy this.

1.2. Related Work

Apart from the O(n
∆2) worst-case sample complexity, pure exploration in multi-armed bandits

are also studied from the lens of the instance-sensitive sample complexity, i.e. the bound as
a function of {∆[i]}ni=2, which are the mean reward gaps between the best and the i-th best
arms. On this front, Karnin et al. (2013); Jamieson et al. (2014) devised algorithms that
achieve O(H2 :=

∑n
i=2

1
∆2

[i]

log log(1
∆[i]

)) sample complexity, which is almost optimal up to

the doubly-logarithmic term. In the streaming setting, Assadi and Wang (2022) showed that
it is impossible for any algorithm with o(n) memory to get the O(H2) sample complexity
without strong extra conditions; on the other hand, the algorithm in Jin et al. (2021) achieves
the O(H2) sample complexity in O(log(1/∆)) passes. We note that our lower bound naturally
works in the instance-sensitive setting; as such, the sharp pass-memory trade-off also applies
with this sample complexity.

In addition to pure exploration, streaming MABs are studied under the context of ε-best
arm identification and regret minimization. The ε-best arm identification problem aims to
find an arm whose reward is at most ε-far from the best arm. On this front, the line of work
by Assadi and Wang (2020); Maiti et al. (2021); Jin et al. (2021) give algorithms that finds an
ε-best arm with O(n

ε2
) samples and a single arm memory. For the regret minimization task,

early work of Liau et al. (2018); Chaudhuri and Kalyanakrishnan (2020) gives multi-pass
streaming algorithms, and Maiti et al. (2021); Wang (2023) provided single-pass tight single-
pass upper and lower regret bounds. For multi-pass scenario, Agarwal et al. (2022) provides a
sharp memory-regret trade-off for multi-pass streaming MABs, and their construction shares
a certain degree of similarity with ours. However, as we have discussed in Section 1.1, our
techniques are substaintially different from theirs.

Aimed at modern massive data processing, MABs are also studied under other sublinear
models. For instance, the settings of MABs under collaborative learning, in which the
sampling is done by multiple agents in parallel and the goal is to minimize the rounds of
communications, has been extensively studied Tao et al. (2019); Karpov et al. (2020); Karpov
and Zhang (2023). We remark that the round lower bound in Tao et al. (2019) does not imply
a lower bound in our setting: the model requires simultaneous communication and cannot be
simulated by streaming algorithms efficiently. The streaming expert advice problem studied
by Srinivas et al. (2022); Peng and Zhang (2023); Aamand et al. (2023) is also closely related
to the streaming MABs. There, the memory complexity is defined with the classical notion
of bits, which is different from the memory constraint of our model. As such, the results
between the two models are not directly comparable.

2. Preliminaries

Notation. We frequently use random variables and their realizations in this paper. As a
general rule, apart from a handful of self-contained proofs of technical lemmas, we use the

4

Near-optimal Multi-pass Streaming MABs Lower Bounds

sans serif fonts (e.g., M) to denote the random variable and the normal font (e.g., M) to
denote the realization. Throughout, we use n to denote the number of arms, µ to denote the
mean rewards, and ∆ to denote the (mean) reward gap between the best and the second-best
best arms. As we will work on arms with Bernoulli distributions, we use Bern(µ) to denote
the Bernoulli distribution with mean µ, i.e., with probability µ the realization is 1.

2.1. The Multi-pass Streaming MABs Model

We use the streaming MABs model introduced by Assadi and Wang (2020) and extended
by Jin et al. (2021); Agarwal et al. (2022). Informally, the model assumes n arms arriving
in a stream with an adversarial order. For each arriving arm, the algorithm is allowed to
pull the arriving arm and the stored arms for an arbitrary number of times. After the arm
pulls, the algorithm can (i). store the arriving arm; (ii) discard the arriving arm; and (iii).
discard stored arms from memory. If an arm is discarded, it will not be available until its
appearance in the next pass of the stream. We further assume the order of arrival is fixed
across different passes. We define the sample complexity as the number of total arm pulls
used by an algorithm, and the memory complexity as the maximum number of arms ever
stored at any point in the memory. For the purpose of the lower bound proof, we allow the
algorithm to store any statistics for free 3.

We give a formalization of the above description in what follows. We first define the
deterministic algorithms before extending the notion to randomized algorithms. Let {armi}ni=1

be n arms with Bernoulli distributions of means {µi}ni=1, i.e., the distribution for armi is
Bern(µi)

4. The arms arrive one-by-one in a stream, whose order is specified by a permutation
σ on [n]. We say alg is a P -pass (deterministic) streaming algorithm with an s-arm memory
if

• alg maintains two objects:

1. Memory M ⊆ {1, 2, · · · , n,⊥}s and a buffer index jarrive ∈ [n] for the arriving
arm. We denote M as the random variable5 for M and M for the set of all possible
memory M .

2. Transcript Π = ([P], [n], [n], {0, 1})∗, which is an ordered list of tuples, and each
tuple encodes the index of the pass, the index of the arriving arm (jarrive), the
index of the pulled arm, and the result of a single arm pull. We further denote Π
as the random variable for Π and Π as the set of all possible transcripts.

• alg has an access to a sampler O : {armσ(i) | i ∈ M} ∪ {armσ(jarrive)} → {0, 1} that
can be repeatedly use to make a single arm pull among the stored arms and the arriving
arm. After a call of O on the σ(i) arm, we add tuple (p, jarrive, σ(i), x) to the transcript
Π, where x ∈ {0, 1} is the outcome of the arm pull.

3. Any algorithm with unbounded memory can simulate the ones with bounded statistics, and we have no
rescrition on local computation power. As such, our lower bound also applies to algorithms with limited
memory for statistics.

4. We work with Bernoulli distributions for a lower bound proof that applies to all sub-Gaussian reward
distributions.

5. Although the algorithm is deterministic, there is inherent randomness from arm pulls.

5

Assadi Wang

• alg has an update function U : M× [n]× [n]× [P]×Π → M that takes memory M ,
the index of the arriving arm jarrive, the index of the sampled arm i, the current pass
index p ∈ [P], the past transcript Π, and the sampler O, outputs a new memory state
M .

With the above formalization, we can define the sample complexity Smp(alg) (total number
of arm pulls) as the total number of times O is called, and Mem(alg) = s as the maximum
number of indices that can be stored (minus the one-arm buffer) at any point.

Randomized algorithms. We can extend the above notion of P -pass deterministic
streaming algorithms to randomized algorithms in the standard manner. Concretely, a
randomized algorithm with the set of internal random bits R can be viewed as a distribution
over deterministic algorithms: for each r ∈ R, there is a realization of a deterministic P -pass
streaming algorithm. Note that similar to the storing of statistics, we do not charge the
space for random bits, i.e., the algorithms can store an unlimited number of internal random
bits for free. Since we are able to prove a lower bound under this setting, we can natrually
extend the lower bound to algorithms with limited random bits.

Offline algorithms. To unify the arguments in the rest of the paper, we can define offline
(i.e., classical RAM) algorithms as simulations of streaming algorithms under the above
framework. Concretely, we can view the offline algorithm as a single-pass streaming algorithm
that uses a memory of n arms. It first reads and stores all arms, and then makes calls on the
sampler O. Note also that an offline algorithm is able to simulate the passes and the indices
of arms locally, i.e., to use the local memory to make an arbitrary number of (extra) passes
over the stream and read an arbitrary number of arms before calling the sampler O with
a desired jarrive. As such, the transcript of an offline algorithm can be written as ordered
tuples of Π = (∗, ∗, [n], {0, 1})∗, where the first two elements can be modified to any index in
[P] and [n].

Limited by space, we defer the preliminary results for single-arm sample complexity lower
bounds to Appendix B.

3. Main Result

We show the formal statement of our main result in this section. We note that the formal-
ization of Result 1 requires some work, and in particular, we need to specify the meaning
of the ‘lack of knowledge’ on ∆ by the algorithm. To this end, we define the distribution
D(P,C) of MAB instances for any two arbitrary integers P ⩾ 2, C ⩾ 1 as follows (roughly
speaking, P corresponds to the number of passes of the streaming algorithms, and C is the
hidden-constant in the sample complexity of the algorithm – this will become clear shortly)6.
An illustration of the construction of D(P,C) can be found in Figure 1.

Distribution D(P,C): A family of “hard” MAB instances for P -pass streaming algo-
rithms.

6. We focus on P ⩾ 2 for technical reasons. For P = 1, Assadi and Wang (2022) already proved that the
sample complexity is unbounded when using o(n)-arm memory.

6

Near-optimal Multi-pass Streaming MABs Lower Bounds

1. Divide the n arms into (P + 1) batches B1, . . . , BP+1 with equal sizes of b := n
P+1 .

The batches are ordered in reverse of the stream, i.e., in each pass, BP+1 arrives
first, then BP , all the way to B1 that arrives last.

2. Initialize all the arms in every batch to have mean reward 1/2.

3. For any batch Bp for 1 ⩽ p ⩽ P :

(a) Sample a coin Θp ∈ {0, 1} from the Bernoulli distribution Bern(1
2P).

(b) If Θp = 1, then sample an arm uniformly at random from the batch Bp and
change its mean reward to 1/2 + ηp for a parameter ηp defined as:

ηp :=

(
1

6C · P

)15p

. (1)

We refer to this arm as the special arm of batch Bp (which only exists if
Θp = 1).

4. For the batch BP+1:

(a) Sample an arm uniformly at random from BP+1 and change its mean reward
to 1/2 + ηP+1 for ηP+1 as defined in Eq (1). We refer to this arm as the
special arm of batch BP+1 (which always exists) and denote it by arm∗

P+1.

To continue, we need some notation. We use I ∼ D(P,C) to denote an instance of
streaming MAB sampled from the distribution D(P,C). For any instance I, we define ∆(I)
to denote the gap between the best and second best arm. Moreover, for any instance I and
integer p ∈ [P + 1], we define the following event:

• EFirst(p): the variables Θ1 = Θ2 = · · · = Θp−1 = 0 (shorthand, Θ<p = 0), but Θp = 1
(with a slight abuse of notation, we take ΘP+1 to be a deterministic variable which is
always 1).

Notice that the events EFirst(1), . . . , EFirst(P + 1) are mutually exclusive and exactly one of
them happens for any instance. We define the special batch of an instance I as the batch
Bp for the value of p ∈ [P + 1] where EFirst(p) happens.

The following observation shows that the parameter ∆ of an instance I is basically
determined by the choice of the special batch.

Observation 3.1 For any I ∼ D(P,C), if the special batch of I is Bp for p ∈ [P +1], then

1

2
· ηp ⩽ ∆(I) ⩽ ηp.

Proof Note that by our construction, the best arm is the special arm of the special batch.
Let p be the index of the special batch, i.e. Bp is the first batch such that Θp = 1. We prove
the upper and lower bounds separately:

7

Assadi Wang

Figure 1: An illustration of D(P,C). The indices of batches are arranged in the reversed
order of the arrival of the stream. Batch BP+1 always has an arm with 1/2+ ηP+1

mean reward, while other batches p has its special arm with mean reward 1/2+ ηp
with probability 1

2P .

1. Upper bound: Observe that there exist (many) arms with mean reward 1
2 , which create

a gap of ηp w.r.t. the best arm. Since ∆(I) is the smallest gap w.r.t. the best arm, we
have ∆(I) ⩽ ηp.

2. Lower bound: Observe that when Θp = 1, the (potentially existing) arm with the
closest mean reward is with reward 1

2 + ηp+1. As such, the value of ∆(I) is at least

ηp − ηp+1 =

(
1− (

1

6CP
)15
)
· ηp ⩾

1

2
· ηp,

where the last inequality is obtained by using C ⩾ 1 and P ⩾ 2.

Combining the above gives us the desired bounds.

By Observation 3.1, the value of ∆ varies based on the realization of EFirst(p) with
different p values. As such, if an algorithm can achieve the optimal sample complexity bound
without the knowledge of ∆ given a priori, it must ‘adjust’ its sample complexity to be
competitive with O(n/η2p) if EFirst(p) happens. This requirement and its consequence can be
formalized in our main technical theorem as follows.

Theorem 1 For any integers P ⩾ 2, C ⩾ 1, the following is true. Let alg be any
deterministic P -pass streaming algorithm that uses a memory of Mem(alg) ⩽ n/(20000P 3)
arms.

8

Near-optimal Multi-pass Streaming MABs Lower Bounds

Suppose the following is true for alg on instances of distribution D(P,C) and every
p ∈ [P + 1]:

E [Smp(alg) | EFirst(p)] ⩽ C · n

η2p
,

where the randomness is taken over the choice of the instance I ∼ D(P,C) | EFirst(p) and the
arm pulls. Then, the probability that alg can output the best arm for I ∼ D(P,C) is strictly
less than 999/1000.

Theorem 1 implies that for a streaming algorithm to find the best arm with a good
probability and without the a priori knowledge of ∆, it cannot simultaneous achieve i). a low
number of passes, ii). a low memory, and iii). the ability to ‘adjust’ the sample complexity
to compete with the optimal bound. As such, combining Theorem 1 with Observation 3.1
formalizes our Result 1 in the introduction.

Corollary 2 (Formalization of Result 1) For any ∆̃ > 0, there exists a family of
streaming MABs instances D in which every instance has ∆ ⩾ ∆̃, such that any streaming
algorithm (deterministic or randomized) that finds the best arm with an expected sample com-
plexity of O(n/∆2), a success probability of at least 1999/2000, and a space of o(n/ log3 (1/∆̃))

arms requires Ω(log (1/∆̃)

log log (1/∆̃)
) passes over the stream.

Proof We first prove the statement for deterministic algorithms on the distribution D(P,C)
with success probability 999/1000. Our proof strategy is as follows. For any ∆̃ and any
algorithm that uses C ′ · n

∆2(I)
arm pulls for arbitrary constant C ′, we pick appropriate P

based on ∆̃ and C based on C ′. Then, we sample an instance from D(P,C), and argue that
the properties in Corollary 2 matches the properties prescribed in Theorem 1 – in particular,
if the algorithm always uses C ′ · n

∆2(I)
arm pulls in expectation, the expected arm pulls of

E[Smp(alg) | EFirst(p)] is at most 4C ′ · n
η2p

. Finally, it turns out that the value of P is at

least Ω
(

log (1/∆̃)

log log (1/∆̃))

)
by this construction, which gives the desired lower bound.

We now formalize the above strategy. For a streaming algorithm that uses C ′ · n
∆2(I)

samples, we pick C = 4 · C ′ and use the distribution D(P,C) as the adversarial family of
instances. We further choose P = Ω(log (1/∆̃)

log log (1/∆̃)
), and observe the following properties:

• If the event EFirst(p) happens in D(P,C), the algorithm takes at most C · n
η2p

arm pulls.
To see this, note that by the upper bound of the expected number of samples, and
conditioning on EFirst(p), there is

E [Smp(alg) | EFirst(p)] ⩽ C ′ · n

∆(I)2
=

C

4
· n

∆(I)2
⩽

C

4
· n

(ηp/2)2
= C · n

η2p
,

where the first inequality follows from Observation 3.1.

• For any p ∈ [P + 1], there is ∆ ⩾ ∆̃ and ηp > 2 · ∆̃, i.e.,

∆ ⩾
ηp
2

⩾
ηP+1

2
=

1

2
·
(

1

6C · P

)15P+15

> ∆̃,

where the last inequality is obtained by plugging in P = Ω
(

log (1/∆̃)

log log (1/∆̃))

)
.

9

Assadi Wang

Note that the above conditions imply (i). the expected number of samples follows the
upper bound of Theorem 1; (ii). the memory follows the upper bound of Theorem 1 since
o(n/(log (1/∆̃))3) = o(n/P 3) by the choice of P ; and (iii). the condition of ∆ ⩾ ∆̃ is
satisfied. As such, we can apply Theorem 1, and show that the algorithm must make at least
P = Ω(log (1/∆̃)

log log (1/∆̃)
) = Ω(log (1/∆)

log log (1/∆)) passes over the stream for any instance in the family,
which proves the corollary for deterministic algorithms.

We now extend the result to randomized algorithms. This is a standard application of
Yao’s minimax principle, and we provide the proof for completeness. Assume for the purpose of
contradiction that there exists a randomized algorithm with a success probability of 1999/2000
and the same restrictions as the deterministic algorithms. Let R be the set of internal
randomness, and define r ∈ R as a good random string if Pr(alg returns the wrong arm |
r) ⩽ 1/1000, where the randomness is over the inputs and the arm pulls. We say r is a
bad random string if the above inequality does not hold. By the success probability of the
algorithm, there is

E
r∈R

[Pr(alg returns the wrong arm | r)] ⩽ 1

2000
.

Therefore, by the Markov bound, we have

Pr(r ∈ R is good) ⩾
1

2
.

As such, the expected sample complexity can be written as

E [Smp(alg)] ⩾ E [Smp(alg) | r ∈ R is good] · Pr(r ∈ R is good)

=
1

2
· E [Smp(alg) | r ∈ R is good] .

As such, by the expected sample complexity E [Smp(alg)] ⩽ O(n/∆2) of the randomized
algorithm, we have E [Smp(alg) | r ∈ R is good] ⩽ O(n/∆2). Therefore, for any good choice
of r, we obtain a deterministic algorithm that uses O(n/∆2) arm pulls, a success probability
of at least 999/1000, and the memory restriction of o(n/(log (1/∆̃))3) – which reaches a
contradiction with the lower bound for the deterministic algorithm.

Note that in Corollary 2, the memory is fixed, but the sample complexity and the number
of passes are allowed to be random. As long as ∆̃ ⩾ 2n

1/3−Ω(1) , the result matches the upper
bound of Jin et al. (2021) up to an exponentially smaller term.

The rest of this paper is dedicated to the proof of Theorem 1. In the next section, we
state some auxiliary information-theoretic lemmas in the context of finding best arm, or
rather “trapping” it, outside the streaming model. Afterward, we present the main part
of our argument that uses these lemmas to establish a streaming lower bound and prove
Theorem 1.

Remark 3 We use a success probability of 1999
2000 in Result 1 for technical convenience. For

lower bounds with a lower success probability, we can apply the standard reduction argument
that “boosts” the success probability. Concretely, suppose we have a P -pass algorithm with s
samples, m-arm memory, and a success probability 1

2 +ε for any ε = Ω(1). In our distribution

10

Near-optimal Multi-pass Streaming MABs Lower Bounds

D(P,C), we can obtain the value of ∆ by the end of pass P . Therefore, we can run O(1)
streams in parallel, and spend O(1

∆2) samples in the end to return the arm with the best
empirical rewards. Such an algorithm has a success probability of 1999/2000, an O(m)-arm
memory, and uses O(s) samples. Hence, the asymptotical sample-memory-pass trade-off
remains valid for algorithms with 1

2 + ε success probability for any ε = Ω(1).

4. An Overview of the Proof of Theorem 1

Additional Notation. Let P ⩾ 2, C ⩾ 1 be postitive integers, D(P,C) be the distribution
of hard instances defined in Section 3, and alg be a P -pass (deterministic) streaming
algorithm defined as in Section 2.1. For each batch Bq, we use I(Bq) to denote the indices
in the order of the stream of batch q, i.e. I(Bq) = ((P − q + 1) · n

P+1 , (P − q + 2) · n
P+1].

The batch Bq hence contains the arms σ(i) for i ∈ I(Bq). For any integer p ∈ [P + 1], we
introduce new notation to handle variables as functions of p as follows.

• Transcripts. Denote Πp and Πp as the random variable and the realization of
the transcript induced by the arm pulls within the p-th pass. We further define
Π1:p := (Π1, . . . ,Πp) and Π1:p := (Π1, . . . ,Πp) as the random variable and the realization
of the transcript among all of the first p-passes. For transcripts Πp, Π1:p, etc., we define
batch-specific transcripts as follows. We define Πp

∩Bq
(resp. Πp

∩Bq
) be the transcript

induced by the arm pulls on the arms in the q-th batch, i.e. the result of armσ(i) is
recorded in Πp

∩Bq
if i ∈ I(Bq). The notation generalizes to Π1:p

∩Bq
as well.

• Memory. We use Mp and Mp to denote the random variable and the realization of
the memory state by the end of the p-th pass.

• Sample complexity. We similary define Smp(alg)BP+1:Bq+1 as the total number of
arm pulls used on the arms from the (q+1)-th batch to the (P +1)-th batch, i.e. when
calling the sampler O, the index i ∈ ∪P+1

r=q+1I(Br) (and it is independent of jarrive).
Similarly, we use Smp(alg)Bq to denote the total number of arm pulls used on the
arms in batch q. To avoid confusion, when we talk about the total number of arm pulls
in pass p, it means the cumulative number of arm pulls in the first p passes.

Notice that the final output of the algorithm is a deterministic function of (Π1:P ,MP).
Since we work with the expectation over the randomness of the memory and transcript,

to avoid very long lines, we sometimes use

E
Π1:p−1,Mp−1

[
Smp(alg) | Π1:p−1,Mp−1,Θ<p = 0

]
for the full expression of EΠ1:p−1,Mp−1

[
Smp(alg) | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0

]
.

Other random variables that appear on the conditions follow the same rule for simplifications.

Memory- and Batch-obliviousness. We now introduce the notion of memory- and
batch-obliviousness, which we will use crucially to describe the “limits of learning” for any
streaming algorithms.

We say that the algorithm is memory-oblivious at the end of pass p if Mp contains
no arm with reward strictly more than 1/2 during any of the first p passes. Notice that

11

Assadi Wang

in particular if the algorithm is memory-oblivious at the end of the P -th pass, then it
cannot output the best arm in the stream. We use Ep

mem-obl to denote the event that
alg is memory-oblivious by the end of pass p. Note that the memory-oblivious event has
downward implications: if the algorithm is memory oblivious at the end of pass p, it has to
be memory-oblivious for all passes p′ < p.

We further say that the algorithm is batch-oblivious at the end of pass p if given
(Π1:p,Mp), and conditioning on the event of Θ<p = 0, for any q > p, the algorithm “does not
know” the value of Θq; formally,

∀ p < q ⩽ P : Pr
(
Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0

)
∈ [

1

2P
− 1

4P 2
,

1

2P
+

1

4P 2
].

(2)

We use Ep
batch-obl to denote the event that alg is batch-oblivous by the end of pass p.

The strategy of the proof. We will inductively show that the algorithm is going to be
memory-oblivious and batch-oblivious with a large probability throughout each pass. To do
so, we consider two types of possible behavior for the algorithm alg in each pass p:

• Conservative case: the first case is when the algorithm decides to be “conservative”
with its arm pulls in the first p passes. We show that if the probability for the algorithm
to be in conservative case after the first p− 1 passes is large, and the algorithm decides
to be conservative on the first p passes, then the algorithm is going to remain memory-
oblivious and batch-oblivious for the subsequent pass as well with a sufficiently large
probability.

• Radical case: the complementary case is when the algorithm decides to make “many”
arm pulls in the first p passes. In this case, we use the memory- and batch-obliviousness
properties of the algorithm to show that such an algorithm is necessarily going to break
the guarantee on the number of arm pulls imposed on it by Theorem 1 in some cases.

Formalizing this strategy is challenging due to the nature of the guarantee of Theorem 1
on the event EFirst(p) for some unknown p (rather informally speaking, since ηp is unknown
to the algorithm, but also follows a certain distribution in the input). This requires a
careful conditioning on various events happening in the algorithm and keeping track of the
information revealed by these events. Limited by space, we only present the main lemmas
of both cases, and use them to prove the main lower bound. We defer the full analysis to
Appendix D.

The main lemma for the conservative case. Our main lemma for the conservative
case is as follows.

Lemma 4 (Conservative case) For any integer p ∈ [P], let alg be a streaming algorithm
with a memory of at most n/(20000P 3) arms, and assume that at the end of the pass p− 1,
the following conditions hold

(I). The probability for Ep−1
batch-obl, E

p−1
mem-obl and Θ<p = 0 to happen is large, i.e.,

Pr
(
Ep−1
batch-obl, E

p−1
mem-obl,Θ<p = 0

)
⩾

(
1− 1

2P

)10(p−1)

;

12

Near-optimal Multi-pass Streaming MABs Lower Bounds

(II). Conditioning on Θ<p = 0 and Ep−1
batch-obl, E

p−1
mem-obl, the expected number of arm pulls

(over the randomness of the first p passes) is small, i.e.,

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
⩽

1

109
· n

γp+1 · P 30
.

Then, with probability at least (1− 1/2P)10p, at the end of pass p, we have Θ<p+1 = 0 and
the algorithm is memory- and batch-oblivious, i.e.,

Pr
(
Ep
batch-obl, E

p
mem-obl,Θ<p+1 = 0

)
⩾

(
1− 1

2P

)10p

.

The main lemma for the radical case. In contrast to the conservative case, our main
lemma for the radical case is as follows.

Lemma 5 (Radical case) For any integer p ∈ [P], suppose a streaming algorithm alg is
memory- and batch-oblivious at the end of the pass p− 1, and that the underlying instance
satisfies Θ<p = 0. Additionally, suppose

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
>

1

109
· n

γp+1 · P 30
;

then,
E
[
Smp(alg) | Ep−1

batch-obl, E
p−1
mem-obl, EFirst(p)

]
> 20000 · C · n

η2p
.

Putting Everything Together: Proof of Theorem 1. We now prove Theorem 1 with
Lemmas 4 and 5. We remind the readers that we use alg to denote the streaming algorithm.
Note that in the beginning of the first pass, alg is necessarily memory- and batch-oblivious
since there is Π0 = ∅ and M0 = ∅. Therefore, by Lemma 5, if the algorithm enters the radical
case, there is

E [Smp(alg) | EFirst(1)] = E [Smp(alg) | Θ1 = 1] > C · n

η21
,

which breaks the sample complexity requirement in Theorem 1. Therefore, alg must use
the conservative case for the first pass.

Starting from the second pass, we argue that no pass should use the radical case if alg
is to follow the upper bound on the sample complexity as required by Theorem 1. Suppose p̃
is the first pass that the algorithm enters the radical case, and since we have the base case of
p = 1 and the condition of Lemma 4 (conservative case) being satisfied before pass p̃, there is

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0

)
⩾

(
1− 1

2P

)10(p̃−1)

.

We use the above result to lower bound the probability for Pr(E p̃−1
batch-obl, E

p̃−1
mem-obl | EFirst(p̃)),

which will eventually lead to a lower bound on E [Smp(alg) | EFirst(p̃)] that breaks the limit
of samples.

To this end, we first show the following technical claim that allows us to “drop” conditions
on Θp̃ conditioning on E p̃−1

batch-obl and E p̃−1
mem-obl. Intuitively, such a claim is true by the

obliviousness of the transcipt on Θp̃, which is similar-in-spirit with Lemma 18.

13

Assadi Wang

Claim 4.1 The following statement is true:

Pr
(
E p̃−1
batch-obl, E

p̃−1
mem-obl | EFirst(p̃)

)
⩾

1

2
· Pr

(
E p̃−1
batch-obl, E

p̃−1
mem-obl,Θ<p̃ = 0

)
.

The proof of Claim 4.1 can be found in the full analysis of Appendix D. We now establish
the lower bound on the expected sample for pass p̃. By Claim 4.1, we have that

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl | EFirst(p̃)

)
⩾

1

2
·
(
1− 1

2P

)10(p̃−1)

>
1

1000
, (3)

where the first inequality uses Claim 4.1 and the lower bound on Pr(E p̃−1
batch-obl, E

p̃−1
mem-obl,Θ<p̃ =

0), and the last inequality is obtained by using
(
1− 1

2P

)10P−10
> 1

500 for any P ⩾ 2. Therefore,
we can bound the sample complexity of the algorithm if it enters the radical case on the p̃-th
pass as follows.

E [Smp(alg) | EFirst(p̃)]

⩾ E
[
Smp(alg) | EFirst(p̃), E p̃−1

batch-obl, E
p̃−1
mem-obl

]
· Pr

(
E p̃−1

batch-obl, E
p̃−1
mem-obl | EFirst(p̃)

)
> 20000C · n

η2p
· 1

1000
> C · n

η2p
,

which breaks the requirement of sample complexity bound in Theorem 1. As such, to keep
the promise on the sample complexity, alg has to be in the conservative case for all P
passes.

Now, we can apply the calculation in Eq (3) again to argue that with probability strictly
more than 1

1000 , after the P -th pass, we obtain transcript and memory that are memory- and
batch-oblivious. As such, no arm with a mean reward strictly more than 1/2 will be in the
memory of alg, which means the success probability is strictly less than 999

1000 .

Acknowledgments

We thank anonymous COLT reviewers for helpful comments. Part of this work was done
while both authors were at Rutgers University and were supported in part by an NSF
CAREER Grant CCF-2047061, a gift from Google Research, and a Fulcrum award from
Rutgers Research Council.

References

Anders Aamand, Justin Y. Chen, Huy Lê Nguyen, and Sandeep Silwal. Improved space bounds
for learning with experts. CoRR, abs/2303.01453, 2023. doi: 10.48550/arXiv.2303.01453.
URL https://doi.org/10.48550/arXiv.2303.01453.

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited
rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise
comparisons. In Proceedings of the 30th Conference on Learning Theory, COLT 2017,
Amsterdam, The Netherlands, 7-10 July 2017, pages 39–75, 2017.

14

https://doi.org/10.48550/arXiv.2303.01453

Near-optimal Multi-pass Streaming MABs Lower Bounds

Arpit Agarwal, Sanjeev Khanna, and Prathamesh Patil. A sharp memory-regret trade-off for
multi-pass streaming bandits. In Po-Ling Loh and Maxim Raginsky, editors, Conference
on Learning Theory, 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine
Learning Research, pages 1423–1462. PMLR, 2022. URL https://proceedings.mlr.
press/v178/agarwal22a.html.

Deepak Agarwal, Bee-Chung Chen, and Pradheep Elango. Explore/exploit schemes for web
content optimization. In Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and
Xindong Wu, editors, ICDM 2009, The Ninth IEEE International Conference on Data
Mining, Miami, Florida, USA, 6-9 December 2009, pages 1–10. IEEE Computer Society,
2009. doi: 10.1109/ICDM.2009.52. URL https://doi.org/10.1109/ICDM.2009.52.

Sepehr Assadi and Chen Wang. Exploration with limited memory: streaming algorithms for
coin tossing, noisy comparisons, and multi-armed bandits. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 1237–1250. ACM, 2020. doi: 10.1145/3357713.3384341.
URL https://doi.org/10.1145/3357713.3384341.

Sepehr Assadi and Chen Wang. Single-pass streaming lower bounds for multi-armed bandits
exploration with instance-sensitive sample complexity. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022 (to appear), 2022.

Maryam Aziz, Emilie Kaufmann, and Marie-Karelle Riviere. On multi-armed bandit designs
for dose-finding clinical trials. The Journal of Machine Learning Research, 22(1):686–723,
2021.

Dimitris Bertsimas and Adam J. Mersereau. A learning approach for interactive marketing
to a customer segment. Oper. Res., 55(6):1120–1135, 2007. doi: 10.1287/opre.1070.0427.
URL https://doi.org/10.1287/opre.1070.0427.

Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan. Regret minimisation in multi-
armed bandits using bounded arm memory. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 10085–10092. AAAI Press, 2020. URL https://ojs.aaai.org/index.php/AAAI/
article/view/6566.

Lijie Chen, Jian Li, and Mingda Qiao. Nearly instance optimal sample complexity bounds
for top-k arm selection. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine
Learning Research, pages 101–110. PMLR, 2017. URL http://proceedings.mlr.press/
v54/chen17a.html.

Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.
ISBN 978-0-471-24195-9.

15

https://proceedings.mlr.press/v178/agarwal22a.html
https://proceedings.mlr.press/v178/agarwal22a.html
https://doi.org/10.1109/ICDM.2009.52
https://doi.org/10.1145/3357713.3384341
https://doi.org/10.1287/opre.1070.0427
https://ojs.aaai.org/index.php/AAAI/article/view/6566
https://ojs.aaai.org/index.php/AAAI/article/view/6566
http://proceedings.mlr.press/v54/chen17a.html
http://proceedings.mlr.press/v54/chen17a.html

Assadi Wang

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC Bounds for Multi-Armed Bandit
and Markov Decision Processes. In COLT, 2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems. Journal of
Machine Learning Research, 7:1079–1105, 2006.

Kevin G. Jamieson, Matthew Malloy, Robert D. Nowak, and Sébastien Bubeck. lil’ UCB
: An optimal exploration algorithm for multi-armed bandits. In Maria-Florina Balcan,
Vitaly Feldman, and Csaba Szepesvári, editors, Proceedings of The 27th Conference
on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014, volume 35 of
JMLR Workshop and Conference Proceedings, pages 423–439. JMLR.org, 2014. URL
http://proceedings.mlr.press/v35/jamieson14.html.

Tianyuan Jin, Keke Huang, Jing Tang, and Xiaokui Xiao. Optimal streaming algorithms
for multi-armed bandits. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 5045–5054. PMLR,
2021. URL http://proceedings.mlr.press/v139/jin21a.html.

Shivaram Kalyanakrishnan and Peter Stone. Efficient Selection of Multiple Bandit Arms:
Theory and Practice. In ICML, 2010.

Zohar Shay Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-
armed bandits. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and
Conference Proceedings, pages 1238–1246. JMLR.org, 2013. URL http://proceedings.
mlr.press/v28/karnin13.html.

Nikolai Karpov and Qin Zhang. Communication-efficient collaborative best arm identification.
In Proc. AAAI Conference on Artificial Intelligence (AAAI 23), 2023.

Nikolai Karpov, Qin Zhang, and Yuan Zhou. Collaborative top distribution identifications
with limited interaction (extended abstract). In Sandy Irani, editor, 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, pages 160–171. IEEE, 2020. doi: 10.1109/FOCS46700.2020.00024. URL
https://doi.org/10.1109/FOCS46700.2020.00024.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In Michael Rappa, Paul Jones, Juliana
Freire, and Soumen Chakrabarti, editors, Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages
661–670. ACM, 2010. doi: 10.1145/1772690.1772758. URL https://doi.org/10.1145/
1772690.1772758.

Shaoang Li, Lan Zhang, Junhao Wang, and Xiang-Yang Li. Tight memory-regret lower bounds
for streaming bandits. CoRR, abs/2306.07903, 2023. doi: 10.48550/arXiv.2306.07903.
URL https://doi.org/10.48550/arXiv.2306.07903.

16

http://proceedings.mlr.press/v35/jamieson14.html
http://proceedings.mlr.press/v139/jin21a.html
http://proceedings.mlr.press/v28/karnin13.html
http://proceedings.mlr.press/v28/karnin13.html
https://doi.org/10.1109/FOCS46700.2020.00024
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.48550/arXiv.2306.07903

Near-optimal Multi-pass Streaming MABs Lower Bounds

David Liau, Zhao Song, Eric Price, and Ger Yang. Stochastic multi-armed bandits in constant
space. In Amos J. Storkey and Fernando Pérez-Cruz, editors, International Conference
on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca,
Lanzarote, Canary Islands, Spain, volume 84 of Proceedings of Machine Learning Research,
pages 386–394. PMLR, 2018. URL http://proceedings.mlr.press/v84/liau18a.html.

Arnab Maiti, Vishakha Patil, and Arindam Khan. Multi-armed bandits with bounded
arm-memory: Near-optimal guarantees for best-arm identification and regret minimiza-
tion. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 19553–19565, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/a2f04745390fd6897d09772b2cd1f581-Abstract.html.

Shie Mannor and John N Tsitsiklis. The Sample Complexity of Exploration in the Multi-
Armed Bandit Problem. Journal of Machine Learning Research, 5:623–648, 2004.

Binghui Peng and Fred Zhang. Online prediction in sub-linear space. In Nikhil Bansal
and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1611–1634.
SIAM, 2023. doi: 10.1137/1.9781611977554.ch60. URL https://doi.org/10.1137/1.
9781611977554.ch60.

Eric M. Schwartz, Eric T. Bradlow, and Peter S. Fader. Customer acquisition via display
advertising using multi-armed bandit experiments. Mark. Sci., 36(4):500–522, 2017. doi:
10.1287/mksc.2016.1023. URL https://doi.org/10.1287/mksc.2016.1023.

Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou. Memory bounds for
the experts problem. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June
20 - 24, 2022, pages 1158–1171. ACM, 2022. doi: 10.1145/3519935.3520069. URL
https://doi.org/10.1145/3519935.3520069.

Chao Tao, Qin Zhang, and Yuan Zhou. Collaborative learning with limited interaction: Tight
bounds for distributed exploration in multi-armed bandits. In David Zuckerman, editor,
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 126–146. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00017. URL https://doi.org/10.1109/FOCS.2019.00017.

Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal
design of clinical trials: benefits and challenges. Statistical science: a review journal of the
Institute of Mathematical Statistics, 30(2):199, 2015.

Chen Wang. Tight regret bounds for single-pass streaming multi-armed bandits. In Proceedings
of the 40th International Conference on Machine Learning, ICML 2023 (To appear),
Proceedings of Machine Learning Research, 2023.

17

http://proceedings.mlr.press/v84/liau18a.html
https://proceedings.neurips.cc/paper/2021/hash/a2f04745390fd6897d09772b2cd1f581-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a2f04745390fd6897d09772b2cd1f581-Abstract.html
https://doi.org/10.1137/1.9781611977554.ch60
https://doi.org/10.1137/1.9781611977554.ch60
https://doi.org/10.1287/mksc.2016.1023
https://doi.org/10.1145/3519935.3520069
https://doi.org/10.1109/FOCS.2019.00017

Assadi Wang

Appendix A. Standard Technical Tools

A.1. Statistical Distances

We introduce the widely-used statistical distance notions of Kullback–Leibler divergence (KL
divergence) and total variation distance (TVD) in this section.

KL divergence and its properties. We start with introducing the Kullback–Leibler
divergence (KL divergence) and its properties.

Definition 6 (KL divergence) Let X and Y be two discrete random variables supported
over the same Ω, and let their distributions be µX and µY .The KL divergence between X and
Y , denoted as D(X || Y), is defined as

D(X || Y) =
∑
ω∈Ω

µX(ω) log

(
µX(ω)

µY (ω)

)
.

Total variation distance and its properties. Similar to the KL divergence we de-
fined above, the total variation distance (TVD) is another statistical distance between two
distributions.

Definition 7 Let X and Y be two random variables supported over the same Ω, and let
µX and µY be their probability measures. The total variation distance (TVD) is between X
and Y is defined as

∥X − Y ∥tvd = sup
Ω′⊆Ω

∣∣µX(Ω′)− µY (Ω
′)
∣∣ .

In particular, when the random variables are discrete, we have

∥X − Y ∥tvd =
1

2

∑
ω∈Ω

|µX(ω)− µY (ω)| .

A.2. Statistical Distances and Their Properties

We shall use the following standard properties of KL-divergence and TVD defined in Sec-
tion A.1. For the proof of this results, see the excellent textbook by Cover and Thomas Cover
and Thomas (2006).

The following facts state the chain rule property and convexity of KL-divergence.

Fact A.1 (Chain rule of KL divergence) For any random variables X = (X1, X2) and
Y = (Y1, Y2) be two random variables,

D(X || Y) = D(X1 || Y1) + E
x∼X1

D(X2 | X1 = x || Y2 | Y1 = x).

Fact A.2 (Convexity KL-divergence) For any distributions µ1, µ2 and ν1, ν2 and any
λ ∈ (0, 1),

D(λ · µ1 + (1− λ) · µ2 || λ · ν1 + (1− λ) · ν2) ⩽ λ · D(µ1 || ν1) + (1− λ) · D(µ2 || ν2).

18

Near-optimal Multi-pass Streaming MABs Lower Bounds

Fact A.3 (Conditioning cannot decrease KL-divergence) For any random variables
X,Y, Z,

D(X || Y) ⩽ E
z∼Z

D(X | Z = z || Y | Z = z).

Pinsker’s inequality relates KL-divergence to TVD.

Fact A.4 (Pinsker’s inequality) For any random variables X and Y supported over the
same Ω,

∥X − Y ∥tvd ⩽

√
1

2
· D(X || Y).

The following fact characterizes the error of MLE for the source of a sample based on the
TVD of the originating distributions.

Fact A.5 Suppose µ and ν are two distributions over the same support Ω; then, given one
sample s from the following distribution

• With probability ρ, sample s from µ;

• With probability 1− ρ, sample s from ν;

The best probability we can decide whether s came from µ or ν is

max(ρ, 1− ρ) + min(ρ, 1− ρ) · ∥µ− ν∥tvd.

A.3. Information Theory Tools

We use information-theoretic tools in our proofs, and we include a review of the basic notions
and properties used therein. We start with the definition of entropy. For a random variable
X, we let H(X) be the Shannon entropy of X, defined as follows

Definition 8 Let X be a discrete random variable with distributions µX , the Shannon
entropy of X is defined as

H(X) := E [log(1/µ(X))] =
∑

x∈supp(X)

µ(x) · log(1

µ(x)
),

where supp(X) is the support of X. If X is a Bernoulli random variable, we use H2(p) to
denote its Shannon entropy, where P is the probability for X = 1.

We now give the definition of conditional entropy and mutual information.

Definition 9 Let X, Y be two random variables, we define the conditional entropy as

H(X|Y) = Ey∼Y [H(X | Y = y)].

With conditional entropy, we can define the mutual information between X and Y as

I (X;Y) := H(X)−H(X | Y) = H(Y)−H(Y |X).

19

Assadi Wang

The following information-theoretic facts (see e.g. Cover and Thomas (2006) for details)
are used in our lower bound proofs.

Fact A.6 Let X, Y , Z be three discrete random variables:

• KL-divergence view of mutual information: I(X;Y) = Ey∼Y [D(X | Y = y || X)].

• 0 ⩽ H(X) ⩽ log(|supp(X)|). In particular, if X is a Bernoulli random variable, there
is H2(p) ⩽ 1.

• 0 ⩽ I(X;Y) ⩽ min{H(X),H(Y)}.

• Conditioning on independent random variable: let X be independent of Z, then
I(X;Y) ⩽ I(X;Y | Z).

• Chain rule of mutual information: I(X,Y ;Z) = I(X;Z) + I(Y ;Z | X).

• Sub-additivity of entropy: H(X,Y) ⩽ H(X)+H(Y), where H(X,Y) is the joint entropy
of variables X,Y .

• Conditional independence of entropy: H(X | Y, Z) = H(X | Y) if X ⊥ Z | Y , where
the ⊥ notation stands for independence.

The following statement is known as the data processing inequality, which says if Y
is obtained as a function of X, and Z is obtained as a function of Y , then the mutual
information between X and Z can only be lower than that between X and Y .

Proposition 10 Let X, Y , and Z be random variables on finite supports, and we slightly
abuse the notation to let X,Y, Z to denote the distribution functions as well. Let f be a
deterministic function (no internal randomness), and suppose Z = f(Y). Then, we have

I(X;Z) ⩽ I(X;Y).

The following statement characterizes the relationship between the “zero mutual informa-
tion” and the independence of the conditional probability.

Proposition 11 Let X, Y , and Z be random variables on finite supports, and suppose
I(X;Y | Z = z) = 0. Then, for any realization y ∈ Y , there is

Pr(X | Z = z, Y = y) = Pr(X | Z = z).

Appendix B. Standard Sample Complexity Lower Bounds for
Single-armed Bandit

We present lower bounds on the necessary number of arm pulls to identify the reward of a
single arm. These lower bounds serve as the basis for the reduction proofs we used in the
auxiliary lemmas (Lemma 14 and Lemma 15). We remark that the lemmas are not limited
to the streaming setting and they hold even for classical algorithms.

Our first lemma shows that to determine the mean reward of an arm from distributions
with gap β, an Ω(1/β2) number of arm pulls is necessary.

20

Near-optimal Multi-pass Streaming MABs Lower Bounds

Lemma 12 Consider an arm with a Bernoulli distribution whose mean is parameterized as
follows.

• With probability ρ, the mean reward is 1
2 + β;

• With probability 1− ρ, the mean reward is 1
2 ;

where ρ ∈ (0, 12] is a fixed parameter. Any algorithm to determine the reward of the arm for
β ∈ (0, 16) and a success probability of at least (1− ρ+ ε) has to use 1

4 · ε2

ρ2β2 arm pulls.

Proof Let X be the random variable for the Bernoulli distribution with mean 1
2 + β and Y

the random variable for the Bernoulli distribution with mean 1
2 . We use Fact A.5 to argue

that for a single arm pull, the probability for the algorithm to not identify the correct case is
at least ρ · (1−∥X−Y ∥tvd). On the other hand, note that for the two Bernoulli distributions
with means 1

2 + β and 1
2 , there KL-divergence can be bounded as

D(X || Y) = (
1

2
+ β) · log(1 + 2β) + (

1

2
− β) · log(1− 2β)

=
1

2
· log((1 + 2β)(1− 2β)) + β · log(1 + 2β

1− 2β
)

⩽ β · log(1 + 2β

1− 2β
) (log(1− 4β2) < 0)

⩽ β · log(26·β) (1+2β
1−2β ⩽ 26·β for β ∈ (0, 16))

= 6 · β2.

As such, using Pinsker’s inequality (Fact A.4) that ∥X − Y ∥tvd ⩽
√

1
2 · D(X || Y), and

obtain that the probability for the algorithm to incorrectly identify the arm is at least
ρ · (1−

√
1
2 · D(X || Y)). The bound can be generalized to s samples: let X [s] and Y [s] be

the distributions of s samples from X and Y . Then, we have:

Pr (algorithm makes wrong prediction) ⩾ ρ ·

(
1−

√
1

2
· D(X [s] || Y [s])

)
.

Using the fact that the samples are from independent and identical random variables, we can
factorize X [s] with the marginal random variables of {Xi}si=1 by the chain rule as follows:

D(X [s] || Y [s])) = D(Xs || Y s) + D(X [s−1] | Xs || Y [s−1] | Y s) (by the chain rule)

= D(X || Y) + D(X [s−1] || Y [s−1]) (i.i.d. random variables)
= · · · · · · · · ·
= s · D(X || Y).

21

Assadi Wang

Therefore, combining the above steps, we have

Pr (algorithm makes wrong prediction) ⩾ ρ ·

(
1−

√
1

2
· D(Xs || ys)

)

⩾ ρ ·
(
1−

√
1

2
· 6s · β2

)
⩾ ρ ·

(
1− 2 · β ·

√
s
)
.

On the other hand, we want the error probability to be at most ρ − ε, which means
ρ ·
(
1− 2β ·

√
s
)
⩽ ρ− ε, which solves to s ⩾ 1

4 · ε4

ρ2β2 .

We further provide a lemma showing that if the number of arm pulls is small, the
“knowledge” of the algorithm cannot change the distribution for which case the instance is
from by too much. More formally, we prove that with a limited number of arm pulls, from
the algorithm’s perspective, the probability for which case the instance is from remains close
to the original distribution.

Lemma 13 Let β ∈ (0, 16) and ρ ∈ (0, 12). Sample Θ from {0, 1} such that Θ = 1 with
probability ρ. Consider an arm with a Bernoulli distribution from the following family:

• If Θ = 1, the distribution is Bern(1/2 + β);

• If Θ = 0, the distribution is Bern(1/2);

Let alg be an algorithm that uses at most s = 1
12 · ε3

ρ·β2 arm pulls on an instance I sampled
from the family. Let Π be the transcript of alg, and let Π be the random variable of Π. Then,
with probability at least 1− ε over the randomness of transcript Π, there is

Pr (Θ = 1 | Π = Π) ∈ [ρ− ε, ρ+ ε];

Pr (Θ = 0 | Π = Π) ∈ [1− ρ− ε, 1− ρ+ ε].

Proof Recall that Π is the random variable for the transcript of the algorithm, and Θ is
the random variable that controls from which case the instance is sampled. We can write
Π = (Π1,Π2, . . . ,Πs), where Πi denotes the random variable for the tuple of the i-th armed
pull (recall that Π and its realization Π are defined as ordered tuples in Section 2.1). We

22

Near-optimal Multi-pass Streaming MABs Lower Bounds

have,

I(Θ ;Π) =
s∑

i=1

I(Θ ;Πi | Π<i) (by chain rule of mutual information)

=

s∑
i=1

H(Πi | Π<i)−H(Πi | Θ,Π<i) (by the definition of mutual information)

⩽
s∑

i=1

H(Πi)−H(Πi | Θ,Π<i) (conditioning can only reduce the entropy)

=

s∑
i=1

H(Πi)−H(Πi | Θ)

(because Πi ⊥ Π<i | Θ as knowing Θ fixes distribution of Πi to be either Bern(1/2 + β) or Bern(1/2))

=
s∑

i=1

I(Θ ;Πi) (by the definition of mutual information)

=
s∑

i=1

E
θ∈{0,1}

[D(Πi | Θ = θ || Πi)]

(by the connection of KL-divergence with mutual information)

=

s∑
i=1

ρ · D(Πi | Θ = 1 || Πi) + (1− ρ) · D(Πi | Θ = 0 || Πi)

(by the distribution of θ)

=
s∑

i=1

ρ · D(Bern(
1

2
+ β) || Bern(

1

2
+ ρ · β)) + (1− ρ) · D(Bern(

1

2
) || Bern(

1

2
+ ρ · β))

(as distribution of Πi is ρ · Bern(12 + β) + (1− ρ) · Bern(12) = Bern(12 + ρ · β))
⩽ s ·

(
ρ · 6 · (ρ · β − β)2 + 6 · (1− ρ) · (ρ · β)2

)
(as proven in Lemma 12)

⩽ s ·
(
12ρ · β2

)
⩽ ε3. (by the upper bound on s)

The above calculation also implies that

I(Θ ;Π) = E
Π
[D(Θ || Θ | Π = Π)] ⩽ ε3.

By Markov bound, with probability 1− ε over the choice of Π ∼ Π, we have

D(Θ || Θ | Π = Π) ⩽ ε2.

By Pinsker’s inequality (Fact A.4), for any such Π, we have,

∥Θ−Θ | Π = Π∥tvd ⩽ ε.

By the definition of total variation distance, this implies that

|Pr (Θ = 0)− Pr (Θ = 0 | Π = Π)|+ |Pr (Θ = 1)− Pr (Θ = 1 | Π = Π)| ⩽ ε.

23

Assadi Wang

By upper bounding each term separately and using the distribution of Θ, we have,

|Pr (Θ = 0 | Π = Π)− (1− ρ)| ⩽ ε and |Pr (Θ = 1 | Π = Π)− ρ| ⩽ ε,

which concludes the proof.

Appendix C. Auxiliary Lemmas for Pure Exploration in MABs

We present two auxiliary lemmas in this section that are needed for our main proof. These
lemmas concern MABs for offline algorithms, i.e., without any streaming restriction, and
they can be used in the streaming setting with arbitrary pass and jarrive index (see Section 2.1
for the detailed discussion). The proofs are rather standard application of known ideas.
However, we are not aware of an exact formulation of these lemmas in prior work that we
need in our main proofs in the subsequent section; thus, for completeness, we present and
prove these lemmas in this section.

The first lemma is a generalization of the arm-trapping lemma of Assadi and Wang (2022)
to the case when success probability can be quite small.

Lemma 14 (low-probability arm-trapping lemma) Suppose we have a set of k ⩾ 1
arms with mean reward 1/2 and we pick one of them uniformly at random – called the special
arm – and increase its reward to 1/2 + β for some β > 0.

For any parameter γ ∈ (0, 12], any algorithm that outputs a set S of (γ · k/12) arms such
that with probability at least γ the special arm belongs to S requires 1

300 · γ3

β2 · k arm pulls.

Proof We give a reduction proof in the ‘direct-sum’ style in the same spirit of Assadi and
Wang (2022). In particular, we show that if there exists an algorithm with less than 1

300 ·
γ3

β2 ·k
sample that ‘traps’ the special arm, we can turn it into an algorithm that contradicts the
sample lower bound in Lemma 12 with ρ = 1

2 and ε = γ
6 (which would require 1

36 · γ2

β2 arm
pulls by Lemma 12). The reduction goes as follows.

Inputs:

a) A single ãrm with the mean reward following the distribution in Lemma 12 with
ρ = 1

2 ;

b) An algorithm alg that outputs a set S of (γ · k/2) arms such that (i). with
probability at least γ, the special arm belongs to S; (ii). alg uses less than
1

300 · γ3

β2 · k arm pulls.

Procedure:

1. With probability (12 − γ
3), output “reward of ãrm is 1

2 + β”.

2. With probability (12 + γ
3), output with the following procedure:

24

Near-optimal Multi-pass Streaming MABs Lower Bounds

(i) Create k − 1 ‘dummy arms’ and let their reward mean be 1
2 .

(ii) Put ãrm uniformly at random on index i∗ among the k arms, and run alg.

(iii) If alg uses more than 1
37 ·

γ2

β2 arm pulls on ãrm, abort alg and output “reward
of ãrm is 1

2 + β”.

(iv) Otherwise, if the output of S contains index i∗, output “reward of ãrm is
1
2 + β”; if the output of S does not contain index i∗, output “reward of ãrm is
1
2 ”.

It is straightforward to see that the algorithm never uses more than 1
37 · γ2

β2 arm pulls on
the special arm, as we directly terminate the process whenever it uses more arm pulls. It
remains to verify the correctness of distinguishing the cases.

Case A): the true reward of ãrm is 1/2. Due to Line 1, there is a probability of 1
2 − γ

3
that the reduction never outputs “reward of ãrm is 1

2 ”. Nevertheless, we will eventually show
that when the algorithm does not enter Line 1, the marginal correct probability is high
enough to guarantee an overall 1

2 +O(γ) correct probability.
Let si be the number of samples that uses on an arm with index i. Note that in this way,

si∗ stands for the number of samples used for ãrm. Since the index of i∗ is chosen uniformly
at random, there is

E [si∗] =

k∑
i=1

Pr (i∗ = i) · E [si∗ | i∗ = i]

=
1

k
·

k∑
i=1

E [si]

=
1

k
· E

[
k∑

i=1

si

]
(by linearity of expectation)

⩽
1

300
· γ

3

β2
. (by the sample upper bound of alg)

Therefore, by a Markov bound, we can upper-bound the probability for the special arm to
use more than 1

37 · γ2

β2 arm pulls by

Pr
(
si∗ ⩾

1

37
· γ

2

β2

)
⩽

γ

8
.

As such, the probability for the reduction to false report reward as 1
2 + β from Line (iii) is

at most γ
5 . Furthermore, in line (iv), since the arms are identical random variables and the

index i∗ is chosen uniformly at random, there is

Pr (S contains index i∗) = Pr (S contains index i, ∀i) = |S|
k

=
γ

8
.

25

Assadi Wang

Therefore, the probability for the reduction to falsely output “reward of ãrm is 1
2 +β” through

the output of alg on line (iv) is at most γ
8 . As such, we have

Pr
(
alg outputs “reward is

1

2
” | reward is

1

2
, Line 2 happens

)
⩾ 1− γ

8
− γ

8
= 1− γ

4
.

(by union bound)

As such, the probability for the reduction to succeed when the special arm is with reward 1
2

is at least:

Pr
(
alg outputs “reward is

1

2
” | reward is

1

2

)
= Pr

(
alg outputs “reward is

1

2
” | reward is

1

2
, Line 2 happens

)
· Pr (Line 2 happens)

⩾ (
1

2
+

γ

3
) · (1− γ

8
− γ

8
)

⩾
1

2
+

γ

6
. (using γ ⩽ 1/2)

Case B): the true reward of ãrm is 1/2 + β. In this case, there is a probability of
(12 −

γ
3) that the algorithm simply outputs “reward of ãrm is 1

2 +β” from Line 1. Furthermore,
in the case of Line 2, the reduction succeed with a probability that is at least as large as γ
by the guarantee of the trapping algorithm alg. As such, the success probability in this
case is at least

Pr
(
alg outputs “reward is

1

2
+ β” | reward is

1

2
+ β

)
⩾

1

2
− γ

3
+ (

1

2
− γ

3
) · γ

⩾
1

2
+

γ

6
.

Summarizing the cases of A) and B) establishes the correctness of the reduction for ρ = 1
2

and ε = γ
6 . By Lemma 12, the sample complexity has to be at least 1

36 ·
γ2

β2 , which contradicts

the 1
37 · γ2

β2 sample complexity and proves the lemma.

The second lemma uses a distribution similar to Lemma 14, albiet the special arm is
now allowed to be “flat” – with mean reward 1

2 – with probability 1− α. The lemma says
that if the number of used arm pulls is small, the internal distribution (the “knowledge”) of
the algorithm on whether the special arm is “flat” remains close to the original, i.e., with
probability ∼ (1− α).

Lemma 15 (A sample-knowledge trade-off lemma) Consider the following distribu-
tion D on k ⩾ 1 arms for some parameters α, β > 0 and α < 1

2 :

• No case: with probability α, all except for one uniformly at random chosen arm have
mean reward 1/2, while the chosen arm have reward 1/2 + β;

• Yes case: with probability 1− α, all the arms have mean reward 1/2.

26

Near-optimal Multi-pass Streaming MABs Lower Bounds

Suppose we have an algorithm that given an instance I sampled from this distribution U
makes at most 1

100 · γ2·k
α·β2 arm pulls for some γ ∈ (0, 15]. Let Π and Π be the random variable

and the realization of the transcript. Then, with probability at least (1 − 2 γ1/2) over the
randomness of Π,

Pr
I
(I is a No case | Π = Π) ∈ [α− 2 · γ1/2, α+ 2 · γ1/2];

Pr
I
(I is a Yes case | Π = Π) ∈ [1− α− 2 · γ1/2, 1− α+ 2 · γ1/2].

Proof We again prove the lemma by a ‘direct-sum’ type of reduction. In particular, we
show that for a family of arms distributed as prescribed by Lemma 15, any algorithm that
learns the distribution of I with ε advantage over random guessing and s arm pulls can learn
the distribution in Lemma 13 with O(ε) advantage and O(sk ·poly(1ε)) arm pulls. This allows
us to eventually build a contradiction towards Lemma 13 with ρ = α and ε = 2γ1/2.

Inputs:

a) A single arm with mean reward following the distribution in Lemma 13 with ρ = α;

b) An algorithm alg that outputs PrI (I is a No case | Π = Π) as in Lemma 15.

Procedure:

1. Create k − 1 ‘dummy arms’ and let their mean reward be 1
2 .

2. Put the special arm uniformly at random at index i∗ among the k arms, and run
alg.

3. If the special arm uses more than 1
5 ·

γ3/2

β2α
arm pulls, stop the algorithm and output

No.

4. Otherwise, set the probability of Pr (Θ = 1 | Π = Π) in Lemma 13 (i.e., the arm is
from Bern(1/2 + β)) as the same with PrI (I is a No case | Π = Π).

We focus on the case of the upper bound of PrI (I is a No case | Π = Π) since the lower
bound follows from the same logic. Suppose for the purpose of contradiction that alg uses
at most 1

100 · γ2·k
α·β2 arm pulls and achieves

Pr
I
(I is a No case | Π = Π) > α+ 2 · γ1/2.

By letting ε = 2γ1/2, the reduction deterministically uses at most 1
5 ·

γ3/2

β2α
= 1

40 ·
ε3

β2α
< 1

12 ·
ε3

β2α
arm pulls as we terminate whenever it uses more. We now show that with the reduction,
there is

Pr
Π

(
Pr(Θ = 1 | Π = Π) > α+ 2 · γ1/2

)
⩾ 1− 2γ1/2,

which leads to a contradiction with Lemma 13 with our choice of ε.

27

Assadi Wang

Note that I is a No case if and only if Θ = 1 (the special arm is with mean reward 1
2 +β).

As such, if the reduction reaches Line 4, then by the guarantee of the algorithm alg, there is

Pr
I
(I is a No case | Π = Π) = Pr(Θ = 1 | Π = Π) > α+ 2 · γ1/2

by the assumption of alg. On the other hand, if the reduction stops by using 1
5 · γ3/2

β2α
arm

pulls on the special arm, we show that the correct probability for the output of the No case
is high. Note that if the instance is in the Yes case, the special arm is with mean reward
1/2. Therefore, the arms for alg are identical and independent random variables. Since the
index of i∗ is chosen uniformly at random, by the same arguement we used in Lemma 14,
the expected number of arm pulls on the special arm is

E [si∗ | Yes case] ⩽
1

100
· γ2

α · β2
.

As such, by a simple Markov bound, we have

Pr

(
si∗ ⩾

1

5
· γ

3/2

β2α
| Yes case

)
⩽

γ1/2

20
.

Therefore, the probability for Line 3 to output correctly output No case is at least

1− γ1/2

20
> 1− 2 γ1/2 > 2 γ1/2,

where the last inequality is by the range of γ. As such, the above implies

Pr
Π
(Pr(Θ = 1 | Π = Π) = 1) > 2 γ1/2,

and it forms the desired contradiction.

Appendix D. The Full Analysis of the Multi-Pass Lower Bound

We now proceed to the main part of the proof of Theorem 1. To continue, we introduce some
additional notation used in the analysis in a self-contained manner.

Additional Notation. Let P ⩾ 2, C ⩾ 1 be postitive integers, D(P,C) be the distribution
of hard instances defined in Section 3, and alg be a P -pass (deterministic) streaming
algorithm defined as in Section 2.1. For each batch Bq, we use I(Bq) to denote the indices
in the order of the stream of batch q, i.e. I(Bq) = ((P − q + 1) · n

P+1 , (P − q + 2) · n
P+1].

The batch Bq hence contains the arms σ(i) for i ∈ I(Bq). For any integer p ∈ [P + 1], we
introduce new notation to handle variables as functions of p as follows.

• Transcripts. Denote Πp and Πp as the random variable and the realization of
the transcript induced by the arm pulls within the p-th pass. We further define
Π1:p := (Π1, . . . ,Πp) and Π1:p := (Π1, . . . ,Πp) as the random variable and the realization
of the transcript among all of the first p-passes. For transcripts Πp, Π1:p, etc., we define
batch-specific transcripts as follows. We define Πp

∩Bq
(resp. Πp

∩Bq
) be the transcript

induced by the arm pulls on the arms in the q-th batch, i.e. the result of armσ(i) is
recorded in Πp

∩Bq
if i ∈ I(Bq). The notation generalizes to Π1:p

∩Bq
as well.

28

Near-optimal Multi-pass Streaming MABs Lower Bounds

• Memory. We use Mp and Mp to denote the random variable and the realization of
the memory state by the end of the p-th pass.

• Sample complexity. We similary define Smp(alg)BP+1:Bq+1 as the total number of
arm pulls used on the arms from the (q+1)-th batch to the (P +1)-th batch, i.e. when
calling the sampler O, the index i ∈ ∪P+1

r=q+1I(Br) (and it is independent of jarrive).
Similarly, we use Smp(alg)Bq to denote the total number of arm pulls used on the
arms in batch q. To avoid confusion, when we talk about the total number of arm pulls
in pass p, it means the cumulative number of arm pulls in the first p passes.

Notice that the final output of the algorithm is a deterministic function of (Π1:P ,MP).
Since we work with the expectation over the randomness of the memory and transcript,

to avoid very long lines, we sometimes use

E
Π1:p−1,Mp−1

[
Smp(alg) | Π1:p−1,Mp−1,Θ<p = 0

]
for the full expression of EΠ1:p−1,Mp−1

[
Smp(alg) | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0

]
.

Other random variables that appear on the conditions follow the same rule for simplifications.

Memory- and Batch-obliviousness. We now introduce the notion of memory- and
batch-obliviousness, which we will use crucially to describe the “limits of learning” for any
streaming algorithms.

We say that the algorithm is memory-oblivious at the end of pass p if Mp contains
no arm with reward strictly more than 1/2 during any of the first p passes. Notice that
in particular if the algorithm is memory-oblivious at the end of the P -th pass, then it
cannot output the best arm in the stream. We use Ep

mem-obl to denote the event that
alg is memory-oblivious by the end of pass p. Note that the memory-oblivious event is
downward implications: if the algorithm is memory oblivious at the end of pass p, it has to
be memory-oblivious for all passes p′ < p.

We further say that the algorithm is batch-oblivious at the end of pass p if given
(Π1:p,Mp), and conditioning on the event of Θ<p = 0, for any q > p, the algorithm “does not
know” the value of Θq; formally,

∀ p < q ⩽ P : Pr
(
Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0

)
∈ [

1

2P
− 1

4P 2
,

1

2P
+

1

4P 2
].

(4)

We use Ep
batch-obl to denote the event that alg is batch-oblivous by the end of pass p.

The strategy of the proof. We will inductively show that the algorithm is going to be
memory-oblivious and batch-oblivious with a large probability throughout each passes. To
do so, we consider two types of possible behavior for the algorithm alg in each pass p:

• Conservative case: the first case is when the algorithm decides to be “conservative”
with its arm pulls in the first p passes. We show that if the probability for the algorithm
to be in conservative case after the first p− 1 passes is large, and the algorithm decides
to be conservative on the first p passes, then the algorithm is going to remain memory-
oblivious and batch-oblivious for the subsequent pass as well with a sufficiently large
probability.

29

Assadi Wang

• Radical case: the complementary case is when the algorithm decides to make “many”
arm pulls in the first p passes. In this case, we use the memory- and batch-obliviousness
properties of the algorithm to show that such an algorithm is necessarily going to break
the guarantee on the number of arm pulls imposed on it by Theorem 1 in some cases.

Formalizing this strategy is challenging due to the nature of guarantee of Theorem 1 on
the event EFirst(p) for some unknown p (rather informally speaking, since ηp is unknown
to the algorithm, but also follows a certain distribution in the input). This requires a
careful conditioning on various events happening in the algorithm and keeping track of the
information revealed by these events.

D.1. The Conservative Case

The following lemma allows us to handle the conservative case (which is a restatement of the
same lemma in Section 4).

Lemma 4 (Conservative case) For any integer p ∈ [P], let alg be a streaming algorithm
with a memory of at most n/(20000P 3) arms, and assume that at the end of the pass p− 1,
the following conditions hold

(I). The probability for Ep−1
batch-obl, E

p−1
mem-obl and Θ<p = 0 to happen is large, i.e.,

Pr
(
Ep−1
batch-obl, E

p−1
mem-obl,Θ<p = 0

)
⩾

(
1− 1

2P

)10(p−1)

;

(II). Conditioning on Θ<p = 0 and Ep−1
batch-obl, E

p−1
mem-obl, the expected number of arm pulls

(over the randomness of the first p passes) is small, i.e.,

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
⩽

1

109
· n

γp+1 · P 30
.

Then, with probability at least (1− 1/2P)10p, at the end of pass p, we have Θ<p+1 = 0 and
the algorithm is memory- and batch-oblivious, i.e.,

Pr
(
Ep
batch-obl, E

p
mem-obl,Θ<p+1 = 0

)
⩾

(
1− 1

2P

)10p

.

We prove Lemma 4 in the rest of Section D.1. To this end, we show two main technical
lemmas towards the proof of the memory and batch obliviousness.

The first technical lemma characterizes a “no storing” constraint of a p-pass algorithm
that satisfies the conditions as prescribed in Lemma 4. This is a “streaming version” of the
offline “no trapping” result of Lemma 14.

Lemma 16 Let p ∈ [P+1] be a parameter, and let alg be a p-pass streaming algorithm with
a memory of n/(20000P 3) arms. Let q ∈ (p, P +1], and suppose the underlying instance from
D(P,C) satisfies that batches B⩽p contain only arms with mean rewards 1

2 , i.e. Θ⩽p = 0.
Furthermore, suppose the assumptions of Item (I). and Item (II). in Lemma 4 hold. Then,

conditioning on Ep−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0, the probability for alg to store an arm with

30

Near-optimal Multi-pass Streaming MABs Lower Bounds

mean reward strictly more than 1
2 from Bq is at most 1

2P 2 , i.e., let Ep
mem>1/2(q) be the event

that alg stores the special arm of batch q, there is

Pr
(
Ep
mem>1/2(q) | E

p−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0

)
= E

Π1:p,Mp

[
Pr
(
Ep
mem>1/2(q) | E

p−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0,Π1:p = Π1:p,Mp = Mp

)]
⩽

1

2P 2
.

We explicitly write the expectation over Π1:p,Mp to emphasize the randomness over the
transcript and the memory of the first p passes.

Proof We first note that the randomness in the statement of Lemma 16 includes the
randomness of the transcript and the memory of the first p passes and the underlying
instance. We use a reduction argument from the problem in Lemma 14 to establish the
desired lower bound. In particular, we show that conditioning on all the conditions in
Lemma 16, if alg can store the special arm in batch Bq with probability more than 1/2P 2,
then we can “trap” the best arm in batch q by running alg with γ = 1

100P 2 , k = n
P+1 ,

and β = ηq. The success probability is non-negligible, albeit low, and such an algorithm
would require a high sample complexity. However, since we assume low sample complexity
(condition Item (II).), it will lead to a contradiction with Lemma 14.

We now formalize the above intuition. We first give a detailed simulation procedure as
follows.

An algorithm (reduction) for the problem in Lemma 14
Input: Bq: k arms with one special arm as in Lemma 14 with β = ηq;
Input: alg: a streaming algorithm that stores the special arm of Bq with probability
more than 1/2P 2 conditioning on the event of Lemma 16.
Parameters: γ = 1

100P 2 k = n
P+1 β = ηq.

1. Sample an underlying instance from D(P,C) for alg as follows

(a) Parameters ηr in D(P,C) as follows: let (P − q + 1) parameters ηr follow the
arriving order before Bq, and let (q − 1) parameters ηr follow the arriving
order after Bq.

(b) Ensure the condition of Θ⩽p = 0, and sample each Θr = 1 for r ̸∈ [p] ∪ {q}
with probability 1/2P (exactly as in D(P,C)).

(c) Sample P batches of n
P+1 arms with the above setting, and concatenate them

with Bq to get the stream.

2. Run the streaming algorithm alg on the instance:

(a) For each pass, sample exactly as alg does and maintain the local memory
exactly as the memory of alg.

(b) At any point, if the number of samples is more than 1
25000 · n

γp+1·P 29 on batch
q, abort the algorithm and output “failure”.

31

Assadi Wang

(c) If the algorithm does not output “failure”, at the end of the p-th pass, output
all the (indices of) arms that are in Bq.

As we have discussed in Section 2.1, the offline algorithm can ignore the indices of
the pass and the arriving arm in Π (by writing ∗ therein). As such, the reduction gives
a valid algorithm for the problem in Lemma 14. We now lower bound the probability of
(Ep

mem>1/2(q) | Θ⩽p = 0) using the probability of Ep
mem>1/2(q) conditioning on Item (I). of

Lemma 4. Formally, we have

Pr
(
Ep

mem>1/2(q) | Θ⩽p = 0
)

(written in the conditional form to begin with by the conditions in Lemma 14)

⩾ Pr
(
Ep

mem>1/2(q) | E
p−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl | Θ⩽p = 0

)
.

We lower bound the second term by using the condition in Item (I). of Lemma 4 as follows:

Pr
(
Ep−1

batch-obl, E
p−1
mem-obl | Θ⩽p = 0

)
=

Pr
(
Ep−1

batch-obl, E
p−1
mem-obl,Θ⩽p = 0

)
Pr (Θ⩽p = 0)

⩾ Pr
(
Ep−1

batch-obl, E
p−1
mem-obl,Θ⩽p = 0

)
= Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0,Θp = 0

)
= Pr

(
Θp = 0 | Ep−1

batch-obl, E
p−1
mem-obl

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
⩾ Pr

(
Θp = 0 | Ep−1

batch-obl, E
p−1
mem-obl

)
·
(
1− 1

2P

)10(P−1)

(by the condition of Item (I).)

⩾

(
1− 1

4P

)
·
(
1− 1

2P

)10(P−1)

(by using the batch obliviousness)

⩾
1

30
. (using P ⩾ 2)

On the other hand, recall that by condition Item (II). of Lemma 4, there is

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
⩽

1

109
· n

γp+1 · P 30
.

32

Near-optimal Multi-pass Streaming MABs Lower Bounds

We bound the expected sample of (Smp(alg)BP+1:Bp+1 | Ep−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0) (note

the extra condition of Θp = 0) with the batch oblivious condition:

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ⩽p = 0

]
= E

[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θp = 0,Θ<p = 0

]
⩽

1

Pr
(
Θp = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

) · E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
(by total expectation)

⩽
1

1− 3/4P
· E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
(by batch obliviousness)

⩽ 2 · E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
⩽

2

109
· n

γp+1 · P 30
.

Note additionally that the total arm pulls we used on batch q is a subset of the arm
pulls measured by Smp(alg)BP+1:Bp+1 . Therefore, conditioning on (Ep−1

batch-obl, E
p−1
mem-obl,Θq =

1,Θ⩽p = 0), with probability at least (1− 1
100P), the sample complexity does not break the

limit and return “failure” (Markov bound).
We further note that our input instance has Θq = 1 deterministically. As such, we can

further lower bound the probability our reduction to store the best arm by

Pr (ALG stores the special arm | Θq = 1,Θ⩽p = 0)

=
Pr (ALG stores the special arm | Θ⩽p = 0)

Pr (Θq = 1 | Θ⩽p = 0)

(Pr(ALG stores the special arm | Θq = 0,Θ⩽p = 0) = 0)

⩾ Pr
(
ALG stores the special arm | Ep−1

batch-obl, E
p−1
mem-obl,Θ⩽p = 0

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl | Θ⩽p = 0

)
⩾ Pr

(
Ep

mem>1/2(q) | E
p−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0

)
· Pr

(
not return “failure” | Ep−1

batch-obl, E
p−1
mem-obl,Θ⩽p = 0

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl | Θ⩽p = 0

)
⩾ Pr

(
Ep

mem>1/2(q) | E
p−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0

)
·
(
1− 1

100P

)
· 1

30
.

Hence, the condition of

Pr
(
Ep

mem>1/2(q) | E
p−1
batch-obl, E

p−1
mem-obl,Θ⩽p = 0

)
>

1

2P 2

implies

Pr (ALG stores the special arm | Θ⩽p = 0) ⩾ (1− 1

100P
) · 1

30
· 1

2P 2
⩾

1

100P 2
.

33

Assadi Wang

The final output of the reduction is a subset of the memory of the streaming algorithm alg,
which is at most n

20000P 3 . Note that for any P ⩾ 2, there is 300·(100P 2)3 ·(P+1) < 25000·P 29.
Therefore, we obtain an offline algorithm that uses at most 1

25000 · n
η2q

· 1
P 29 < 1

300 · γ3

β2 · k arm

pulls and outputs at most n
20000P 3 < 1

12 · 1
500P 2 · k arms (using P ⩾ 2) that contains the

special arm with probability at least γ = 1
100P 2 . This reaches a contradiction with Lemma 14,

which proves Lemma 16.

We now show another technical lemma that deals with the “learning” aspect of a p-pass
streaming algorithm that satisfies the conditions in Lemma 4. This is similarly a streaming
analogy of the offline “no learning” result of Lemma 15.

Lemma 17 Let p ∈ [P + 1] be a parameter, and let alg be a p-pass streaming algorithm
with a memory of n/(20000P 3) arms. Suppose the underlying instance from D(P,C) satisfies
that batches B⩽p contain only arms with mean rewards 1

2 , i.e. Θ⩽p = 0. Additionally, suppose
the conditions of Item (I). and Item (II). in Lemma 4 hold, and there is

Pr
(
Ep
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
⩾

(
1− 1

2P

)10(p−1)+5

.

Then, for any q ∈ (p, P], with probability at least (1− 1
2P 2) conditioning on (Ep

mem-obl, E
p−1
batch-obl,Θ⩽p =

0), there is

Pr
(
Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0

)
∈ [

1

2P
− 1

4P 2
,

1

2P
+

1

4P 2
].

Proof We only show the proof for the upper bound since the lower bound follows in the
same manner. Similar to the proof of Lemma 16, we show an algorithm (reduction) from the
offline Lemma 15 to the streaming algorithm as follows.

An algorithm (reduction) for the problem in Lemma 15
Input: Bq: k arms following the distribution of Lemma 15 with β = ηq;
Input: alg: a streaming algorithm that with probability more than 1/2P 2 conditioning
on the conditions of Lemma 17, outputs memory and transcript Π1:p and Mp such that
Pr(Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0) > 1

2P + 1
4P 2 .

Parameters: γ1/2 = 1
250P 2 k = n

P+1 β = ηq.

1. Sample an underlying instance from D(P,C) for alg as follows

(a) Parameters ηr in D(P,C) as follows: let (P −q+1) parameters ηr follwing the
arriving order before Bq, and let (q − 1) parameters ηr follwing the arriving
order after Bq.

(b) Ensure the condition of Θ⩽p = 0, and sample each Θr = 1 for r ̸∈ [p] ∪ {q}
with probability 1/2P (exactly as in D(P,C) for these batches).

(c) Sample P batches of n
P+1 arms with the above setting, and concatenate them

with Bq to get the stream.

34

Near-optimal Multi-pass Streaming MABs Lower Bounds

2. Run the streaming algorithm alg on the instance:

(a) For each pass, sample exactly as alg does and maintain the local memory
exactly as the memory of alg.

(b) At any point, if the number of samples is more than 1
5 ·

1
105

· n
γp+1·P 30 on batch

q, abort the algorithm and output “failure”.

(c) If the algorithm does not output “failure”, at the end of the p-th pass, evaluate
Θq with maximum likelihood estimation, i.e., let the trasncript and memory
of the algorithm be (Π1:p,Mp), we output the distribution of(

Θq | Π1:p = Π1:p,Mp = Mp,Θ⩽p = 0
)
.

We show that with probability more than 2γ1/2, the algorithm returns Pr(Θ = 1 |
Π = Π) > 1

2P + 2γ1/2. Define a pair of transcript and memory Π1:p = Π1:p,Mp = Mp as
informative if Pr(Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0) > 1

2P + 2γ1/2, and define
Ep

inform(q) as the event for the streaming algorithm to produce informative transcript and
memory by the end of pass p for batch q. We first lower bound the probability of the event
as follows.

Pr
(
Ep

inform(q) | Θ<p+1 = 0
)

⩾ Pr
(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
· Pr

(
Ep

mem-obl, E
p−1
batch-obl | Θ<p+1 = 0

)
⩾ Pr

(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
· Pr

(
Ep

mem-obl, E
p−1
batch-obl,Θ<p+1 = 0

)
⩾ Pr

(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
·
(
1− 1

2P

)10(p−1)+5

⩾ Pr
(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
· 1

200
,

where the second-last line is from the condition of Lemma 17, and the last line uses p ⩽ P
and P ⩾ 2. We now provide an upper bound on the expected number of arm pulls using
the condition of Item (II). in Lemma 4 with the extra condition of Ep

mem-obl. To this end,
we first upper bound Pr(Ep

mem-obl, E
p−1
batch-obl,Θ⩽p = 0) with the term Pr(Ep

mem-obl,Θp = 0 |

35

Assadi Wang

Ep−1
batch-obl, E

p−1
mem-obl,Θ<p = 0) as follows.

Pr
(
Ep

mem-obl, E
p−1
batch-obl,Θ⩽p = 0

)
= Pr

(
Ep

mem-obl, E
p−1
batch-obl,Θ⩽p = 0 | Ep−1

mem-obl

)
· Pr

(
Ep−1

mem-obl

)
(Ep

mem-obl cannot happen if Ep−1
mem-obl does not happen)

⩽ Pr
(
Ep

mem-obl, E
p−1
batch-obl,Θ⩽p = 0 | Ep−1

mem-obl

)
= Pr

(
Ep

mem-obl, E
p−1
batch-obl,Θ<p = 0,Θp = 0 | Ep−1

mem-obl

)
= Pr

(
Ep

mem-obl,Θp = 0 | Ep−1
batch-obl, E

p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep−1

batch-obl,Θ<p = 0 | Ep−1
mem-obl

)
⩽ Pr

(
Ep

mem-obl,Θp = 0 | Ep−1
batch-obl, E

p−1
mem-obl,Θ<p = 0

)
.

With the above inequality, we can bound the expected samples on Smp(alg)BP+1:Bp+1 as
follows.

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl, E

p
mem-obl,Θ⩽p = 0

]
⩽ E

[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
· 1

Pr
(
Ep

mem-obl,Θp = 0 | Ep−1
batch-obl, E

p−1
mem-obl,Θ<p = 0

)
⩽ E

[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
· 1

Pr
(
Ep

mem-obl, E
p−1
batch-obl,Θ⩽p = 0

)
⩽ E

[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
· 1(

1− 1
2P

)10(p−1)+5

(by the condition in Lemma 17)

⩽ E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
· 200

⩽
1

5
· 1

106
· n

γp+1 · P 30
. (using Item (II). in Lemma 4)

Once again, note that the total arm pulls we used on batch q is a subset of the arm pulls
measured by Smp(alg)BP+1:Bp+1 . Therefore, by the Markov bound, with probability at least
9/10 conditioning on the events of Ep−1

batch-obl, E
p−1
mem-obl, E

p
mem-obl,Θ⩽p = 0, the algorithm will

not return failure.
Note that by running the reduction, the offline algorithm has access of Π1:p and MP by

the end of pass p. Hence, if we have

Pr(Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0) >
1

2P
+ 2γ1/2,

there is

Pr(Θ = 1 | Π = Π) >
1

2P
+ 2γ1/2

36

Near-optimal Multi-pass Streaming MABs Lower Bounds

from the perspective of the offline algorithm. Therefore, we have that

Pr
(

Pr(Θ = 1 | Π = Π) >
1

2P
+ 2γ1/2

)
= Pr

(
Pr(Θ = 1 | Π = Π) >

1

2P
+ 2γ1/2 | Θ<p+1 = 0

)
(Θ<p+1 = 0 is ensured in the instances)

= Pr
(
Ep

inform(q) | Θ<p+1 = 0
)
.

As such, we can combine this with the lower bound of Pr(Ep
inform(q) | Θ<p+1 = 0) to get that

if we have
Pr
(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
⩾

1

2P 2
,

it implies that

Pr
(

Pr(Θ = 1 | Π = Π) >
1

2P
+ 2γ1/2

)
= Pr

(
Ep

inform(q) | Θ<p+1 = 0
)

⩾ Pr
(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
· 1

200

⩾
1

2P 2
· 1

200
· 9

10
⩾

1

500P 2
.

Furthermore, the algorithm uses at most 1
5 · 1

105
· n
γp+1·P 30 arm pulls on batch Bq.

Let 2γ1/2 = 1
500P 2 , we have the guarantee of the knowledge on Θ (of the offline algorithm)

becomes Pr(Θ = 1 | Π = Π) > 1
2P + 1

4P 2 > 1
2P + 1

500P 2 . Therefore, such a algorithm should
require 1

100 · γ2·k
α·β2 arm pulls. For any P ⩾ 2, there is 100·(250P 2)4·(P+1)

2P < 5 · 105 · P 30, which

implies 1
5 ·

1
105

· n
γp+1·P 30 < 1

100 ·
γ2·k
α·β2 arm pulls (β = ηq ⩽

√
γp+1). This forms a contradiction

with Lemma 15, which proves the lemma.

We are ready to proceed to the proof of the main claims in Lemma 4 as follows.
Proof of Lemma 4 We first lower bound the probability of Pr(Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0)

as a function of Pr(Ep
batch-obl, E

p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0). To this end, we lower

bound Pr(Ep
batch-obl, E

p
mem-obl,Θ<p+1 = 0) as follows:

Pr
(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0

)
⩾ Pr

(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
,

in which the first term of the right hand side can be factored to

Pr
(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
= Pr

(
Θ<p+1 = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
= Pr

(
Θp = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
(expanding the condition of Θ<p+1 = 0)

⩾

(
1− 1

2P
− 1

4P 2

)
· Pr

(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
(by batch-obliviousness by the end of pass (p− 1))

⩾ (1− 3

4P
) · Pr

(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
.

37

Assadi Wang

Therefore, we obtain a valid lower bound for Pr
(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0

)
as

Pr
(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0

)
⩾ (1− 3

4P
) · Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
⩾ (1− 3

4P
) ·
(
1− 1

2P

)10(p−1)

· Pr
(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
.

As such, we only need to lower boud the last term, i.e., the term of Pr(Ep
batch-obl, E

p
mem-obl |

Ep−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0). To this end, we further write the probability as

Pr
(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
= Pr

(
Ep

batch-obl | E
p
mem-obl, E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
· Pr

(
Ep

mem-obl | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
.

We start with bounding the term Pr
(
Ep

mem-obl | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
, i.e., the

memory-oblivious proof.

Memory oblivious proof. For each batch q ∈ [P + 1], we define the following event.

Ep
mem>1/2(q): the event that Mem(alg) contains an arm with mean reward more than 1

2
from arms in batch Bq.

Recall that Ep
mem-obl is the event that alg is memory-oblivious after pass p. By a simple

union bound, we can bound the probability for Ep
mem-obl not to happen, i.e., the memory

contains at least one arm with reward strictly more than 1
2 , as follows.

Pr
(
¬Ep

mem-obl | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
⩽

∑
q∈[P+1]

Pr
(
Ep

mem>1/2(q) | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
.

It suffices to upper bound each conditional probability term of Ep
mem>1/2(q). To this end, we

bound terms for q of different types.
The case of q ∈ (p, P + 1]. In this case, we might have ΘP+1 = 1 for the batch Bq. As
such, we can use Lemma 16 to obtain that

Pr
(
Ep

mem>1/2(P + 1) | Ep−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
= E

Π1:p,Mp

[
Pr
(
Ep

mem>1/2(P + 1) | Π1:p = Π1:p,Mp = Mp, Ep−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)]
⩽

1

2P 2
. (using Lemma 16)

In particular, the last line uses Lemma 16 by the conditions of a). conditions Items (I).
and (II). of Lemma 4 and b). the underlying instance satisfied Θ⩽p = 0. These conditions
exactly satisfy the requirements of Lemma 16.

38

Near-optimal Multi-pass Streaming MABs Lower Bounds

The case of q ⩽ p. Note that we have conditioned on the event that Θ<p+1 = 0. Therefore,
we always have

Pr
(
Ep

mem>1/2(q) | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
= 0.

Summarizing the case analysis for memory obliviousness. By the above cases analysis,
we can obtain that

Pr
(
¬Ep

mem-obl | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
⩽

1

2P 2︸︷︷︸
q=P+1

+(P − p+ 1) · 1

2P 2︸ ︷︷ ︸
q∈(p,P]

⩽
1

P
.

Therefore, using the conditions Item (I). and Item (II). of Lemma 4 and conditioning on
Θ<p+1 = 0, the probability for alg to be memory-oblivious by the end of the p-th pass is at
least (1− 1

P) ⩾ (1− 1
2P)

3 (holds for every P ⩾ 2), i.e.,

Pr
(
Ep

mem-obl | E
p−1
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
⩾

(
1− 1

2P

)3

. (5)

Batch oblivious proof. We now proceed to the proof of the batch-oblivious property,
which completes the building blocks for the proof of Lemma 4. We first note that by our
analysis for the memory obliviousness, we have

Pr
(
Ep

mem-obl, E
p−1
batch-obl,Θ⩽p = 0

)
⩾ Pr

(
Ep

mem-obl, E
p−1
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
⩾ Pr

(
Ep

mem-obl | E
p−1
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
· Pr

(
Ep−1

mem-obl, E
p−1
batch-obl,Θ⩽p = 0

)
⩾ Pr

(
Ep

mem-obl | E
p−1
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
· Pr

(
Θ⩽p = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
⩾

(
1− 1

2P

)3

· Pr
(
Θp = 0 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
(by Eq (5) and the definition of Θ⩽p)

⩾

(
1− 1

2P

)3

·
(
1− 3

4P

)
· Pr

(
Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

)
(by batch obliviousness)

⩾

(
1− 1

2P

)3

·
(
1− 3

4P

)
·
(
1− 1

2P

)10(p−1)

⩾

(
1− 1

2P

)10(p−1)+5

. (using P ⩾ 2)

As such, the condition for Lemma 17 is satisfied. Define Ep
inform(q) as the event for the

streaming algorithm to produce a pair of memory and transcript Π1:p = Π1:p,Mp = Mp such

39

Assadi Wang

that Pr(Θq = 1 | Π1:p = Π1:p,Mp = Mp,Θ<p+1 = 0) > 1
2P + 1

4P 2 by the end of pass p for
batch q (in the same way of Lemma 17). By applying Lemma 17, we have

Pr
(
Ep

inform(q) | Ep
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
⩽

1

2P 2
.

Therefore, by a union bound, we have that

Pr
(
Ep

batch-obl | E
p
mem-obl, E

p−1
batch-obl,Θ⩽p = 0

)
⩾

(
1− 1

2P

)
.

Finalizing the proof of Lemma 4. Recall that in the begining of the proof, we have
shown that

Pr
(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0

)
⩾ (1− 3

4P
) ·
(
1− 1

2P

)10(p−1)

· Pr
(
Ep

batch-obl, E
p
mem-obl | E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
= (1− 3

4P
) ·
(
1− 1

2P

)10(p−1)

· Pr
(
Ep

batch-obl | E
p
mem-obl, E

p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
· Pr

(
Ep

mem-obl | E
p−1
batch-obl, E

p−1
mem-obl,Θ<p+1 = 0

)
.

Since Ep
mem-obl implies Ep−1

mem-obl, we can bound the above chain of inequalities as

Pr
(
Ep

batch-obl, E
p
mem-obl,Θ<p+1 = 0

)
⩾ (1− 3

4P
) ·
(
1− 1

2P

)10(p−1)

·
(
1− 1

2P

)3

· Pr
(
Ep

batch-obl | E
p
mem-obl, E

p−1
batch-obl,Θ<p+1 = 0

)
(the analysis for memory obliviousness)

⩾ (1− 3

4P
) ·
(
1− 1

2P

)10(p−1)

·
(
1− 1

2P

)3

·
(
1− 1

2P

)
(analysis for batch obliviousness)

⩾

(
1− 1

2P

)10p

,

as desired in the lemma statement.

D.2. The Radical Case

We now focus on the radical case when the algorithm makes “too many” arm pulls for the
“early batches” in the first p passes while being oblivious to these batches. We remind the
readers of the main lemma with a restatement of the lemma in Section 4.

Lemma 5 (Radical case) For any integer p ∈ [P], suppose a streaming algorithm alg is
memory- and batch-oblivious at the end of the pass p− 1, and that the underlying instance
satisfies Θ<p = 0. Additionally, suppose

E
[
Smp(alg)BP+1:Bp+1 | Ep−1

batch-obl, E
p−1
mem-obl,Θ<p = 0

]
>

1

109
· n

γp+1 · P 30
;

40

Near-optimal Multi-pass Streaming MABs Lower Bounds

then,

E
[
Smp(alg) | Ep−1

batch-obl, E
p−1
mem-obl, EFirst(p)

]
> 20000 · C · n

η2p
.

Note that the statement of Lemma 5 does not use the exact “symmetric” condition of
Lemma 4 – we write in this way on purpose, and its usage will be clear in Section D.3.

We prove Lemma 5 for the rest of Section D.2. For technical reasons, for the proof of
Lemma 5, we assume w.log. that on the p-th pass, the arm pulls of Smp(alg)BP+1:Bp+1 are
conducted before jarrive enters batch p, i.e., before the arrival of the arms in the batch p. For
any algorithm that does not satisfy this property, we can re-arrange the order of arm pulls
on the p-th pass without changing the total number of arm pulls.

We first show a technical claim that conditioning on any (fixed) transcript and the memory
by the end of the (p− 1)-th pass, the knowledge of the algorithm on Θq is independent of the
arm pulls we used in Smp(alg)BP+1:Bq+1 . Conceptually, the claim asserts the simple fact
that the arm pulls induced on arms outside q, conditioning on the transcript of all previous
passes, has nothing to do with the algorithm’s knowledge for Θq. We also explicitly use the
conditions of Ep−1

batch-obl and Ep−1
mem-obl for technical reason that will be clear later.

Claim D.1 For any integer p ∈ [P], let (Π1:p−1,Mp−1) be any pair of transcript and
memory. Then, for any realization of Smp(alg)BP+1:Bq+1 = s, i.e., the samples on batches
arriving before q, there is

Pr
(
Θq = 1 | Smp(alg)BP+1:Bq+1 = s,Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
= Pr

(
Θq = 1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
.

Proof The proof is an application of the data processing inequality (Proposition 10) with a
similar flavor of the rectangle property in communication protocols. Concretely, we want to
prove that

I
(
Θq;Π

p
∩BP+1:q+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
= 0. (6)

Furthermore, observe that Smp(alg)BP+1:Bq+1 is a determistic function of Πp
∩BP+1:q+1

condi-

tioning on (Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl). Therefore, we have

I
(
Θq; Smp(alg)BP+1:Bq+1 | Π1:p−1,Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
⩽ I

(
Θq;Π

p
∩BP+1:q+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
= 0,

where the first inequality follows from the data-processing inequality (Proposition 10).
Furthermore, since mutual information is non-negative, the above implies that for any
realization (Π1:p−1,Mp−1), there is

I
(
Θq; Smp(alg)BP+1:Bq+1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
= 0.

41

Assadi Wang

Therefore, by Proposition 11, we have that

Pr
(
Θq = 1 | Smp(alg)BP+1:Bq+1 = s,Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
= Pr

(
Θq = 1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
,

(by the zero mutual information and Proposition 11)

which will reach our desired conclusion.
For the rest of this proof, we aim to establish Eq (6). To this end, we introduce the

random variable for the memory inside the p-th pass, we use Mp
>q (resp. Mp

>q) to denote
the random variable (resp. the realization) of the memory state when the last time jarrive is
smaller than all the indices in the q-th batch, i.e. the process for the memory state changing
in the p-th pass can be denoted as Mp

>P → Mp
>P−1 → . . . → Mp

>1 → Mp
>0 = Mp. We further

define Bq as the random variable for the arms in batch q, and B>q as the random variable
for the arms in batches (q, P + 1].

For the ease of analysis, we use the following simple trick to order the arm pulls induced
by Πp

∩BP+1:q+1
. In particular, we create a “imaginary” process that conducts all samples on

batch q before jarrive visits the batch (q − 1) (the next batch in the order of the stream).
Note that the ordering does not change the value of I(Θq;Π

p
∩BP+1:q+1

| Π1:p−1,Mp−1,Θ<p =

0, Ep−1
batch-obl, E

p−1
mem-obl) since the transcript is permutation-invariate and the arm pulls on

Πp
∩BP+1:q+1

are conducted before jarrive reaches Bq.
We start from batch P + 1 to “inductively” prove the conditional independence between

Θq and Πp
∩BP+1:r

for r ∈ (q, P + 1]. Specifically, we first use chain rule of mutual information
to upper-bound the left-hand side of Eq (6) as follows.

I
(
Θq;Π

p
∩BP+1:q+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
= I

(
Θq;Π

p
∩BP+1

,Πp
∩BP :q+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
= I

(
Θq;Π

p
∩BP+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
+ I
(
Θq;Π

p
∩BP :q+1

| Π1:p−1,Mp−1,Πp
∩BP+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
.

(by chain rule)

We now need to further “peel off” random variables from I(Θq;Π
p
∩BP :q+1

| Π1:p−1,Mp−1,Πp
∩BP+1

,Θ<p =

0, Ep−1
batch-obl, E

p−1
mem-obl) and move the conditions “forward” in terms of the batches. To this

end, consider the random variable Mp
>P , and we observe that

Mp
>P ⊥ Θq | Π1:p−1,Mp−1,Πp

∩BP+1
,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

since the memory state is uniquely determined after the transcript of Πp
∩BP+1

is introduced
to Π1:p−1,Mp−1 (and since we use the trick to order the transcripts).

42

Near-optimal Multi-pass Streaming MABs Lower Bounds

Therefore, we can further write the term I(Θq;Π
p
∩BP :q+1

| Π1:p−1,Mp−1,Πp
∩BP+1

,Θ<p =

0, Ep−1
batch-obl, E

p−1
mem-obl) as follows.

I
(
Θq;Π

p
∩BP :q+1

| Π1:p−1,Mp−1,Πp
∩BP+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
⩽ I

(
Θq;Π

p
∩BP :q+1

| Π1:p−1,Πp
∩BP+1

,Mp−1,Mp
>P ,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
(condition on independent random variable does not decrease MI)

= I
(
Θq;Π

p
∩BP

,Πp
∩BP−1:q+1

| Π1:p−1,Πp
∩BP+1

,Mp−1,Mp
>P ,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
= I

(
Θq;Π

p
∩BP

,Πp
∩BP−1:q+1

| Π1:p−1,Πp
∩BP+1

,Mp
>P ,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
⩽ I

(
Θq;Π

p
∩BP

| Π1:p−1,Mp
>P ,Π

p
∩BP+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
+ I
(
Θq;Π

p
∩BP−1:q+1

| Π1:p−1,Mp
>P ,Π

p
∩BP+1:P

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
.

(by chain rule)

Therefore, we can keep performing the above steps, and obtain that:

I
(
Θq;Π

p
∩BP+1:q+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
=

q+1∑
r=P+1

I
(
Θq;Π

p
∩Br

| Π1:p−1,Mp
>r,Π

p
∩BP+1:r+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)

⩽
q+1∑

r=P+1

I
(
Bq;Π

p
∩Br

| Π1:p−1,Mp
>r,Π

p
∩BP+1:r+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
,

where the last inequality comes from the fact that Θq is a deterministic function of Bq and
by using Proposition 10.

Observe that at each step, in the process with our ordering, the random variable Πp
∩Br

is
determined by the conditions Π1:p−1,Mp

>r,Π
p
∩BP+1:r+1

. As such, we have that

Bq ⊥ Πp
∩Br

| Π1:p−1,Mp
>r,Π

p
∩BP+1:r+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl,

which implies

I
(
Θq;Π

p
∩BP+1:q+1

| Π1:p−1,Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
⩽

q+1∑
r=P+1

I
(
Bq;Π

p
∩Br

| Π1:p−1,Mp
>r,Π

p
∩BP+1:r+1

,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

)
= 0,

which is as desired by Eq (6).

We now proceed to the main technical lemma to prove Lemma 5: we show that conditioning
on any transcript and memory that satisfies the assumptions of Lemma 5, the expected
number of samples for Smp(alg)BP+1:Bp+1 has to be high even if we add the extra condition of
Θp = 1. Note that a standard total expectation calculation only leads to the reverse direction,
and the correctness of our case crucially relies on the lower bound for batch-obliviousness.

43

Assadi Wang

Lemma 18 Let (Π1:p−1,Mp−1) be a pair of transcript and memory of a streaming algorithm
after (p− 1) passes, there is

E
[
Smp(alg)BP+1:Bp+1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0,Θp = 1, Ep−1

batch-obl, E
p−1
mem-obl

]
⩾

1

2
· E
[
Smp(alg)BP+1:Bp+1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

]
.

Proof To avoid clutter, for the given pair of transcript and memory (Π1:p−1,Mp−1) that
satisfies the lemma statement, we define random variable

S := Smp(alg)BP+1:Bp+1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1
batch-obl, E

p−1
mem-obl

as a notation that is self-contain in this proof. In this way, by picking realizations for S = s, we
mean

(
Smp(alg)BP+1:Bp+1 = s | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
.

By Bayes’ rule, for any realization of S = s, we have

Pr (S = s | Θp = 1) =
Pr (Θp = 1 | S = s) · Pr (S = s)

Pr (Θp = 1)
.

As such, by using Claim D.1 with q = p, we have that

Pr (Θp = 1 | S = s)

= Pr
(
Θp = 1 | Smp(alg)BP+1:Bp+1 = s,Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
= Pr

(
Θp = 1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
.

Therefore, for any choice of s, we have the bound

Pr (S = s | Θp = 1)

=
Pr
(
Θp = 1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

)
· Pr (S = s)

Pr (Θp = 1)

⩾

(
1
2P − 1

4P 2

)
Pr (Θq = 1)

· Pr (S = s) (by the assumption of batch-obliviousness)

⩾
1

2
· Pr (S = s) .

Therefore, we have

E
[
Smp(alg)BP+1:Bp+1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0,Θp = 1, Ep−1

batch-obl, E
p−1
mem-obl

]
= E [S | Θp = 1] (change of notation)

=
∑
s

s · Pr (S = s | Θp = 1)

⩾
∑
s

s · 1
2
· Pr (S = s)

=
1

2
· E
[
Smp(alg)BP+1:Bp+1 | Π1:p−1 = Π1:p−1,Mp−1 = Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

]
,

44

Near-optimal Multi-pass Streaming MABs Lower Bounds

as desired.

Proof of Lemma 5 We first lower bound the total expected number of arm pulls with
the expected number of arm pulls restricting to the first P − p+ 2 batches, and write the
expectation as the average case of the choices of (Π1:p−1,Mp−1).

E
[
Smp(alg) | EFirst(p), Ep−1

batch-obl, E
p−1
mem-obl

]
= E E

Π1:p−1,Mp−1

[
Smp(alg) | Π1:p−1,Mp−1, EFirst(p), Ep−1

batch-obl, E
p−1
mem-obl

]
⩾ E E

Π1:p−1,Mp−1

[
Smp(alg)BP+1:Bp+1 | Π1:p−1,Mp−1, EFirst(p), Ep−1

batch-obl, E
p−1
mem-obl

]
,

where the last inequality is due to Smp(alg)BP+1:Bp+1 always counts a subset of arm pulls
of Smp(alg) for any fixed transcript and memory (Π1:p−1,Mp−1). By applying Lemma 18
to every choice of batch- and memory-oblivious (Π1:p−1,Mp−1), we have

E E
Π1:p−1,Mp−1

[
Smp(alg)BP+1:Bp+1 | Π1:p−1,Mp−1,Θ<p = 0,Θp = 1, Ep−1

batch-obl, E
p−1
mem-obl

]
⩾

1

2
· E E

Π1:p−1,Mp−1

[
Smp(alg)BP+1:Bp+1 | Π1:p−1,Mp−1,Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

]
.

To avoid clutter, we can combine the above inequalities and re-write them in the form of

E
[
Smp(alg) | EFirst(p), Ep−1

batch-obl, E
p−1
mem-obl

]
⩾

1

2
· E
[
Smp(alg)BP+1:Bp+1 | Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

]
.

Therefore, by the assumption of Lemma 5, we have

E
[
Smp(alg) | EFirst(p), Ep−1

batch-obl, E
p−1
mem-obl

]
⩾ E

[
Smp(alg)BP+1:Bp+1 | Θ<p = 0,Θp = 1, Ep−1

batch-obl, E
p−1
mem-obl

]
⩾

1

2
·
[
Smp(alg)BP+1:Bp+1 | Θ<p = 0, Ep−1

batch-obl, E
p−1
mem-obl

]
(by Lemma 18)

>
1

1010
· n

γp+1 · P 30
(by the condition of Lemma 5)

=
1

1010
· n

η2p · P 30
· (6C · P)30 (by the construction ηp+1 =

(
1

6CP

)15 · ηp)
> 20000C · n

η2p
, (630/1010 > 20000 with C ⩾ 1)

as desired by Lemma 5.

45

Assadi Wang

D.3. Putting Everything Together: Proof of Theorem 1

We now prove Theorem 1 with Lemmas 4 and 5. We remind the readers that we use alg
to denote the streaming algorithm. Note that in the beginning of the first pass, alg is
necessarily memory- and batch-oblivious since there is Π0 = ∅ and M0 = ∅. Therefore, by
Lemma 5, if the algorithm enters the radical case, there is

E [Smp(alg) | EFirst(1)] = E [Smp(alg) | Θ1 = 1] > C · n

η21
,

which breaks the sample complexity requirement in Theorem 1. Therefore, alg must use
the conservative case for the first pass.

Starting from the second pass, we argue that no pass should use the radical case if alg
is to follow the upper bound on the sample complexity as required by Theorem 1. Suppose p̃
is the first pass that the algorithm enters the radical case, and since we have the base case of
p = 1 and the condition of Lemma 4 (conservative case) being satisfied before pass p̃, there is

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0

)
⩾

(
1− 1

2P

)10(p̃−1)

.

We use the above result to lower bound the probability for Pr(E p̃−1
batch-obl, E

p̃−1
mem-obl | EFirst(p̃)),

which will eventually lead to a lower bound on E [Smp(alg) | EFirst(p̃)] that breaks the limit
of samples.

To this end, we first show the following technical claim that allows us to “drop” conditions
on Θp̃ conditioning on E p̃−1

batch-obl and E p̃−1
mem-obl. Intuitively, such a claim is true by the

obliviousness of the transcipt on Θp̃, which is similar-in-spirit with Lemma 18.

Claim D.2 The following statement is true:

Pr
(
E p̃−1
batch-obl, E

p̃−1
mem-obl | EFirst(p̃)

)
⩾

1

2
· Pr

(
E p̃−1
batch-obl, E

p̃−1
mem-obl,Θ<p̃ = 0

)
.

Proof We first lower bound the probability by expanding the terms as follows.

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl | EFirst(p̃)

)
=

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl, EFirst(p̃)

)
Pr (EFirst(p̃))

⩾ Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl, EFirst(p̃)

)
· 2P
(Pr (EFirst(p̃)) ⩽ 1/2P)

= Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θp̃ = 1,Θ<p̃ = 0

)
· 2P

= Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0 | Θp̃ = 1

)
· Pr (Θp̃ = 1) · 2P

= Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0 | Θp̃ = 1

)
.

(Pr(Θp̃ = 1) = 1
2P by p̃ ⩽ p)

46

Near-optimal Multi-pass Streaming MABs Lower Bounds

Our goal now is to lower bound the term Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0 | Θp̃ = 1

)
. By

Bayes’ rule and the batch-obliviousness, we have

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0 | Θp̃ = 1

)
=

Pr
(
Θp̃ = 1 | E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0

)
· Pr

(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0

)
Pr (Θp̃ = 1)

(Bayes’ rule)

⩾

(
1
4P

)
· Pr

(
E p̃−1

batch-obl, E
p̃−1
mem-obl | Θ<p̃ = 0

)
1
2P

(by the batch-oblivious condition)

⩾
1

2
· Pr

(
E p̃−1

batch-obl, E
p̃−1
mem-obl,Θ<p̃ = 0

)
,

as desired.

We now establish the lower bound on the expected sample for pass p̃. By Claim D.2, we
have that

Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl | EFirst(p̃)

)
⩾

1

2
·
(
1− 1

2P

)10(p̃−1)

⩾
1

2
·
(
1− 1

2P

)10(P−1)

>
1

1000
,

(7)

where the first inequality uses Claim D.2 and the lower bound on Pr(E p̃−1
batch-obl, E

p̃−1
mem-obl,Θ<p̃ =

0), and the last inequality is obtained by using
(
1− 1

2P

)10P−10
> 1

500 for any P ⩾ 2. Therefore,
we can bound the sample complexity of the algorithm if it enters the radical case on the p̃-th
pass as follows.

E [Smp(alg) | EFirst(p̃)]

⩾ E
[
Smp(alg) | EFirst(p̃), E p̃−1

batch-obl, E
p̃−1
mem-obl

]
· Pr

(
E p̃−1

batch-obl, E
p̃−1
mem-obl | EFirst(p̃)

)
> 20000C · n

η2p
· 1

1000

(by Lemma 5 and the lower bound of Pr
(
E p̃−1

batch-obl, E
p̃−1
mem-obl | EFirst(p̃)

)
)

> C · n

η2p
,

which breaks the requirement of sample complexity bound in Theorem 1. As such, to keep
the promise on the sample complexity, alg has to be in the conservative case for all P
passes.

47

Assadi Wang

Now, we can apply the calculation in Eq (7) again to argue that with probability strictly
more than 1

1000 , after the P -th pass, we obtain transcript and memory that are memory- and
batch-oblivious. As such, no arm with a mean reward strictly more than 1/2 will be in the
memory of alg, which means the success probability is strictly less than 999

1000 .

Remark 19 Observe that our lower bound generalizes to a sample complexity with additional
polylog (1

ηp
) multiplicative factors, i.e., we can prove the lower bound of memory and success

probability in Theorem 1 with the condition of

E [Smp(alg) | EFirst(p)] ⩽ C · n

η2p
· polylog (

1

ηp
).

In particular, if we further increase the gap between ηp in different batches, e.g., if we use
ηp =

(
1

6C·P
)20p in Eq (1), we can bring an extra multiplicative term of poly(P) to the sample

complexity in our proof of Lemma 5. By our choice of parameters, we have P = Ω(log (1/∆̃)

log log (1/∆̃)
),

where ∆̃ ⩽ ηp for any p ∈ [P +1]. This leads to the desired bound on sample complexity. The
observation also strengthens our main lower bound result to an expected sample complexity of
O(n

∆2 · polylog (1
∆)).

48

	Introduction
	Our Techniques
	Related Work

	Preliminaries
	The Multi-pass Streaming MABs Model

	Main Result
	An Overview of the Proof of thm:main
	Standard Technical Tools
	Statistical Distances
	Statistical Distances and Their Properties
	Information Theory Tools

	Standard Sample Complexity Lower Bounds for Single-armed Bandit
	Auxiliary Lemmas for Pure Exploration in MABs
	The Full Analysis of the Multi-Pass Lower Bound
	The Conservative Case
	The Radical Case
	Putting Everything Together: Proof of thm:main

