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Abstract
In this work we initiate the study of regression in the universal rates framework of (Bousquet
et al., 2021). Unlike the traditional uniform learning setting, we are interested in obtaining learning
guarantees that hold for all fixed data-generating distributions, but do not hold uniformly across
them. We focus on the realizable setting and we consider two different well-studied loss functions:
the cut-off loss at scale 𝛾 > 0, which asks for predictions that are 𝛾-close to the correct one, and
the absolute loss, which measures how far away the prediction is from the correct one. Our results
show that the landscape of the achievable rates in the two cases is completely different. First we
give a trichotomic characterization of the optimal learning rates under the cut-off loss: each class
is learnable either at an exponential rate, a (nearly) linear rate or requires arbitrarily slow rates.
Moving to the absolute loss, we show that the achievable learning rates are significantly more
involved by illustrating that an infinite number of different learning rates is achievable. This is the
first time that such a rich landscape of rates is obtained in the universal rates literature.
Keywords: Regression, Universal Rates, Statistical Learning Theory

1. Introduction

Regression stands as a cornerstone problem in statistical analysis and data science, extensively
investigated in Machine Learning (ML) literature (Vapnik, 1999; Goodfellow et al., 2016; Bach,
2021), with wide-ranging applications spanning domains like Economics and Medicine (Dua and
Graff, 2017). Despite its practical importance, a complete theoretical comprehension of the topic
remains elusive. Consequently, the study of regression and associated error rates has remained a
pivotal focus within learning theory (Alon et al., 1997; Bartlett et al., 1994; Simon, 1997; Bartlett
and Long, 1998; Mendelson, 2002; Aden-Ali et al., 2023; Attias et al., 2023).

In the foundational Probably Approximately Correct (PAC) learning paradigm (Valiant, 1984), a
recent work by Attias et al. (2023) characterized learnability in the setting of real-valued realizable
regression. This characterization is based on a scaled variant of the One-Inclusion Graph algorithm
of Haussler et al. (1994) and builds on an extensive line of research concerning binary and multiclass
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classification (Haussler et al., 1994; Blumer et al., 1989; Rubinstein et al., 2009; Hanneke, 2016;
Daniely and Shalev-Shwartz, 2014; Brukhim et al., 2022; Daniely et al., 2015).

Although the PAC model offers a clean and elegant theoretical framework, it falls short in cap-
turing the real-world dynamics of ML problems. The main drawback of this model is that it is
worst-case: for any fixed learning algorithm, one seeks to establish bounds on its error rate that
hold uniformly over all distributions. In particular, this means that as the size 𝑛 of the dataset that
the algorithm has access to increases, this worst-case distribution that witnesses the performance of
the algorithm changes. Nonetheless, practical scenarios often involve measuring the error rate of
algorithms as a function of the size of the dataset (or other resources) for fixed data distributions,
prompting the exploration of the learning curves under such fixed distributions.

These thoughts, further empirically motivated by Cohn and Tesauro (1990, 1992); Schuurmans
(1997), led to the theoretical framework of universal learning of Bousquet et al. (2021). This
framework aims to understand the best possible asymptotic error rate that can hold for every data
distribution, but without requiring an upper bound which applies uniformly to all of these distri-
butions. In other words, this error rate is allowed to depend on distribution-specific constants. In
the setting of realizable binary classification, Bousquet et al. (2021) showed the surprising result
that the following trichotomy of rates exists for any concept class ℋ: given 𝑛 samples, ℋ is either
universally learnable at an optimal exponential rate 𝑒−𝑛, or universally learnable with optimal lin-
ear rate 1/𝑛, or requires arbitrarily slow rates. This is in contrast to the standard dichotomy of PAC
binary classification where any class is either learnable at an optimal linear rate or is not learnable at
all. This result, which validated existing empirical evidence (Cohn and Tesauro, 1990) and demon-
strated the importance of the universal learning framework, inspired a series of follow-up works in
that area (Bousquet et al., 2022; Kalavasis et al., 2022; Hanneke et al., 2022a, 2023).

In our work, we revisit the fundamental problem of realizable regression establishing results in
the universal rates setting.

1.1. The Regression Learning Task and Universal Rates

In this section we define the learning setting we consider in our work. There is a domain 𝒳 , which
we assume to be a Polish space, a label space 𝒴 = [0, 1] ∩ Q1 and a concept class ℋ ⊆ 𝒴𝒳 ,
which satisfies standard measurability assumptions. There is also a data generating process which
is modeled as a distribution 𝒟 over 𝒳 ×𝒴. We define a regressor ℎ : 𝒳 → [0, 1] to be a universally
measurable function and we consider two different loss functions for this regressor.

Expected Absolute Loss: er𝒟(ℎ) = E
(𝑥,𝑦)∼𝒟

[|ℎ(𝑥)− 𝑦|] , (1)

Expected Cut-Off Loss: er𝛾𝒟(ℎ) = Pr
(𝑥,𝑦)∼𝒟

[|ℎ(𝑥)− 𝑦| > 𝛾], for some fixed 𝛾 > 0 . (2)

We call 𝒟 realizable with respect to the hypothesis classℋ if infℎ∈ℋ
{︀
Pr(𝑥,𝑦)∼𝒟[ℎ(𝑥) ̸= 𝑦]

}︀
= 0.

We denote it by 𝒟 ∈ RE(ℋ). We sometimes consider the marginal distribution of 𝒟 on 𝒳 which
we denote by 𝒟𝒳 . We study the universal setting (Bousquet et al., 2021), in which a class ℋ is
learnable at rate 𝑅(𝑛) under the expected absolute loss if there exists a learning rule ̂︀ℎ𝑛 such that

(∀𝒟 ∈ RE(ℋ)) (∃𝐶, 𝑐) such that 𝐿𝒟(̂︀ℎ𝑛) ≤ 𝐶𝑅(𝑐𝑛), ∀𝑛 ∈ N ,

1. Our results hold for label space 𝒴 = Q ∩ [0, 1]. They also extend to countable subspace of [0, 1]. Extending our
results to uncountable spaces is out of the scope of this work since it requires non-trivial measure-theoretic tools.
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where 𝐿𝒟(̂︀ℎ𝑛) ≜ E[er𝒟(̂︀ℎ𝑛)], and the expectation is over the training set of ̂︀ℎ𝑛. Similarly, for
some fixed 𝛾 > 0, a class ℋ is learnable at rate 𝑅(𝑛) under the expected cut-off loss if there exists
a learning rule ̂︀ℎ𝑛 whose expected loss 𝐿𝛾

𝒟(
̂︀ℎ𝑛) ≜ E[er𝛾𝒟(

̂︀ℎ𝑛)] satisfies

(∀𝒟 ∈ RE(ℋ)) (∃𝐶𝛾 , 𝑐𝛾) such that 𝐿𝛾
𝒟(
̂︀ℎ𝑛) ≤ 𝐶𝛾𝑅(𝑐𝛾𝑛),∀𝑛 ∈ N .

For the latter case, we have fixed 𝛾 > 0 a priori and so the constants may depend on 𝛾 (and the
distribution 𝒟). Notice that in the well-studied PAC learning setting (Valiant, 1984) the order of the
quantifiers is flipped, i.e., the constants do not depend on the data-generating distribution and the
rates are uniform over all realizable distributions.

Next, we define precisely what it means to be learnable at some rate 𝑅(𝑛) in the universal
setting. The definition comes from the work of Bousquet et al. (2021).

Definition 1 (Learning Rates (Bousquet et al., 2021)) Fix a concept class ℋ, and let 𝑅 : N →
[0, 1], 𝑅(𝑛)

𝑛→∞−→ 0 be a rate function, where 𝑛 is the number of i.i.d. samples from 𝒟.

• ℋ is learnable at rate 𝑅 under the expected absolute loss if there is an algorithm ℎ̂𝑛 such that
for every distribution 𝒟 ∈ RE(ℋ), there exist 𝑐, 𝐶 for which 𝐿𝒟(̂︀ℎ𝑛) ≤ 𝐶𝑅(𝑐𝑛),∀𝑛 ∈ N.
Similarly, for the 𝛾-cut-off loss, if there exist 𝑐𝛾 , 𝐶𝛾 for which 𝐿𝛾

𝒟(
̂︀ℎ𝑛) ≤ 𝐶𝛾𝑅(𝑐𝛾𝑛),∀𝑛 ∈ N.

• ℋ is not learnable at rate faster than 𝑅 under the expected absolute loss if for all algo-
rithms ̂︀ℎ𝑛 there exists a distribution 𝒟 ∈ RE(ℋ) and 𝑐, 𝐶 for which 𝐿𝒟(̂︀ℎ𝑛) ≥ 𝐶𝑅(𝑐𝑛),
for infinitely many 𝑛 ∈ N. Similarly, for the 𝛾-cut-off loss, if there exist 𝑐𝛾 , 𝐶𝛾 for which
𝐿𝛾
𝒟(
̂︀ℎ𝑛) ≥ 𝐶𝛾𝑅(𝑐𝛾𝑛), for infinitely many 𝑛 ∈ N.

• ℋ is learnable with optimal rate 𝑅 if it is learnable at rate 𝑅 and it is not learnable at rate
faster than 𝑅.

• ℋ requires arbitrarily slow rates if for all rates 𝑅, it is not learnable at rate faster than 𝑅.

1.2. Main Results

We are now ready to present the main results of our work. Our first main result gives a characteri-
zation2 of the optimal universal rates for the cut-off loss function. In particular, for every 𝛾 > 0, we
show a trichotomic characterization of the optimal achievable rates which is reminiscent of the land-
scape for binary (Bousquet et al., 2021) and multiclass (Kalavasis et al., 2022; Hanneke et al., 2023)
classification. In our results, we exclude trivially learnable classesℋ, see Remark 6 for details.

Theorem 1 (Universal Regression for Cut-Off Loss) Fix 𝛾 ∈ (0, 1). For any non-trivial hypoth-
esis classℋ, exactly one of the following holds for the expected 𝛾-cut-off loss:

• ℋ is learnable at an optimal rate 𝑒−𝑛.

• ℋ is learnable at an optimal rate ̃︀Θ(1/𝑛).

• ℋ is learnable but requires arbitrarily slow rates.

2. Up to poly-logarithmic factors, which appear due to the fact that the optimal rate in the uniform setting is not known.
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Next, we move on to the case of the absolute loss function, where we show a qualitatively
different and more complicated landscape. In particular, we prove that for all rates between 𝑜(1/𝑛)
and arbitrarily slow, there is a hypothesis class for which such a rate is (almost) optimal. This
landscape provides an infinite collection of possible optimal rates and is much richer compared to
what prior work on universal rates has provided and dealt with.

Theorem 2 (Universal Regression for Absolute Loss) For any non-trivial hypothesis class ℋ,
one of the following holds for the expected absolute loss:

• ℋ is learnable at an optimal rate 𝑒−𝑛 or

• ℋ is learnable an optimal rate that is not faster than 𝑜(1/𝑛).

Moreover,

• There exists a hypothesis class ℋ that is learnable at an optimal rate 𝑜(1/𝑛), but requires
rates arbitrarily close to 1/𝑛.

• There exists a hypothesis classℋ that is learnable at an optimal rate 1/𝑛.

• For every rate 𝑅(𝑛) such that 𝑛 · 𝑅(𝑛) is non-decreasing, there exists a hypothesis class
ℋ such that no algorithm can learn ℋ at a rate faster than 𝑜(𝑅(𝑛)), and there exists an
algorithm that learnsℋ at a rate 𝑅(𝑛).3

Let us provide some further explanation for the 𝑜(1/𝑛) rate. To say the optimal rate is 𝑜(1/𝑛)
means that there is a learner that, for every realizable distribution, achieves some 𝑜(1/𝑛) rate (e.g.,
for one distribution it might be 1/(𝑛 log(𝑛)) and for another it may be 1/(𝑛 log log(𝑛))), but for any
learner and any fixed rate 𝑅(𝑛) = 𝑜(1/𝑛) there exists a distribution where the learner’s rate is at
least 𝑅(𝑛). This is not to be confused with saying that there is an optimal rate 𝑅*(𝑛) which satisfies
𝑅*(𝑛) = 𝑜(1/𝑛); that would be a very different claim. This is also illustrated in the construction of
our lower bound (see Section B.3), where for every target rate 𝑅(𝑛) = 𝑜(1/𝑛) we can construct a
“hard” distribution based on that particular 𝑅(𝑛).

Our result demonstrates that the landscape is more complicated than all the other problems that
have been considered in the universal rates literature (Bousquet et al., 2021; Kalavasis et al., 2022;
Hanneke et al., 2022a, 2023). In particular we show a clear separation between the universal rates
obtained by using cut-off and absolute loss. While in the uniform PAC setting, the rates achieved
by the two losses coincide (Attias et al., 2023), in the universal framework, the landscape of the
expected absolute loss is highly more complicated. For instance, our result implies that in the
absolute loss case, there is an infinite collection of possible optimal rates, while in the cut-off loss,
there are only three. In contrast to the cut-off loss landscape, our result does not provide a complete
characterization of the optimal rates with respect to the absolute loss. This is in large due to the fact
that we are lacking a quantitative characterization of the optimal learning rates under this loss in the
uniform case (Attias et al., 2023). The main intuition for this separation is that, taking 𝛾 to be fixed
for the cut-off loss makes the regression problem similar to a classification task (and hence this is
the reason why we get a trichotomy in Theorem 1). On the other hand, the case of the absolute
loss is more “continuous” since the scale 𝛾 is not fixed and reveals the true difficulty of regression,

3. For technical reasons, when we consider rates between 1/𝑛 and arbitrarily slow (e.g., 𝑅(𝑛) = 1/
√
𝑛), we need the

function 𝑛 ·𝑅(𝑛) to be non-decreasing. We will elaborate on these details shortly in Section 3.4.
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which was not captured by any prior work on universal rates. Interestingly we can give examples
of classes realizing the rates of Theorem 2. Finite classes and thresholds over N are learnable at
an exponential rate and thresholds over R at linear. We also provide a class that is learnable at an
optimal rate arbitrarily close to 𝑜(1/𝑛) (see Section 3.3). Finally, for each rate slower than linear
we provide an example class in Section 3.4.

Remark 3 We mention that while our results are presented for the absolute loss, most of our tech-
niques generalize directly to pseudo-metrics, as in Attias et al. (2023), including ℓ𝑝 losses.

Combinatorial Dimensions and Universal Rates. Our next set of results provides some neces-
sary and sufficient combinatorial conditions that give rise to the (optimal) learning rates we men-
tioned before. We stress that our results regarding the combinatorial characterizations of the achiev-
able rates, as in the prior work on universal rates (Bousquet et al., 2021, 2022; Kalavasis et al., 2022;
Hanneke et al., 2023), are based on some tree structures. In our work, we introduce some novel tree
structures, namely the 𝛾-Littlestone tree for 𝛾 ≥ 0 (a scaled version of the Littlestone tree from
Littlestone (1988); Bousquet et al. (2021)) and a tree we call 𝛾-OIG-Littlestone tree, which is based
on a combination of the scaled One-Inclusion Graph (OIG) dimension of Attias et al. (2023) and
the Littlestone tree. Since the definitions of these combinatorial measures are complicated, we first
state our results regarding necessary and sufficient conditions to achieve the optimal learning rates
for universal regression and then explain how these trees are defined.

Theorem 4 (Combinatorial Characterization for Cut-Off Loss) Fix 𝛾 ∈ (0, 1). For any non-
trivial classℋ, exactly one of the following holds for the expected 𝛾-cut-off loss4:

• ℋ is learnable at an optimal rate 𝑒−𝑛 if and only if it does not have an infinite 𝛾-Littlestone
tree.

• ℋ is learnable at an optimal rate ̃︀Θ(1/𝑛) if and only if it has an infinite 𝛾-Littlestone tree,
but does not have an infinite 𝛾-OIG-Littlestone tree.

• ℋ requires arbitrarily slow rates if and only if it has an infinite 𝛾-OIG-Littlestone tree.

Shifting our attention to the absolute loss, we obtain the following result.

Theorem 5 (Combinatorial Implications for Absolute Loss) Letℋ be a non-trivial class. Then,
the following hold for the expected absolute loss:

• ℋ is learnable at an optimal rate 𝑒−𝑛 if and only if it does not have an infinite 0-Littlestone
tree.

• Ifℋ has an infinite 0-Littlestone tree, then it is not learnable at an optimal rate which is faster
than 𝑜(1/𝑛).

• If there exists 𝛾 > 0 such that ℋ has an infinite 𝛾-Littlestone tree, then it is not learnable at
an optimal rate which is faster than 1/𝑛.

4. For the ease of exposition we ignore a gap of a factor of 2 on the dependence on 𝛾 of the combinatorial measures we
state. We will elaborate on these details shortly in Section 2.
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• There exists someℋ that has an infinite 0-Littlestone tree and is learnable at an optimal rate
𝑜(1/𝑛).

• If there exists some 𝛾 > 0 such thatℋ has an infinite 𝛾-OIG-Littlestone tree, thenℋ requires
arbitrarily slow rates.

We can now introduce the combinatorial measures of interest, which we use in the above state-
ments. First, we introduce a scaled variant of a Littlestone tree.

Definition 2 (Scaled-Littlestone Tree (Informal, see Definition 9)) A scaled-Littlestone tree of
depth 𝑑 ≤ ∞ forℋ ⊆ 𝒴𝒳 is a complete binary tree of depth 𝑑 whose internal nodes are labeled by
𝒳 , and whose two edges connecting a node of level 𝑖 ≤ 𝑑 to its children are labeled by two different
elements in 𝒴 , such that every path of length at most 𝑑 emanating from the root is consistent with
a concept ℎ ∈ ℋ. We say that ℋ has an infinite scaled-Littlestone tree if there exists a scaled-
Littlestone tree forℋ with depth 𝑑 =∞. Moreover, if all the gaps (absolute difference) of the labels
of the edges of each node of this tree are lower bounded by 𝛾 > 0, we call it 𝛾-Littlestone tree,
whereas if there is not a non-zero lower bound, we call it 0-Littlestone tree.

Next, we describe a combinatorial measure that is based on the scaled One-Inclusion Graph
(OIG) dimension which was shown recently to characterize uniform rates for realizable regression
(Attias et al., 2023). We will only provide an informal description of this definition here and refer
the reader to Section C. First, it is important to describe the real-valued version of the OIG.

Definition 3 (OIG (Informal, see Definition 10)) Consider the domain [𝑛] and a hypothesis class
ℋ ⊆ 𝒴 [𝑛]. The OIG induced byℋ is a hypergraph where the set of vertices is the set of all hypothe-
ses and, for each direction 𝑖 ∈ [𝑛], every non-empty hyperedge in that direction corresponds to the
set of all hypotheses inℋ that agree with the labelings of all the points except for that of point 𝑖.

Subsequently, we give the description of an orientation of the OIG hypergraph as well as the
definition of the out-degree of a node in the OIG induced by a given orientation.

Definition 4 (Orientation and Scaled Out-Degree (Informal, see Definition 11)) An orientation
𝜎 of the OIG (𝑉,𝐸) is a mapping from every hyperedge to vertices of that particular hyperedge.
Given 𝛾 ∈ (0, 1), the 𝛾-out-degree of every node 𝑣 ∈ 𝑉 under 𝜎 is defined to be |{𝑖 ∈ [𝑛] :
|𝜎(𝑒𝑖,𝑣)− 𝑣(𝑖)| > 𝛾}|, where, given 𝑖 ∈ [𝑛], 𝑣(𝑖) is the value of 𝑣 in direction 𝑖 and 𝑒𝑖,𝑣 ∈ 𝐸 is the
hyperedge {ℎ ∈ 𝑉 : ℎ(𝑗) = 𝑣(𝑗),∀𝑗 ∈ [𝑛] ∖ {𝑖}}.

Let us give some intuition about Definition 3 and Definition 4. We have a set of [𝑛] unlabeled
points. All the hypotheses that agree with the labels of the [𝑛] points form an equivalence class, and
each of these classes is a vertex of the OIG graph. In other words, the set of vertices of the graph
is a set of equivalence classes within ℋ. For every direction 𝑖 ∈ [𝑛], we form a hyperedge 𝑒𝑖 by
considering all the vertices that agree in the labels of the [𝑛] ∖ {𝑖} points. By doing that, we can
think of the orientation of 𝑒𝑖 as the prediction that the algorithm would make on the datapoint 𝑖 if it
had only observed the points [𝑛] ∖ {𝑖}.

Equipped with these definitions, we are now ready to describe the scaled OIG dimension as
defined by Attias et al. (2023). For 𝑆 = (𝑥1, ..., 𝑥𝑛) ∈ 𝒳 𝑛, recall that ℋ|𝑆 = {(ℎ(𝑥1), ..., ℎ(𝑥𝑛)) :
ℎ ∈ ℋ} is the projection ofℋ onto the unlabeled dataset 𝑆.
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Definition 5 (OIG Dimension (Attias et al., 2023) (Informal, see Definition 12)) Let ℋ ⊆ 𝒴𝒳

and 𝛾 ∈ (0, 1). We define the scaled OIG dimension of ℋ to be the largest 𝑛 ∈ N for which there
exists some 𝑆 ∈ 𝒳 𝑛 such that there exists a finite subgraph 𝐺 = (𝑉,𝐸) of the OIG induced byℋ|𝑆
so that for all orientations, there exists a node in 𝑉 with 𝛾-out-degree at least 𝑛/3.

Intuitively, this definition says that for some unlabeled dataset 𝑆 one can find a finite subgraph
ofℋ|𝑆 so that, no matter how we orient the hyperedges, there exists one node with large out-degree.
Recall that orientations of this graph correspond to predictions of the algorithm trained on 𝑆, so,
intuitively, subgraphs with large out-degree witness the difficulty of the learning task.

We are now ready to describe the structure of the scaled-OIG-Littlestone tree, a novel combina-
torial measure that combines the structure of the Littlestone tree and the scaled OIG dimension.

Definition 6 (OIG-Littlestone Tree (Informal, see Definition 13) Fix some 𝛾 ∈ (0, 1). A 𝛾-
OIG-Littlestone tree of depth 𝑑 ≤ ∞ for ℋ ⊆ 𝒴𝒳 is a tree of depth 𝑑 whose internal nodes in
every level 𝑖 are labeled by an element 𝑆 ∈ 𝒳 𝑖+1 and a finite set of labelings 𝐿 ⊆ 𝒴 𝑖+1 of these
elements with the property that for all the orientations of the OIG induced by 𝑆,𝐿, there exists a
node that has 𝛾-out-degree at least (𝑖+ 1)/3, and whose edges connecting a node of level 𝑖 ≤ 𝑑 to
its children are labeled by elements of all the labelings 𝐿 that are contained in that node. Moreover,
the labels that appear on the edges of every path of length at most 𝑑 from the root to a leaf must
be consistent with a concept ℎ ∈ ℋ. We say that ℋ has an infinite 𝛾-OIG-Littlestone tree if there
exists a 𝛾-OIG-Littlestone tree forℋ with depth 𝑑 =∞.

The intuition is that this structure is a tree whose nodes have size that increases linearly with
the depth and witness a finite subgraph of the OIG that has “large” out-degree for all possible
orientations. Along each path, the hypothesis class gets more and more restricted since it has to
be consistent with the chosen path, so it is getting increasingly more difficult to “shatter” a set of
points, in the sense of the OIG-shattering described in Definition 5.

Remark 6 (Non-Trivial Classes) In our main results, we state the requirement that ℋ is non-
trivial. This is to exclude some classes that are learnable by a single sample. For the formal
description of these classes, we refer the reader to Definition 7 and Definition 8.

Remark 7 (General Loss Functions) In Theorem 4 and Theorem 5 we provide combinatorial struc-
tures characterizing the achievable rates. The designed tree are based on the absolute loss. If one
would like to study some other loss (e.g., squared loss), then these tree structures would be defined
on a notion of distance based on the new loss but the proofs do not require further modification.

1.3. Novel Challenges Compared to Prior Work

In this section, we briefly discuss some challenging points behind our results that have not appeared
in prior works, neither in the universal rates nor in the uniform regression literature.

Scaled Trees. Compared to prior universal papers, since we study regression problems, our com-
binatorial measures, i.e., the trees that we consider, depend on some scaling factor 𝛾, which intu-
itively corresponds to the gap between the two labels of each node. However, this adds a compli-
cation to our results since different resolutions potentially yield different rates. For instance, one
can consider a (𝛾𝑛)-Littlestone tree (see Definition 9) where the gaps of each level 𝑛 ∈ N change

7
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according to the sequence 𝛾𝑛. The different behaviors of this sequence could yield qualitatively
different rates in the learning problem. A manifestation of this phenomenon is that, for the absolute
loss, (i) infinite 𝛾-Littlestone trees for fixed 𝛾 imply linear lower bounds on the rate while (ii) (the
weaker) infinite 0-Littlestone trees give a lower bound of order 𝑜(1/𝑛). These changes in the rate
based on the different resolutions of the scale is a novel aspect of our work.

Collection of Rates. While the cut-off loss enjoys the standard trichotomic characterization that
appeared in prior works, the landscape of the absolute loss is significantly more involved. Our
Theorem 2 implies an infinite collection of possible optimal rates: the rate can be 𝑒−𝑛, 𝑜(1/𝑛), 1/𝑛
and (roughly) any function that decreases slower than linearly. We find the case that the rate 𝑜(1/𝑛)
(i.e., faster than linear but arbitrarily close to it) is optimal for some universal regression tasks quite
interesting, since this rate was only observed in prior works in active learning tasks (Hanneke, 2012)
and not supervised ones. More to that, this work is the first in the universal rates literature that shows
that infinitely many rates are possible for some task. While characterizing when each rate occurs for
the absolute loss seems to be a far-reaching goal, even showing that all these rates are achievable is
non-trivial and requires various new ideas (see Section 3.3 and Section 3.4).

1.4. Related Work

PAC Regression. The problem of learning real-valued functions under various losses, such as the
cut-off loss and the absolute loss, has received a lot of attention in the PAC learning theory literature.
Simon (1997) showed that the finiteness of the scaled Natarajan dimension is a necessary condition
for realizable uniform regression. Subsequently, Bartlett and Long (1998) used the OIG algorithm
(Haussler et al., 1994) to get a real-valued predictor whose expected error is upper bounded by the
𝑉𝛾-dimension. We refer the interested reader to the work of Kleer and Simon (2023) for details
about this dimension which was introduced by Alon et al. (1997). A series of works (Alon et al.,
1997; Bartlett et al., 1994) showed that the finiteness of the fat shattering dimension at all scales is
a necessary and sufficient condition for uniform learnability, learnability in the agnostic setting and
some noise models but does not characterize learnability in the realizable setting. Recently, the work
of Aden-Ali et al. (2023) provided high-probability bounds for the OIG algorithm in the realizable
uniform regression setting using the 𝑉𝛾-dimension. Subsequently, Attias et al. (2023) proposed a
dimension which is based on the structure of the OIG algorithm and showed that it characterizes
learnability of uniform realizable regression. For a discussion about more general loss functions,
we refer the reader to Mendelson (2002); Bartlett et al. (2005); Attias et al. (2023). Prasadan and
Neykov (2024) study minimax rates of realizable regression of some concept classℋ for some fixed
marginal 𝒟𝑋 and the rate depends on it, where realizability means zero-mean noise to the labels; in
our case, we have no noise and this is crucial since, as mentioned in Attias et al. (2023), our notion of
realizability heavily changes realizability (there are classes learnable with 1 sample in our noiseless
case, that require infinitely many samples in the presense of noise). As in Prasadan and Neykov
(2024), we also get distribution-dependent rates 𝐶𝑅(𝑐𝑛), but only the constants 𝐶, 𝑐 depend on 𝒟
(not just𝒟𝑋 ). This is the difference with standard PAC learning where the constants are distribution
independent. More to that Prasadan and Neykov (2024), ℋ is convex and bounded, but we handle
general classes. One of the key tools in Prasadan and Neykov (2024) and other related works is
packing numbers. Packing numbers fail to capture the gap between realizable and agnostic PAC
due to “discretization” error, so some notion of “packing trees” could not characterize our setting.
Our dimensions capture the universal rates for realizable regression and are 𝒟𝑋 -independent.
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Universal Rates. The study of universal learning rates was initiated by the seminal work of Bous-
quet et al. (2021) who derived a complete characterization of the optimal rates in the binary classi-
fication setting. Subsequently, Bousquet et al. (2022) derived more fine-grained results for binary
classification. Later, Kalavasis et al. (2022) extended the result of Bousquet et al. (2021) to the
multiclass setting, with the restriction that the number of different classes is bounded. Recently,
Hanneke et al. (2023) improved upon this result by characterizing multiclass classification with
an infinite number of labels. Diverging from the supervised learning line of work, Hanneke et al.
(2022b) derived a complete characterization of the optimal learning rates for binary classification in
a general interactive learning setting.

1.5. Further Remarks and Open Problems

We conclude this introductory section with some remarks and open questions. In this work we have
initiated the study of regression problems in the universal rates framework, both under the cut-off
loss and the absolute loss. Our results show that this problem exhibits a much richer landscape than
other learning tasks that have been studied in this framework.

Beyond Realizability. Ideally, the literature should provide a complete understanding of the re-
gression problem in the universal setting, including learning (i) without noise, (ii) with well-structured
noise (e.g., zero mean Gaussian noise added to the true label) or (iii) with arbitrary corruptions. In
our work, we are handling one case of this: realizable learning, i.e., without noise. Recent work by
Attias et al. (2023) shows a separation between the noise-free setting and noisy setting for the PAC
framework (uniform rates), and we expect that this distinction will remain valid under a universal
analysis. We emphasize that extending the universal rates results to noisy settings is a very interest-
ing direction and even for the much easier task of binary classification, no such result is known. We
expect that our techniques would be useful but they would rely on a different tree structure, like a
fat-shattering type of tree.

Other Open Questions. One concrete open problem that follows from our results is whether all
classes that are uniformly learnable at some optimal rate 𝑅(𝑛), which is faster than poly(log 𝑛)/𝑛,
can be learned at a rate 𝑜(𝑅(𝑛)) in the universal setting, under the absolute loss. Furthermore, it
is very interesting to study this problem in the agnostic setting, i.e., where there is no restriction
on the data-generating distribution. Another direction is to resolve the PAC optimal rates and then
translate this to universal rates. Since the OIGL tree is complicated, we believe that a simpler tree
based on the scaled DS dimension (see Attias et al. (2023)) could yield similar results. Finally it
is interesting to study the case of uncountable label space or some specific function classes such as
Hölder or Sobolev.

2. Universal Rates Landscape for Cut-Off Loss

The first step in order to show Theorem 1 is the exponential rates case. This proof builds on the
tools provided by Bousquet et al. (2021), carefully adapted to the notion of 𝛾-Littlestone trees. For
the proof, we refer to Section A.1 and Section A.2.

9
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2.1. Near Linear Rates for Cut-Off Loss

We now move on to the second part of the trichotomy, the case of (near) linear rates. We sketch how
to prove the next result, which characterizes the concept classes that are learnable at a near linear
rate ̃︀Θ(1/𝑛) with respect to the 𝛾-cut-off loss.

Theorem 8 Let 𝛾 > 0. For any non-trivial class ℋ, if ℋ has an infinite 2𝛾-Littlestone tree, but
does not have an infinite 𝛾-OIG-Littlestone tree, then it is learnable at a rate log2(𝑛)/𝑛, but is not
learnable faster than 1/𝑛 with respect to the expected 𝛾-cut-off loss.

The proof of the linear lower bound appears in Section A.3. It essentially extends the techniques
of Bousquet et al. (2021); Kalavasis et al. (2022); Hanneke et al. (2023) to the regression setting.
The lower bound construction uses the probabilistic method: it first picks a branch of the tree
𝑦 ∈ {0, 1}∞ uniformly at random and then designs a distribution 𝒟𝑦 associated with this path
which is realizable with respect to ℋ. A careful design of 𝒟𝑦 implies that some (1/𝑛)-fraction of
the distribution will lie deeper in the tree than the deepest point which appears in the dataset, and
for this fraction the learner will make a mistake, in the sense of the 2𝛾-cut-off loss, with probability
1/2. The challenging part of the proof is the upper bound (cf. Section A.4), i.e., the design of an
algorithm that has near linear universal rate, when ℋ does not have an infinite 𝛾-OIG-Littlestone
(OIGL) tree. Similarly to Hanneke et al. (2023), our main result is a general reduction from uniform
to universal rates.

Lemma 1 (Informal, see Theorem 18) Consider any learning algorithm ̂︀ℎ𝑛 that, in the uniform
setting, learns at rate 𝑅(𝑛; 𝑑) a concept classℋ with 𝛾-OIG dimension at most 𝑑, using 𝑛 samples
from a distribution 𝒟 ∈ RE(ℋ) with respect to the 𝛾-cut-off loss, i.e., 𝐿𝛾

𝒟(ℎ𝑛) ≤ 𝑅(𝑛; 𝑑).
Then ifℋ does not have an infinite 𝛾-OIG-Littlestone tree, there is a learning algorithm ℎ′𝑛 that,

in the universal setting, achieves the same 𝑅(𝑛; 𝑑′) rate for some constant 𝑑′ ∈ N.

This lemma allows us to use a recent result of Attias et al. (2023) that learns classes of 𝛾-OIG
dimension equal to 𝑑 at a rate 𝑑 log2(𝑛)/𝑛. We mention that a positive aspect of this black-box
reduction is that any improvement in the uniform learning rate would directly imply an improvement
in our universal rate. The proof of this key lemma is complicated and requires various tools from
Bousquet et al. (2021); Hanneke et al. (2023) together with an extension of the results of Attias et al.
(2023). As a starting point, we consider the adversarial online setting and design a game between an
adversary 𝑃𝐴 and a learner 𝑃𝐿 (as in the exponential rates case). This can be found in Section A.4.1.
The game is convoluted and relies on the structure of an OIGL tree. In particular, the strategy
space of the adversary will be the set of “OIG-type” of graphs that have large out-degree for every
orientation of the edges (see Definition 14). The game in every round 𝜏 ∈ N is defined as follows.
First, the adversary 𝑃𝐴 chooses a sequence 𝑥𝜏 = (𝑥0𝜏 , . . . , 𝑡

𝜏−1
𝜏 ) ∈ 𝒳 𝜏 and a finite set of labelings

𝐿𝜏 ⊆ LG𝜏,𝛾 , where LG𝜏,𝛾 appears in Definition 14 5 and then 𝑃𝐿 chooses an element 𝑦𝜏 ∈ 𝐿𝜏 . The
winning condition of the game for player 𝑃𝐿 is the following: player 𝑃𝐿 wins if for some round 𝜏 we
haveℋ𝑥1,𝑦1,...,𝑥𝜏 ,𝑦𝜏 = ∅, whereℋ𝑥1,𝑦1,...,𝑥𝜏 ,𝑦𝜏 :=

{︀
ℎ ∈ ℋ : ℎ(𝑥𝑖𝑠) = 𝑦𝑖𝑠, ∀ 0 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑠 ≤ 𝜏

}︀
.

Crucially, one can prove thatℋ does not have an infinite 𝛾-OIG-Littlestone tree if and only if 𝑃𝐿

has a universally measurable winning strategy in the above OIG-Littlestone game. We now have to

5. It is the set of all finite subsets of 𝒴𝜏 that have the property that the graph whose nodes are all the elements of that
particular finite subset of 𝒴𝜏 and whose hyperedges are defined as in the OIG, has the property that all its orientations
have a node with 𝛾-out-degree at least 𝑛/3.
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turn this winning strategy to an algorithm that makes predictions about the labels. In this adversarial
setting, we assume access to an infinite sequence of labeled data. Informally, our approach is to use
a constant fraction of the labeled data sequence that the learner has access to in order to “simulate”
the OIG-Littlestone (Gale-Stewart) game between the adversary 𝑃𝐴 and the learner 𝑃𝐿. Once this
game has “converged”, this will give rise to a pattern-avoidance function which will define some
constraints that all realizable datasets need to satisfy.

This pattern-avoidance function can then be used to define a partial concept class (Alon et al.,
2022). This partial concept class6 is defined based on the constraints generated by the pattern-
avoidance function. The crucial observation is that the scaled OIG dimension of this partial concept
class is finite. We now have to extend the results of Attias et al. (2023), which PAC learn total
concept classes with finite scaled OIG dimension, to partial concept classes. This is done in The-
orem 26 and the uniform rate is 𝑑 log2(𝑛)/𝑛, where 𝑑 is the bound on the 𝛾-OIG dimension. As a
final step, given a collection of samples generated by some unknown ℋ-realizable distribution, we
split the data into batches and, roughly, use our pattern avoidance function (obtained by the winning
strategy of 𝑃𝐿) to design a partial concept class of scaled OIG dimension 𝑑 that we then learn at
a rate 𝑑 log2(𝑛)/𝑛. Thus every batch gives rise to a regressor and we can show that the majority
of them have small 𝛾-cut-off loss. The final result follows by aggregating their predictions and
outputting the median.

2.2. Arbitrarily Slow Rates for Cut-Off Loss

In this subsection, we discuss the following result, whose proof appears in Section A.5.

Theorem 9 Let 𝛾 ∈ (0, 1). For any non-trivial class ℋ, if ℋ has an infinite 2𝛾-OIG-Littlestone
tree, then it requires arbitrarily slow rates with respect to the expected 𝛾-cut-off loss.

The proofs of all the lower bounds appearing in Bousquet et al. (2021); Kalavasis et al. (2022);
Hanneke et al. (2023) and the proof of our linear lower bound for the cut-off loss (cf. Section 2.1)
share a common structure: they use the probabilistic method and the construction is independent of
the learning algorithm. However, for the proof of Theorem 9 we take a different route. In particular,
due to the structure of the scaled OIGL tree, it is not clear how to obtain a hard distribution using
the probabilistic method. To this end, we design a hard instance that is algorithm-dependent, and
we choose the distribution that witnesses the lower bound in a deterministic way.

Let us now sketch the main idea of the lower bound. Assume an infinite 2𝛾-OIGL tree for ℋ.
Fix an arbitrary rate 𝑅 that is slower than linear and consider a learning algorithm A. We would like
to show that there exists a realizable distribution for which the algorithm A has expected 𝛾-cut-off
loss at least 𝑅. In particular, the hard distribution will crucially depend on A.

Let us first recall the structure of the OIGL tree. We know that, for any level 𝑘 ≥ 1, the node
of the tree contains a tuple: it contains an element 𝑆 in 𝒳 𝑘+1 and it also contains a finite set of
labelings 𝐿 ⊆ 𝒴𝑘+1 of 𝑆. The node of the 𝑘-th level of the scaled OIGL tree has the special
property that for all the orientations of the scaled OIG induced by (𝑆,𝐿), there exists a node, i.e.,
a particular labeling of 𝑆, which has 2𝛾-out-degree at least (𝑘 + 1)/3. The next step is to utilize
the conceptual connection between learning algorithms and orientations of the OIG, i.e., the fact

6. Inspired by Alon et al. (2022), instead of dealing with concept classes ℋ ⊆ 𝒴𝒳 where each concept ℎ ∈ ℋ is a total
function ℎ : 𝒳 → 𝒴 , we study partial concept classes ℋ ⊆ (𝒴 ∪ {⋆})𝒳 , where each concept ℎ is now a partial
function and ℎ(𝑧) = ⋆ means that the function ℎ is undefined at 𝑧 ∈ 𝒳 . For further details, we refer to Section D.
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that every algorithm induces some orientation of each hyperedge (Haussler et al., 1994; Attias et al.,
2023). Hence, given the learner A, we can identify an orientation 𝜎A and then based on the infinite
scaled OIGL tree, find the node that has large scaled out-degree with respect to 𝜎A. Hence, instead
of randomly picking a branch in the infinite tree, as the previous constructions do, we have to
deterministically pick the node that has large out-degree. In order to complete the proof, it remains
to (i) argue how to assign mass in different levels of the tree and inside the large out-degree nodes,
(ii) verify that the designed distribution isℋ-realizable, and, (iii) show that the expected cut-off loss
of the algorithm 𝐴 is at least 𝑅(𝑛) for infinitely many values of 𝑛. This is done in Section A.5.

3. Universal Rates Landscape for Absolute Loss

3.1. Exponential Rates for the Absolute Loss

In this subsection, we sketch the following theorem.

Theorem 10 For any non-trivial classℋ,ℋ is learnable at an optimal rate 𝑒−𝑛 with respect to the
expected absolute loss if and only if it does not have an infinite 0-Littlestone tree.

The lower bound follows from the cut-off loss. For the upper bound, we reduce the problem to
multiclass classification. Essentially, we can show that if ℋ does not have an infinite 0-Littlestone
tree, then it does not have an infinite multiclass Littlestone tree. This is because at any level 𝑛 of the
0-Littlestone tree, there exists a non-zero positive gap value 𝛾𝑛 such that any pair of labels having
the same parent node differ by at least 𝛾𝑛. But this tree, corresponds to a multiclass Littlestone tree,
which by assumption, is not infinite. Since (i) the label space we are working on is countable and
(ii) any class ℋ without an infinite multiclass Littlestone tree is learnable at exponential universal
rates (Hanneke et al., 2023), we get the desired rate. For the formal argument, see Section B.2.

3.2. Infinite Scaled Littlestone Trees and Lower Bounds

In this section, the landscape of absolute regression rates starts to become more complicated. We
show two lower bounds on the possible rate depending on the scaled-Littlestone trees of different
resolution being infinite.

Theorem 11 For any non-trivial classℋ:

• If ℋ has an infinite 𝛾-Littlestone tree for some 𝛾 > 0, then it is not learnable at a rate faster
than 1/𝑛 with respect to the expected absolute loss.

• Ifℋ has an infinite 0-Littlestone tree, then it is not learnable at a rate faster than 𝑜(1/𝑛) with
respect to the expected absolute loss.

The fist part of this result follows immediately from the lower bound regarding the 𝛾-cut-off loss.
In particular, this lower bound shows that after observing 𝑛 samples the learner will be making
predictions that are 𝛾/2 far of the correct one for a (1/𝑛)-fraction of the population, hence its
absolute loss will be at least 𝛾/(2𝑛). The proof of the second part of the result uses the probabilistic
method to construct “hard” distributions for the learning algorithms. Given the description of any 0-
Littlestone and any sublinear rate 𝑅(𝑛), we will construct a realizable distribution that is supported
on a random branch of the tree. We define the support of the distribution inductively, by skipping
sufficiently many levels of the tree as dictated by the rate function and the gap on each level of
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the tree. Moreover, the mass on each level of the support is inversely proportional to the level.
Under this choice of the probability distribution, we can show that there exists an infinite sequence
{𝑛ℓ}ℓ∈N, so that when the learner observes 𝑂(𝑛ℓ) many samples, with some constant probability,
it will not observe any elements of the tree that are in a deeper level than 𝑛ℓ. Thus, its prediction
for the element of this level will be 𝛾ℓ/2-away from the correct one, where 𝛾ℓ is the minimum gap
size on level 𝑛ℓ. Since the gap sizes are decreasing, the mistakes that the learner makes become less
significant as the sample size increases. This is why we can merely show an 𝑜(1/𝑛) lower bound
instead of a linear 1/𝑛 lower bound, as in the cut-off loss case. There are some technical details of
the proof which make it more complicated than the one in the case of the cut-off loss and they are
handled in Section B.3.

A natural question is whether there exist concept classes that realize these rates. First, note that
the class of thresholds enjoys a linear rate and so there is a class that is learnable at an optimal
1/𝑛 rate in the universal regression setting with respect to the absolute loss. The more interesting
question is whether there exists a class with optimal 𝑜(1/𝑛). This rate is essentially sublinear
but arbitrarily close to linear and appears in active learning problems (Hanneke, 2012). Perhaps
surprisingly, we show that they also appear in the universal regression setting.

3.3. Sublinear (But Arbitrarily Close to Linear) Rates are Achievable

In this section, we provide a concept class with the following property.

Theorem 12 There exists a hypothesis class ℋ that is learnable at an optimal rate 𝑜(1/𝑛) with
respect to the expected absolute loss.

For the construction we start with a countable domain 𝒳 and we assume that all these elements
appear on an infinite Littlestone tree whose gap is decreasing exponentially across deeper levels.
We can construct a hypothesis classℋ by uniquely identifying each hypothesis with a branch of the
tree. To be more precise, for every path there exists a hypothesis which perfectly labels this path
and returns a default label (e.g., 1/2) on elements outside of that path.

On the one side, by the construction of the class we know that ℋ has an infinite 0-Littlestone
tree, so, by the previous section, it cannot be learned at a rate faster than 𝑜(1/𝑛). It remains to argue
about the upper bound. Every realizable distribution 𝒟 can be essentially decomposed into two
parts: one that is supported on some path, potentially skipping some levels of it, and one outside
of the path. We construct the following classifier: given a training set 𝑆, let 𝑑* denote the deepest
level of the tree for which there exists some (𝑋*, 𝑌 *) ∈ 𝑆 with 𝑋* being on the 𝑑*-th level of
the tree and 𝑌 * ̸= 1/2. Then, given some test point 𝑋 , if 𝑋 is an ancestor of 𝑋* the algorithm
can predict its label correctly (since we have a tree), with probability 1. Otherwise, the algorithm
predicts the default value 1/2. The idea is that this classifier can only make mistakes on the part of
the distribution that is supported on the path and lies deeper than 𝑑*, and after observing 𝑛 samples
this part of the distribution has mass 𝑂(1/𝑛). Moreover, as it observes more and more samples, the
magnitude of the errors that it makes decreases. It can hence be shown that the designed classifier
learnsℋwith respect to the absolute loss at a rate 𝑜(1/𝑛). The details of the construction are handled
in Section B.4.
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3.4. Infinitely Many Slower than Linear Rates are Achievable

A further indication that the landscape of absolute loss is very rich and complex is the following
result, which shows that infinitely many rates (slower than linear) are admissible as optimal rates.

Theorem 13 For every rate 𝑅(𝑛) such that 𝑅(𝑛) is non-increasing and 𝑛 ·𝑅(𝑛) is non-decreasing,
there exists a hypothesis classℋ such that no algorithm can learnℋ at a rate faster than 𝑜(𝑅(𝑛)),
and there exists an algorithm that learnsℋ at a rate 𝑅(𝑛).

The reason why we need this assumption on 𝑛𝑅(𝑛) is in order to avoid pathological cases where
𝑅(𝑛) is “flat” for a very large interval and then exhibits a large drop. Intuitively, we should not
expect to achieve such a learning rate because it would mean that for some 𝑛0 ∈ N, when we
increase the sample size by a few points, the error drops significantly. Instead, our assumption,
which we believe is mild, requires that the rate function behaves more smoothly. The construction
of this result is provided in Section B.5 and is sketched below.

We consider a countable domain 𝒳 and an infinite sequence of blocks of size 𝑘𝑖, 𝑖 ∈ N. Each
block consists of unique elements of 𝒳 . Within each block 𝑖, we consider gaps of size 𝜖𝑖 ∈ [0, 1].
For the 𝑖-th block, consider the 2𝑘𝑖 possible labelings 𝐿𝑖 = {1/2 − 𝜖𝑖, 1/2 + 𝜖𝑖}𝑘𝑖 of its elements.
We define the hypothesis class ℋ in such a way that, for each block 𝑖, there is one hypothesis
that realizes each element of 𝐿𝑖. The exact choice of {𝑘𝑖}𝑖∈N, {𝜖𝑖}𝑖∈N is related to the target rate
𝑅(𝑛), but {𝑘𝑖}𝑖∈N is always increasing sufficiently fast and {𝜖𝑖}𝑖∈N is decreasing sufficiently fast.
For the lower bound, we pick the target label for each example 𝑥 in the 𝑖-th block uniformly at
random from {1/2− 𝜖𝑖, 1/2+ 𝜖𝑖} and we can show that there is a sequence of sample sizes {𝑛𝑖}𝑖∈N
so that whenever the learner observes only 𝑛𝑖 points, it will not have observed at least half of
the points of some block with index ℓ𝑖, so for half of the elements of that block it will make a
mistake of magnitude 𝜖ℓ𝑖 . Because the magnitude of the mistakes is decreasing, we can only show
a 𝑜(𝑅(𝑛)) lower bound instead of a 𝑅(𝑛) lower bound. There are several technical details, such
as the application of Fatou’s lemma to “derandomize” the choice of the target function that can be
found in Section B.5.

Let us now shift our attention to the upper bound. For each 𝑛 ∈ N, let 𝑘𝑖𝑛 be the block size such
that 𝑘𝑖𝑛 ≤ 𝑛 ≤ 𝑘𝑖𝑛+1. The idea is that upon observing 𝑛 samples, there are three types of mistakes
the learner can make: (i) mistakes on blocks with index ℓ < 𝑖𝑛, (ii) mistakes on the block 𝑖𝑛, and,
(iii) mistakes on blocks indexed by ℓ > 𝑖𝑛. The choices of the gap size and the block size guarantee
that the dominant term in the loss will be the one coming from mistakes of type (ii). Then, the
choice of {𝑘𝑖}𝑖∈N guarantees that the learner will not observe at most a (𝑘𝑖𝑛/𝑛)-fraction of the total
mass of the 𝑖𝑛-th block. Thus, the total loss will be of the order of 𝜖𝑖𝑛 · 𝑘𝑖𝑛/𝑛. This is one aspect
of the construction that dictates the choice of the block size and gap size. Similarly, as in the lower
bound, there are several technical details that are missing in this discussion, such as the choice of
the parameters in a way that balances the three different loss terms, and are handled in Section B.5.
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Appendix A. Universal Rates Landscape for Cut-Off Loss

In this section we prove our results regarding the characterization of the optimal rates under the
cut-off loss. We first start by providing a definition of non-trivial classes and showing that such
classes cannot be learned at a rate faster than exponential.

Definition 7 (Non-Trivial Class for Cut-Off Loss) A hypothesis class ℋ is non-trivial with re-
spect to the 𝛾-cut-off loss if |ℋ| ≥ 2 and there exist 𝑥1, 𝑥2 ∈ 𝒳 and ℎ1, ℎ2 ∈ ℋ such that
ℎ1(𝑥1) = ℎ2(𝑥1), |ℎ1(𝑥2)− ℎ2(𝑥2)| > 2𝛾.

It is easy to see that if a class ℋ does not satisfy the non-triviality definition with respect to the
𝛾-cut-off loss, then there is an algorithm that achieves zero loss using just one sample since that
sample.

A.1. Exponential Rates for Cut-Off Loss (Lower Bound)

In this section, we show that any non-trivial class cannot be learned at a rate faster than exponential
with respect to the cut-off loss.

Proposition 1 (Cut-Off Loss - Exponential Rates - Lower Bound) Fix 𝛾 ∈ (0, 1). Assume that
ℋ is non-trivial with respect to the 𝛾-cut-off loss. Then ℋ cannot be learned at a rate faster than
exponential under the expected 𝛾-cut-off loss.

Proof Letℋ be a non-trivial class for the 𝛾-cut-off loss. Hence, there are ℎ0, ℎ1 ∈ ℋ and 𝑥, 𝑥′ ∈ 𝒳
such that ℎ0(𝑥) = ℎ1(𝑥) = 𝑦 ∈ [0, 1] and ℎ0(𝑥

′) = 𝑦0, ℎ1(𝑥
′) = 𝑦1 with |𝑦0 − 𝑦1| > 2𝛾. We fix

some learning algorithm ̂︀ℎ𝑛 and two distributions 𝒟0,𝒟1 where 𝒟𝑖 {(𝑥, 𝑦)} = 1
2 ,𝒟𝑖 {(𝑥′, 𝑦𝑖)} =

1
2 , 𝑖 ∈ {0, 1}. We let 𝐼 ∼ Bernoulli(1/2) and given 𝐼 , we let (𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . be i.i.d. sam-
ples from𝒟𝐼 . In particular, (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) are the training samples for ̂︀ℎ𝑛 and (𝑋𝑛+1, 𝑌𝑛+1)
is the test point for the learner. Then, we have that

E
[︁
Pr
[︁
|̂︀ℎ𝑛(𝑋𝑛+1)− 𝑌𝑛+1| > 𝛾 | {𝑋𝑡, 𝑌𝑦}𝑛𝑡=1, 𝐼

]︁]︁
≥ 1

2
Pr(𝑋1 = . . . = 𝑋𝑛 = 𝑥,𝑋𝑛+1 = 𝑥′) = 2−𝑛−2 .

We also have that

E
[︁
Pr
[︁
|̂︀ℎ𝑛(𝑋𝑛+1)− 𝑌𝑛+1| > 𝛾 | {𝑋𝑡, 𝑌𝑦}𝑛𝑡=1, 𝐼

]︁]︁
=

1

2

∑︁
𝑖∈{0,1}

E
[︁
Pr
[︁
|̂︀ℎ𝑛(𝑋𝑛+1)− 𝑌𝑛+1| > 𝛾 | {𝑋𝑡, 𝑌𝑦}𝑛𝑡=1, 𝐼 = 𝑖

]︁
|𝐼 = 𝑖

]︁
.

Thus, for every 𝑛, there exists some 𝑖𝑛 ∈ {0, 1} such that for (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) i.i.d. from
𝑃𝑖𝑛 it holds that

E[er𝛾𝒟𝑖𝑛
(̂︀ℎ𝑛)] = Ω(2−𝑛−2) ,

where er𝛾𝒟(ℎ) is the expected 𝛾-cut-off loss under𝒟. Hence, there exists some fixed 𝑖 ∈ {0, 1} such
that E[er𝛾𝒟𝑖

(̂︀ℎ𝑛)] = Ω(2−𝑛−2) for infinitely many 𝑛.
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A.2. Exponential Rates for Cut-Off Loss (Upper Bound)

We now move on to proving that if a class does not contain a 𝛾-Littlestone tree then it is learnable
at exponential rates with respect to the cut-off loss.

Theorem 14 (Cut-Off Loss - Exponential Rates - Upper Bound) Fix 𝛾 ∈ (0, 1). Assume that ℋ
does not admit an infinite 𝛾-Littlestone tree. Then for any𝒟 ∈ RE(ℋ), there exist constants 𝐶𝛾 , 𝑐𝛾:

𝐿𝛾
𝒟(
̂︀ℎ𝑛) ≤ 𝐶𝛾𝑒

−𝑐𝛾𝑛 ,

where ̂︀ℎ𝑛 is the output of Algorithm 1.

Algorithm 1 Exponential Rates Algorithm for Universal Regression with Cut-Off Loss

Exponential Rates (Input 𝛾)
Let 𝑔𝑡 be an eventually 𝛾-correct regressor.
Let (𝑋1, 𝑌1, . . . , 𝑋𝑛, 𝑌𝑛) be the training set.
Estimate 𝑡𝑛 such that Pr[er(𝑔̂︀𝑡𝑛)] ≤ 3/8.
Break the training set into 𝑁 = 𝑛/̂︀𝑡𝑛 batches.
Create 𝑁 copies of 𝑔: 𝑔1, ..., 𝑔𝑁 where the 𝑖-
th copy is trained on the 𝑖-th batch.
To predict the label of some 𝑥 ∈ 𝒳 , take the
median over all 𝑔𝑖̂︀𝑡𝑛 .

Exponential GS Game
For any 𝑡 ∈ N :

P𝐴 picks 𝜅𝑡 = (𝜉𝑡, 𝑦
(0)
𝑡 , 𝑦

(1)
𝑡 ) ∈ 𝒳 × [0, 1]×

[0, 1].
P𝐴 reveals 𝜅𝑡 to the learner P𝐿.
P𝐿 chooses 𝜂𝑡 ∈ {0, 1}.
P𝐿 wins the game if for some 𝑡 ∈ N{︁
ℎ ∈ ℋ : |ℎ(𝜉ℓ)− 𝑦

(𝜂ℓ)
ℓ | ≤ 𝛾 ∀ℓ ∈ [1..𝑡]

}︁
= ∅ .

Our goal is to design an algorithm that achieves the exponential universal rate ifℋ does not have
an infinite 𝛾-Littlestone tree. In short, our approach builds on the framework initiated by Bousquet
et al. (2021). We consider an adversarial online learning game 𝒢 played in rounds between an
adversary 𝑃𝐴 and a learner 𝑃𝐿, defined in Figure 1 and Figure 2. Our main result is that ℋ that
does not have an infinite scaled Littlestone tree if and only if there exists a universally measurable
strategy for the learning player 𝑃𝐿 in the game that only makes finitely many mistakes in terms of
the 𝛾-cut-off loss against any adversary 𝑃𝐴 (see Appendix A.2.1). This result can then be employed
in the probabilistic setting (see Appendix A.2.2) and yield a learning algorithm that achieves the
exponential universal rate for the regression task with respect to the cut-off loss.

Let us sketch how the structure of a 𝛾-Littlestone tree allows us to obtain an algorithm. To this
end, we have to shortly introduce the two-player game between 𝑃𝐴 and 𝑃𝐿. In each round 𝑡 ≥ 1,
the following interaction takes place:

• 𝑃𝐴 picks a three-tuple 𝜉𝑡 = (𝑥𝑡, 𝑦
0
𝑡 , 𝑦

1
𝑡 ) ∈ 𝒳 × 𝒴 × 𝒴 and reveals it to 𝑃𝐿.

• 𝑃𝐿 picks 𝜂𝑡 ∈ {0, 1}.

The learner 𝑃𝐿 wins the game if for some 𝑡 ∈ N, the set
{︁
ℎ ∈ ℋ : |ℎ(𝜉ℓ)− 𝑦

(𝜂ℓ)
ℓ | ≤ 𝛾, ∀ℓ ∈ [1..𝑡]

}︁
=

∅ . Hence, one can show that a winning strategy for the adversary 𝑃𝐴 is equivalent to the existence
of an infinite 𝛾-Littlestone tree. This implies that, since 𝑃𝐴 and 𝑃𝐿 are playing a Gale-Stewart game
(Bousquet et al., 2021), the non-existence of such a tree, gives a winning strategy 𝑔𝑡 for the learning
player, which can then be used to obtain an algorithm with exponential rates. We proceed with the
formal proof.

18



UNIVERSAL RATES FOR REGRESSION

A.2.1. ADVERSARIAL SETTING VIA GALE-STEWART GAMES

In order to design our algorithms, we consider the following setting. We introduce the following
online learning game (Figure 1). In this game, there are two players, the adversary who chooses
features and reveals them to the second player, the learner whose goal is to guess a real-valued
label for the given example. The learner makes a mistake in round 𝑡 whenever the guess ̂︀𝑦𝑡

On each round 𝑡 ≥ 1:

1. The adversary picks a point 𝑥𝑡 ∈ 𝒳 .

2. The learner guesses a value ̂︀𝑦𝑡 ∈ [0, 1].

3. The adversary chooses the value 𝑦𝑡 as true label so that 𝑦𝑡 = ℎ(𝑥𝑡) for some ℎ ∈ ℋ that
is consistent with the previous examples (𝑥𝑝, 𝑦𝑝) for any 𝑝 ≤ 𝑡.

Figure 1: Realizable Online Setting

differs from the true label 𝑦𝑡 by at least 𝛾. The goal of the learner is to minimize her loss and the
adversary’s intention is to provoke many errors to the learner.

We say that the concept classℋ is 𝛾-online learnable if there exists a strategy ̂︀𝑦𝑡 = ̂︀𝑦𝑡(𝑥1, 𝑦1, ..., 𝑥𝑡−1, 𝑦𝑡−1, 𝑥𝑡)
that makes a mistake only finitely many times, regardless of what realizable sequence is presented
by the adversary. The main result in this setting is the following.

Theorem 15 (Strategies in the Adversarial Setting) Fix 𝛾 ∈ (0, 1). We say that a learner (that
predicts 𝑥) makes a mistake against an adversary (that reveals 𝑦) if |𝑥 − 𝑦| > 𝛾. For any concept
classℋ ⊆ [0, 1]𝒳 , the following dichotomy occurs.

1. If ℋ does not have an infinite 𝛾-Littlestone tree, then there is a strategy for the learner that
makes only finitely many mistakes against any adversary.

2. If ℋ has an infinite 𝛾-Littlestone tree, then there is a strategy for the adversary that forces
any learner to make a mistake in every round.

Proof [Proof of Theorem 15] Let us fix 𝛾 for the proof. We first introduce a two-player game 𝒢 that
is played in discrete timesteps 𝑡 = 1, 2, . . . between the adversary and the learner.

1. The adversary picks a point 𝜅𝑡 =
(︁
𝜉𝑡, 𝑦

(0)
𝑡 , 𝑦

(1)
𝑡

)︁
∈ 𝒳 × [0, 1] × [0, 1] and reveals it to

the learner.

2. The learner chooses a point 𝜂𝑡 ∈ {0, 1}.

Figure 2: Adversarial Setting - 2-Player Game

The learning player wins in some finite round 𝑡 ifℋ
𝜉1,𝑦

(𝜂1)
1 ,...,𝜉𝑡,𝑦

(𝜂𝑡)
𝑡

= ∅. The adversary wins if
the game continues indefinitely (i.e., the class of consistent hypotheses from ℋ never gets empty) .
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Clearly, the set of winning strategies for the learning player is

𝒲 = {(𝜅,𝜂) ∈ (𝒳×[0, 1]×[0, 1]×{0, 1})∞ : ∃ 1 ≤ 𝑡⋆ <∞ such that ℋ
𝜉1,𝑦

(𝜂1)
1 ,...,𝜉𝑡⋆ ,𝑦

(𝜂𝑡⋆ )

𝑡⋆
= ∅} .

We now recall an important theorem about Gale-Stewart games:

Proposition 2 In any Gale-Stewart game, either P𝐴 or P𝐿 has a winning strategy.

Equipped with Proposition 2, we can show that the adversary has a winning strategy if and
only if ℋ has an infinite 𝛾-scaled Littlestone tree (provided that 𝒢 is a Gale-Stewart game). This is
summarized in the next claim.

Claim 1 The game 𝒢 is a Gale-Stewart game and the adversary has a winning strategy in 𝒢 if and
only if the hypothesis classℋ has an infinite 𝛾-Littlestone tree.

Proof It is clear from the definition of 𝒲 that every winning strategy of the learner is finitely
decidable, hence 𝒢 is a Gale-Stewart game. For the other part of the claim, notice that if ℋ has
an infinite 𝛾-Littlestone tree, then the adversary’s strategy is to present the learner at step 𝑡 the
point of the tree at depth 𝑡 that is consistent with the execution of the game so far along with the
labels of the edges that connect it with its children. By the definition of the tree, this strategy
ensures that the game will keep going on forever. For the other direction, assume that the adversary
has a winning strategy 𝜅𝜏 (𝜂1, . . . , 𝜂𝜏−1) ∈ 𝒳 × [0, 1] × [0, 1]. Then, define the 𝛾-Littlestone
tree 𝒯 = {𝑥𝑢 : 0 ≤ 𝑘 < ∞,𝑢 ∈ {0, 1}𝑘} where 𝑥𝜂1,...,𝜂𝜏−1 = 𝜉𝜏 (𝜂1, . . . , 𝜂𝜏−1) where the
labels that connect 𝑥𝜂1,...,𝜂𝜏−1 with its left, right children are 𝑦(0)𝜏 (𝜂1, . . . , 𝜂𝜏−1), 𝑦

(1)
𝜏 (𝜂1, . . . , 𝜂𝜏−1),

respectively. We can see that 𝒯 is infinite since this is a winning strategy for the adversary.

Having shown the above statement, we are ready to establish the desired dichotomy in the online
game. Assume first thatℋ has an infinite 𝛾-Littlestone tree {𝑥𝑢}. The adversary’s strategy is defined
inductively based on the path followed so far in the game: in round 𝑡, set 𝑏𝑡 = (𝑏1, ..., 𝑏𝑡−1) ∈
{0, 1}𝑡−1 denote the path parsed so far in the tree by the two players. Then, the adversary picks
𝑥𝑡 = 𝑥𝑏𝑡 . After the learner reveals her choice ̂︀𝑦𝑡, the worst case adversary chooses as a response
the branch of the 𝛾-Littlestone tree which will incur loss at least 𝛾 given the learner’s choice (the
adversary may even have two choices). By the definition of the tree, this chosen label is valid since
there exists some ℎ ∈ ℋ that realizes the path (𝑥𝑏1 , ..., 𝑥𝑏𝑡−1 , 𝑥𝑡). Moreover, this choice provokes a
mistake (in the sense of 𝛾 gap) to the learning player and this is true for any round. Hence, there is
a strategy for the adversary that forces any learner to make a mistake in every round.

For the other direction, assume that the class ℋ does not have an infinite 𝛾-Littlestone tree.
Before we describe the winning strategy of the learner, we need to introduce the notion of ordinal
𝛾-Littlestone dimension. We will assign an ordinal to every finite 𝛾-Littlestone tree. For some
preliminaries on ordinals and transfinite recursion, we refer to Bousquet et al. (2021). The rank is
defined by a partial order ≺. We set 𝑡′ ≺ 𝑡 if 𝑡′ is a 𝛾-Littlestone tree that extends 𝑡 by one level,
i.e., 𝑡 is obtained from 𝑡′ by removing its leaves. A 𝛾-Littlestone tree 𝑡 is minimal if it cannot be
extended to a 𝛾-Littlestone tree of larger depth. For such a tree, we set rank(𝑡) = 0. If the tree 𝑡 is
non-minimal, then it can be extended and this is quantified using transfinite recursion by

rank(𝑡) = sup{rank(𝑡′) + 1 : 𝑡′ ≺ 𝑡} .
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The rank is well-defined as long as ℋ has no infinite 𝛾-Littlestone tree (since ≺ is well-founded).
In particular, we define

Ldim𝛾(ℋ) =

⎧⎨⎩
−1 ifℋ is empty ,
Ω ifℋ has an infinite 𝛾-Littlestone tree ,
rank(∅) otherwise .

The strategy is chosen so that Ldim𝛾(ℋ𝑥1,𝑦1,...,𝑥𝑡,𝑦𝑡) decreases in every round and the learner that
follows this strategy will win the game, since the ordinals do not admit an infinite decreasing chain.
We note that this statement at first is purely existential via the theory of Gale-Stewart games. We
next shortly provide a “constructive” way to compute the winning strategy of the learning player
in the set of games we consider. Let us describe the winning strategy: the learner invokes the
scaled version of the (ordinal) Standard Optimal Algorithm and chooses the label 𝑦𝑡 (given 𝑥𝑡)
that maximizes the ordinal 𝛾-Littlestone dimension, i.e., 𝑦𝑡 = argmax𝑦∈[𝑘] Ldim𝛾(𝑉

𝑦
𝑡 ), where =

𝑉 𝑦
𝑡 = {ℎ ∈ ℋ𝑥1,𝑦1,...,𝑥𝑡−1,𝑦𝑡−1 : ℎ(𝑥𝑡) = 𝑦}. The ordinal SOA at round 𝑡 = 1, 2, ... with initial set

𝑉0 = ℋ works as follows:

1. Receive 𝑥𝑡.

2. For any 𝑦 ∈ [𝑘], let 𝑉 𝑦
𝑡 = {ℎ ∈ 𝑉𝑡−1 : ℎ(𝑥𝑡) = 𝑦}.

3. Predict ̂︀𝑦𝑡 ∈ argmax𝑦∈[0,1] Ldim𝛾(𝑉
𝑦
𝑡 ), where Ldim𝛾 is the ordinal 𝛾-Littlestone dimension.

4. Receive true answer 𝑦𝑡 and set 𝑉𝑡 = 𝑉 𝑦𝑡
𝑡 .

This algorithm drives the game in a win-win phenomenon for the learner in every round: if the
adversary forces the learner to a mistake, then she will “prune” the tree and set the learner closer to
winning the game. Otherwise, the learner will be correct and will not incur any loss.

In order to show that the scaled ordinal SOA makes a finite number of mistakes, we couple the
online game with a Gale-Stewart game. The idea is that every time the learner makes a mistake in
the online game on point 𝑥𝑡, we advance the Gale-Stewart game by one round where we pretend
that 𝜉𝜏 = 𝑥𝑡, 𝑦

(0)
𝜏 = ̂︀𝑦𝑡, 𝑦(1)𝜏 = 𝑦𝑡, 𝜂𝜏 = 𝑦𝑡. Notice that if the learner makes an infinite number

of mistakes in the online game using the ordinal SOA, then the Gale-Stewart game can proceed
infinitely. Hence, to conclude the proof, we need to show that in this coupled game, there is some
finite point 𝜏* such that ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝜏⋆ ,𝑦

(𝜂𝜏⋆ )

𝜏⋆
= ∅. The following result helps us establish that. In

fact, the next lemma follows from Bousquet et al. (2021)(Proposition B.8) by choosing the value of
the game being the ordinal 𝛾-Littlestone dimension.

Lemma 2 (See Proposition B.8 of Bousquet et al. (2021)) Assume that ℋ does not contain an
infinite 𝛾Littlestone tree. Then, for any choices of the adversary 𝜅1, . . . , 𝜅𝑡−1 up to round 𝑡 and for
any choice 𝜅𝑡 = (𝜉𝑡, 𝑦

(0)
𝑡 , 𝑦

(1)
𝑡 ) in round 𝑡 there is a choice 𝜂𝑡 of the learner such that

Ldim𝛾

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1 ,𝜉𝑡,𝑦
(𝜂𝑡)
𝑡

)︂
< Ldim𝛾

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1

)︂
.

The previous result shows that for every 𝜉𝑡 there is at most one label ℓ𝑡 ∈ [0, 1] such that

Ldim𝛾

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1 ,𝜉𝑡,ℓ𝑡

)︂
= Ldim𝛾

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1

)︂
.
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Indeed, assume that there are two such labels ℓ𝑡, ℓ′𝑡 for some 𝜉𝑡. Then, if the adversary proposes the
point (𝜉𝑡, ℓ𝑡, ℓ′𝑡), there is no choice 𝜂𝑡 of the learner that decreases that ordinal Littlestone dimension
in this round, which leads to a contradiction. Hence, the learner can pick any label as long as it
is not the one that maximizes the ordinal Littlestone dimension. This is exactly how the coupled
Gale-Stewart game proceeds, so we know that every time the learner makes a mistake in the online
game the ordinal Littlestone dimension of the coupled game decreases. Since ordinals that are less
than Ω do not admit infinitely decreasing chains, we get the desired result.

The measurability of the winning strategies and of the learning algorithm developed in the previ-
ous section constitutes an important detail, extensively discussed in Bousquet et al. (2021), in order
to move from the adversarial setting to the probabilistic one. We provide the next useful result.

Lemma 3 Let 𝒳 be Polish and ℋ ⊆ ([0, 1] ∩ Q)𝒳 be measurable. Then, the Gale-Stewart game
𝒢 of Figure 2 has a universally measurable winning strategy.

Crucially the above result states that the winning strategy 𝜂𝑡 of the learning player is measurable.
However, the previous proof made use of the scaled ordinal SOA algorithm, whose measurability is
not directly implied. To this end, we modify the adversarial algorithm to handle the measurability
issue. The modification follows:

1. 𝒴 ≜ Q ∩ [0, 1].

2. Initialize 𝜏 ← 1, 𝐺 = Clique(𝑉 = 𝒴), 𝑓(·, ·, ·)← 𝜂1(·, ·, ·) ◁ 𝜏 is the mistake counter

3. For every round 𝑡 ≥ 1 :

(a) Observe 𝑥𝑡

(b) For any 𝑦 ̸= 𝑦′ with 𝑦, 𝑦′ ∈ 𝒴 , orient the edge (𝑦, 𝑦′) of 𝐺 according to 𝑓(𝑥𝑡, 𝑦, 𝑦
′)

(c) Let 𝐺′ the directed clique

(d) Predict ̂︀𝑦𝑡 ← argmax𝑦∈𝒴 outdeg(𝑦;𝐺′)

(e) If |̂︀𝑦𝑡− 𝑦𝑡| > 𝛾, let 𝜉𝜏 ← 𝑥𝑡, 𝑓(·, ·, ·)← 𝜂𝜏+1(𝑥1, 𝑦1, . . . , 𝑥𝜏 , 𝑦𝜏 , ·, ·, ·), 𝜏 ← 𝜏 +1

Figure 3: Measurable Modification of Online Learning Algorithm for Exponential Rates

The above algorithm makes use of a tournament procedure. The algorithm is a measurable
function since (i) the winning strategy of the learner is measurable and (ii) the countable maximum
of measurable functions is measurable. This algorithm can be used in order to show that if ℋ
does not have an infinite 𝛾-Littlestone tree, then the above algorithm makes only a finite number
of mistakes (in the sense of 𝛾 gaps) against any adversary. Essentially, this is due to the fact that
when the winning strategy has converged to a zero-mistake prediction rule (which occurs after a
finite number of mistakes), the tournament procedure will always output the correct label for the
observed example. Hence, the algorithm will eventually make a finite number of mistakes in the
adversarial setting.
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A.2.2. FROM ADVERSARIAL TO PROBABILISTIC LEARNING

The algorithm of Figure 3 works in the adversarial setting. We first show that it also applies to the
probabilistic setting (and this is why we require the above measurability discussion).

Lemma 4 (From Adversarial to Probabilistic) Fix 𝛾 ∈ (0, 1). For any distribution 𝒟 ∈ RE(ℋ)
and for the learning algorithm ̂︀𝑦𝑡 : 𝒳 → [0, 1] of Theorem 15, we have

Pr
𝑆𝑡

[︂
Pr

(𝑥,𝑦)∼𝒟

[︁
|̂︀𝑦𝑡(𝑥)− 𝑦| > 𝛾

]︁
> 0

]︂
→ 0 𝑎𝑠 𝑡→∞ ,

where 𝑆𝑡 is the training set (𝑥1, 𝑦1, ..., 𝑥𝑡−1, 𝑦𝑡−1) of the algorithm.

Proof Since the distribution 𝒟 is realizable, there exists a sequence of functions ℎ𝑘 ∈ ℋ so that

Pr
(𝑥,𝑦)∼𝒟

[|ℎ𝑘(𝑥)− 𝑦| > 𝛾] <
1

2𝑘
.

Let us fix 𝑡 ≥ 1. We have that
∞∑︁
𝑘=1

Pr[∃𝑠 ≤ 𝑡 : |ℎ𝑘(𝑋𝑠)− 𝑌𝑠| > 𝛾] ≤ 𝑡

∞∑︁
𝑘=1

Pr
(𝑋,𝑌 )∼𝒟

[|ℎ𝑘(𝑋)− 𝑌 | > 𝛾] <∞ ,

where the first inequality is due to union bound. By Borel-Cantelli, with probability one, there
exists for every 𝑡 ≥ 1 a hypothesis ℎ ∈ ℋ so that ℎ(𝑋𝑠) = 𝑌𝑠 for all 𝑠 ≤ 𝑡. Hence, the sequence
𝑋1, 𝑌1, 𝑋2, 𝑌2, ... is a valid input for the online learning game with probability one. In particular,
we make use of the following statement: Ifℋ does not have an infinite 𝛾-Littlestone tree, then there
is a strategy for the learner that makes only finitely many mistakes against any adversary. This is
proved in Theorem 15. The existence of a winning strategy ̂︀𝑦𝑡 for the learning player implies that
the time 𝑇 where the player makes a mistake is

𝑇 = sup{𝑠 ∈ N : |̂︀𝑦𝑠−1(𝑋𝑠)− 𝑌𝑠| > 𝛾}

is a random variable that is finite with probability one. Moreover, the online learner is selected so
that it is changed only when a loss is observed. This means that ̂︀𝑦𝑠 = ̂︀𝑦𝑡 for all rounds 𝑠 ≥ 𝑡 ≥ 𝑇 .

We now employ the law of large numbers in order to understand the asymptotic behavior of the
online learner:

Pr

[︂
Pr

(𝑥,𝑦)∼𝒟
[|̂︀𝑦𝑡(𝑥)− 𝑦| > 𝛾] = 0

]︂
= Pr

[︃
lim
𝑆→∞

1

𝑆

𝑡+𝑆∑︁
𝑠=𝑡+1

1{|̂︀𝑦𝑡(𝑋𝑠)− 𝑌𝑠| > 𝛾} = 0

]︃
and this probability is at least the probability of this event and of the event that 𝑇 ≤ 𝑡, i.e.,

Pr

[︂
Pr

(𝑥,𝑦)∼𝒟
[|̂︀𝑦𝑡(𝑥)− 𝑦| > 𝛾] = 0

]︂
≥ Pr

[︃
lim
𝑆→∞

1

𝑆

𝑡+𝑆∑︁
𝑠=𝑡+1

1{|̂︀𝑦𝑡(𝑋𝑠)− 𝑌𝑠| > 𝛾} = 0, 𝑇 ≤ 𝑡

]︃
= Pr[𝑇 ≤ 𝑡] ,

where the last inequality follows from the observation that since 𝑠 ≥ 𝑡 and 𝑡 is greater than the
critical time 𝑇 then the first event occurs with probability one. This implies that

Pr

[︂
Pr

(𝑥,𝑦)∼𝒟
[|̂︀𝑦𝑡(𝑥)− 𝑦| > 𝛾] = 0

]︂
≥ Pr[𝑇 ≤ 𝑡]
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and so

Pr

[︂
Pr

(𝑥,𝑦)∼𝒟
[|̂︀𝑦𝑡(𝑥)− 𝑦| > 𝛾] > 0

]︂
≤ lim

𝑡→∞
1−Pr[𝑇 ≤ 𝑡] = 0 .

A.2.3. CONCLUDING THE PROOF

The above result guarantees that the expected 𝛾 cut-off error of the learning algorithm tends to
zero as 𝑡 goes to infinity, i.e., we have established that that E[er𝛾(̂︀𝑦𝑡)] → 0 as 𝑡 → ∞, where
er𝛾(̂︀𝑦𝑡) = Pr(𝑥,𝑦)∼𝒟[|̂︀𝑦𝑡(𝑥) − 𝑦| > 𝛾] for 𝒟 ∈ RE(ℋ). This means that the scaled ordinal SOA
is a consistent algorithm in the statistical setting. However, this fact is not enough to establish the
exponential convergence rate.

We can easily show that a modification of this algorithm actually leads to exponential rates.
The modification is standard and appears in all the previous papers in the universal rates literature
(Bousquet et al., 2021; Kalavasis et al., 2022; Hanneke et al., 2023). In particular, we can apply
Lemma 4 together with simple adaptations of Lemma 4.4 and Corollary 4.5 of Bousquet et al. (2021)
in order to obtain a learning algorithm that achieves exponential rate. In more detail, the algorithm
splits the data into two parts: the first is used to obtain an estimator ̂︀𝑡𝑛 of 𝑡⋆, which is defined to be a
critical time such that if we run the game for 𝑡* many rounds, then we will obtain a function ̂︀𝑦𝑡* that
does not make 𝛾-mistakes, with at least some constant probability, i.e., Pr[er𝛾(̂︀𝑦𝑡*) > 0] < 1/4.
Standard arguments (Bousquet et al., 2021; Kalavasis et al., 2022; Hanneke et al., 2023) show that
this estimator will be accurate with probability at least 1− 𝑒−Ω(𝑛). The second part of the dataset is
used as follows: we create roughly 𝑛/̂︀𝑡𝑛 different batches and compute the classifier ̂︀𝑦𝑖̂︀𝑡𝑛 separately

for each batch 𝑖 ∈ [𝑛/̂︀𝑡𝑛]. Again, applying the same ideas as in Bousquet et al. (2021); Kalavasis
et al. (2022); Hanneke et al. (2023) we can show that with probability at least 1−𝑒−Ω(𝑛) the majority
of ̂︀𝑦̂︀𝑡𝑛 will not be making any 𝛾-mistakes on any points. Finally, we choose our guess ̂︀ℎ𝑛 to be the
median among these classifiers.

A.3. Linear Rates for Cut-Off Loss (Lower Bound)

In this section we show that for the cut-off loss, a rate that is slower than exponential cannot be
faster than linear. We prove that when the class has an infinite 2𝛾-Littlestone tree then the fastest
rate one can hope for is linear.

Theorem 16 (Cut-Off Loss - Linear Rates - Lower Bound) Fix 𝛾 ∈ (0, 1). Assume that ℋ ad-
mits an infinite 2𝛾-Littlestone tree. Then there exists 𝒟 ∈ RE(ℋ) such that there exists a constant
𝐶𝛾:

𝐿𝛾
𝒟(
̂︀ℎ𝑛) ≥ 𝐶𝛾

𝑛
,

for infinitely many 𝑛 ∈ N.

Proof Let us first fix 𝛾 ∈ (0, 1). Fix any learning algorithm ̂︀ℎ𝑛 and an infinite 2𝛾-Littlestone tree
forℋ. Let 𝑦 = (𝑦1, 𝑦2, ...) ∈ {0, 1}∞ be a random branch of this tree, where the sequence {𝑦𝑖}𝑖∈[𝑛]
is an i.i.d. sequence of unbiased Bernoulli coins. We introduce the random distribution over 𝒳 ×𝒴
as

𝑃𝑦((𝑥𝑦≤ℓ
, 𝑧ℓ+1)) =

1

2ℓ+1
, ℓ ≥ 0 ,
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where 𝑧ℓ+1 ∈ 𝒴 is the label of the edge connecting 𝑥𝑦≤ℓ
to its child according to the chosen path 𝑦.

For any 𝑛 <∞, there exists a hypothesis ℎ ∈ ℋ so that

ℎ(𝑥𝑦≤ℓ
) = 𝑧ℓ+1

for all 0 ≤ ℓ ≤ 𝑛. This is due to the construction of the scaled Littlestone tree. We have that

𝐿𝛾
𝑦(ℎ) = Pr

(𝑥,𝑧)∼𝒟𝑦

[|ℎ(𝑥)− 𝑧| > 𝛾] ≤
∑︁
ℓ>𝑛

2−ℓ−1 ,

which goes to 0 as 𝑛→∞. This implies that𝒟𝑦 is realizable for every infinite branch 𝑦 ∈ {0, 1}∞.
Moreover, the mapping 𝑦 → 𝒟𝑦 is measurable. Let us draw (𝑋,𝑍), (𝑋1, 𝑍1), (𝑋2, 𝑍2), ... i.i.d.
samples from 𝒟𝑦. The first sample corresponds to the test sample and the other samples are associ-
ated with the training phase. Moreover, let 𝑇, 𝑇1, 𝑇2, ... be i.i.d. Geometric random variables with
success probability 1/2 starting at 0. We can set

1. 𝑋 = 𝑥𝑦≤𝑇 , 𝑍 = 𝑧𝑇+1 and

2. 𝑋𝑖 = 𝑥𝑦≤𝑇𝑖 , 𝑍𝑖 = 𝑧𝑇𝑖+1.

Crucially, on the event that {𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ}, the value of ̂︀ℎ𝑛(𝑋) is conditionally
independent of 𝑧ℓ+1 given 𝑋, (𝑋1, 𝑍1), ..., (𝑋𝑛, 𝑍𝑛). We next have that

Pr[|̂︀ℎ𝑛(𝑋)−𝑍| > 𝛾, 𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ] = Pr[|̂︀ℎ𝑛(𝑋)−𝑍ℓ+1| > 𝛾, 𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ] .

This is equal to

E[Pr
𝑍
[|̂︀ℎ𝑛(𝑋)− 𝑍| > 𝛾|𝑋, (𝑋1, 𝑍1), ..., (𝑋𝑛, 𝑍𝑛)]1{𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ}]

Now conditional on this event, any algorithm will incur a loss of at least 𝛾 with probability 1/2,
since the realization of the true label is independent of the guess of the algorithm. Hence, this
quantity is lower bounded by

1

2
Pr[𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ] = 2−ℓ−2(1− 2−ℓ)𝑛 .

We are free now to pick ℓ. Choosing ℓ = ℓ𝑛 := ⌈1 + log(𝑛)⌉, we have that 1/2ℓ > 1/(4𝑛) and
(1 − 2−ℓ)𝑛 ≥ 1/2. Our goal is to apply the reverse Fatou lemma. This can be done since almost
surely, we have that

𝑛Pr[|̂︀ℎ𝑛(𝑋)− 𝑍| > 𝛾, 𝑇 = ℓ𝑛|𝑦] ≤ 𝑛Pr[𝑇 = ℓ𝑛] = 𝑛2−ℓ𝑛−1 ≤ 1/4 .

Hence, we can apply the reverse Fatou lemma and get

E

[︂
lim sup
𝑛→∞

𝑛Pr[|̂︀ℎ𝑛(𝑋)− 𝑍| > 𝛾, 𝑇 = ℓ𝑛|𝑦]
]︂
≥ lim sup

𝑛→∞
𝑛Pr[|̂︀ℎ𝑛(𝑋)−𝑍| > 𝛾, 𝑇 = ℓ𝑛] > 1/32 .

But, almost surely, it holds that

E[𝐿𝛾
𝑦(
̂︀ℎ𝑛)|𝑦] = Pr[|̂︀ℎ𝑛(𝑋)− 𝑍| > 𝛾|𝑦] ≥ Pr[|̂︀ℎ𝑛(𝑋)− 𝑍| > 𝛾, 𝑇 = ℓ𝑛|𝑦] .

So, combining the above inequalities

E

[︂
lim sup
𝑛→∞

𝑛E[𝐿𝛾
𝑦(
̂︀ℎ𝑛)]]︂ > Ω(1) .

Hence, there must exist a realization of 𝑦 so that E[𝐿𝛾
𝑦(̂︀ℎ𝑛)] = Ω(1/𝑛) infinitely often. Choosing

𝒟 = 𝒟𝑦 completes the proof.
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A.4. Near Linear Rates for Cut-Off Loss (Upper Bound)

We then move on to the setting where the class has an infinite 2𝛾-Littlestone tree but not an infinite
𝛾-OIG-Littlestone tree. The main result we will show in this setting is the following.

Theorem 17 (Cut-Off Loss - Near Linear Rates - Upper Bound) Fix 𝛾 ∈ (0, 1). Assume that
ℋ does not admit an infinite 𝛾-One-Inclusion Graph Littlestone tree. Then for any 𝒟 ∈ RE(ℋ) it
holds that:

𝐿𝛾
𝒟(
̂︀ℎ𝑛) ≤ ̃︀𝑂(︂ 1

𝑛

)︂
,∀𝑛 ∈ N ,

where this notation suppresses constants that depend on 𝒟, 𝛾.

Our approach to show this result consists of several steps and follows the template introduced
in Bousquet et al. (2021) that has also been extensively used in other works related to universal
learning rates. However, there are several non-trivial issues we need to overcome which we will
comment on.

An important technical result we need for our proof is an extension of the scaled OIG algorithm
of Attias et al. (2023) to the partial concepts setting (see Section D). We believe that this could be
of independent interest.

Now, we proceed with the proof of the nearly-linear rate upper bound. To this end, we first give
an algorithm for the adversarial setting and then study the probabilistic setting (as we did in the
exponential case).

A.4.1. ADVERSARIAL SETTING VIA GALE-STEWART GAMES AND PATTERN AVOIDANCE

The first step in our approach is to consider a Gale-Stewart game between a learner 𝑃𝐿 and an
adversary 𝑃𝐴, in which the learner has a winning strategy if and only ifℋ does not admit an infinite
𝛾-OIG-Littlestone tree. The game in every round 𝜏 ∈ N is defined as follows:

• Player 𝑃𝐴 chooses a sequence 𝑥𝜏 = (𝑥0𝜏 , . . . , 𝑡
𝜏−1
𝜏 ) ∈ 𝒳 𝜏 and a finite set of labelings 𝐿𝜏 ∈

LG𝛾,𝜏 .

• Player 𝑃𝐿 chooses an element 𝑦𝜏 ∈ 𝐿𝜏 .

The winning condition of the game for player 𝑃𝐿 is the following:

• Player 𝑃𝐿 wins if there exists some 𝜏 ∈ N such thatℋ𝑥1,𝑦1,...,𝑥𝜏 ,𝑦𝜏 = ∅, where

ℋ𝑥1,𝑦1,...,𝑥𝜏 ,𝑦𝜏 :=
{︀
ℎ ∈ ℋ : ℎ(𝑥𝑖𝑠) = 𝑦𝑖𝑠, ∀ 0 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑠 ≤ 𝜏

}︀
.

As usual in Gale-Stewart games, player 𝑃𝐴 wins the game if the game continues indefinitely. We
first show that the winning condition of this game for the learning player 𝑃𝐿 is tightly captured by
the finiteness of the OIG-Littlestone tree of the underlying concept class.

Lemma 5 The class ℋ does not have an infinite 𝛾-OIG-Littlestone tree if and only if 𝑃𝐿 has a
universally measurable winning strategy in the OIG-Littlestone game.
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Proof It is clear from the definition of the game that every winning strategy of the learner 𝑃𝐿 is
finitely decidable, hence the OIG-Littlestone game is a Gale-Stewart game. Thus, either 𝑃𝐴 or 𝑃𝐿

has a winning strategy for the scaled OIGL game.
Notice that ifℋ has an infinite 𝛾-OIG-Littlestone tree, then the adversary’s strategy is to present

the learner at step 𝜏 the point of the tree at depth 𝜏 that is consistent with the execution of the game
so far along with the labels of the edges that connect it with its children. By the definition of the
tree, this strategy ensures that the game will keep going on forever and so 𝑃𝐴 has a winning strategy.

For the other direction, let us now consider the case where the adversary has a winning strategy
in the scaled OIGL game. Denote the 𝜏 -th decision of the adversary as 𝜅𝜏 (𝜂1, ..., 𝜂𝜏−1), where 𝜂𝑖
are the decisions of 𝑃𝐴 and 𝑃𝐿 in round 𝑖 < 𝜏 . Then, 𝑃𝐴 can construct an infinite scaled OIGL
tree by setting (𝑥𝜏 , 𝐿𝜏 ) = 𝜅𝜏 (𝜂1, ..., 𝜂𝜏−1). Note that the classℋ𝜅1,𝜂1,...,𝜅𝜏 ,𝜂𝜏 is non-empty for any
round 𝜏 and this implies that there exists an infinite scaled OIGL tree forℋ.

Finally, since the game is GS, we have that the learning player has a winning strategy in the
game if the class ℋ has no infinite scaled OIGL tree. The measurability of the learner’s winning
strategy follows from the analysis of Hanneke et al. (2023) (Proposition 50).

Winning Strategy for 𝑃𝐿 =⇒ Pattern Avoidance. From now on we focus on the case where
ℋ does not have an infinite OIG-Littlestone tree. In the adversarial setting, we assume access to an
infinite sequence of labeled data (𝒳 × 𝒴)∞. Our high-level approach is to use this data sequence
that the learner has access to in order to “simulate” the OIG-Littlestone Gale-Stewart game between
𝑃𝐴 and 𝑃𝐿. Once this game has “converged”, this will give rise to a pattern-avoidance function
which will define some constraints that all realizable datasets need to satisfy. The last step is to use
this pattern-avoidance function in order to define a partial concept class whose OIG dimension is
finite.

We first start with the description of the execution of the game on the data. This is an online
algorithm that is executed on an infinite sequence of labeled data 𝑆 ∈ (𝒳 × 𝒴)∞ and will serve as
an important building block of our algorithm in the probabilistic setting.

• Let 𝑔1 : 𝒳 × LG𝛾,1 → 𝒴 be the function that corresponds to the strategy of 𝑃𝐿 in the first
round of the game.

• Initialize 𝜏0 ← 1.

• For every 𝑡 ≥ 1:

– If there exists 𝐿 ∈ LG𝛾,𝜏𝑡−1 such that 𝑔𝜏𝑡−1(𝑥𝑡−𝜏𝑡−1+1, . . . , 𝑥𝑡, 𝐿) = 𝑦𝑡−𝜏𝑡−1+1, . . . , 𝑦𝑡:
# proceed to the next round in the game.

* 𝜏𝑡 ← 𝜏𝑡−1 + 1.

* 𝑐𝜏𝑡−1 ← (𝑥𝑡−𝜏𝑡−1+1, . . . , 𝑥𝑡, 𝐿)

* 𝑔𝜏𝑡(·, ·) := 𝜂𝜏𝑡(𝑐1, . . . , 𝑐𝜏𝑡−1 ·, ·), where 𝜂𝜏𝑡(𝑐1, . . . , 𝑐𝜏𝑡−1 ·, ·) is the strategy of 𝑃𝐿 in
round 𝜏𝑡 of the game, given its history.

– Else: 𝜏𝑡 ← 𝜏𝑡−1.
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Based on the above game, we define a pattern-avoidance function as

𝑦𝑡(𝑥
′
1, . . . , 𝑥

′
𝜏𝑡) =

⋃︁
𝐿∈LG𝛾,𝜏𝑡−1 (ℋ|(𝑥′1,...,𝑥′𝜏𝑡 )

)

{(𝑦1, . . . , 𝑦𝜏𝑡) ∈ 𝐿 : 𝑔𝜏𝑡(𝑥
′
1, . . . , 𝑥

′
𝜏𝑡 , 𝐿) = 𝑦1, . . . , 𝑦𝜏𝑡} .

(3)
We also define the functions:

𝑇𝑡 : (𝒳 × 𝒴)𝑡 → {1, . . . , 𝑡+ 1}, (𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡)→ 𝜏𝑡 ,

and

𝑌𝑡 : (𝒳 × 𝒴)𝑡 × ∪𝑡+1
𝑠=1𝒳

𝑠 → ∪𝑡+1
𝑠=12

𝒴𝑠
, (𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡, 𝑥

′
1, . . . , 𝑥

′
𝑡𝜏 → 𝑦𝑡(𝑥

′
1, . . . , 𝑥

′
𝜏𝑡) .

We first show that 𝜏𝑡 can only be increased for a finite number of times.

Proposition 3 Ifℋ does not have an infinite 𝛾-OIGL tree, for any sequence 𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , that
is consistent withℋ, there exists some finite number 𝑡* ∈ N, such that for all 𝑡 > 𝑡⋆

(𝑦𝑡−𝜏𝑡−1+1, . . . , , 𝑦𝑡) /∈ 𝑦𝑡𝑖−1(𝑥𝑡−𝜏𝑡−1+1, . . . , 𝑥𝑡), 𝜏𝑡 = 𝜏𝑡−1, 𝑦𝑡 = 𝑦𝑡−1 .

Assume that this happens infinitely many times. Then, since in this Gale-Stewart game the learner
is using a winning strategy there exists some 𝑡⋆ such that the version space is empty after the first
𝑘 rounds of the game. But this contradicts the fact that the sequence is consistent with ℋ. We next
make this sketch more formal.
Proof Suppose that there is an infinite sequence of times 1 ≤ 𝑡1 < 𝑡2 < ... such that

(𝑦𝑡𝑖−𝜏𝑡𝑖−1+1, . . . , , 𝑦𝑡𝑖) ∈ 𝑦𝑡𝑖−1(𝑥𝑡𝑖−𝜏𝑡𝑖−1+1, ..., 𝑥𝑡𝑖)

for 𝑖 ∈ N. Take 𝑔𝑡 to be the winning strategy of 𝑃𝐿, which exists since ℋ does not have an
infinite scaled OIGL tree. Hence there is some finite index 𝑘 so that ℋ𝜉1,𝜂1,...,𝜉𝑘,𝜂𝑘 = ∅, where
𝜉𝑖 = (𝑥𝑡𝑖−𝜏𝑡𝑖−1+1, ..., 𝑥𝑡𝑖 , 𝐿𝜏𝑡𝑖−1) and 𝜂𝑖 = (𝑦𝑡𝑖−𝜏𝑡𝑖−1+1, . . . , , 𝑦𝑡𝑖). This contradicts the fact that
the sequence 𝑥1, 𝑦1, ..., isℋ-consistent.

Now we focus on the measurability of 𝑇𝑡, 𝑌𝑡. The next result follows directly from Proposition
52 Hanneke et al. (2023).

Proposition 4 (Proposition 52 in Hanneke et al. (2023)) For any 𝑡 ≥ 1 the functions 𝑇𝑡, 𝑌𝑡 are
universally measurable.

Pattern Avoidance =⇒ Finite OIG Dimension. Pattern avoidance functions essentially iden-
tify constraints that any realizable data sequence must satisfy. Since we have now identified a
constraint that the data need to satisfy we will express it through the following partial concept class

ℱ =
{︀
𝑓 : 𝒳 → {0, 1, ⋆} : ∀(𝑥1, . . . , 𝑥𝜏𝑡⋆ ) ∈ 𝒳

𝜏𝑡⋆ , (𝑓(𝑥1), . . . , 𝑓(𝑥𝜏𝑡⋆ )) /∈ 𝑦𝑡⋆(𝑥1, . . . , 𝑥𝜏𝑡⋆ )
}︀
.

Importantly, we can show that this is a partial concept class whose OIG-dimension is bounded by
𝜏𝑡⋆ − 1.
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We proceed formally as follows. For any 𝑘, 𝑛 ∈ N, any 𝑔 : 𝒳 𝑘 → 2𝒴
𝑘

and any 𝑆 = (𝑥1, ..., 𝑥𝑛),
define

ℋ(𝑆, 𝑔) = {ℎ ∈ ℋ|𝑆 : (ℎ(𝑖1), ..., ℎ(𝑖𝑘)) /∈ 𝑔(𝑥𝑖1 , ...𝑥𝑖𝑘) for all distinct 1 ≤ 𝑖1, ..., 𝑖𝑘 ≤ 𝑛} .

Moreover, for any 𝑡 ≥ 0, 𝑛 ≥ 𝜏𝑡, and sequence 𝑆 = (𝑥1, ..., 𝑥𝑛), let

ℋ(𝑆, ̂︀𝑦𝑡) = {ℎ ∈ ℋ|𝑆 : (ℎ(𝑖1), ..., ℎ(𝑖𝜏𝑡)) /∈ ̂︀𝑦𝑡(𝑥𝑖1 , ...𝑥𝑖𝜏𝑡 ) for all distinct 1 ≤ 𝑖1, ..., 𝑖𝜏𝑡 ≤ 𝑛} .

Lemma 6 Fix 𝛾 > 0 and assume that ℋ does not have an infinite 𝛾-OIGL tree. For any 𝑡 > 0
and any sequence (𝑥1, 𝑦1, ..., 𝑥𝑡, 𝑦𝑡) ∈ (𝒳 × 𝒴)𝑡 that is consistent with ℋ, any 𝑛 ≥ 𝜏𝑡, and any
𝑆 = (𝑥′1, ..., 𝑥

′
𝑛) ∈ 𝒳 𝑛, we have that

DOIG
𝛾 (ℋ(𝑆, ̂︀𝑦𝑡)) < 𝜏𝑡 ,

where ̂︀𝑦𝑡 is the pattern avoidance function defined in (3).

Proof This follows immediately from the definition of ̂︀𝑦𝑡 and the classℋ(𝑆, ̂︀𝑦𝑡).
A.4.2. PROBABILISTIC SETTING AND UNIFORM-TO-UNIVERSAL REDUCTION

We now move to the probabilistic setting where the data are generated by some unknown realizable
distribution 𝒟. It is in that step that we have to use our results regarding learnability of partial
concept classes with finite OIG dimension (cf. Section D). Another important challenge we will
need to handle is that we can only show that the game converges with high probability, so we need
to consider multiple batches of it that will induce different classifiers, similarly as in Bousquet et al.
(2021). When we are aggregating these different classifiers, instead of using their majority vote
over the labels we use the median prediction. The details of our approach follow.

Let us fix a ℋ-realizable distribution 𝒟 on 𝒳 × 𝒴 . Let (𝑋1, 𝑌1), (𝑋2, 𝑌2), ... be i.i.d. random
variables drawn from 𝒟. We have the following result regarding the consistency of the random
sequence:

Lemma 7 (Lemma 4.3 in Bousquet et al. (2021)) If 𝒟 ∈ RE(ℋ) and (𝑋1, 𝑌1), (𝑋2, 𝑌2), ... are
i.i.d. random variables drawn from 𝒟, then, with probability one, for any 𝑡 ≥ 1, there exists some
ℎ ∈ ℋ such that ℎ(𝑋𝑠) = 𝑌𝑠 for any 𝑠 ≤ 𝑡.

For any 𝑘 ∈ N and set function 𝑔 : 𝒳 𝑘 → 2𝒴
𝑘
, define

per(𝑔) = Pr[(𝑌1, ..., 𝑌𝑘) ∈ 𝑔(𝑋1, ..., 𝑋𝑘)]

We now connect the mappings 𝑇𝑡 and ̂︀𝑌𝑡 of the adversarial setting with the probabilistic setting by
defining:

𝜏𝑡 = 𝑇𝑡(𝑋1, 𝑌1, ..., 𝑋𝑡, 𝑌𝑡)

and ̂︀𝑦𝑡(𝑥1, ..., 𝑥𝜏𝑡) = ̂︀𝑌𝑡(𝑋1, 𝑌1, ..., 𝑋𝑡, 𝑌𝑡, 𝑥1, ..., 𝑥𝜏𝑡) .
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Lemma 8 (Zero Pattern Error Implies Consistency (Lemma 60 in Hanneke et al. (2023))) For
any 𝑘, 𝑛 ∈ N with 𝑛 ≥ 𝑘, any function 𝑔 : 𝒳 𝑘 → 2𝒴

𝑘
, and any sequence 𝑆 = ((𝑋𝑖, 𝑌𝑖))

𝑛
𝑖=1 ∼

𝒟𝑛, if per(𝑔) = 0, then (𝑖, 𝑌𝑖))
𝑛
𝑖=1 is consistent with ℋ(𝑆|𝒳 , 𝑔) and 𝒟′ is ℋ(𝑆|𝒳 , 𝑔)-realizable

with probability one, where 𝑆|𝒳 = (𝑋1, ..., 𝑋𝑛) and 𝒟′ denotes the uniform distribution over
{(𝑖, 𝑌𝑖)}𝑛𝑖=1, i.e., 𝒟′((𝑖, 𝑌𝑖)) = 1/𝑛 for any 𝑖 ∈ [𝑛].

Essentially, this result states that whenever the games have converged the pattern avoidance
function we obtain from them gives rise to partial concept classes which can perfectly label all the
data that we have seen so far. An identical result was proven by Hanneke et al. (2023) for pattern
avoidance functions that are related to pseudo-cubes rather than scaled OIGs, but an adaptation to
accommodate the modified pattern avoidance function is straightforward.

Lemma 9 (Eventual Convergence of Pattern Error (Lemma 61 in Hanneke et al. (2023))) It holds
that Pr[per(̂︀𝑦𝑡) > 0]→ 0 as 𝑡→∞.

Again, this is a result that appears in all the universal rates literature (Bousquet et al., 2021;
Kalavasis et al., 2022; Hanneke et al., 2022a, 2023) and formalizes the intuitive fact that as the size
of the training set increases, the probability that the pattern avoidance function makes a mistake
goes to zero.

The previous result is asymptotic and cannot be utilized directly to design an algorithm for our
problem. Nevertheless, it is a standard result in the universal rates literature how to move from the
asymptotic setting to the finite sample size setting. The learner can simply estimate some time ̂︀𝑡𝑛 so
that, with constant probability over the generated dataset, the Gale-Stewart game will terminate witĥ︀𝑡𝑛. The proof of this result is standard and appears in all the works in the universal rates literature
(Bousquet et al., 2021; Kalavasis et al., 2022; Hanneke et al., 2022a, 2023).

Lemma 10 (Rate of Convergence of Pattern Error (Lemma 62 in Hanneke et al. (2023))) For
any 𝑛 ∈ N, consider a training set {(𝑋𝑖, 𝑌𝑖)} consisting of 𝑛 points i.i.d. drawn from 𝒟. Then
there exists a universally measurable ̂︀𝑡𝑛 = ̂︀𝑡𝑛(𝑋1, 𝑌1, ..., 𝑋⌊𝑛/2⌋, 𝑌⌊𝑛/2⌋) whose definition does not
depend on 𝒟 so that the following holds. Set the critical time 𝑡⋆ ∈ N be such that

Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 1/8 ,

where the probability is over the training set of the algorithm ̂︀𝑦𝑡. Then, there exist 𝐶, 𝑐 > 0 that
depend on 𝒟, 𝑡⋆ but not 𝑛 so that

Pr[̂︀𝑡𝑛 ∈ 𝑇 ⋆] ≥ 1− 𝐶𝑒−𝑐𝑛 .

where the probability is over the training of the estimator ̂︀𝑡𝑛 and 𝑇 ⋆ is the set

𝑇 ⋆ = {1 ≤ 𝑡 ≤ 𝑡⋆ : Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 3/8} ,

where the probability is over the training of ̂︀𝑦𝑡.
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Uniform Rates =⇒ Universal Rates. Now, we can apply the previous collection of lemmas
concerning probabilistic aspects of pattern avoidance functions in order to design a template for
building learning algorithms in the probabilistic setting. We show the following reduction. Any
learning algorithm with some guaranteed uniform rate for finite scaled OIG dimensional hypothesis
classes can be plugged into this template to construct a learning algorithm that achieves the same
universal rate for classes without an infinite scaled OIG-Littlestone tree.

Theorem 18 (Cut-Off Loss - Reduction from Uniform) Fix 𝛾 ∈ (0, 1). Suppose that A is a
learning algorithm which for any hypothesis class ℋ with 𝛾-OIG dimension at most 𝑑, any distri-
bution 𝒟 ∈ RE(ℋ), any number 𝑛 ∈ N, and any sample 𝑆 ∼ 𝒟𝑛, outputs a hypothesis ℎ𝑛 ∼ A(𝑆)
such that 𝐿𝛾

𝒟(ℎ𝑛) ≤ 𝑅(𝑛, 𝑑) for some rate function 𝑅 : N×N→ [0, 1] which is non-increasing for
any 𝑑 ∈ N.

Then, there is an algorithm A′ satisfying that for any hypothesis class ℋ that does not have an
infinite 𝛾-OIGL tree and any distribution 𝒟 ∈ RE(ℋ), there exist some constants 𝐶, 𝑐 > 0 and
𝑑0 ∈ N, such that such that for all 𝑛 ∈ N and 𝑆′ ∼ 𝒟𝑛 , A′ outputs a hypothesis ℎ′𝑛 ∼ A′(𝑆′) with

𝐿𝛾
𝒟(ℎ

′
𝑛) ≤ 𝐶𝑒−𝑐𝑛 + 32𝑅(⌈𝑛/4⌉, 𝑑0) .

Proof Lemma 9 implies that there exists 𝑡* ∈ N such that Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 1
8 . Then, for any

𝑛 ∈ N, let us define ̂︀𝑡𝑛 ∈ [⌊𝑛/4⌋ − 1] to be the random time constructed in Lemma 10. For any
𝑡 ∈ [⌊𝑛/4⌋ − 1] and any 𝑖 ∈ [𝑛/(4̂︀𝑡𝑛)], define also

𝜏 𝑖𝑡 := 𝑇𝑡(𝑋(𝑖−1)𝑡+1, 𝑌(𝑖−1)𝑡+1, . . . , 𝑋𝑖𝑡, 𝑌𝑖𝑡) ≤ 𝑡+ 1 ≤ ⌊𝑛/4⌋,

and pattern avoidance mappings

̂︀𝑦𝑖𝑡 : 𝒳 𝜏 𝑖𝑡 → 2𝒴
𝜏𝑖𝑡 , (𝑥1, . . . , 𝑥𝜏 𝑖𝑡 ) ↦→

̂︀𝑌𝑡(𝑋(𝑖−1)𝑡+1, 𝑌(𝑖−1)𝑡+1, . . . , 𝑋𝑖𝑡, 𝑌𝑖𝑡, 𝑥1, . . . , 𝑥𝜏 𝑖𝑡 ) .

For any 𝑡 ∈ 𝒯good, since E[1{per(̂︀𝑦𝑡) > 0}] ≤ 3
8 , by a standard Chernoff bound, we have

Pr

⎡⎣ 1

⌊𝑛/(4𝑡)⌋

⌊𝑛/(4𝑡)⌋∑︁
𝑖=1

1{per(̂︀𝑦𝑖𝑡) > 0} > 7

16

⎤⎦ ≤ 𝑒−⌊𝑛/(4𝑡)⌋/128 ≤ 𝑒−⌊𝑛/(4𝑡⋆)⌋/128 .

This implies that our estimate ̂︀𝑡𝑛 satisfies

Pr

⎡⎣ 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) > 0} > 7

16
,̂︀𝑡𝑛 ∈ 𝒯good

⎤⎦
≤
∑︁

𝑡∈𝒯good

Pr

⎡⎣ 1

⌊𝑛/(4𝑡)⌋

⌊𝑛/(4𝑡)⌋∑︁
𝑖=1

1{per(̂︀𝑦𝑖𝑡) > 0} > 7

16

⎤⎦
≤𝑡*𝑒−⌊𝑛/(4𝑡*)⌋/128 . (4)

The first inequality follows from a union bound.
Define the sequence 𝑆 := ((1, 𝑌⌊𝑛/2⌋+1), (2, 𝑌⌊𝑛/2⌋+2), . . . , (𝑛 − ⌊𝑛/2⌋, 𝑌𝑛)). Let 𝒟 de-

note the uniform distribution over the elements in 𝑆 (i.e., 𝒟({(𝑖, 𝑌⌊𝑛/2⌋+𝑖)}) = 1
𝑛−⌊𝑛/2⌋ for any
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𝑖 ∈ [𝑛 − ⌊𝑛/2⌋]). Let 𝑇 1, . . . , 𝑇 ⌊𝑛/(4̂︀𝑡𝑛)⌋ denote an i.i.d. sequence of random variables with
𝑇 1 ∼ 𝒟⌈(𝑛−⌊𝑛/2⌋)/2⌉. For any 𝑖 ∈ [⌊𝑛/(4̂︀𝑡𝑛)⌋] and any 𝑥 ∈ 𝒳 , define the hypothesis class
ℋ𝑖(𝑥) := ℋ((𝑋⌊𝑛/2⌋+1, . . . , 𝑋𝑛, 𝑥), ̂︀𝑦𝑖̂︀𝑡𝑛). Then, for any 𝑖 ∈ [⌊𝑛/(4̂︀𝑡𝑛)⌋], we can define the follow-
ing prediction function

̂︀𝑦𝑖 : 𝒳 → 𝒴, 𝑥 ↦→ A(ℋ𝑖(𝑥), 𝑇 𝑖)(𝑛− ⌊𝑛/2⌋+ 1) ,

where A(ℋ𝑖(𝑥), 𝑇 𝑖) is the hypothesis returned by the uniform PAC learner A.
Let ̂︀ℎ𝑛 be the median of ̂︀𝑦𝑖 for 𝑖 ∈ [⌊𝑛/(4̂︀𝑡𝑛)⌋]. ̂︀ℎ𝑛 will be the final output of our learning

algorithm.
Let 𝒟 denote the labeled data distribution that is ℋ-realizable. Now, we need to upper bound

the error rate

𝐿𝛾
𝒟(
̂︀ℎ𝑛) = Pr

(𝑋,𝑌 )∼𝑃
[|̂︀ℎ𝑛(𝑋)− 𝑌 | > 𝛾] ≤ Pr

⎡⎣ 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{|̂︀𝑦𝑖(𝑋)− 𝑌 | > 𝛾} ≥ 1

2

⎤⎦ .

This probability is at most 𝐴+𝐵 + 𝐶, where

𝐴 = Pr[̂︀𝑡𝑛 /∈ 𝒯good] ,

𝐵 = Pr

⎡⎣ 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) > 0} > 7

16
,̂︀𝑡𝑛 ∈ 𝒯good

⎤⎦ ,

and

𝐶 = Pr

⎡⎣ 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0} > 9

16
,̂︀𝑡𝑛 ∈ 𝒯good, 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{|̂︀𝑦𝑖(𝑋)− 𝑌 | > 𝛾} ≥ 1

2

⎤⎦ .

We know how to control 𝐴 and 𝐵, it remains to argue about 𝐶. This is the context of the rest of
the proof.

Define the sequence 𝑆′ := ((1, 𝑌⌊𝑛/2⌋+1), . . . , (𝑛−⌊𝑛/2⌋, 𝑌𝑛), (𝑛−⌊𝑛/2⌋+1, 𝑌 )) and condi-
tional on 𝑆′, let𝒟′ denote the uniform distribution over the elements in 𝑆′ (i.e.,𝒟′({(𝑖, 𝑌⌊𝑛/2⌋+𝑖)}) =

1
𝑛−⌊𝑛/2⌋+1 for any 𝑖 ∈ [𝑛 − ⌊𝑛/2⌋] and 𝒟′({(𝑛 − ⌊𝑛/2⌋ + 1, 𝑌 )}) = 1

𝑛−⌊𝑛/2⌋+1 ). Let 𝑇 ′ ∼
(𝒟′)⌈(𝑛−⌊𝑛/2⌋)/2⌉ and (𝐼, 𝑌 ′) ∼ 𝒟′ be two independent samples from 𝑆′ conditional on 𝑆′.

For any 𝑖 ∈ [⌊𝑛/(4̂︀𝑡𝑛)⌋, by Lemma 7, (𝑋(𝑖−1)̂︀𝑡𝑛+1, 𝑌(𝑖−1)̂︀𝑡𝑛+1, . . . , 𝑋𝑖̂︀𝑡𝑛 , 𝑌𝑖̂︀𝑡𝑛) is consistent
withℋ a.s. Then, by Lemma 6, we have that with probability 1, DOIG

𝛾 (ℋ𝑖(𝑋)) < 𝜏 𝑖̂︀𝑡𝑛 and therefore,

1{̂︀𝑡𝑛 ∈ 𝒯good}DOIG
𝛾 (ℋ𝑖(𝑋)) < 𝑡*.

Moreover, if per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0, by Lemma 8, we have that 𝑆′ is consistent with ℋ𝑖(𝑋) and 𝒟′ is
ℋ𝑖(𝑋)-realizable a.s. Then, it follows from Hanneke et al. (2023)[Lemma 65] and the property of
A that

1{̂︀𝑡𝑛 ∈ 𝒯good}1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}Pr[|̂︀𝑦𝑖(𝑋)− 𝑌 | > 𝛾|((𝑋𝑗 , 𝑌𝑗))
𝑛
𝑗=1, 𝑋, 𝑌 ]

=1{̂︀𝑡𝑛 ∈ 𝒯good}1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}Pr[|A(ℋ𝑖(𝑋), 𝑇 𝑖)(𝑛− ⌊𝑛/2⌋+ 1)− 𝑌 | > 𝛾|((𝑋𝑗 , 𝑌𝑗))
𝑛
𝑗=1, 𝑋, 𝑌 ]

≤21{̂︀𝑡𝑛 ∈ 𝒯good}1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}Pr[|A(ℋ𝑖(𝑋), 𝑇 ′)(𝐼)− 𝑌 ′| > 𝛾|((𝑋𝑗 , 𝑌𝑗))
𝑛
𝑗=1, 𝑋, 𝑌 ]

≤2𝑅(⌈(𝑛− ⌊𝑛/2⌋)/2⌉, 𝑡*) .
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Standard properties of conditional expectation and the above bound imply that

1{̂︀𝑡𝑛 ∈ 𝒯good}1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}Pr[|̂︀𝑦𝑖(𝑋)−𝑌 | > 𝛾|((𝑋𝑗 , 𝑌𝑗))
⌊𝑛/2⌋
𝑗=1 ] ≤ 2𝑅(⌈(𝑛−⌊𝑛/2⌋)/2⌉, 𝑡*) .

(5)
Hence, we have that

𝐶 ≤ Pr

⎡⎣1{̂︀𝑡𝑛 ∈ 𝒯good} 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}1{̂︀𝑦𝑖(𝑋) ̸= 𝑌 } ≥ 1

16

⎤⎦ .

Now by Markov’s inequality, this is at most

16E

⎡⎣1{̂︀𝑡𝑛 ∈ 𝒯good} 1

⌊𝑛/(4̂︀𝑡𝑛)⌋
⌊𝑛/(4̂︀𝑡𝑛)⌋∑︁

𝑖=1

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}1{̂︀𝑦𝑖(𝑋) ̸= 𝑌 } ≥ 1

16

⎤⎦ .

This can be upper bounded by 32𝑅(⌈(𝑛− ⌊𝑛/2⌋)/2⌉, 𝑡⋆) ≤ 32𝑅(⌈𝑛/4⌉, 𝑡⋆) using (5).
Hence we have that

𝐿𝛾
𝒟(
̂︀ℎ𝑛) ≤ 𝐴+𝐵 + 𝐶 ≤ 𝐶1𝑒

−𝑐1𝑛 + 𝑡⋆𝑒−⌊𝑛/(4𝑡*)⌋/128 + 32𝑅(⌈𝑛/4⌉, 𝑡⋆) .

By combining Theorem 18 and Theorem 26, we conclude that

Corollary 1 Fix 𝛾 ∈ (0, 1). Assume that ℋ does not have an infinite 𝛾-OIGL tree. Then ℋ is
learnable with respect to the expected 𝛾-cut-off loss at rate log2 𝑛

𝑛 .

A.5. Arbitrarily Slow Rates for Cut-Off Loss

In this section, we show that whenever ℋ has an infinite OIG-Littlestone tree it requires arbitrarily
slow rates. The following result from Bousquet et al. (2021) is useful for our construction.

Lemma 11 (Lemma 5.12 from Bousquet et al. (2021)) Let 𝑅(·) be a rate function. There exist
probabilities 𝑝1, 𝑝2, . . . ≥ 0 so that

∑︀
𝑘≥1 𝑝𝑘 = 1, two increasing sequences of integers (𝑛𝑖)𝑖≥1 and

(𝑘𝑖)𝑖≥1, and a constant 1/2 ≤ 𝐶 ≤ 1 such that for all 𝑖 > 1: (i)
∑︀

𝑘>𝑘𝑖
𝑝𝑘 ≤ 1/𝑛𝑖, (ii) 𝑛𝑖𝑝𝑘𝑖 ≤ 𝑘𝑖,

and (iii) 𝑝𝑘𝑖 = 𝐶𝑅(𝑛𝑖).

We also state the following result from Attias et al. (2023) that our construction relies on.

Lemma 12 (Lemma 6 from Attias et al. (2023)) Let A be any learning algorithm and 𝜖, 𝛿, 𝛾 ∈
(0, 1)3 such that 𝛿 < 𝜀. Then, the algorithm A requires at least

Ω

(︃
DOIG
2𝛾 (ℋ)
𝜀

)︃
,

many samples to achieve expected 𝛾-cut-off loss at most 𝜖 with probability 1 − 𝛿 in the uniform
setting, where DOIG

2𝛾 (ℋ) is the 2𝛾-OIG dimension ofℋ.
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Remark 19 (Hard Distribution for OIG) Let us explain the structure of the construction of Attias
et al. (2023) that we will utilize in our arbitrarily slow lower bound. Essentially, they show that
for any learning algorithm A if there are 𝑛0 elements of 𝒳 , which we denote by 𝑆, such that the
restriction of ℋ on 𝑆, which we denote by ℋ|𝑆 , induces a OIG type of graph where for every
orientation there exists a node of the graph that has 2𝛾-out-degree at least 𝑛0/3, there is a way
to define a realizable distribution 𝒟′ with respect to ℋ′, where 𝒳 ′ = 𝑆,ℋ′ = ℋ|𝑆 , so that upon
receiving 𝑛 samples, the algorithm A will make Ω(𝑛0/𝑛) mistakes that are of magnitude 𝛾, in
expectation over the random draws of the samples of 𝒟′.

Equipped with the previous two results, we can give the high-level idea of our construction in
more detail. We will define a distribution that is supported on a single path of the infinite OIGL
tree, potentially skipping some levels of it. Unlike the previous arbitrarily slow rates constructions
in the universal rates literature (Bousquet et al., 2021; Kalavasis et al., 2022; Hanneke et al., 2023),
we will choose the target path in a deterministic way. Given any target rate 𝑅(·), we will use the
sequence {𝑝𝑘}𝑘∈N to assign total mass 𝑝𝑘 on some node of the 𝑘-th level of the tree. We define the
path branch inductively. Starting from the root of the tree, we choose the edge that is indicated by
Remark 19. This is something that can be done since every node of the OIGL tree is an instance of a
graph described in Remark 19. We keep following the constructed path and picking the appropriate
edge on every level of the tree. So far we have described (i) the construction of the path, and, (ii)
the total mass on each level. What remains to be described is how the mass within each node is
distributed. Again, this follows by the construction of Remark 19. Conditional on some node of the
tree, the distribution within the node is exactly the one that Attias et al. (2023) define. The idea to
prove the result is that there is an infinite sequence {𝑛𝑖}𝑖∈N so that when the learner takes as input
𝑛 i.i.d. samples from our constructed distribution, with some constant probability, it will only see
elements up to level 𝑘𝑖. Thus, roughly speaking, for the points that lie on the node of level 𝑘𝑖 it will
have the error rate indicated in Lemma 12.

We are now ready to state and prove our result.

Theorem 20 (Cut-Off Loss - Arbitrarily Slow Rates) Fix 𝛾 ∈ (0, 1). Assume that ℋ admits an
infinite 2𝛾-One-Inclusion Graph Littlestone tree. Thenℋ requires arbitrarily slow rates.

Proof We proceed with the proof of the lower bound. Fix an arbitrary rate 𝑅 : N → [0, 1] (slower
than linear), so that 𝑅(𝑛)

𝑛→∞−→ 0, a learning algorithm A, an infinite 2𝛾-One-Inclusion Graph
Littlestone tree {𝑥𝑢} for ℋ, and 𝐶, {𝑝𝑘}𝑘∈N, {𝑘𝑖}𝑖∈N, {𝑛𝑖}𝑖∈N as in Lemma 11. We would like to
show that there exists a realizable distribution for which the algorithm has expected cut-off loss 𝑅.
Our goal is to design this distribution based on the input learning algorithm.

Let us first recall the definition of the scaled OIGL tree, with a simplified notation. We know
that, for any level 𝑘 ≥ 1, the node of the tree contains a tuple: it contains 𝑆(𝑦≤𝑘) ∈ 𝒳 𝑘+1 (where
𝑦≤𝑘 is the path one has to follow to reach that node) and it also contains a finite set of labelings
𝐿(𝑦≤𝑘) ⊆ 𝒴𝑘+1 of the node 𝑆(𝑦≤𝑘). Any edge connecting this node to its children is labeled by one
element in 𝐿(𝑦≤𝑘). The node of the 𝑘-th level of the scaled OIGL tree has the special property that
for all the orientations of the scaled OIG induced by (𝑆(𝑦≤𝑘), 𝐿(𝑦≤𝑘)), there exists a node of that
OIG, i.e., a particular labeling of 𝑆(𝑦≤𝑘), which has 2𝛾-out-degree at least (𝑘+1)/3. Thus, for any
learning algorithm A, the node admits a “hard” distribution as described in Lemma 12, Remark 19,
which is defined by the marginal distribution on 𝑆(𝑦≤𝑘) and the target labeling 𝐿(𝑦≤𝑘)*. We denote
the marginal distribution on 𝑆(𝑦≤𝑘) as 𝒟*

𝑆(𝑦≤𝑘)
.
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In order to define the construction, we need to (i) described how to choose the target path ii)
argue how to assign mass on different levels of the tree, (iii) verify that the designed distribution
is realizable by ℋ and (iv) show that the expected cut-off loss of the algorithm is at least 𝑅(𝑛) for
infinitely many values of 𝑛.

We start from the root of the tree and choose the edge 𝐿(𝑦≤0)*. We use this edge to move on to
the next level of the tree and continue inductively in the same way. We let 𝑦*≤𝑘 to denote the node
of the 𝑘-the level of the tree we have chosen in our path.

The total mass on the node of the 𝑘−th level is 𝑝𝑘, and conditional on the node, the mass is
distributed among its elements as indicated by 𝒟*

𝑆(𝑦*≤𝑘)
. The labels of the elements 𝑆(𝑦*≤ 𝑘) of

that node are given by 𝐿(𝑦*≤𝑘)*. This completes the description of the data-generating distribution
𝒟*.

Let us now move on to arguing about the realizability of the distribution. By the definition of
the tree, for every level 𝑛 ∈ N and every level 𝑘 ≤ 𝑛, there is some ℎ𝑦*≤𝑛

∈ ℋ that perfectly labels
all the elements that appear on the path 𝑦*≤𝑛. For this classifier, we can bound its cut-off loss by

Pr
(𝑥,𝑦)∼𝒟*

[ℎ𝑦*≤𝑛
(𝑥) ̸= 𝑦] ≤

∑︁
𝑘>𝑛+1

𝑝𝑘 ,

which goes to zero as 𝑛→∞. Hence, the distribution is indeed realizable.
Consider the sequences 𝐶, {𝑝𝑘}𝑘∈N, {𝑘𝑖}𝑖∈N, {𝑛𝑖}𝑖∈N as in Lemma 11. For each such 𝑛𝑖, 𝑖 ∈ N,

our goal is to show a lower bound of 𝑂(1/𝑛𝑖). Notice that∑︁
𝑘>𝑘𝑖

𝑝𝑘 ≤
1

𝑛𝑖
,

so with probability at least (1−1/𝑛𝑖)
𝑛𝑖 ≥ 1/4, the learner will not observe any samples from levels

deeper than 𝑘𝑖 upon receiving 𝑛𝑖 samples from 𝒟*. Let us call this event 𝐸𝑖
1 and condition on it.

Moreover, notice that 𝑛𝑖 · 𝑝𝑘𝑖 ≤ 𝑘𝑖. Also, notice that since the node on level 𝑘𝑖 has mass 𝑝𝑘𝑖 , the
expected number of samples the learner observes from that node is at most 𝑛𝑖 · 𝑝𝑘𝑖 ≤ 𝑘𝑖. Thus,
Markov’s inequality shows us that with probability at least 4/5, the learner will observe at most
5 ·𝑘𝑖 points from the node on the path that lies on level 𝑘𝑖. Let us call this event 𝐸𝑖

2 and condition on
it. By a union bound, Pr[𝐸𝑖

1∩𝐸𝑖
2] ≥ 1/20. Let us denote by ̂︀ℎ𝑛𝑖 the output of the algorithm when it

receives 𝑛𝑖 i.i.d. samples from 𝒟*. Let us also condition on the event 𝐸𝑖
3 that the test point (𝑋,𝑌 )

is coming from the node of the target path that lies on level 𝑘𝑖. Under these events, the construction
described in Lemma 12, Remark 19, shows that

E
[︁
Pr[|̂︀ℎ𝑛𝑖(𝑋)− 𝑌 | > 𝛾]|𝐸𝑖

1 ∩ 𝐸𝑖
2 ∩ 𝐸𝑖

3

]︁
≥ 𝐶 ′ · 𝑘𝑖

5𝑘𝑖
,

for some absolute constant 𝐶 ′ > 0. Moreover, since 𝐸𝑖
3 is independent from 𝐸𝑖

1 ∩ 𝐸𝑖
2 we have that

Pr[𝐸𝑖
1 ∩ 𝐸𝑖

2 ∩ 𝐸𝑖
3] = Pr[𝐸𝑖

1 ∩ 𝐸𝑖
2] ·Pr[𝐸𝑖

3]

≥ 1

20
· 𝑝𝑘𝑖

≥ 1

20
· 𝐶 ·𝑅(𝑛𝑖) .
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Putting it together, we see that

E
[︁
Pr[|̂︀ℎ𝑛𝑖(𝑋)− 𝑌 | > 𝛾]

]︁
≥ 𝐶 ′ · 𝑘𝑖

5𝑘𝑖
· 1
20
· 𝐶 ·𝑅(𝑛𝑖) ≥ ̃︀𝐶 ·𝑅(𝑛𝑖) ,

where ̃︀𝐶 > 0 is some absolute constant. This concludes the proof.

Appendix B. Universal Rates Landscape for Absolute Loss

As in the cut-off case, we start by providing a definition of non-trivial classes.

Definition 8 (Non-Trivial Class for Absolute Loss) A hypothesis class ℋ is non-trivial with re-
spect to the expected absolute loss if |ℋ| ≥ 2 and there exists 𝑥1, 𝑥2 ∈ 𝒳 and ℎ1, ℎ2 ∈ ℋ such that
ℎ1(𝑥1) = ℎ2(𝑥1), ℎ1(𝑥) ̸= ℎ2(𝑥).

Similar to the case of the cut-off loss, if ℋ is trivial then there is an algorithm that learns this
class using just one sample, since it can exactly learn the target hypothesis.

B.1. Exponential Rates for Absolute Loss (Lower Bound)

The exponential rates lower bound follows from Proposition 5, which is an adaptation of Bousquet
et al. (2021).

Proposition 5 (Absolute Loss - Exponential Rates - Lower Bound) Assume thatℋ is non-trivial
with respect to the absolute loss. Thenℋ cannot be learned at a rate faster than exponential under
the expected absolute loss.

The proof of this result follows directly from the exponential rates lower bound of the cut-off case.

B.2. Exponential Rates for Absolute Loss (Upper Bound)

We will next design a learning algorithm that achieves exponential rates in the case where ℋ does
not have a 0-Littlestone tree. Interestingly, we will reduce the regression problem with expected
absolute loss to multiclass classification.

Lemma 13 (Regression to Classification) Assume that ℋ does not have an infinite 0-Littlestone
tree. Thenℋ does not have an infinite multiclass Littlestone tree.

Proof Consider an arbitrary multiclass Littlestone tree with labels coming from the label space 𝐿.
At any level 𝑛 of the tree, there exists a gap 𝛾𝑛 > 0 such that any pair of labels to the same parent
node differ by at least 𝛾𝑛 in absolute value. Hence this multiclass tree induces a (𝛾𝑛)-Littlestone
tree for the regression problem which is not infinite by assumption. The result follows.

This implies the following.

Theorem 21 (Absolute Loss - Exponential Rates - Upper Bound) Assume thatℋ does not admit
an infinite 0-Littlestone tree. Thenℋ is learnable at an optimal exponential rate.
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Proof Since ℋ does not have an infinite multiclass Littlestone tree, the main result of Hanneke
et al. (2023) shows that it is learnable in exponential rates, under the 0-1 loss. The result follows by
noticing that the 0-1 loss upper bounds our loss.

B.3. Sublinear Rates for Absolute Loss (Lower Bound)

In this section we show that whenever ℋ has a 0-Littlestone tree, no algorithm can achieve rate
faster than 𝑜(1/𝑛).

Theorem 22 (Absolute Loss - Sublinear Rates - Lower Bound) Assume that ℋ admits an infi-
nite 0-Littlestone tree. Fix any rate 𝑅(𝑛) = 𝑜(1/𝑛). Then for any algorithm ̂︀ℎ𝑛, there exists a
𝒟 ∈ RE(ℋ) and there exist constants 𝐶, 𝑐 such that

𝐿𝒟(̂︀ℎ𝑛) ≥ 𝐶 ·𝑅(𝑐 · 𝑛) ,

for infinitely many 𝑛 ∈ N.

Proof Our goal is to construct a realizable distribution 𝒟 so that given some rate function 𝑅(𝑛) =
𝑜(1/𝑛), there exist constants 𝐶, 𝑐, such that for any learning algorithm it holds 𝐿𝒟(̂︀ℎ𝑛) ≥ 𝐶 ·𝑅(𝑐·𝑛)
for infinitely many 𝑛 ∈ N. We will construct this distribution using the probabilistic method in the
following manner: we first pick a branch of the tree uniformly at random. Then, on each level 𝑖 of
the tree we put small enough mass 𝑝𝑖 that will lead to the 𝑜(1/𝑛) rates. The details follow.

Fix any learner ̂︀ℎ𝑛 and an infinite 0-Littlestone tree for ℋ. We let ̃︀𝛾0 = 𝛾∅ and for any ℓ ≥ 1
we let ̃︀𝛾ℓ = min{min𝑦≤ℓ 𝛾𝑦≤ℓ, ̃︀𝛾ℓ−1}, i.e., the minimum gap across all nodes of level ℓ. We also let
𝑛1 = inf {𝑛 ∈ N : ̃︀𝛾1/𝑛 ≥ 𝑅(𝑛)} and for all ℓ ≥ 2 we let 𝑛ℓ = inf {𝑛 ∈ N, 𝑛 > 4 · 𝑛ℓ−1 : ̃︀𝛾ℓ/𝑛 ≥ 𝑅(𝑛)}.
Finally, we let 𝑝1 = 1/𝑛1, for all ℓ ≥ 1 we let 𝑝ℓ = 1/𝑛ℓ, and 𝑝0 = 1 −

∑︀
ℓ>0 𝑝ℓ. Notice that this

distribution is well-defined sine 𝑅(𝑛) is sublinear. Let 𝑦 = (𝑦1, 𝑦2, ...) be an i.i.d. sequence of fair
Bernoulli coins. We introduce the random distribution over 𝒳 × {0, 1, ..., 𝑘} as

𝒟𝑦((𝑥𝑦≤ℓ
, 𝑧ℓ+1)) = 𝑝ℓ, ℓ ≥ 0 ,

where 𝑧ℓ+1 ∈ [0, 1] is the label of the edge connecting 𝑥𝑦≤ℓ
to its child according to the chosen path

𝑦. For any 𝑛 <∞, there exists a hypothesis ℎ ∈ ℋ so that

ℎ(𝑥𝑦≤ℓ
) = 𝑧ℓ+1

for 0 ≤ ℓ ≤ 𝑛. This is due to the construction of a 0-Littlestone tree. We have that

er𝑦(ℎ) ≤ Pr
(𝑥,𝑧)∼𝒟𝑦

[ℎ(𝑥) ̸= 𝑧] ≤
∑︁
ℓ>𝑛

𝑝ℓ ,

which goes to 0 as 𝑛→∞. This implies that𝒟𝑦 is realizable for every infinite branch 𝑦 ∈ {0, 1}∞.
Moreover, the mapping 𝑦 → 𝒟𝑦 is measurable. Let us draw (𝑋,𝑍), (𝑋1, 𝑍1), (𝑋2, 𝑍2), ... i.i.d.
samples from 𝒟𝑦. The first sample corresponds to the test sample and the other samples deal with
the training phase. Moreover, let 𝑇, 𝑇1, 𝑇2, ... be i.i.d. Geometric random variables with success
probability 1/2 starting at 0. We can set

1. 𝑋 = 𝑥𝑦≤𝑇 , 𝑍 = 𝑧𝑇+1 and
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2. 𝑋𝑖 = 𝑥𝑦≤𝑇𝑖 , 𝑍𝑖 = 𝑧𝑇𝑖+1.

We consider the infinite sequence {𝑛ℓ}ℓ≥1. Observe that on the event that {𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛ℓ
} <

ℓ}, the value of ̂︀ℎ𝑛ℓ
(𝑋) is conditionally independent of 𝑧ℓ+1 given 𝑋, (𝑋1, 𝑍1), ..., (𝑋𝑛ℓ

, 𝑍𝑛ℓ
). We

next have that

Pr[|̂︀ℎ𝑛ℓ
(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ/2, 𝑇 = ℓ] ≥ Pr[|̂︀ℎ𝑛ℓ

(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ/2, 𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛ℓ
} < ℓ]

= Pr[|̂︀ℎ𝑛ℓ
(𝑋)− 𝑍ℓ+1| ≥ ̃︀𝛾ℓ/2, 𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛ℓ

} < ℓ] .

This is equal to

E[Pr[|̂︀ℎ𝑛ℓ
(𝑋)− 𝑍ℓ+1| ≥ ̃︀𝛾ℓ/2|𝑋, (𝑋1, 𝑍1), ..., (𝑋𝑛ℓ

, 𝑍𝑛ℓ
)]1{𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛ℓ

} < ℓ}]

Now conditional on this event, any algorithm will predict ̃︀𝛾ℓ/2 far from the true label with proba-
bility at least 1/2. Thus, the previous quantity is lower bounded by

1

2
Pr[𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛ℓ

} < ℓ] =
𝑝ℓ
2

(︃
1−

∑︁
𝑖>ℓ

𝑝𝑖

)︃𝑛ℓ

≥ 𝑝ℓ
2

(︁
1− 𝑝ℓ

3

)︁𝑛ℓ

=
1

2𝑛ℓ

(︂
1− 1

3𝑛ℓ

)︂𝑛ℓ

≥ 1

3𝑛ℓ
.

Our goal is to apply the reverse Fatou lemma. This can be done since almost surely, we have
that

𝑛ℓPr[|̂︀ℎ𝑛ℓ
(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ, 𝑇 = ℓ|𝑦] ≤ 𝑛ℓPr[𝑇 = ℓ|𝑦] = 𝑛ℓPr[𝑇 = ℓ] ≤ 𝑛ℓ ·

1

𝑛ℓ
≤ 1 .

Hence, we can apply the reverse Fatou lemma and get

E

[︂
lim sup
ℓ→∞

𝑛ℓPr[|̂︀ℎ𝑛ℓ
(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ/2, 𝑇 = ℓ|𝑦]

]︂
≥ lim sup

ℓ→∞
𝑛ℓPr[|̂︀ℎ𝑛ℓ

(𝑋)−𝑍| ≥ ̃︀𝛾ℓ, 𝑇 = ℓ] ≥ 1/3 .

But, almost surely, it holds that

1

𝑅(𝑛ℓ)
·E[er𝑦(̂︀ℎ𝑛ℓ

)|𝑦] ≥ 1

𝑅(𝑛ℓ)
· ̃︀𝛾ℓ ·Pr[|̂︀ℎ𝑛ℓ

(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ|𝑦]
≥ 1

𝑅(𝑛ℓ)
· ̃︀𝛾ℓ ·Pr[|̂︀ℎ𝑛ℓ

(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ, 𝑇 = ℓ|𝑦]

≥ 𝑛ℓ ·Pr[|̂︀ℎ𝑛ℓ
(𝑋)− 𝑍| ≥ ̃︀𝛾ℓ, 𝑇 = ℓ|𝑦] .

So, combining the above inequalities

E

[︂
lim sup
ℓ→∞

1

𝑅(𝑛ℓ)
E[er𝑦(̂︀ℎ𝑛ℓ

)]

]︂
≥ 1

3
.

Hence, there must exist a realization of 𝑦 and constant 𝐶 > 0 so that E[er𝑦(̂︀ℎ𝑛)] ≥ 𝐶 · 𝑅(𝑛)
infinitely often. Choosing 𝒟 = 𝒟𝑦 completes the proof.
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B.4. Sublinear Rates for Absolute Loss (Achievable)

We now construct a hypothesis classℋ that contains an infinite 0-Littlestone tree and we show that
for any sublinear rate 𝑅(𝑛), there exists an algorithm that learns the class at this rate.

Theorem 23 (Absolute Loss - Sublinear Rates - Achievable) There exists a class ℋ that (i) ad-
mits an infinite 0-Littlestone tree but (ii) there exists an algorithm ̂︀ℎ𝑛 so that the loss 𝐿𝒟(̂︀ℎ𝑛) has
an optimal rate 𝑜(1/𝑛) (arbitrarily close to 1/𝑛 but not linear).

Proof Let 𝒳 be a countable instance space and
{︀
𝛾𝑖 :=

1
3𝑖+1

}︀
𝑖∈N. Let 𝑇 be a complete infinite

binary tree whose nodes are labeled by unique elements of 𝒳 and for every level ℓ𝑖 ∈ N and every
node of level ℓ𝑖, the left edge of that node is labeled by 1/2 − 𝛾𝑖 and the right edge of that node
is labeled by 1/2 + 𝛾𝑖. Moreover, assume that all the elements of 𝒳 appear in 𝑇. We now define
a hypothesis class ℋ based on 𝑇 . For every infinite path 𝑦 ∈ {0, 1}N we let ℎ𝑦 be as follows: for
every 𝑥 ∈ 𝒳 that is not on the path 𝑦, we let ℎ𝑦(𝑥) = 1/2, otherwise if 𝑥 is on the level ℓ of path 𝑦
we let ℎ𝑦(𝑥) = 1/2+ (2𝑦ℓ+1− 1)𝛾ℓ, i.e., ℎ𝑦(𝑥) agrees with the label of 𝑥 along the path 𝑦. Notice
that ℎ𝑦 is well-defined on all of 𝒳 . We let ℋ =

{︀
ℎ𝑦 : 𝑦 ∈ {0, 1}N

}︀
. Notice that, by construction,

ℋ admits a 0-Littlestone tree so the fastest rate we can get is 𝑜(1/𝑛) (cf. Theorem 22). Let ̂︀ℎ𝑛 be
defined as follows: define ̂︀ℓ𝑛 to be the deepest level so that there exists some 𝑥

𝑦≤̂︀ℓ𝑛 in the training

set whose label is different from 1/2. Let ̂︀ℎ ∈ ℋ be a function that labels 𝑥
𝑦≤̂︀ℓ𝑛 correctly. For

every 𝑥 ∈ 𝒳 that is an ancestor of 𝑥
𝑦≤̂︀ℓ𝑛 in the tree 𝑇 , define ̂︀ℎ𝑛(𝑥) = ̂︀ℎ(𝑥) and for every other

point 𝑥 ∈ 𝒳 , let ̂︀ℎ𝑛(𝑥) = 1/2. We will show that ̂︀ℎ𝑛 achieves sublinear rates for every realizable
distribution.

Let 𝒟 be a distribution that is realizable with respect to ℋ. Let 𝑆1 be the points (𝑥, 𝑦) in the
support of 𝒟 such that 𝑦 = 1/2, and 𝑆2 be the points (𝑥, 𝑦) in the support of 𝒟 such that 𝑦 ̸= 1/2.
Let also 𝑝 be the total mass in 𝑆1 and 1 − 𝑝 be the total mass in 𝑆2. Because of the realizability
assumption, the labels of all the points in 𝑆2 must be consistent with some ℎ⋆ ∈ ℋ. Formally, let
ℓ1, ℓ2 with ℓ1 ≤ ℓ2 be the depth of two points 𝑥𝑦≤ℓ1 , 𝑥𝑦≤ℓ2 , such that (𝑥𝑦≤ℓ1 , ̂︀𝑦1), (𝑥𝑦≤ℓ2 , ̂︀𝑦2) ∈ 𝑆2

but there is no ℎ ∈ ℋ such that ℎ(𝑥𝑦≤ℓ1) = ̂︀𝑦1, ℎ(𝑥𝑦≤ℓ2) = ̂︀𝑦2. Then, the realizability assumption
is violated. Thus, all the points of this set belong to a single path of 𝑇 and there exists (at least) one
ℎ⋆ ∈ ℋ that perfectly labels all the elements in 𝑆2.

7 In order to bound the loss of ̂︀ℎ𝑛 we consider
two cases: if the test point (𝑥, 𝑦) comes from set 𝑆1, then ̂︀ℎ𝑛(𝑥) = 𝑦. This is because there cannot
be a point that is an ancestor of 𝑥

𝑦≤̂︀ℓ𝑛 but is in 𝑆1. Otherwise, if (𝑥, 𝑦) comes from the set 𝑆2 let ℓ

be the level of the tree that 𝑥 appears on. Then, the classifier ̂︀ℎ𝑛 will make a mistake of magnitude
at most 𝛾̂︀ℓ𝑛 if and only if the ℓ > ̂︀ℓ𝑛 (recall that ̂︀ℓ𝑛 is defined to be the deepest level of a point whose
label is different from 1/2 that appears in the training set).

First, let us condition on the event 𝐸𝑛 that the training sample contains at least (1−𝑝)𝑛/2 many
points from the part of the distribution that is supported on the path. By Chernoff, this happens with
probability at least 1− 𝑒Ω(𝑛), where we are hiding some distribution dependent constant. If the test
point comes from the target path, the probability that it lies deeper than ̂︀ℓ𝑛 is at most 2/ ((1− 𝑝)𝑛)

7. If there are finitely many points in 𝑆2 there could be more than one such functions, but they all agree on these finitely
many labels.
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and the loss of the algorithm is bounded by 𝛾̂︀ℓ𝑛 . Putting it together

E[𝐿𝒟(̂︀ℎ𝑛)|𝐸𝑛] ≤ E[ Pr
(𝑥,𝑦)∼𝒟

[𝑦 ̸= 1/2, depth of 𝑥 in 𝑇 ≥ ̂︀ℓ𝑛] · 𝛾̂︀ℓ𝑛 |𝐸]

≤ 𝐶

𝑛
·E[𝛾̂︀ℓ𝑛 |𝐸] ,

where 𝐶 is some absolute numerical constant. Since E[𝛾̂︀ℓ𝑛 |𝐸𝑛] is non-increasing in 𝑛, E[𝛾̂︀ℓ𝑛 |𝐸𝑛]→
0, as 𝑛→∞, and the probability of 𝐸𝑛 is at least 1−𝑒Ω(𝑛) we can see that ̂︀ℎ𝑛 achieves rate 𝑜(1/𝑛).

B.5. Slower than Linear Rates for Absolute Loss

In this section we construct a family of hypothesis classes that witness rate functions between 1/𝑛
and arbitrarily slow as optimal rates. In particular, given any rate 𝑅(𝑛) such that 𝑅(𝑛) is non-
increasing and 𝑛𝑅(𝑛) is non-decreasing, we can construct some ℋ for which no algorithm can
achieve rate faster than 𝑜(𝑅(𝑛)) and there is an algorithm that achieves rate 𝑅(𝑛). This is formalized
in the following result.

Theorem 24 Given any rate function 𝑅(𝑛) such that lim𝑛→∞𝑅(𝑛) = 0, and 𝑛 · 𝑅(𝑛) is non-
decreasing, there is hypothesis classℋ which is not learnable at a rate faster than 𝑜(𝑅(𝑛)) and for
which there exists a learning algorithm that achieves rate 𝑅(𝑛).

Proof Let us first describe the high-level idea of our construction. We consider an infinite sequence
of blocks of different elements,8 where each block has size {𝑘𝑖}𝑖∈N, and 𝑘𝑖 is increasing sufficiently
fast at the rate which we will specify later. Moreover, we consider a sequence {𝜖}𝑖∈N, where 𝜖𝑖
is decreasing at a rate that we will specify later. Intuitively, 𝜖𝑖 indicates the gap size within each
block. We identify the domain 𝒳 with all the elements that appear in these blocks, we denote by
𝒳𝑖 the set of elements that appear in the 𝑖-th block, and for 𝑗 ∈ [𝑘𝑖] we refer to the 𝑗−th element in
this block by 𝑥𝑖𝑗 . The hypothesis class ℋ is defined to be the one that realizes every unique pattern
1/2 + 𝜖𝑖, 1/2− 𝜖𝑖 for all the elements that appear in the block 𝑘𝑖. Formally,

ℋ =
{︁
ℎ : 𝒳 → {0, 1} : ∀𝑝 ∈ {−1, 1}𝑘1 × {−1, 1}𝑘2 × . . . ,∀𝑖 ∈ N,∀𝑗 ∈ [𝑘𝑖], ∃ℎ so that ℎ(𝑥𝑖𝑗) = 1/2 + 𝑝𝑖𝑗 · 𝜖𝑖

}︁
.

The intuition is thatℋ is rich enough to shatter every block, while the size of each block is increasing
and the gap between the elements is decreasing. Let us start by describing the approach to achieve
the upper bound. We define the sequence {𝑘𝑖}𝑖∈N inductively, starting with 𝑘1 = 4, and for all
𝑖 ∈ N, 𝑖 ≥ 1, we let 𝑘𝑖+1 ∈ N to be the smallest number such that 𝑘𝑖+1 · 𝑅(𝑘𝑖+1) ≥ 2𝑘𝑖. Notice
that since 𝑛 ·𝑅(𝑛) is non-decreasing in 𝑛 and lim𝑛→∞𝑅(𝑛) = 0, this number 𝑘𝑖+1 is well-defined.
Moreover, for each 𝑖 ∈ N we set 𝜖𝑖 = 𝑅(𝑘𝑖)/2. Notice that for all 𝑖 ∈ N we have that

∑︀
𝑗<𝑖+1 𝑘𝑗 ≤

𝑘𝑖+1. Let 𝑛 denote the number of i.i.d. samples from some realizable distribution 𝒟 that the learner
observes and let 𝑖* be such that 𝑘𝑖* ≤ 𝑛 ≤ 𝑘𝑖*+1. Consider the learner ̂︀ℎ𝑛 : 𝒳 → {0, 1} that works
as follows: if the test point 𝑋 has appeared in the dataset, then the learner predicts the correct label,
otherwise it outputs 1/2. Our goal is to show that for every 𝑛 ∈ N the expected absolute loss of of

8. The elements are different both within the same block and across all the different blocks.
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the learner is bounded by 𝑅(𝑛). Let us consider the following cases. If 𝑋 ∈ 𝒳𝑗 , 𝑗 ≥ 𝑖* + 1, then
the loss of the learner is 𝑅(𝑘𝑖*+1)/2 ≤ 𝑅(𝑛)/2, so we have shown the desired bound. Now notice
that the total number of points that appear in blocks 𝑘1, . . . , 𝑘𝑖*−1 is at most 2 · 𝑘𝑖*−1. Moreover,
notice that, by construction 2 · 𝑘𝑖*−1 ≤ 𝑘𝑖* · 𝑅(𝑘𝑖*). For the elements that appear in these blocks,
we can use the 0 − 1 loss, i.e., if we do not predict the label correctly we pay loss 1, otherwise we
pay loss 0. Then, we have that

E[|̂︀ℎ𝑛(𝑋)− 𝑌 | | 𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ] ≤ E[1̂︀ℎ𝑛(𝑋) ̸=𝑌
| 𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

=
∑︁

𝑋′∈∪1≤𝑗≤𝑖*−1𝒳𝑗

𝑝𝑋′

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]
· (1− 𝑝𝑋′)𝑛

≤
2 ·
(︁∑︀

1≤𝑗≤𝑖*−1 𝑘𝑗

)︁
/𝑛

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

≤ 4𝑘𝑖*−1/𝑛

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

≤ 2 · 𝑘𝑖*𝑅(𝑘𝑖*)/𝑛

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

≤ 2 · 𝑛 ·𝑅(𝑛)/𝑛

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

≤ 2 ·𝑅(𝑛)

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

where the first inequality follows from the definition of the 0 − 1 loss, 𝑝𝑋′ is the probability mass
placed on 𝑋 under𝒟, the second inequality from Lemma 14, and the rest from the definition of 𝑘𝑖* .
Finally, let us consider the case where 𝑋 ∈ 𝒳𝑖* . A similar analysis gives that

E[|̂︀ℎ𝑛(𝑋)− 𝑌 | | 𝑋 ∈ 𝒳𝑖* ] ≤ 𝑅(𝑘𝑖) ·
∑︁

𝑋′∈𝒳𝑖*

𝑝𝑋′

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ 𝒳𝑖* ]
· (1− 𝑝𝑋′)𝑛

≤ 𝑅(𝑘𝑖*) ·
2 · 𝑘𝑖*/𝑛

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ 𝒳𝑖* ]

≤ 𝑅(𝑛) · 2 · 𝑛/𝑛
Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ 𝒳𝑖* ]

≤ 2𝑅(𝑛)

Pr(𝑋,𝑌 )∼𝒟[𝑋 ∈ 𝒳𝑖* ]
,

where again the first inequality follows from the definition of 𝒳𝑖* , the second inequality from
Lemma 14 and the rest from the definition of 𝑘𝑖* and the fact that 𝑛′𝑅(𝑛′) is non-decreasing. Putting
it all together, we see that

E[|̂︀ℎ𝑛(𝑋)− 𝑌 |] = Pr
(𝑋,𝑌 )∼𝒟

[𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ] ·E[|̂︀ℎ𝑛(𝑋)− 𝑌 | | 𝑋 ∈ ∪1≤𝑗≤𝑖*−1𝒳𝑗 ]

+ Pr
(𝑋,𝑌 )∼𝒟

[𝑋 ∈ 𝒳𝑖* ] ·E[|̂︀ℎ𝑛(𝑋)− 𝑌 | | 𝑋 ∈ 𝒳𝑖* ]

+ Pr
(𝑋,𝑌 )∼𝒟

[𝑋 ∈ ∪𝑗>𝑖*𝒳𝑗 ] ·E[|̂︀ℎ𝑛(𝑋)− 𝑌 | | 𝑋 ∈ ∪𝑗>𝑖*𝒳𝑗 ]

≤ 4 ·𝑅(𝑛) +𝑅(𝑛)/2 ,
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which shows that indeed the class is learnable at a rate 𝑅(𝑛).

We now move on to proving the lower bound. For that, it suffices to construct a realizable
distribution 𝒟 and an infinite sequence {𝑛𝑗}𝑗∈N so that when the learner receives 𝑛𝑗 datapoints
generated i.i.d. by 𝒟 its expected error is at least 𝑜(𝑅(𝑛𝑗)). We will construct this distribution in
a randomized way. First we define the marginal distribution on 𝒳 . We choose a sequence {𝑖𝑗}𝑗∈N
and we put total mass 2−𝑗 on the block 𝑖𝑗 which is distributed uniformly among the elements
of the block. For the target function ℎ*, we label the points within each block 𝑖𝑗 uniformly at
random between the choices 1/2 + 𝜖𝑖𝑗 , 1/2 − 𝜖𝑖𝑗 . We will define the choice of {𝑖𝑗}𝑗∈N shortly.
Let {𝑛𝑗 = 𝑘𝑖𝑗/2}𝑗∈N. When the learner receives 𝑛𝑗 samples it does not see at least half of the
points of the block 𝑘𝑖𝑗 , so its expected absolute loss over the random choice of the labels is at least
2−𝑗 · 𝑅(𝑘𝑖𝑗 )/4 = 2−𝑗 · 𝑅(2𝑛𝑗)/4. Consider any function 𝑅′(𝑛) = 𝑜(𝑅(𝑛)). We need to show that
for any constant 𝐶 > 1 there exists a 𝒟 and {𝑛𝑗}𝑗∈N such that

E[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |] ≥ 𝑅′(𝑛𝑗/𝐶) .

So far, we have shown that

E[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |] ≥ 2−𝑗𝑅(2𝑛𝑗)/4 .

Hence, we need to show that 2−𝑗𝑅(2𝑛𝑗)/4 ≥ 𝑅′(𝑛𝑗/𝐶). We have that 2𝑛𝑗𝑅(2𝑛𝑗) ≥ 𝑛𝑗/𝐶𝑅(𝑛𝑗/𝐶),
which follows from the fact that 𝑛𝑅(𝑛) is non-decreasing, which means that 𝑅(2𝑛𝑗)/4 ≥ 1

8𝐶𝑅(𝑛𝑗/𝐶).
Combining it with the previous result, we have that

E[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |] ≥ 2−𝑗

8𝐶
𝑅(𝑛𝑗/𝐶) .

Thus, we let 𝑛𝑗 = min{𝑛 ∈ N : 2−𝑗

8𝐶 𝑅(𝑛𝑗/𝐶) ≥ 𝑅′(𝑛𝑗/𝐶)}, which is always well defined since
𝑅′ = 𝑜(𝑅(𝑛)). This also defines 𝑘𝑖𝑗 = 2𝑛𝑗 ,∀𝑗 ∈ N. Notice that so far we have shown the lower
bound the particular 𝑛𝑗 . The last step for the proof is to apply Fatou’s lemma to get the result for all
the infinitely many {𝑛𝑗}𝑗∈N. Thus, so far we have shown that

E[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |] ≥ 𝑅′(𝑛𝑗/𝐶) .

Moreover a similar argument using Chernofff’s bound shows that with probability at least 1−𝑒−𝐶′𝑛𝑗

we have that

E[̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |] ≥ 𝑅′(𝑛𝑗/𝐶)/2 .
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Let 𝑦 denote the random choices of the labels. Using Fatou’s lemma we have that

E

[︃
lim sup
𝑗→∞

1

𝑅′(𝑛𝑗/𝐶)
E

(𝑋,𝑌 )∼𝒟𝑦

[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |]

]︃
≥ E

[︂
lim sup
𝑗→∞

1

𝑅′(𝑛𝑗/𝐶)
·

min

{︂
E

(𝑋,𝑌 )∼𝒟𝑦

[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |], 1/2𝑅′(𝑛𝑗/𝐶)

}︂]︂
≥ lim sup

𝑗→∞

1

𝑅′(𝑛𝑗/𝐶)
·

E

[︂
min

{︂
E

(𝑋,𝑌 )∼𝒟𝑦

[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |], 1/2𝑅′(𝑛𝑗/𝐶)

}︂]︂

≥ lim sup
𝑗→∞

Pr𝑦

[︂
E(𝑋,𝑌 )∼𝒟𝑦

[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |] ≥ 1/2 ·𝑅′(𝑛𝑗/𝐶)

]︂
𝑅′(𝑛𝑗/𝐶)

·

𝑅′(𝑛𝑗/𝐶)

2

≥ lim sup
𝑗→∞

1

2
· (1− 𝑒−𝐶′𝑛𝑗 )

=
1

2
,

where the first inequality follows by definition of the min, the second inequality follows from Fa-
tou’s lemma, the third inequality follows from Markov’s inequality, and the fourth inequality follows
from the Chernoff bound argument we discussed above. Notice that Fatou’s lemma applies since

1

𝑅′(𝑛𝑗/𝐶)
·min

{︂
E

(𝑋,𝑌 )∼𝒟𝑦

[|̂︀ℎ𝑛𝑗 (𝑋)− 𝑌 |], 1/2𝑅′(𝑛𝑗/𝐶)

}︂
≤ 1

2
.

This concludes the proof.

The following result is useful for the derivation of the upper bound of our algorithm.

Lemma 14 Let 𝑛,𝐾 ∈ N. Let {𝑝𝑖 ∈ [0, 1]}𝑖∈[𝐾] be a sequence of numbers. Then,

∑︁
𝑖∈[𝐾]

𝑝𝑖(1− 𝑝𝑖)
𝑛 ≤ 2𝐾

𝑛
.
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Proof We can write ∑︁
𝑖∈[𝐾]

𝑝𝑖 · (1− 𝑝𝑖)
𝑛 ≤ 𝐾

𝑛
+

∑︁
𝑖∈[𝐾]:𝑝𝑖≥1/𝑛

𝑝𝑖 · (1− 𝑝𝑖)
𝑛

≤ 𝐾

𝑛
+

∑︁
𝑖∈[𝐾]:𝑝𝑖≥1/𝑛

𝑝𝑖 · 𝑒−𝑝𝑖·𝑛

≤ 𝐾

𝑛
+

∑︁
𝑖∈[𝐾]:𝑝𝑖≥1/𝑛

1

𝑛
· 𝑒−1

=

(︂
1 +

1

𝑒

)︂
𝐾

𝑛
,

where the second inequality follows from the fact that 𝑥𝑒−𝑥·𝑛 is decreasing for 𝑥 ≥ 1/𝑛.

Appendix C. Ommitted Definitions

For a sequence 𝑦 = (𝑦1, 𝑦2, ...), we denote 𝑦≤𝑘 = (𝑦1, ..., 𝑦𝑘). We may also usually identify
elements of {0, 1}𝑑 with strings or a prefix of a sequence of length 𝑑. We begin with a formal
definition of a crucial combinatorial measure, namely the (𝛾𝑛)-Littlestone tree of a classℋ.

Definition 9 ((𝛾𝑛)-Littlestone tree) Fix some non-increasing sequence of scales (𝛾𝑛) ∈ [0, 1]N.
An (𝛾𝑛)-Littlestone tree of depth 𝑑 ≤ ∞ for ℋ ⊆ [0, 1]𝒳 is a complete binary tree of depth 𝑑
whose internal nodes are labeled by 𝒳 , and whose two edges connecting a node of level 𝑖 ≤ 𝑑 to
its children are labeled by two elements in [0, 1] that differ by at least 𝛾𝑖, such that every path of
length at most 𝑑 emanating from the root is consistent with a concept ℎ ∈ ℋ. More formally, the
tree consists of a set of nodes⋃︁

0≤ℓ<𝑑

{︁
𝑥𝑢 ∈ 𝒳 : 𝑢 ∈ {0, 1}ℓ

}︁
= {𝑥∅} ∪ {𝑥0, 𝑥1} ∪ {𝑥00, 𝑥01, 𝑥10, 𝑥11} ∪ ... ⊆ 𝒳 ,

and real-valued scales⋃︁
0≤ℓ<𝑑

{︁
𝛾𝑢 ∈ [0, 1] : 𝑢 ∈ {0, 1}ℓ

}︁
= {𝛾∅} ∪ {𝛾0, 𝛾1} ∪ {𝛾00, 𝛾01, 𝛾10, 𝛾11} ∪ ... ⊆ [0, 1]N,

such that for every path 𝑦 ∈ {0, 1}𝑑 and finite 𝑛 < 𝑑, there exists ℎ ∈ ℋ so that ℎ(𝑥𝑦≤ℓ
) = 𝑠𝑦≤ℓ+1

for 0 ≤ ℓ ≤ 𝑛, where 𝑠𝑦≤ℓ+1
∈ [0, 1] is the label of the edge connecting the nodes 𝑥𝑦≤ℓ

and 𝑥𝑦≤ℓ+1

and |𝑠𝑦≤ℓ,0 − 𝑠𝑦≤ℓ,1] ≥ 𝛾𝑦≤ℓ . We say that ℋ has an infinite (𝛾𝑛)-Littlestone tree if there exists an
(𝛾𝑛)-Littlestone tree forℋ with depth 𝑑 =∞. As a special case, we have a fixed-scale 𝛾-Littlestone
tree, for 𝛾 ∈ [0, 1].

Definition 10 (One-Inclusion Hypergraph (Rubinstein et al., 2009; Brukhim et al., 2022)) Con-
sider the set [𝑛] and a hypothesis class ℋ ⊆ 𝒴 [𝑛]. We define a graph 𝐺OIG

ℋ = (𝑉,𝐸) such that
𝑉 = ℋ. Consider a direction 𝑖 ∈ [𝑛] and a mapping 𝑓 : [𝑛]∖{𝑖} → 𝒴 . We introduce the hyperedge
𝑒𝑖,𝑓 = {ℎ ∈ 𝑉 : ℎ(𝑗) = 𝑓(𝑗), ∀𝑗 ∈ [𝑛] ∖ {𝑖}}. We define the edge set of 𝐺OIG

ℋ to be the collection

𝐸 = {𝑒𝑖,𝑓 : 𝑖 ∈ [𝑛], 𝑓 : [𝑛] ∖ {𝑖} → 𝒴, 𝑒𝑖,𝑓 ̸= ∅} .
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Definition 11 (Orientation and Scaled Out-Degree Attias et al. (2023)) Let 𝛾 ∈ [0, 1], 𝑛 ∈ N,ℋ ⊆
[0, 1][𝑛]. An orientation of the one-inclusion graph 𝐺OIG

ℋ = (𝑉,𝐸) is a mapping 𝜎 : 𝐸 → 𝑉 so
that 𝜎(𝑒) ∈ 𝑒 for any 𝑒 ∈ 𝐸. Let 𝜎𝑖(𝑒) ∈ [0, 1] denote the 𝑖-th entry of the orientation.

For a vertex 𝑣 ∈ 𝑉 , corresponding to some hypothesis ℎ ∈ ℋ (see Definition 10), let 𝑣𝑖 be
the 𝑖-th entry of 𝑣, which corresponds to ℎ(𝑖). The (scaled) out-degree of a vertex 𝑣 under 𝜎 is
outdeg(𝑣;𝜎, 𝛾) = |{𝑖 ∈ [𝑛] : |𝜎𝑖(𝑒𝑖,𝑣) − 𝑣𝑖| > 𝛾}|. The maximum (scaled) out-degree of 𝜎 is
outdeg(𝜎, 𝛾) = max𝑣∈𝑉 outdeg(𝑣;𝜎, 𝛾).

Definition 12 (𝛾-OIG Dimension Attias et al. (2023)) Consider a class ℋ ⊆ [0, 1]𝒳 and let 𝛾 ∈
[0, 1]. We define the 𝛾-one-inclusion graph dimension DOIG

𝛾 ofℋ as follows:

DOIG
𝛾 (ℋ) = sup{𝑛 ∈ N : ∃𝑆 ∈ 𝒳 𝑛 such that ∃ finite subgraph 𝐺 = (𝑉,𝐸) of 𝐺OIG

ℋ|𝑆 = (𝑉𝑛, 𝐸𝑛)

such that ∀ orientations 𝜎, ∃𝑣 ∈ 𝑉, where outdeg(𝑣;𝜎, 𝛾) > 𝑛/3} .

We define the dimension to be infinite if the supremum is not attained by a finite 𝑛.

Definition 13 (Scaled OIG-Littlestone Tree) Fix some non-increasing sequence of scales (𝛾𝑛) ∈
[0, 1]N. An (𝛾𝑛)-OIG-Littlestone tree of depth 𝑑 ≤ ∞ for ℋ ⊆ [0, 1]𝒳 is a complete binary tree of
depth 𝑑 whose internal nodes at every level 𝑖 ≤ 𝑑 are labeled by some element in 𝑆 ∈ 𝒳 𝑖+1 and a
finite collection 𝐿 of labelings in 𝒴 𝑖+1 so that the graph whose vertices are the elements of 𝐿 and
hyperedges are defined as in Definition 10 has an element with 𝛾-out-degree at least 𝑖/3 for every
orientation of the hyperedges (Definition 11). The edges connecting a node of level 𝑖 ≤ 𝑑 to its
children are labeled by the elements of 𝐿 such that every path of length at most 𝑑 emanating from
the root is consistent with a concept ℎ ∈ ℋ. More formally:

• For every 0 ≤ 𝑖 < 𝑑 and each node 𝑣 of level 𝑖 of the tree (defining the root to be at level
0) node 𝑣 is labeled by some element 𝑆𝑣 of 𝒳 𝑖+1 and a finite collection 𝐿𝑣 of elements of
𝒴 𝑖+1, where 𝐿𝑣 can be identified with a hypothesis class defined on 𝑆𝑣. The requirement is
that the OIG defined on 𝑆𝑣, 𝐿𝑣 has the property that for every orientation of the hyperedges
there exists a vertex that has 𝛾𝑖-out-degree at least 𝑖/3. Moreover, node 𝑣 has exactly |𝐿𝑣|
children and each one is labeled by a different element of 𝐿𝑣.

• Consider any root-to-leaf path, let 𝑥𝑖 ∈ 𝒳 𝑖+1, 𝑦𝑖 ∈ 𝒴 𝑖+1 be the node, edge of level 0 ≤ 𝑖 < 𝑑
that appears in the path. Let us index the elements of 𝑥𝑖 as 𝑥0𝑖 , . . . , 𝑥

𝑖
𝑖, 𝑦

0
𝑖 , . . . , 𝑦

𝑖
𝑖. Then, there

exists some ℎ ∈ ℋ such that ℎ(𝑥𝑗𝑖 ) = 𝑦𝑗𝑖 , 0 ≤ 𝑖 < 𝑑, 0 ≤ 𝑗 < 𝑖+ 1.

We say that ℋ has an infinite (𝛾𝑛)-OIG-Littlestone tree if there exists an (𝛾𝑛)-OIG-Littlestone tree
for ℋ with depth 𝑑 = ∞. As a special case, we have a fixed-scale 𝛾-OIG-Littlestone tree, for
𝛾 ∈ [0, 1].

Definition 14 (Finite OIGs with Large Out-Degree (informal, see Definition 15) Let 𝛾 ∈ (0, 1), 𝑛 ∈
N. We define the set LG𝑛,𝛾 to be the set of all finite subsets of 𝒴𝑛 that have the property that the
graph whose nodes are all the elements of that particular finite subset of 𝒴𝑛 and whose hyperedges
are defined as in the OIG, has the property that all its orientations have a node with 𝛾-out-degree
at least 𝑛/3.
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Definition 15 Let 𝛾 ∈ (0, 1), 𝑛 ∈ N,ℋ ⊆ 𝒴𝒳 , 𝑆 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝒳 𝑛. Letℋ|𝑆 = {(ℎ(𝑥1), . . . , ℎ(𝑥𝑛)) :
ℎ ∈ ℋ}. We define the set LG𝑛,𝛾 ,LG𝑛,𝛾(ℋ|𝑆) (resp.) to be the set 𝒱 that contains all finite subsets
𝑉 ⊆ 𝒴𝑛, 𝑉 ⊆ ℋ|𝑆 (resp.) that have the following property: the hypergraph 𝐺 = (𝑉,𝐸) where a
hyperedge 𝑒𝑖,𝑓 = {ℎ ∈ 𝑉 : ℎ(𝑗) = 𝑓(𝑗), ∀𝑗 ∈ [𝑛] ∖ {𝑖}} and 𝐸 = {𝑒𝑖,𝑓 : 𝑖 ∈ [𝑛], 𝑓 : [𝑛] ∖ {𝑖} →
𝒴, 𝑒𝑖,𝑓 ̸= ∅}, has the property that for every orientation 𝜎 : 𝐸 → 𝑉 where 𝜎(𝑒) ∈ 𝑒, there exists
some ℎ ∈ 𝑉 such that outdeg(𝑣;𝜎, 𝛾) > 𝑛/3.

Appendix D. PAC Realizable Regression for Partial Concepts

Inspired by Alon et al. (2022), instead of dealing with concept classesℋ ⊆ 𝒴𝒳 where each concept
ℎ ∈ ℋ is a total function ℎ : 𝒳 → 𝒴 , we study partial concept classes ℋ ⊆ (𝒴 ∪ {⋆})𝒳 , where
each concept ℎ is now a partial function and ℎ(𝑥) = ⋆ means that the function ℎ is undefined at
𝑥. We define the support of ℎ as the set supp(ℎ) = {𝑥 ∈ 𝒳 : ℎ(𝑥) ̸= ⋆}.

In this section, we will characterize PAC regression of partial concepts in the realizable setting.
A distribution𝒟 on𝒳×𝒴 is realizable byℋ if, almost surely, for any 𝑛, a training set (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑛] ∼
𝒟𝑛 is realizable by some partial concept ℎ ∈ ℋ, i.e., {𝑥𝑖}𝑖∈[𝑛] ⊆ supp(ℎ) and ℎ(𝑥𝑖) = 𝑦𝑖 for all
𝑖 ≤ 𝑛. For a partial concept ℎ and a distribution 𝒟 on 𝒳 ×𝒴 , whenever ℎ outputs ⋆ it is counted as
a mistake.

Attias et al. (2023) has established the following result for total concepts.

Theorem 25 (OIG Upper Bound for PAC Regression - Cut-Off, Lemma 11 in Attias et al. (2023))
Letℋ ⊆ [0, 1]𝒳 and 𝜀, 𝛿, 𝛾 ∈ (0, 1)3. Then, the sample complexity of (𝜖, 𝛿)-PAC learningℋ under
the expected 𝛾-cut-off loss is

ℳ(ℋ; 𝜀, 𝛿, 𝛾) = 𝑂

(︃
DOIG
𝛾 (ℋ)
𝜀

log2

(︃
DOIG
𝛾 (ℋ)
𝜀

)︃
+

1

𝜀
log

1

𝛿

)︃
.

We now show that this can be extended to partial concepts. Similar results for classification are
established in Alon et al. (2022); Kalavasis et al. (2022); Hanneke et al. (2023).

Theorem 26 Let 𝜖, 𝛿, 𝛾 ∈ (0, 1)3. For any partial concept class ℋ ⊆ ([0, 1] ∪ {⋆}}𝒳 with
DOIG
𝛾 (ℋ) ≤ ∞, the sample complexity of (𝜖, 𝛿)-PAC learning ℋ under the expected 𝛾-cut-off loss

is

ℳ(ℋ; 𝜖, 𝛿, 𝛾) = 𝑂

(︃
DOIG
𝛾 (ℋ)

𝜖
log2

(︃
DOIG
𝛾 (ℋ)

𝜖

)︃
+

1

𝜖
log(1/𝛿)

)︃
.

In particular, if DOIG
𝛾 (ℋ) =∞ for some 𝛾 ∈ [0, 1], thenℋ is not PAC learnable.

Proof Our algorithm will make use of the scaled one-inclusion graph algorithm, introduced in
Attias et al. (2023) whose utility is provided by Theorem 25 for total concepts. We first show the
next lemma for the scaled one-inclusion hypergraph predictor for partial concepts.

Lemma 15 Fix 𝛾 ∈ (0, 1). For any partial concept classℋ ⊆ ([0, 1]∪{⋆})𝒳 with DOIG
𝛾 (ℋ) <∞,

there exists an algorithm A : (𝒳 × [0, 1])*×𝒳 → [0, 1] such that, for any 𝑛 ∈ N and any sequence
{(𝑥1, 𝑦1), ...., (𝑥𝑛, 𝑦𝑛)} ∈ (𝒳 × [0, 1])𝑛 that is realizable with respect toℋ,

Pr
𝜎∼𝒰(S𝑛)

[|A(𝑥𝜎(1), 𝑦𝜎(1), ..., 𝑥𝜎(𝑛− 1), 𝑦𝜎(𝑛− 1), 𝑥𝜎(𝑛))− 𝑦𝜎(𝑛)| > 𝛾] = ̃︀𝑂(︃DOIG
𝛾 (ℋ)
𝑛

)︃
.
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Proof Fix 𝑛 ∈ N. Consider a set of points 𝑆 = {𝑥1, ..., 𝑥𝑛} and let 𝑆𝑑 be the set of distinct
elements of the sequence 𝑆. Define the hypothesis class ℋ𝑆𝑑

that contains all the total functions
ℎ : 𝑆𝑑 → [0, 1] such that the sequence {(𝑥, ℎ(𝑥)) : 𝑥 ∈ 𝑆𝑑} is realizable with respect toℋ.
CASE A: Assume that ℋ𝑆𝑑

̸= ∅. This is a total concept class and so let A𝑆𝑑
be the algorithm

guaranteed to exist by Theorem 25 with 𝒳 = 𝑆𝑑 and ℋ = ℋ𝑆𝑑
. For any 𝑦1, ..., 𝑦𝑛 ∈ [0, 1] so that

the training sequence (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) is realizable with respect to ℋ (and so realizable with
respect toℋ𝑆𝑑

), define

A(𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) ≜ A𝑆𝑑
(ℋ𝑆𝑑

, 𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) .

Moreover, we can consider any permutation of the sequence 𝑥1, ..., 𝑥𝑛 and let the feature space 𝑆𝑑

and the hypothesis class ℋ𝑆𝑑
the same. Finally, we have that DOIG

𝛾 (ℋ𝑆𝑑
) ≤ DOIG

𝛾 (ℋ). The guar-
antees of the total algorithm of Theorem 25 give the desired bound.

CASE B: Assume that ℋ𝑆𝑑
is empty. In this case, set A(𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) = 0 for all se-

quences (𝑥1, ..., 𝑥𝑛) ∈ 𝒳 𝑛 and (𝑦1, ..., 𝑦𝑛−1) ∈ [0, 1]𝑛−1 that satisfy {ℎ ∈ ℋ : ℎ(𝑥𝑖) = 𝑦𝑖 with 𝑖 <
𝑛 and ℎ(𝑥𝑛) ∈ [0, 1]} = ∅.

Let us now focus on the upper bound given that DOIG
𝛾 (ℋ) < ∞. For any distribution 𝒟 re-

alizable with respect to ℋ and for a sequence of 𝑛 labeled i.i.d. examples from 𝒟, we define the
strategy ̂︀ℎ𝑛(·) = A(𝑋1, 𝑌1, ..., 𝑋𝑛, 𝑌𝑛, ·) and so the expected cut-off loss is

E[er𝛾𝒟(
̂︀ℎ𝑛)] = E

(𝑋𝑖,𝑌𝑖)𝑖≤𝑛

[︂
Pr

(𝑋𝑛+1,𝑌𝑛+1)
[|A(𝑋1, 𝑌1, ..., 𝑋𝑛, 𝑌𝑛, 𝑋𝑛+1)− 𝑌𝑛+1| > 𝛾]

]︂
≤ 𝑂

(︃
DOIG
𝛾 (ℋ)
𝑛+ 1

)︃
.

Essentially now we have to boost our predictor. In particular, we have to convert this algorithm
which guarantees an expected error bounded of DOIG

𝛾 (ℋ)/(𝑛+1) into an algorithm that guarantees a
bound on the error with probability at least 1− 𝛿. In order to boost the algorithm, we use a standard
median boosting algorithm by decomposing the dataset into log(1/𝛿) parts and using Chernoff
bounds. For the details we refer to Attias et al. (2023).

Let DOIG
𝛾 (ℋ) = ∞. We will show that ℋ is not PAC learnable. For any ℓ ≤ DOIG

𝛾 (ℋ), let
𝒳ℓ = {𝑥1, ..., 𝑥ℓ} be a set OIG-shattered byℋ. Letℋℓ be the class of all total functions𝒳ℓ → [0, 1],
any distribution 𝒟 on 𝒳ℓ × [0, 1] realizable with respect to ℋℓ can be extended to a distribution on
𝒳 × [0, 1] realizable with respect toℋ with𝒟((𝒳 ∖𝒳𝑘)× [0, 1]) = 0. Thus, any lower bound on the
sample complexity of PAC learning the total concept class ℋℓ is also a lower bound on the sample
complexity of learning the partial classℋ. This gives the desired lower bound.
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