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Abstract

In this paper we study the random geometric graph RGG(n, T?, Unif, ol,p) with L, distance where
each vertex is sampled uniformly from the d-dimensional torus and where the connection radius is
chosen so that the marginal edge probability is p. In addition to results addressing other questions,
we make progress on determining when it is possible to distinguish RGG(n, T¢, Unif, of,p) from
the ErdGs-Rényi graph G(n, p).

Our strongest result is in the setting ¢ = oo, in which case RGG(n, T?, Unif, o,°,p) is the AND
of d 1-dimensional random geometric graphs. We derive a formula similar to the cluster-expansion
from statistical physics, capturing the compatibility of subgraphs from each of the d 1-dimensional
copies, and use it to bound the signed expectations of small subgraphs. We show that counting
signed 4-cycles is optimal among all low-degree tests, succeeding with high probability if and
only if d = 6(np). In contrast, the signed triangle test is suboptimal and only succeeds when
d = 6((np)/*). Our result stands in sharp contrast to the existing literature on random geometric
graphs (mostly focused on Lo geometry) where the signed triangle statistic is optimal.

Keywords: High-Dimensional Random Geometric Graphs; Cluster Expansion.

1. Introduction

Networks arising in the sciences are often modeled as latent space graphs. Each node in a network
has a latent feature vector and the probability of connection between two nodes is a function of the
two feature vectors. One instance is the case of (random) geometric graphs in which each feature
vector is a (random) element of a metric space and the connection probability is determined by
the distance between the two vectors. Applications include protein-protein interactions and viral
spread in the biological sciences Higham et al. (2008); Preciado and Jadbabaie (2009), wireless
networks and motion planning in engineering Haenggi et al. (2009); Solovey et al. (2018), consensus
dynamics and citation networks in the social sciences Xie et al. (2016); Estrada and Sheerin (2016).
Formally, a random geometric graph is defined as follows.

Definition 1 (Random Geometric Graph) Given are a metric space (), j1), a distribution D over
Q, and connection function o : Q x Q — [0, 1] such that o(x,y) only depends on j1(x,y). Let
E[o(x,y)] = p. Then, RGG(n,Q, D, 0, p) is the following distribution over n-vertex graphs:

P[G=A]=E iid. H U(Xi,xj)A"*j(l — a(xi,xj))lfAM

x1 x2,... x"' <D
1<i<j<n
When o is monotone in ., we say that RGG(n, 2, D, o, p) is a monotone random geometric graph.
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In words, each node 4 has an associated independent latent vector x’ in €2 distributed according
to D. Conditioned on x',x2,...,x", each pair of nodes (7, j) independently forms an edge with
probability o (x?, x7). We focus on the monotone increasing case which has the natural interpretation
that closer nodes are more likely to be adjacent. In practice, the feature vectors are oftentimes not
fully available. In this work, we assume that the vectors are fully hidden.

Associated to random geometric graphs with latent vectors are a wide range of statistical and
computational tasks such as: 1) Clustering and Embedding of the nodes in a way that captures the
distances between latent vectors Li and Schramm (2023); O’Connor et al. (2020); Ma et al. (2020);
2) Estimating the dimension of the underlying space (2 in the case when dimension is naturally
defined such as Q € {S?1, T4 {£1}9} Bubeck et al. (2014); Friedrich et al. (2023b); 3) Testing
whether the network has a geometric structure against a “pure noise” (i.e., Erd6s-Rényi )! null
hypothesis Devroye et al. (2011); Bubeck et al. (2014); Brennan et al. (2020); Liu and Racz (2023a);
Liu et al. (2022); Brennan et al. (2026); Bangachev and Bresler (2023, 2024) and others.

The current work is mostly focused on the hypothesis-testing question which can be formalised
as follows (e.g. Bangachev and Bresler (2023)): Given (G, decide between

Hy: G ~ G(n,p) versus H;:G ~ RGG(n,Q,D,o,p). (P1)

Associated to these hypotheses are (at least) two different questions:

1. Statistical: When is there a consistent test? We aim to characterize the parameter regimes in

which the total variation between the two distributions tends to zero or instead to one.
2. Computational: When is there a computationally efficient test? In particular, when does there
exist a polynomial-time test solving (P1) with high probability?

Question (P1) has received significant attention in recent years in the case when (€2, i) captures an
Ly geometry. Concretely, j is the induced Ly distance from R? and (€2, D) is either the unit sphere
S9! with its uniform (Haar) measure Devroye et al. (2011); Bubeck et al. (2014); Brennan et al.
(2020); Liu et al. (2022); Bangachev and Bresler (2024) or Euclidean space R? with a Gaussian
measure Liu and Racz (2023a,b); Brennan et al. (2026). In all of the above monotone models, the
conjectured information-theoretically optimal statistic is the signed triangle statistic, computable
in polynomial time. For a summary of results on Lo models, we refer the reader to Duchemin
and de Castro (2022); Bangachev and Bresler (2023). Most relevant to our work is the case when
Q = S D = Unif, and o(x,y) = 1[(x,y) > ,og], where pg is chosen so that the expected
density is p. The state of the art results are as follows. When d = O(n3p3), by counting signed
triangles one can distinguish between the RGG model and G(n, p) with high probability Bubeck
etal. (2014); Liu et al. (2022) and this regime is optimal with respect to low-degree tests Bangachev
and Bresler (2024). There is a matching information-theoretic lower bound when p = ©(n~!) Liu
et al. (2022) and when p = ©(1) Bubeck et al. (2014). The case n~! < p < ©(1) remains open
and the best known lower bound is d = Q(n3p?) Liu et al. (2022).

In Bubeck et al. (2014), the authors also show that the signed triangle statistic is optimal for exact
recovery of the dimension in the model @ = S¥! D = Unif and o(x’,x7) = 1[(x*,x/) > 0].
The (signed) triangle statistic in monotone models is intuitive as it captures the axiomatic triangle
inequality: If z and y are close and y and z are close, then so are x and z Bubeck et al. (2014).

1. In the Erdds-Rényi distribution G(n, p), each of the (;) edges appears independently with probability p. As there is
no underlying dependence structure, this is a natural null model.
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These results and intuition have led to the conventional wisdom that (signed) triangles are most
informative, at least in monotone random geometric graphs.”> Subsequent works in very different
geometries have also used triangle-based statistics, for example to estimate the hidden dimension
Almagro and M. & Serrano (2022); Friedrich et al. (2023b).

In this paper, we go against this conventional wisdom and demonstrate that the (signed) triangle
statistic can be suboptimal. More concretely, we study the hypothesis testing problem under L,
geometry for ¢ € [1,00) U {oc} and show that different values of ¢ yield both quantitatively and
qualitatively different behaviours (see Figures 1 and 2). In particular, when ¢ = oo, triangle-based
tests are always suboptimal. The suboptimality of triangle-based estimators extends to the task of
dimension estimation as well. We use the (unweighted version of the) model of Friedrich et al.
(2023a,b) with L, geometry over T¢. The model can be viewed as a high-dimensional analogue of
the planted dense cycle model, which has also been of recent interest to the combinatorial statistics
community Mao et al. (2023, 2024).

Definition 2 (L,-Hard Thresholds Model on T?) Consider the torus T? = (28*)*? which is a
product of d circles of circumference 2. Let Unif be the uniform (Haar) measure over T%. For
x1,71 € 28, denote by |x1 — y1|c € [0, 1] the circular distance, i.e. the length of the shorter arc
connecting x1 and y. For 1 < q < 400, introduce the L distance on T¢ given by

d 7\ /4
I = yllg = (e —wild)

=1

Also, [|x = ¥lleo = limg 100 llx — ylg = max;|z; — yilc. Let 1 > p > 0,77 > 0 be

such that E []l[HX -ylg < Tg]} = pand ol(x,y) = 1[||x — yllq < 73] Then,
X,

R Unif(T4) =
RGG(n, T?, Unif, op,p) is the random geometric graph over T¢ with expected density p in which
two vertices are adjacent whenever the L distance between their latent vectors is at most ;.

To the best of our knowledge, the work of Friedrich et al. (2023a) is the first to explore (P1) for
random geometric graphs in non-L9 geometries. They showed that in the L, model of Definition 2
(as well as for an inhomogeneous generalization of it) for fixed p, n,

lim TV(RGG(n,Td,Unif,ag,p),G(n,p)) = 0.
d—oo

Their approach, based on a multidimensional Berry-Esseen theorem and mimicking Devroye et al.
(2011), however, only yields TV distance of order o(1) when d = exp(€(n?)). Improving this
bound is posed as an open problem, which is also one of the main motivations of the current work.

Friedrich et al. (2023a) also estimate the probability with which a given set of edges appears
in RGG(n,Td7 Unif,a;’ﬂp) (and its inhomogeneous generalizations). They show that for edge
subsets A of constant size and d = w(log®n), the probability that all edges of A appear in
RGG(n, T¢, Unif, o,°,p) is pHI (14 0(1)). This also allows the authors to bound the clique number
of RGG(n, T?, Unif, o, p). In a subsequent paper, the authors use these quantities for estimating
the dimension of a random geometric graph Friedrich et al. (2023b).

2. Bangachev and Bresler (2023) do give several geometric examples in which signed triangles are not the optimal
statistical test for (P1). However, in all of them, either the connection probabilities are not monotone or they do not
correspond to true “distances” (but, for example, to a non-PSD inner product as in their Theorem 6.17).

3. We choose the circumference to be equal to 2 simply for convenience. One can equivalently define T¢ = R¢/ ~,
where x ~ yifandonlyifx —y € 274,
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Figure 1: Visualizing Theorems 4, 5 and 6. In
region I, the signed triangle test solves (P1) for
RGG(n, T%, Unif, o5°, p) with high probability. In region
I + II, the signed 4-cycle test succeeds with high proba-
bility. In region III 4 IV, no low-degree polynomial test
succeeds. In IV, it is information theoretically impossible
to solve (P1) with high probability. The last region is po-
tentially suboptimal.
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Figure 2: Visualizing Theorems 9 and 10. In region I,
the entropy of RGG(n, T, Unif, 0‘17/2, 1/2) is much lower
than that of G(n, 1/2). Yet, we do not know any efficient
test that distinguishes the two graph models in this region
(even though, we believe the signed 4-cycle count does in
a strictly larger region). In region II, it is information the-
oretically impossible to solve (P1) with high probability.
Both regions are potentially suboptimal.

2. Main Results

Throughout, we frequently refer to signed subgraph counts and low-degree polynomial tests. As
these are by now standard in the literature on latent space graphs, we defer the full definitions to
Appendix A. Now, we only informally recount the signed triangle count test. For expected density
p, itis defined by SCA(G) == 31 ;. ;< (Gij — P)(Gji — p)(Gri — p) over all triangles i, j, k on
input graph G. If G ~ G(n, p), this sum has expectation zero and, by Chebyshev’s inequality, with
high probability SCA (G) € [—v,v], where v is any value asymptotically larger than the standard
deviation. SCa(H) for H ~ RGG similarly concentrates (via Chebyshev’s inequality) in some
interval [—w + 0, w + 6]. If the two intervals are disjoint, the value SCA distinguishes between
G(n,p) and RGG. On the other hand, when the standard-deviation-width intervals overlap, we say
that the signed triangle test fails. One can similarly reason with polynomials other than SCa (G),
in particular the signed four-cycle count SCo(G).
Throughout the rest of the paper, we make the following assumption:

There exist some absolute constants §, ¢ > 0 such that nTite < p<1/2, nd <d. (A)

2.1. Main Results for L., Geometry

The L, case is special because of the following factorization property over coordinates:
Ix — ¥|loo < 7T holds if and only if |x; — y;| < T holds for each i € [d]. This means that each edge
(u,v) is the AND of d independent edges in the 1-dimensional random geometric graphs over the
different coordinates. In comparison, previously studied Ly models have a (weighted) MAJORITY
combinatorics. For instance, in the spherical case (x,y) > p if and only if Z?Zl |zi| % Jyi| %
sign(z;y;) > p. Each sign(x;y;) is an independent 1-dimensional edge and the values |x;| X |y;| are
the corresponding weights. Similarly, over {£1}¢, weights equal 1 and MAJORITY is unweighted.

Factorization over the induced independent 1-dimensional random geometric graphs makes the
computation of expected signed subgraph counts tractable as computations in one dimension are
naturally simpler. Signed subgraph counts are fundamental in studying random graph distributions



Lo, RANDOM GEOMETRIC GRAPHS

as they are the Fourier coefficients of the probability mass function. The factorization property, also
utilized in Friedrich et al. (2023a), is the first main ingredient in our results in the L, case.

The second ingredient is combining the induced 1-dimensional structures via the AND function.
While in certain special cases this step is nearly trivial (e.g., in Theorem 4 we only need to do it for
K5 ¢ subgraphs and in Theorem 5 for triangles and 4-cycles), in full generality it requires a careful
analysis of the compatibility of induced 1-dimensional structures. We carry out such an analysis
in Section 3 by viewing each 1-dimensional structure as a polymer and expanding the product over
the d coordinates. A rearrangement of terms yields a tremendous amount of cancellations that
leaves us with an expression for the expected signed subgraph counts similar to the celebrated
cluster expansion formula (e.g., Mayer and Mayer (1940); Kotecky and Preiss (1986); Friedli and
Velenik (2017)) from statistical physics (which has found many other applications in combinatorics
and theoretical computer science, e.g. Scott and Sokal (2005); Helmuth et al. (2019); Jenssen and
Perkins (2020)). In our case, the compatibility criterion is given by the size of the overlap of different
1-dimensional structures. What makes a cluster-expansion-like formula appealing is a rapid decay
of terms which means that terms corresponding to small clusters determine its asymptotics (as in
the Kotecky-Preiss theorem Kotecky and Preiss (1986)). The derivation and analysis of this formula
is our technical and conceptual highlight in the L., case.

This gives the following bound on signed subgraph weights of RGG(n, T¢, Unif, 0,°,p). For a

set of edges H = {(il,jl), (iz,jg), ce (Zk,]k)}, denote

SWg(G) = H (Gij —p) (the signed weight of H),
(ij)EE(H)
(1)
Wg(G) = H Gi;  (the unsigned weight of H).
(ij)EE(H)

Theorem 3 Suppose that H C K, is a graph on |E(H)| < (logd)®/*/(loglog d) edges. Under
Assumption (A), there exists a universal constant C' such that

log d [V(H)|/2
EGRGG(n,T4,Unif,05,p) [SWH ” - ( <( d) ) ’

The quantity pl®Ul appears naturally as each of the |E(H)| edges has marginal expectation p.

An exponentially small quantity in the number of vertices, i.e. ((logd)®/d) VUDIZ o pears fre-
quently in the computation of Fourier coefficients of latent space graphs as it corresponds to events
determined by the |V (H)| latent vectors (e.g., Hopkins (2018) for planted clique and Kothari et al.
(2023); Rush et al. (2023) for instances of the stochastic block model). While we do not have
an intuitive explanation of why |V (H)|/2 is the correct dependence, it is crucial to the proof of
Theorem 6. An exponent of the form |V (H)|/(2 + &) for any constant { > 0 would not suffice.

In a subsequent work by the same authors Bangachev and Bresler (2024), a similar statement to
Theorem 3 is derived for spherical random geometric graphs. In that setting, the signed subgraph

count of H is bounded by (8p)IPUI x (%)OEI(H)N, where OEI(H) is a function of H for
which OEI(H) € [[(|V(H)| — 1)/2], \V( )| — 1]. In particular, in the spherical case the bound

might be as large as (8p) [E(H)] ( (log 4)° ) VeI . Hence, the Fourier coefficients of d-dimensional

spherical random geometric graphs mlght be polynomially larger than the Fourier coefficients of d-
dimensional random geometric graphs over the torus with L, metric. This explains why detection
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is (information-theoretically and with respect to low-degree polynomials) possible in a larger range
of dimensions d in the spherical case.

Our proof of Theorem 3 also yields improved estimates for the unsigned subgraph weights
studied in Friedrich et al. (2023a). We discuss this in Appendix B. Now, we present the algorithmic
implications of Theorem 3.

2.1.1. DETECTING L., GEOMETRY

The first approach to (P1) is information-theoretic. An argument of Liu and Récz (2023a) (stated in
Appendix A) reduces this question to bounding signed weights of K5 ; subgraphs. We obtain:

Theorem 4 (Information-Theoretic Lower Bound for L., Model) If (A)  holds and
d > (logn)® max(n3/%p, n) for some universal constant C, then

TV(RGG(n,Td, Unif, 05, p), G(n,p)) = o(1).

Theorem 4 already highlights a quantitative difference between L., random geometric graphs
over T% and Ly models over S¢!(recall the results of Liu et al. (2022)): The former converge to
Erd6s-Rényi at a polynomially smaller dimension. Much more interesting, however, is the following
qualitative difference in the relative performances of signed triangle and 4-cycle counts.

Theorem 5 Under Assumption (A), consider problem (P1) with Hy : RGG(n, T?, Unif, o,°, D).
There exists some universal constant C > 0 such that:
1. The signed 4-cycle test distinguishes the two graph models successfully with high probability
if d < (logn)~%np and fails with high probability if d > (logn)®np.
2. The signed triangle test distinguishes the two graph models sucessfully with high probability
if d < (logn)~C (np)®/* and fails with high probability if d > (log n)® (np)3/4.

We provide intuition behind the suboptimality of signed triangles and its consequences in Sec-
tion 2.1.2. Now, we address the gap between the upper and lower bounds in Theorems 5 and 4.

Theorem 6 (Computational Lower Bound for L., Model) If (A) holds and d > (np)'*" for
any absolute constant 1) > 0, then no polynomial test of degree at most (logn)®/*/(loglogn) can
distinguish G(n, p) and RGG(n, T%, Unif, 0,0, p) with high probability.

A popular conjecture is that “sufficiently noisy” statistical problems in high-dimension can be solved
in polynomial time only if there is an O(logn)-degree polynomial test that solves them Hopkins
(2018). In this light, our result suggests that: 1) Either, there is a statistical-computational gap for
detecting L, geometry; 2) Or, Theorem 4 is suboptimal. Resolving the presence of a statistical-
computational gap is an exciting question for future research. Closely related models provide ex-
amples of both positive and negative answers to this question. Spherical random geometric graphs
do not exhibit a statistical-computational gap in the dense case p = 1/2 Bubeck et al. (2014). A
certain quiet planted coloring model (Kothari et al., 2023, Definition 2.18) (which, in particular, can
be realized as a random algebraic graph (see Definition 11) over a discrete torus) is shown to exhibit
an information-computation gap within the low-degree polynomial tests framework.
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2.1.2. TRIANGLES AND 4-CYCLES IN L., GEOMETRY

We end our discussion of the L., model with a further comparison between signed triangle counts
and signed four-cycle counts. First, we illustrate with an example.

Example 1 Consider the case p = % in which Tijp = 1= A, where A = ©(1/d) (see Definition 2).

First, we interpret E[(2G12 — 1)(2Ga3 — 1)(2G31 — 1)], the signed expectation of triangle
{1,2,3}. It measures the correlation between the events “2 is a neighbour of 1” (captured by the
term (2G1o — 1)) and “2 is a two-step neighbour of 1 via 3” (the term (2G13 — 1)(2G32 — 1)).
Over the unit sphere, these two notions have perfect rank correlation as both are monotone in
the distance between vectors x',x%. The closer x',x? are, the larger the probability that X3 is
a common neighbor or a neighbor of neither. This is not the case in the Lo, model. Consider
x! = (0,0,...,0),x% = (1,0,0,...,0), and x*» = (3,1,...,3). Clearly, |x! — x%||oc = 1, 50
vertices 1 and 2, are not adjacent. Still, the set of latent vectors adjacent to x*,x%* has measure
(1 —2X) x (1 = N9t = 1(1 + o(1)) since a point x* is adjacent to x' and x* if and only if
(x3)1 € (=M AU = N1+ N),and (x3); & (1 =\, 14+ \) fori € {2,3,...,d}. In contrast, x*
and x?» are adjacent and only at distance 1/2, but the set of latent vectors adjacent to x',x? has
the much smaller measure (1 —2X)% = L(1+0(1)) (x3); & (2 = A, 2+ X)) U (1 — X, 1+ ) Vi).

The 4-cycle statistic on cycle {1,3,2,4} measures the correlation between two-step paths 1-3—
2 and 1-4-2 from 1 to 2. This statistic does not suffer from the same issue as signed triangle counts

because the two two-step paths are the same function of x' — x2.

The advantage of counting signed four cycles over counting signed triangles in the L., model ex-
tends to other tasks beyond testing against Erdés-Rényi, for example estimating the dimension
in RGG(n, T¢, Unif, s p). The existing literature on dimension estimation is fully focused on
triangle-based estimators Bubeck et al. (2014); Almagro and M. & Serrano (2022); Friedrich et al.
(2023b). Not much is known about the optimality of these estimators beyond the case of Lo geom-
etry. We consider the following problem.

On input n, p and G, where G ~ RGG(n, T, Unif, ago,p),ﬁnd the unknown dimension d. (P2)

One can also study variants of this problem, such as when the expected density p is unknown or
when one allows for a small error in estimating d. We focus on this simplest version as our goal is
to demonstrate the advantage of counting signed four-cycles over counting signed three-cycles.

Theorem 7 (Simple Estimators for Dimension Recovery) Consider (P2) under assumption (A)
with known value of § such that d > n°. There exists an absolute constant C' > 0 such that:
1. The signed 4-cycle statistic recovers d exactly with high probability when
d < (logn)~C(np)?/® and fails with high probability when d > (logn)€ (np)?/3.
2. The signed triangle statistic recovers d exactly with high probability when
d < (logn)~C(np)'/? and fails with high probability when d > (logn)€ (np)/2.

It is important to note that Theorem 7 holds under the assumption (A) requiring np and d to be
polynomial in n. The setting of Friedrich et al. (2023b) in which the authors use a (weighted)
signed triangle count is in a disjoint regime np = ©(1),d = o(logn).
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2.2. Additional Results
2.2.1. L, GEOMETRY FOR ¢ < 00

So far, we have shown that random geometric graphs with L., geometry behave qualitatively and
quantitatively differently from Lo models with respect to (P1). This motivates the question of
studying (P1) in other geometries as well, in particular L,. The analysis of L, models, however,
turns out to be much more challenging when ¢ < oco. The factorization over 1-dimensional random
geometric graphs does not hold any longer. This makes the computation of signed subgraph counts
much more difficult. We have not succeeded to perform such a computation even for triangles.

One special case in which we manage to bound the signed subgraph count is the case of bipartite
graphs K5 ;, which is enough to prove an analogue of Theorem 4. What makes this calculation
simpler is that the signed expectation of Ko is given by the ¢-th centered moment of the self-
convolution of ag /20 Using the Bernstein-McDiarmid inequality (in Appendix A), we bound the
centered moments of o by revealing the d coordinates one at a time. The technical highlight of
this argument is proving that each coordinate (say x4) is marginally nearly uniform on T' even
conditioned on the value of 0‘11 /2(X, y) when ¢ < d. The reason for this phenomenon is that the

contribution of the remaining d— 1 coordinates, i.e. Z?;ll |zi—yi| &, is sufficiently anticoncentrated
and, thus, there are no spikes in its distribution that would bias x4 strongly when conditioning
on ag /2 (x,y). We derive the following general anticoncentration result by extending the work of
Bobkov and Chistyakov (2014) to random variables with potentially unbounded density.

Corollary 8 Suppose that X is a non-negative real-valued random variable that is absolutely
continuous with respect to the Lebesgue density with pdf f. Let d € N and p € (0, 1] be such that
d > p~L. Let m be such that f{f(x)>m} fly)dy = 1 — p. Then, for any interval [a,b] C R, if
X1, Xo, ..., X are independent copies of X,

m

Vpid

We fix p = 1/2 and vary ¢ so that we obtain a meaningful comparison of different geometries.

P[X1+Xo+ -+ Xg € [a,b]] <exp(—dp/8) + V2e (b—a).

Theorem 9 Suppose that ¢ > 1. There exists an absolute constant C' > 0 such that:

1. Ifq = o(d/log d) and dq > n3(log n)C, TV<RGG(n, T, 0%,,.1/2), G(n, 1/2)) — o(1).
2. If g = Q(d/log d) and d? > n3(log n)C, TV(RGG(n,’]I‘d,a‘f/Q, 1/2), G(n, 1/2)) — o(1).

This statement interpolates between known results for Lo models where convergence to G(n, 1/2)

occurs when d = @©(n?) (for example, in the spherical case Bubeck et al. (2014)) and L, models

when convergence occurs for d? = @(n?) (see Theorem 4). Our corresponding lower bound is:

Theorem 10 Tuke any q € [1,+00| and any p such that 1/2 > p > 1/n. If d = o(np/logn), then
TV<RGG(n7 T, Unif, o, p), G(n,p)) =1-—o0(1).

Interestingly, this gives the same bound as the signed 4-cycle test when ¢ = oo (Theorem 5).
The proof proceeds by discretizing T¢ and applying an entropy argument similar to (Bangachev
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and Bresler, 2023, Theorem 7.5) which shows that the support of RGG(n, T4, Unif, o3, p) is con-
centrated on a set of size exp(O(dnlogd)). Developing algorithmic upper bounds for general L,
remains open. We present some ideas and conjectures in Appendix G, based on a Fourier-analytic
interpretation of signed subgraph counts similar to (Bangachev and Bresler, 2023, Observation 2.1).

2.2.2. RANDOM ALGEBRAIC GRAPHS

What makes the Bernstein-McDiarmid analysis feasible in the case of Theorem 9 is that the coordi-
nates of T? are independent. This method can be extended to other cases of a product structure.

Definition 11 (Random Algebraic Graph over Tori Bangachev and Bresler (2023))  Suppose
that G is a finite Abelian group or a finite-dimensional torus T®. Let Unif be the uniform (Haar)
measure over G and let o : G — [0, 1] be a measurable function such that o(g) = o(—g) holds
a.s. and Eg unif(g)[0(8)] = p- RAG(n, G, 0, p) is the following distribution over n-vertex graphs:

P[G=A =E [ o' =x)hi(—o(x" —x9))' 4]

xl,xg,...,x”i'i@d'D [
1<i<j<n

For any n, d, ¢, p, the random geometric graph RGG(n, T¢, Unif, o, p) is also a random alge-

braic graph under the choice G = T¢ and o(g) = 1[||g||, < 7]. Overloading notation, we will also

use o as one function-argument, that is o}(x,y) = op(x — y).

In Bangachev and Bresler (2023), the authors study in detail the case G = {£1}¢ and de-
rive a general criterion based on the sizes of Fourier coefficients on each level of o that guarantee

TV (RAG(n, {£1}¢,0,p),G(n, p)) = 0(1). Using a technically much simpler argument, based on

the combination of (Liu and Racz, 2023a, (4)) and Bernstein’s inequality, we also recover such a
criterion. It relates statistical convergence to Erd6s-Rényi with influences of Boolean functions.

Theorem 12 Suppose that o : {£1}¢ — [0,1] is a connection with expectation p. Then,

n® 3 Inf;[o]?
p*(1—p)? '

TV(RAG(n, (114, 0, p), G(n,p))2 — 0(

We thoroughly compare Theorem 12 and (Bangachev and Bresler, 2023, Theorem 3.1) in Ap-
pendix H. For now, we reprove two results from Bangachev and Bresler (2023) using Theorem 12.

Corollary 13 TV(RAG(n, {£1}4, 0, p), G(n,p)) = o(1) in the following cases:
1. If o is —=-Lipschitz and d = w(pg—;).

r/d
2. Ifo(g) =1 [Zg:]_ 9i = Téil}d} , where Tz}{il}d is such that E[o] = p, d > (logn)“n3p?.

Proof For part 1, observe that whenever ¢ is (rv/d)~'-Lipschitz, by the definition of influence,

i\ 2 )
Inf;[0] = B, unif({£1}4) [(W) < ﬁ, where x®* denotes the vector x with the i-

th coordinate flipped. We used |o(x) — o(x%%)| < ﬁ which follows from the Lipschitzness

assumption. The conclusion follows from Theorem 12.
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For part 2, again consider Inf;[o]. The expression o(x) — o(x®*) is non-zero only if x has
d+Tp or d+Tp

— 1 ones. A simple calculation (carried out, for example, in (Bangachev and Bresler,

2 2
2023, Proof of Proposition 4.7)) shows that the probability of this happening is O(p,/log % /\/d).
Each influence is of order O(p?/d) and the conclusion follows. [

3. Cluster Expansion in L., Random Geometric Graphs

Here, we describe our conceptual and technical highlight: a “cluster-expansion” formula for
RGG(n, T?, Unif, 05°, p) which yields Theorem 3.

Preliminaries: Recall Assumption (A). Note that 7;° satisfies (T;;O)d = p. Indeed, this is the case
since p = P[||x]loc < 75°] = P[|z1]|c < 75°]%. This immediately implies that 70° = 1 — A>°,
where \>° = %(1 +0(1)). We will write o, A, 7 instead of o°, \7°, 70° for brevity.

Fix some subgraph H C K, defined by edges ej,eo,...,er. We want to bound
EGrGG(n,14,Unif o3 ) [SWH(G)] and Eg re6(n,1¢,Unif oz p) [WH(G)]. We utilize the AND
structure of L., random geometric graphs, described in the introduction, towards this goal. This
is done in several steps, which can be similarly applied in other instances of AND structure (another
random graph family exhibiting AND structure is random intersection graphs, see Brennan et al.
(2020)).

Step 1: Factorizing Expected Weights over Independent Coordinates. A simple but crucial
observation about the L, model is that the different coordinates factorize. Namely, ey = (g, Je) is
an edge if and only if [z — /| < 1 — X for each coordinate u € [d]. Using the independence of
coordinates under the distribution Unif (T¢),

E G Rr66(n,14,Unif o3 p) WH(G)] = EGree(n,T1,Unif,0% , ,1-3) Wg(G)]% (2)

Step 2: Computations Over a Single Coordinate via Inclusion-Exclusion. Computing the one-
dimensional quantities over the graph complement G is simpler than computing them over G.
The intuitive reason is that in the complement each edge appears only with very low probability
A= (:)(1 /d). In other words, the appearance of an edge is a very restrictive event that largely
determines the configuration of latent vectors. Concretely, for a set of edges A, denote by y(A) the
probability that no edge of A appears in G ~ RGG(n, T!, Unif, 05° ,, 1 — \), i.e.,

X(A) = PGNRGG(n,Tl,Unif,ai’o_)\,l—)\) [G” = 0 for all Zj € A] . (3)

Equivalently, y(A) is the probability that each edge in set A appears in the random geometric graph
over T! with connection o (z, y)i> = 1[Jx — y|¢ > 1 — A] and expected density \.

The event {a(x, y)i> = 1} significantly constrains the relative locations of z,y on T': They

are at distance 1 — O(d~1), so they are nearly diametrically opposite. The principle of inclusion-
exclusion converts the computations in the complement to computations over the original graph:

EgRe6(n,m Unifoxe , 1-nWH(G)] = Y (=1)FWix(4). (4)
ACE(H)

10
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Step 3: Measuring Perturbations From Erdds-Rényi. We take an approach inspired by statis-
tical - physics of measuring perturbations from the “ground state” Erdés-Rényi graph.* Measuring
perturbations from Erd6s-Rényi is natural as that is the null model against which we are testing. We
first do this at the level of single subgraphs appearing in the 1-dimensional complements, as in (4):

B(A) = x(A) — AFL (5)

This is the deviation from the probability of all edges in A appearing in G(n, ). Recalling (4), we
immediately get a perturbative expression for Eg .rGG(n,T?,Unif,02 , 1-2) Wg(G)]:

EGR66(nT! Unif.o 1-3) Wa(G)] = Y (—D)FWIx(4) = > (1) POl (A) + A
ACH ACH
= (1—NEE L Er(H, N, where  Err(H,\) = Z (=1D)IE@ly(A). (6)
ACH

We interpret each subgraph A of H as a polymer and the quantity (—1)|E (A)|¢(A) as the weight of
the polymer. In that view, the expression Err(H, \) is the sum of the weights of polymers which
captures “the first order” deviation from the ground state (1 — X\)/Z()|. The quantity (1 — X)/Z()
is a natural ground state for the expected weight of H in one dimension as it corresponds to the

d
expected weight when edges are independent. Expanding (1 — MIEE] L Err(H, /\)) in (2),

d

d —i i
EGRGG(n,T4,nif 050 p)[WH(G)] = Z <z) (1 — \)EDIEEDIEr (H, A (7
i—0

Again, the term (1 — \)#EUDI = plEH)] corresponding to @ = 0 is the “ground state” weight of
H in G(n,p). Each term of the form Err(H, \)? is composed of products of i-tuples of polymer
weights, and, thus, can be interpreted as “the ¢-th order” perturbation from the ground state.

Step 4: Bounds on Polymer Weights. To derive a bound from (7), one needs to bound the poly-
mer weights and, subsequently, the Err(H, A) term. In Appendix A and B, we show that perturba-
tions 1)(A) are indeed small. Relatively straightforward computations (as they are all over a single
dimension, recall (3)) yield:

Lemma 14 For every set of edges A such that |V (A)| < 1/(8)), the following hold:
1. If A can be decomposed as A1 U Az, where |V (A1)NV (A2)| < 1, then x(A) = x(A1)x(A2).
2. If Ais a forest, then x(A) = NPl and 1p(A) = 0.
3. x(A) < AWI= ywhenever A is connected.
4. If Ais not bipartite, x(A) = 0. In particular, )(Cop 1) = =AML,
5. |w(A)| < 2 AmaxdVIAI/2+LIVA)[=nume(A)} yyhere numc(A) denotes the number of con-
nected components of A.
6. If m < 1/8), then x(Cp,) = X" Lp(m — 1), where ¢p(m) == P[U; + Uz + -+ Up_1 €

[—1,1]] for Uy, Us, ..., Up—y "<& [=1,1).5

4. While no familiarity with statistical physics is needed to follow the argument, we will borrow some terminology with
the purpose of explaining our approach in familiar language.
5. One can easily check that ¢(1) = 1, ¢(2) = 3/4, $(3) = 2/3,¢(m — 1) = O(m~/?).

11
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Step 5: From Unsigned Weights to Signed Weights - Again Inclusion-Exclusion. Signed sub-
graph weights do not immediately factorize over the independent coordinates. That is, while in the
unsigned case we have 1[[|2% — 27|00 <1 — A = [T9_, 1[||2%, — }]c <1 — A], no such expres-
sion holds for (1[||z° — 27||cc <1 — A] — p).° Instead, we reduce to what we know about unsigned

weights: -

k
EGRr6G(n,1¢,Unif o3 ) SWH(G)] = E[H(Gei - p)}

=1
= Z (—P)|E(H)HE(A)'EG~RGG(n,Td,unif,ago,p)[VVA(G)} (8)
ACE(H)
= Z (—)EEIEIE@] g — \)dEEEADE, | ~RGG(n, T4, Unif o5 p) [Wa (G)].
ACE(H)

Using (7) for any A C H, we obtain

EGRGG(n,T4,Unif o5 p) [SWH(G)] =

= 3 (~1)BUDEIE@I (1 x)dIBEDI-IEA i( ) (d=OIEAErr (A, N)

ACH i=0 )
d
-y <‘?)(1 ) IEUDL S () BUDISBAI () p)iEEDI-EADErr(A, A
7
i—0 ACH

Step 6: The Cluster Expansion Perspective on Signed Subgraph Counts. Err(A, \)’ is the
sum of products of i-tuples of weights of polymers, equivalently “the ¢-th order” deviation from the
ground state. When we sum over A C H, each i-tuple appears with some coefficient which captures
the compatibility of this i-tuple. Expanding (9) (full detail in Appendix B.3.2) in the style of the
formal derivation of the cluster expansion formula (e.g. (Friedli and Velenik, 2017, Chapter 5)):

Z (_1)|E(H)\*|E(A)I(1 _ /\)i(IE(H)\*IE(A)I)Err(A )\)i
ACE(H)

— Z (1 — (1 — \)H)IEEDIIBEU-UEK:) IH DIEED (K K;). (10)

K1,Ks,....K;CE(H)

Expression (10) is the i-th order of the “cluster expansion” for signed subgraph weights. Since

S acg(—DIEEI=IE@A] = Z'E () (‘E( ) (=1)!EUDI= = 0, the ground state captured by the
terms appearing when i = 0 Vanlshes ThlS is intuitive because in the ground state case of inde-
pendent edges each expected signed subgraph weight is 0. It remains to interpret the “soft com-
patibility criterion” captured by the coefficient (1 — (1 — \)%)/EU)I-IE(K1UK2 UKl Whenever
|E(K) U Kj--- U K;)| is small, this coefficient is very small as 1 — (1 — A\)* = O(d™"). Thus,

6. One cannot expect (1[[|z° — 27 ||co < 1 — A] — p) to always be a d-th power, for example because 1[||z° — 27||oo <
1 — A] — p might be negative while a d’th power is always positive when d is even.

12
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polymers K1, Ko, ..., K; are more compatible when |E (KUK - - -UKj;)| is smaller. Such a com-
patibility criterion should not be surprising—subgraphs K; corresponding to different coordinates
are more compatible when they are more similar (so that their union does not blow up).

The final step towards Theorem 3 is to bound the i-th order deviations from the ground state:

Lemma 15 Recall the definition of Err(A, \) in (7). For 1 < i < d, the following holds:

Z (_1)|E(H)|—\E(A)|(1 — )\)i(\E(HN—\E(A)I)Err(A’ M)
ACH

1 (log )€\ IV(H)|/2
= @ay ~ ( d ) '

In proving Lemma 15, there are two conceptually distinct regimes for ¢, as is common in the

asymptotic analysis of sums (in particular, in the cluster-expansion formula).

1. Small values of i. We use (10). By Lemma 14, |[p(K;)| < (2X)/V(E3)I/2+1 Thus, whenever
Z§:1 |V(Kj)| is large, the total weight |¢)( K1)y (K2) - --1(K;)| of the i-tuple is low. An
energy-entropy trade-off phenomenon occurs—and there are very few i-tuples for which
Z;Zl |V (K;)| is small:

Lemma 16 Leti > 2,0 < b < i be integers qnd a > 0 be a real number. Then, the number
of i-tuples Ky, Ko, ... K; of H such that }:_, |V (K;)| < ab is at most exp (b(logi) +
a*ilog |[E(H)| + |E(H)b).

To handle the few potentially “high-energy” terms — for which 22:1 |V (K;)| is small — we

use a comparison inequality. Namely, [¢)(K;)| < (2X)!V(El=nume(5) from Lemma 14 for
all j and the fact that the quantity |V (K)| — numc(K) is subadditive under edge unions
(proved in Appendix B) allows us to bound |¢)(K1)y(K2)--- ¢ (K;)| by [(K1 U Kg--- U
K;)|. This makes all quantities in (10) functions of K7 U K5 - - - U K; (up to signs).

2. Large values of . “High degree” terms are asymptotically irrelevant due to a rapid enough
decay of Err(A,\)". Specifically, one can prove that for all A C E(H), |Err(A,\)| <
d—3t0a(1) by applying triangle inequality over all subgraphs K of A (recall the definition
of Err(A, ) in (7)) and using that [)(K)| < (2X)22xGIVEI/24D) from Lemma 14.

4. Discussion and Future Directions

Testing for Different Geometries. For different values of ¢, not only the limits of computational
and statistical detection of L, geometry vary, but also the optimal algorithms are different. In
particular, contrary to previous work, the signed triangle count is not always optimal as the signed
4-cycle test succeeds in a polynomially larger range. This naturally leads to several other questions.

What other tests besides counting signed 3- and 4- cycles can be optimal for detecting high-
dimensional latent geometry? We note that the recent work Yu et al. (2024) addresses a similar
question for models of a planted dense subgraph in a dense Erd6s-Rényi graph (instead of models
with latent geometry). They show that for this family of models, the optimal constant-degree test is
always a star or an edge count.

Are there instances in which a statistical-computational gap for detecting
high-dimensional geometry is present? A positive answer to this question might even be hidden
in the RGG(n, T¢, Unif, og, p) models considered in the current paper as there are gaps between the
statistical lower-bounds and computationally efficient algorithmic upper bounds.

13
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Other Statistical Tasks on Random Geometric Graphs Over The Torus. Especially intriguing
seems the task of efficiently embedding a sample from RGG(n, T%, Unif, o, p) into (T<, || - ||,) so
that marginal distances are non-trivially approximated.

Problem 17 On input a sample G ~ RGG(n, T, Unif, o}, p) corresponding to latent vectors
g1,82,.-.,8En € T¢, find some vectors gi,82,---,8n € T¢  such that

rcicien |18 = 8illa = 18 = Eille] = 0 Lrcicycn I8 — &slla).

This question has been addressed in prior work for different random geometric graph models,
but we believe that the setting of RGG(n, T¢, Unif, op, p) will require substantially different ideas.
The spectral approach of Li and Schramm (2023) heavily relies on an inner product structure, which
is only present in RGG(n, T?, Unif, o, p) when ¢ = 2. The optimization framework of Ma et al.
(2020) works in settings of L, geometry for general ¢, but only gives strong poly-time guarantees
for connection functions bounded away from 0 and 1, i.e. ¢ < o(x,y) < 1 — ¢ for some ¢ > 0.
This however, is not the case in RGG(n, T¢, Unif, op,p) as o} only takes values 0 and 1. We should
mention that Mao et al. (2024) consider the embedding problem for the planted dense cycle model,
which resembles RGG(n, T¢, Unif, o}, p) albeit the latent geometry has dimension 1. Nevertheless,
their algorithm gives an information-theoretic upper bound and is not obviously efficient.

The Cluster Expansion Approach. The first step (2) in our “cluster-expansion” approach for
bounding the Fourier coefficients of small subgraphs is to exploit the AND structure over induced
1-dimensional random geometric graphs in RGG(n, T%, Unif, 0,°,p). The same approach can be
applied to other random graphs generated by an AND (respectively OR in the complement) structure
such as random intersection graphs (e.g. Brennan et al. (2020)).

Nevertheless, other models exhibit different combinatorial structure. As discussed, Ly geometry
gives rise to a (weighted) MAJORITY structure (as would any L when C' = O(1)). It could be
interesting to consider an extension of these constructions for general f : {0, 1}¢ — {0, 1} beyond
AND and MAJORITY. One way to formalize is the following.

Definition 18 (Coordinate-Factorizabe Graph Distributions) Given are a “I1-dimensional” dis-
tribution G over n-vertex graphs, an integer d > 1, and a function f : {0,1}¢ — {0,1}.
To generate a sample G from the coordinate-factorizable graph CFG(G,d, f), one first samples

G',G?,...,G%" X" G and then forms the d dimensional graph G. in which G;; = fHG d_).

For G = RGG(n, T!, Unif, 0%y, 1 —A)and f = AND, this gives RGG(n, T¢, Unif, 0,°, D).

When do coordinate-factorizabe graph distributions converge to Erdés-Rényi information- the-
oretically? When are they distinguishable from Erd6s-Rényi via low-degree polynomial tests? One
approach towards the low-degree question is to imitate our “cluster-expansion” using the Fourier
expansion of f in an analogue of (2). Yet, for choices of f more complicated than AND (AND
being simply a product of the coordinates), this approach will likely require new technical insights.
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Appendix A. Preliminaries and Notation

Graph Notation. Denote by K, the clique on n vertices, by K, ; the complete bipartite graph
with parts of sizes ¢ and b, and by (), the cycle on m vertices. For a set of edges
H = {(i1,j1),---, (i, jx)} € [n] x [n], denote by H the subgraph of K, with vertex set
{il,jl,ig,jg, . ,ik,jk} and edge set {(il,jl), ceey (lk,]k)}

A graph is 2-connected if it is connected and for any v € V (H ), the induced subgraph of H on
vertex set V' (H)\{v} is connected.

A.1. Statistical Detection of Latent Space Structure

Information Theory. We use the standard notions for Total Variation and KL-distance (for ex-
ample, Polyanskiy and Wu (Forthcoming)). Specifically, for two distributions P, Q over the same
measurable spaces (€2, F), such that P is absolutely continuous with respect to Q,

TV(P,Q) = sup [P(4) - Q)| = ; [ [0 - 1fiQe)

AeF Q(w) (11
dP(w) dP(w)
KLPIQ) = [ S 1o T Q).

Total variation appears naturally in hypothesis testing settings as 1 — TV(P, Q) is the minimal sum
of Type I and Type II errors when testing between P and Q with a single sample (e.g. Polyanskiy
and Wu (Forthcoming)). In practice, it is usually more convenient to work and compute with KL.
Importantly, this is enough for proving convergence in total variation due to the celebrated inequality
of Pinsker stating that TV(P, Q)? < 1KL(P, Q).

A Bound on the KL divergence due to Liu and Racz. In Liu and Ricz (2023a), the authors give
the following convenient bound on the KL divergence between G(n,p) and a probabilistic latent
space graph. Specialized to random algebraic graphs (which encompass RGG(n, T, Unif, o}, p)),
their bound’ reads as follows:

KL(RAG(n G,0,p)||G(n P) Zlog( x~Unif g>[( +pa(>_<)p)>k])7

whete ()= Byt | (0(x — 2) = p)(0(2) ~ )| = Bavtn | o1 ~ 2)o@)| - 17

(12)

Over random algebraic graphs, y(x) = o * o(x) — p?, where o * o is the self-convolution
o x 0(x) := Eyzuunifg |0(x — z)o(z)|. Thus, one can expand the left hand-side of (12) either in

terms of the moments of o * ¢ or in terms of the moments of ¢ * o — p?. It turns out that in the
case of RGG(n, T<, Unif, ago,p), one can easily compute (up to lower-order terms) the moments of
o * o and this is enough to prove Theorem 4.

7. In (Liu and Récz, 2023a, p.2427-2428) the authors prove this bound for a specific Gaussian random geometric graph,
but the proof reads verbatim for random algebraic graphs (and in fact any probabilistic latent space graph as defined
in Bangachev and Bresler (2023)).
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Remark 19 We briefly discuss two combinatorial interpretations of (12) which connect the bound
of Liu and Racz to different notions of pseudorandomness appearing in the literature. 3-Term
Arithmetic Progressions: Expanding the left-hand side of (12), we conclude that small (centered)
moments of the self-convolution imply a certain randomness of o, respectively of A C G when
o(g) == 1[g € A]. We note that the same notion of pseudorandomness was recently used by
Kelley and Meka in their breakthrough paper Kelley and Meka (2023) on 3-term arithmetic pro-
gressions, in the case § = Fg (see also the exposition Bloom and Sisask (2023)). One sim-
plification in our setup is that o(g) = o(—g) in the context of random algebraic graphs, so
ox0(g) :=Epo(g—h)o(h) = Eqo(g+h)o(h) =: 0 xo(g). Quasi-Randomness: The left-hand
side of (12) can be expanded either in terms of the moments of ¢ * ¢ or in terms of the moments
of (¢ — p) * (0 — p). However, one can easily observe that E[(c * 0)¥] is exactly the probability
that each edge of a fixed copy of K ; appears in RAG(n, G, o, p). In other words, one interpretation
of (12) is that if all subgraphs of the form K ; appear with probability sufficiently close to p?tin
RAG(n, G, o,p), then RAG(n, G, o, p) is (up to o(1) total variation) the same as G(n, p). This can
be viewed as a certain analogue of the celebrated theorem due to Chung-Graham-Wilson Chung
et al. (1988). It (among other things) states that if a graph simultaneously has a number of edges
and 4-cycles close to that of G(n, p), it is quasirandom and in particular every other subgraph count
is close to that of G(n, p). Similarly, the ¢-th moment of (o — p) * (¢ — p)/(p(1 — p)) is the Fourier
coefficient corresponding to K ; and one can equivalently interpret for signed copies of Ko ;.

The Bernstein-McDiarmid Approach. In the case of L, geometry for ¢ < oo, calculating the
moments of ¢ * ¢ is technically challenging. Our proof of Theorem 9 instead exploits the product
structure of T¢ to bound the moments of + via the Bernstein-McDiarmid inequality.

Lemma 20 (McDiarmid, 1998, Theorem 3.8)) Let g1,8o, ..., 84 be independent random vari-
ables and v a function of (g1, . ..,84). Denote g_; = (81,82, -, &i—1,8i+1-- -, 8q) and

Div(g—i) = su+p'y((g1,--.7gi-1,g77gi+1,---,gd)) —infy((g1,- -+ 8i-1,8; »8i+1,---,8d)),
g, g;

Var;[y(g-i)] := Varg,[y((g1,82,- -, 8i~1,8i,8i+1,- -, 8d))|&—i-
Then, for any positive t,

Plv(g) =t+ E[’Y(g)@ < exp (— min ( c ! ))

4T [Vari[y]ll 2max; [Dlec

An immediate corollary is the following.

Lemma 21 ((Boucheron et al., 2013, Theorem 2.3)) In the setup of Lemma 20, there exists some
absolute constant C' such that

d
v —Ehllk < C<\/g > IVarify]llee + k max HDwHoo> :

i=1

We bound Var;[o], D;[7] for -y defined as in (12) via a careful combination of Fourier-theoretic and
anticoncentration arguments to obtain Theorem 9. We also derive Theorem 12 as a combination of
(12) and Lemma 21.
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A.2. Computational Detection of Latent Space Structure

To solve (P1), one observes a certain n-vertex graph G and needs to compute a function f(G)
based on which to decide between Hy and H;. The graph G is simply a sequence of (g) bits.
It is well-known that any function of 0/1 vectors is simply a polynomial O’Donnell (2014). For
computationally efficient tests, one needs to be able to compute f in time polynomial in 7.

Signed Subgraph Counts. Most important to the current paper are polynomials correspond-
ing to signed-subgraph counts. Namely, suppose that we want to test between two graph dis-
tributions over n vertices in which each edge appears with a marginal probability p. Let H =
{(i1,j1), (32, 72), - - ., (ik, jr )} be any subgraph of K,,. Then, we define the signed weight of H as
the polynomial

SWa(G) = Y (Gij—p). (13)
(ij)€E(H)
For brevity and uniformity with the SW notation, for a set of edges H = {(i1,71), .- ., (7%, jr)},

denote the unsigned weight Wy (G) = [[ ;e Gij = 1[Gij = 1 V(ij) € H]. The signed count of
HinGis
SCy(G) = > SWy, (@), (14)
Hi1CE(Ky) :Hi~H

where the sum is over all subgraphs of K,, isomorphic to H. Note that whenever H has a constant
number of edges, the polynomial SCy (G) is certainly efficiently computable.

Clearly Eg.g(n,)SC m(G) = 0, which leads to the following approach to (P1) appearing in
Bubeck et al. (2014). Upon observing G, compute SCy(G) and, if sufficiently close to 0, report
Hy. Else report H;. Using Chebyshev’s inequality, this can be formalized as follows.

Definition 22 (Success of the Signed Subgraph Count ) We say that signed H-count statistical
test SCy (G) succeeds in distinguishing between G(n, p) and RGG if

‘EGNRGG [SCH(G)} ‘ = w(\/VarKNG(n,p) [SCH(K)] + VarGNRGG [SCH(G)] ) . (15)

Indeed, if this is the case, one can solve (P1) with Type I and Type II errors both of order o(1) by
comparing SCr;(G) to tEgrec {SCH(G)] .
If, on the other hand,

‘EGNRGG [SCH(G)] ‘ = O(\/VarKNG(n,p) [SCH (K)] + VarGNRGG [SCH(G)] ), (16)
we say that the signed H -count statistical test fails with high probability.

In this work, we are mostly interested in the case of triangles, H = ('3, and 4-cycles, H = C}.

Low-Degree Tests. In Definition 22, one can replace SWy (+) with any polynomial f(-) and com-
pare

Ec-rac[f(G)] ~ Eaniup [/(G)]] and y/Vark. g [ (K)] + Varerea[£(G)].

High-probability success and failure are similarly defined.
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A popular conjecture Hopkins (2018) states that all polynomial time algorithms for solving
(sufficiently noisy) hypothesis testing questions in high-dimension are captured by polynomials of
degree O(logn). Indeed, there is growing evidence in support of this conjecture. Clearly, low de-
gree polynomial tests capture (signed) counts of small subgraphs (note that one can even capture
the first O((logn)/k) moments of the (signed) counts of a graph H with k edges and hence a lot
more about the distribution of signed counts), which have proven powerful in detecting random ge-
ometric graphs Bubeck et al. (2014), planted cliques and colorings Kothari et al. (2023), the number
of communities in a stochastic block model Rush et al. (2023) and others. Low-degree polynomials
further capture spectral methods Kunisky et al. (2022), constant round approximate message pass-
ing algorithms Montanari and Wein (2022), and statistical query algorithms Brennan et al. (2021).
Thus, a lot of recent work on the complexity of problems in high-dimensional statistics has focused
on ruling out low-degree polynomial algorithms for statistical problems. This constitutes strong
evidence that the respective statistical problems cannot be solved in polynomial time.

Formally, in the case of (P1) one needs to show that there exists some function D(n) = w(logn)
such that for all degree D = D(n) polynomials f, it is the case that

Ec~rec[f(G)] — Egcmy) [[(G)]| = 0(\/VarK~G(n,p) [f(K)] 4+ Vargrec | f(G)])-
One way to prove such an inequality is by bounding the following quantity Hopkins (2018):

ADVop =  max - G~RGG ) (17)

f:deg(f)<D \/Eng(n,p) [f(K)?]

In particular, if ADV<p = 1+ o(1), then statistical test f(-) fails with large probability (e.g. Rush
et al. (2023)).

The product structure of G(n, p) yields a convenient formula for ADV<p. The set of polynomi-
als {SWg x (p(1 — p)) 1EEI2} pepige ) o<|E(H)|<p forms an orthonormal basis of the poly-
nomials of degree up to D with respect to G(n, p). A standard application of the Cauchy-Schwartz
inequality (e.g. Hopkins (2018)) shows that

ADVQSD -1= Z Eq-rGG [SVVH X (p(l — p))_|E(H)V2]2_
HCE(Ky) : 1<|E(H)|<D

We summarize in the following proposition.

Lemma 23 [f there exists some D = w(logn) such that

Z Ec~rce[SWa x (p(1 — P))_lE(H)‘/Q}Q = o(1),
HCE(Ky) : 1<|E(H)|ISD

then the Type I plus Type Il error of any degree D polynomial in solving (P1) is of order 1 — o(1).

We use the bounds from Theorem 3 and this proposition to prove Theorem 6. We note that low-
degree polynomials are similarly used in the literature for estimation and refutation tasks (e.g.
Schramm and Wein (2022); Rush et al. (2023)). We discuss this in more detail in Section C.2
in the context of estimating the dimension of a graph sampled from RGG(n, T¢, Unif, o D).
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Generic Bounds of Subgraph Weights in Random Algebraic Graphs. We end this section by
proving several simple generic facts about signed weights in random algebraic graphs which will be
useful throughout. In particular, they immediately yield parts 1, 2, and 3 of Lemma 14 as x is the
unsigned weight of the random algebraic graph RGG(n, T!, Unif, 0/1\’>, A)

Lemma 24 Consider any random algebraic graph RAG(n, G, 0, p). Let A be any subgraph. Then,
1. If A can be decomposed as Ay U As such that E(A1) U E(Ay) = E(A) and
V(A1) NV (A2)| < 1, the edge sets {Ge}ecp(a,) and {Ge}ecr(a,) are independent over

G ~ RAG(n, G, o,p). In particular, for any two functions f, g on those edge sets,

E[f({Geleepa)9({Gelecr(ay)] = Elf ({Gelecr(an)] X Elg({Ge}ecr(ay))]-

2. IfA is aforest, EGNRAg(ngp) [VVA(G)] = p'E(A)‘ and EGNRAG(n,Q,U,p) [SVVA(G)] =0.
3. If Ais connected, then |EgrAG(n,g,0,p) (WA (G)]| < plV(AI-L,

Proof

Item 1. If A; and A2 do not share a vertex, {Ge}ecp(a,) and {Geleep(a,) are independent as
they are fully determined by disjoint sets of latent vectors. If [V (A1) N V(A2)| = 1, we use the
measure-preserving transitive group of translations in G as follows. Let V(A1) = {ug, u1, ..., ur},
V(Az) = {vo,v1,...,v,}, where ug = vo. Note that A;, Ay have no common edges. Then

P{Gelecnar) = {9etecran) {Getecr(as) = {9etecE(as))

= iid [ | | o(x"s — x")Ilus.ur) x
X%0,x¥1 ... x"k xV1 ..., x07 K Unif (G)

(us,ut)EE(A1)

% (1 o U(Xus _ Xut))l_g(us,ut) H O.(X’Uk _ XUZ)g(vk,'ue)(l _ O.(X’Uk _ X'UZ))]-_g(vk,’Ue)]
(vg,ve)EE(A2)
= . Us _ xUt)9(us,u)
Ez,xuﬂ,xul,...,x“k,x“l,...,xwl‘lw‘d‘Unif(g)|: H U(X X ) e

(us,ut)EE(Al)

x (1 — o(x" — Xut))l—g(us,ut) H o (X7 +27) — (XV + )90k x
(vk,ve) €E(A2)

X (1 —o((x"* +2z) — (x" + z)))kg(vkqvw}

1—
L B 1 B L S R B

(us,ut)EE(A1)

- Vi _ Vg g(v ,vp)
X Ezjxvl’m’xvrl.,&dunif(g) [ H o((x" +z) — (X" + z))9kve) x
('Uk-,’Ug)EE(AQ)

X (1 —o((x" +2) — (X% + 7)) kw0

=P{Gelecra) = {9etecran] X PUGe}ecr () = {9etecr(as))-
(18)

We used the fact that the vectors x“0, x"1 ... x" x"0 4z x"! +z,...,x" + z are independent.
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Item 2. Follows from an inductive application of item 1 and the fact that each edge appears
marginally with probability p in G for the functions SW 4, W 4.

Item 3. Let 7T be a spanning tree of A with V' (A) — 1 edges. The simple fact W (G) > W4 (G)
(as edge-indicators are in [0, 1]) and item 2 give the desired inequality. |

Appendix B. Signed and Unsigned Weights in L..: Theorem 3 and Extensions

The main part of this appendix is Section B.3 where we complete the argument in Section 3. Before
that, we set things up by finishing the proof of Lemma 14 in Section B.1 and bounding the unsigned
weights of subgraphs in Section B.2. These arguments are relatively straightforward and an impa-
tient reader is welcome to read the statement of Corollary 27 and continue to the more involved
Section B.3. Throughout, we use the notation and bounds introduced in Section 3.

B.1. Preliminaries: The Proof of Lemma 14
We now prove the remaining parts 4 - 6 of Lemma 14. Let H ~ RGG(n, T!, Unif, o(x, y)}\’>, A).

Item 4. Suppose that A is not bipartite. Then it has an odd cycle formed by vertices

11,42, - - - tok+1,%2k+2 = ¢1 of length 2k + 1 < 8%\. We will show that for any latent vectors
xi x®2 ... x%k1 ¢ T! it is the case that there exists some ¢t € [2k + 1] for which
o(xi, x+1) 7 = (. Indeed, otherwise |x — x"+1|c > 1 — X and |x/+1 —x"+2|5 > 1 — X imply
that |x’ — x"+2| < 2\ holds for each t. However, this means that [x! — x?**1| < k-2\ < 1— )\,

which means that o (xt, x?2k+1 )}\> = 0.

Item 5. Observe that A has a spanning forest 7" on V (A) — numc(A) edges. This gives the bound
[h(A)] < [x(A)] + AFAD < [y (T)| + AEDI = 2\ BT = g \IV(A)|—nume(4)

The only remaining case is when |V (A)| —numc(A) < [V (A)|/2+ 1 or, equivalently, numc(A) >
|V (A)|/2— 1. Note, however, that since A is defined by a set of edges, there are no isolated vertices
and, so, numc(A4) < |V(A)|/2. Thus, we have two cases. First, numc(A) = |V (A)|/2, in which
case A must be the union of |V (A)|/2 disjoint edges, but then ¢)(A) = 0 by item 2. Or, numc(A) =
|[V(A)|/2 — 1/2, so A must be the union of a triangle and (|V (A)| — 3)/2 disjoint edges. In that
case, using items 1, 2, and 4, x(4) = 0, s0 Y(A) = —AFDI = _\V(AI/2+3/2,

Item 6. Let C,, be the cycle on m vertices 1,2, ..., m. Note that whenever (i7) is an edge in H,
x; = x; + 1+ X\j;, where \;; € [\, A]. Using that the path 1,2, ..., m is a tree and item 2,
X(Cm) = E[Wcm(H)] = P[Hl,m = 1, HLQ = 1, N 7Hm—1,m]
= P[Hl,m = 1‘H1,2 = 1; IR Hm—l,m]P[Hl,Q = 17 IR Hm—l,m]
= P[|l’1 — $m|C Z 1-— )\‘$i+1 =X + 1 + )‘i7i+17 ‘)\i,z’+1| S )\VZ] . )\m_l
m—1
= P|:’a:1 — Tyl >1— )\‘xm =14z + Z Niit1s ’)\i,i—i-l’ < )\VZ} Al
i=1
m—1
= P[ D A € [FA Al < )\W} A= Al g(m — 1),
i=1

This completes the proof.
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B.2. Warm-Up: Unsigned Weights of Small Subgraphs

First, we compute the unsigned weight of a cycle as this is the simplest and most important case to
our work, in particular used in the proof of Theorem 3.

Lemma 25 Suppose that 1 < m < 1/(8)). Let G ~ RGG(n, T?, Unif, 0,°,p). Then,

E[Wcm (G)} _ (1 + (1 )\)m + O(d2A2m)> when m is odd, )

m (1 i d(/\m’l(f(j;)—rj)_’\m) + O(d2)\2(m—1))> when m is even.

Proof We use (6). Note that any A C C), is acyclic, so x(A4) = A", ¢ (A) = 0 and
EGRreG(n,T1,Unif,0 , 1-3)[We,,, (G)] = (1 = A)" + (=1)"9(Cr).

In the odd case (), is not bipartite and item 4 of Lemma 14 applies, so (C,,) = —A"":

B RoG(n 1 Unfosos) [vvcm«;)} = (1= A XY= (= A+ A (L A
(1 Ay Z < ) kmk)

The statement follows as the sum can be bounded by >~72, (dXN™)F /(1 — X\)™k, Now, clearly, there

is exponential decay in the sum as d\™/(1 — \)™ < dA3/(1 — ) = o(1). Finally, note that

(1—X)™ > (1—X\)¥* = Q(1). The even case is the same, except that we use item 6 of Lemma 14,
L _ d

Wthh gives EGNRGG(H,Td,Unif,O'gO,p) [Wcm(G)] = ((1 — )\)m + )\m 1d>(m — 1) — Am) . [ |

Remark 26 We get arbitrarily better precision in Lemma 25 by keeping k > 2 terms in the expan-
sion of (14 X" /(1 — X)™)4,

Corollary 27 Suppose that 1 < m < 1/8)\. Let G ~ RGG(n, T¢, Unif, 0,°,p). Then,

P (% + O(d2A2m)> when m is odd,
E [swcm (G)] - (20)

m (d(Amfl(ﬁlf’(_";)*n})*)‘m) + O(dz)\Q(m_l))) when m is even.

Proof Using the definition of SW¢,  in (13) and Lemma 24,

Ec~rce [SWCm(G)} = Ec~rce [Wcm(G)] + Y (=" P Eg ree [WF(G)}
FCE(Cm)

= Eg~Rae {Wc } —i—Z < > )" p’ = Eg~rce [WC (G)] -p",

which is enough by Lemma 25. |
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Finally, to derive the bounds on the weights of arbitrary subgraphs, we use the truncated inclu-
sion exclusion inequality in place of (4). Namely, for any odd number ¢,

Z (—1)FWIx(4) < EGRr6G(n,T! Unif.o , 1-1)[WH(G)]
ACE(H) : |A|<t

< Y ()W),

ACE(H) : |A|<t+1

ey

This yields the following statement.

Lemma 28 Let H = {(i1,71), (i2,72), - .- (ik, Jx)} be a set of edges and let m be the girth of H
(i.e. the length of the shortest cycle). Let N(u) be the number of cycles of length u in H. Suppose
further that Assumption (A) holds and k™+? = o(1/)\) = o(d/log(1/p)) and let ¢(u) = ©(u~1/?)
be defined as in Lemma 14. Then, for G ~ RGG(n, T%, Unif, 0,°, D),

P (1 +d(N(m) + ¢(m + 1)N(m + 1)) \™(1 + 0(1))) when m is odd,

Blwa(@)| =
pF (1 +dop(m)N(m)A™ (1 + 0(1))) when m is even.

(22)

The only truly restrictive condition in this theorem is ™2 = o(1/)). However, it still covers

a wide range of cases. Indeed, suppose that d = poly(n). As k < m, it can be applied whenever

k = |E(H)| = o(logd/loglogd). If, furthermore, m is a constant (say m € {3,4}), it can be

applied to very large graphs with polynomial number of edges, i.e. |[E(H)| = d/(m+2)—o(1),
Proof

Case 1) The smallest cycle of H is of even size. From (21), we have
Z (_1)‘E(A)|X(A) < EGNRGG[WH(G)] < Z (_1)|E(A)‘X(A)- (23)
ACE(H) : |Al<m+1 ACE(H) : |A|<m

First, consider the upper bound. Since each subgraph of H on at most m — 1 edges is acyclic and
there are exactly IV (m) cycles on m edges, from Theorem 14,

S (—1)EWI(4) = i(—l)j ('E@‘)m + N(m) x (Am’lcﬁ(m 1) - Am).

ACH : [A|[<m =0 J

Similarly, we can carry out the calculation for the lower bound in (23). Note that all (m + 1)-edge
subgraphs of H have one of three structures: 1) Acyclic, in which case x(A) = A™*1, 2) Anm
cycle with an extra edge not creating a cycle, in which case x(A) = A"¢(m — 1), 3) Anm + 1
cycle in which case x(A) = 0. In all three cases, importantly, [x(A)| < A™. Altogether,

EGR6G(n.T1,Unif.0 , 1-3) [WH(G)]

_ jmo(l)j (|E(f1)>)\j N (m) x (X" g(m — 1) - X7 + O(Cgﬂ')”)- (24)
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Again, using the truncated principle of inclusion-exclusion,

m m+1
Zuy‘('E(,H)')Aj > (1 \)E@I > i(l)j<lE(H)|>Aj’

j=0 J j=0 J
s0 o (=1)7 (PEN N = (1 - \)IEEDI 4 0 ((ﬁfff')w) . Using (24),

EGRGG(n,11,Unif,0r° , 1-3) [WH(G)]

= (1= ML N (m) x (AL gm = 1) = X™) + 0<<‘i(fi|>xm>

= (1= NPEI L Nim) x A" Lp(m —1) + O((’i(ﬂ‘)w + <‘E§f)|>xm>,

where we used the trivial observation that N(m) < ('gffl)‘) Now, using the simple fact that that
d(m — 1) = ©(m~'/2) (see Lemma 14) and the assumption that |E(H)|™*" = o(A~!), one can
easily see that the last expression is of order

(1= NEEDL L N(m) x A Lo(m — 1)(1 4 o(1)).
Finally,

EGRGG(n,T4,Unif o5 p)(WH(G)]

d
= <(1 — MIEEL L N(m) x XmLo(m — 1)(1 + 0(1))>

N(m) x X Lp(m — 1)(1 + o(1 I
= (1 — N)XIBUD] <1+ (m) x i _¢)(\)E(H)|)( + ())) _

Since |E(H)| < AYm+D) clearly (1 — M\)EE! = 1 4+ o(1). Furthermore, |N(m)A™ "1 =

O((FUDNxm=1y = O(A™=2) = O(1/d) as A = O(logn/d) = o(d~'/?). Using also the fact
that (1 — \)¢ = p, we conclude that

EGRr6G(n,T4,Unif o3 p) WH(G)] = plPH (1 + dN(m)¢(m — A" (1 + 0(1))>-

Case 2) The smallest cycle of H is of even size. We repeat the same steps as in the even case.
The only difference is that when considering cycles of length m + 1, one needs to take extra care of
cycles of length m + 1 as x(Cp41) = A™¢(m), which is of the same order as )(Cy,) = —A\".

EGRrGG(n.11,Unif,or , 1-3) [WH(G)] < Z (—1)IEAy ()
ACE(H) : |A|I<m+1

m+1
=Sy ('i(f ) ’) + N(m)A™ + N(m + 1)(¢(m)A™ = ™) +0 (Wl ('i(f i’))

(25)

Jj=0
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Again, we used that all subgraphs of H on at most m edges are acyclic, except for N (m) isomorphic
to C,. The subgraphs on m + 1 vertices have one of three structures: 1) Acyclic, in which case
x(A) = A™*1 2) An m cycle with an extra edge not creating a cycle, in which case x(A4) = 0, 3)
Anm + 1 cycle in which case x(A) = ¢(m)A™.

Similarly, the subgraphs on m +- 2 vertices have one of four structures: 1) Acyclic, in which case
x(A) = X2 2) An m cycle with two extra edges, in which case x(A4) = 0, 3) An m + 2 cycle,
in which case x(A4) = 0, 4) An m + 1 cycle with an extra edge, in which case x(A4) = ¢(m)A\™FL,
In all cases, |x(A)| is at most A™*1. Thus,

EGRr6G(n,11,Unif.0% , 1-3)[WH(G)]
+1
E(H FE(H
+O<<| ( >1)Am+1 . <r ( >|>Amﬂ>
m+1 m + 2

= (1= N\)IEE (N(m)x" + N(m+ 1)¢(m)xn> (1+0(1)).

m+1
= Z(—A)j <’z(H)) + Nm)A™ + N(m + 1)p(m)\"+
j=0

As in the even case, we used Z;”:ng(—l)j(m(f)‘)/\j = (1 — \)EEI 4 O(("Zl(fg))\m*l). The

desired conclusion follows as in the even case. [ |

B.3. Signed Weights of Small Subgraphs: Theorem 3

We now fill in the details in Section 3 and prove Theorem 3.

Fix H with at most (log d)®/*/(loglog d) edges. We also assume H is 2-connected. Otherwise
H can be decomposed into two graphs H, 2 which share at most one vertex and no edges. By
Lemma 24,

EGRGG(n,T4,Unif,05,p) [SWH(G)} = Eg~RrcG [SWHl(G)} X BEGg~RGG {SWHQ(G)}

and we can induct as |V (Hy)| + |V (H2)| > |V(H)|, |E(H1)| + |E(H2)| > |E(H)|. In particular,
the 2-connectivity assumption implies that |V (H)| < |E(H)|.

We also assume that H has at least 4 edges as the other cases are covered in Lemma 14 (for
acyclic graphs, the signed expectation is 0) and Corollary 27 (for triangles, we get

Ec~rec|[SWey (G)] = pP(log(1/p)/d)?).

B.3.1. PROOF OF THEOREM 3 ASSUMING LEMMA 15

We first show how Lemma 15 implies Theorem 3.
Proof Using (9) and the fact that the O-order deviation vanishes, we compute:
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EGg~rcc[SWH(G)] ‘

d
- Z <f> (L= nyemaEe Z (=) EEI=IEA] 1 — ))WIBEE)I=EADE (A, A)i‘
=0 ACH
d
< Z <(j>(1 A) d=DIE(H) (=1)!EEDI=IEA (1 — \yEEDI=IEADEpr (4, )\)i‘
=1 ACH (26)
d
| L ((logd)®\IVUDI/2
< i dE(H)| (1 _ i\ B(H)|
;d(l ) (1-A)" T ( 3 )
d .
_ (1 iz ((Qog )% VEDI/2 Z
(1 /\) < ) ; (4 )‘)
_ e ((og )\ IVEDI/2
! ( ) Zl ( 1 — \E H)|>

Now, observe that (1 — \)/EU > 1 -\ E(H)| > 1— O((log d)*/*/d) > 1/2 for all large enough
d. Thus, 4(1 — A)/EE)] > 2 and so 3¢ (W) < 1, which completes the proof. [ |

What remains is to prove Lemma 15. As described in Step 6 of Section 3, there are two concep-
tually different regimes.

B.3.2. PROOF OF THEOREM 15 FOR SMALL VALUES OF 3.

Suppose that i < 11|V (H)|/41.% The first step towards proving Lemma 15 is expanding (9).

Detailed Derivation of the Cluster Expansion

Z (_1)|E(H)|*|E(A)\(1 — )\)i(IE(H)HE(A)I)Err(A7 A

ACH
Z H)|=IB(A) (1 — )\)i(|E(H)\—|E(A)|)< Z (_1)|E(K)|¢(K))i
ACH KCA

27
< (=) BEDIHEE) - BED )y (K Yap(Ky) - - - () X @7
K1,Ks,...,K; CH

x Y (cyEE-E@ A)z’(|E(H>|E(A>|>>,

ACH : K;CAVj

Let X = Ky U Ks--- K;. Then, in the last sum, we perform a summation over all A such that
K C A C H. In particular, we obtain

8. In principle, any constant in the interval (1/4,1/2) would work for the proof, but constants less than 3/10 reduce
the amount of case work, hence the peculiar choice of 11/41.
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Z (_1)|E(H)I*\E(A)I(1 _ )\)i(\E(H)I*\E(A)I)
ACH : K;CAVj

— Z (—=1)IEPEI (1 — \)HEE)]

KeCH\K

|E(H)|-|E(K)| _ ‘

t=0
—(1-(1- )\)i)|E(H)|_|E(’C)| < (Ai) BEI=IBE)]

(28)

where in the last line we used Bernoulli’s inequality (1 — \)® > 1 — \i. Now, using (28), we can
rewrite the right-hand side of (27) as

Z (1 — (1 = NHIEEDIER)N ) EEOHEE )+ EE) Ly, (K )ap(Ks) - - - (K.
K1,K2,..K;CH

Using the triangle-inequality, we bound this quantity by

ST (= (1= WEIEON R () - () . (29)

K1,Ka,....K;CH

Bounds Based on Combinatorial Inequalities. Now, we will bound the quantity
[(K71)Y(K2) ... ¢(K;)| in two different ways.

Lemma 29 The value of |¢ K)Y(Ks) - w(Kz)‘ is less than each of
1. H 2)) IV (K;)I/2+1 , and
2 (2/\)|V( )|—numc(K) )
To prove Lemma 29, we will need the following subadditivity property.

Claim 30 Suppose that G is a graph and G and G2 are two (not necessarily induced) subgraphs
such that E(G1)UE(G2) = E(G). Then, |V (G)|—numc(G) < |V (G1)|—numc(G1)+|V(Ga)|—

numc(Ga).
Proof Let (G; have a connected components with vertex sets D1, Do, ..., D, and let G have
b connected components with vertex sets Fi, Fb, ..., Fy. Consider the bipartite graph G on parts

D, F with vertex sets respectively D1, Ds, ..., D, and Fy, F», ..., F,. Draw an edge between D;
and F} if and only if they have a common vertex and, if so, label this edge with one of their common
vertices. Clearly, each edge is labeled by a different vertex.

Note that numc(G) = numc(G). On the other hand, as each edge is labelled by a different
repeated vertex, |V (G)| < |V(G1)| + |V (G2)| — |E(G)|. Trivially,

numc(G) > |V(G)] — | E(G)] = numc(Gy) + nume(Ga) — [E(G).
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Combining these,
|

V(G1)|+ |V(G2)| = |[V(G)| > |E(G)| > numc(G1) 4+ numc(G2) — numc(G).

Proof [Proof of Lemma 29] Using part 5 of Lemma 14 on each ¢ (K;) yields the first bound. For
the second bound, we again apply part 5 of Lemma 14 on each ¢ (K;) and then we repeatedly apply

subadditivity: |1(K1)y(K?) - Tﬂ(Kz)‘ < H§:1(2)\)|V(KJ)\*"“"‘C(KJ') < (2A)VE)l—nume(K)
We now proceed to bound (29) for a fixed fixed ¢-tuple Ky, Ko, ..., K;.

Lemma 31 The value of (1 — (1 — X))/ EEDI=EC (K ) (Ky) - - - (IK;) | is less than each of
1. (2/\)“‘2;:1 VK2 and
2. (2N,

We will need yet another combinatorial inequality.

Claim 32 For any 2-connected graph H and any (not necessarily induced) subgraph K of H,
[E(H)| = [E(K)| = numc(K) + [V(H)| — [V(K)[ - 1.

Proof First, suppose that C is connected and V(H) = V/(K). Then, the right-hand side of the
desired inequality equals O and the left-hand side is non-negative.

Otherwise, let the connected components of K be Fy, Fs, ..., F,, where a = numc(K). Con-
sider the multigraph (with multiedges, but no self-loops) H' on numc(K)+ |V (H)|—V (K) vertices
[a] U (V(H)\V(K)). In H', two vertices in V (H)\V (K) are adjacent with multiplicity 1 if and
only if they are adjacent in H. The multiplicity of an edge between a connected component F; and
avertex u € (V(H)\V(K)) equals the number of neighbours of u in F}; with respect to H. Finally,
the multiplicity between F); and F)js equals the number of edges between them in H.

Clearly, the number of edges (with multiplicities) in H is at most |[E(H )|—|E(K)|. On the other
hand, it must be at least a + |V (H)\V(K)| = numc(K) + |V (H)| — |V(K)|. Indeed, otherwise
there is a vertex of degree (counted with multiplicities) 1 or 0 in H'. If it is of degree 0, clearly H
cannot be connected. If it is of degree 1, suppose that the corresponding edge in H is (u,v) and
the vertex of degree 1 is either the vertex u or a connected component F; containing u. Since H is
2-connected, v has at least one more neighbour w; other than w in H. In H ‘V( H)\{v}, there is no
path between u and w;. This is a contradiction with the 2-connectivity of H. Thus, it must be the
case that |E(H)| — |E(K)| > numc(K) + |V (H)| — |V (K)]. [

Proof [Proof of Lemma 31] The first bound follows directly from part 1 in Lemma 29 and the fact
that |1 — (1 — \)?| < 1. For the second bound, we use the above combinatorial inequality to obtain

(1= (1= X\)HEEEEON (R (K) - - (K
< (2)\)\V(K)|fnumc(lC) (Z')\)\V(H)|7|V(IC)|+numc(lC)71

< (2in)VUDI=T
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(H)

Bounding the expression in (29) First, note that H has 2/”(#)| subgraphs. Thus,

S = (= ) RO R ) (K) - ()

Ki,Ks,....K;CH (30)
= 2PN (1 — (1= W) FDEs (K b (K) - (K .

where each K; is sampled independently of the others by independently including each edge of H
with probability 1/2and K = K; UKs ... UK;.

Case 1.1) First, suppose that ¢ = 1. We will use the first bound in Lemma 31. We have to show
that

11 /(logd)Cy\ V()2
B(H)| gV (E) -1 o 1 ((ogd)”
25 = 4d< d )

for some absolute constant C. Taking a logarithm on both sides, it is enough to show that

|E(H)| + (logd — Cloglogd)(|V(H)|/2+ 1)
< (logd — C" loglog d)(|V(H)| — 1)

holds, where C”’ is the hidden constant in log(1/\) = logd — O(loglogd). If
|E(H)| = o(loglog d), choosing a large enough C, we need to show that

(logd — (C +2)loglogd)(|V(H)|/2 + 1) < (logd — C"" loglogd)(|V (H)| — 1).

This clearly holds for large enough C'as |V (H)| > 4,s0 |V(H)| -1 > |[V(H)|/2+ 1.
On the other hand, if |E(H)| = Q(loglogd), this means that |V (H)| = Q((loglogd)/?).
Thus, for large enough d, the inequality becomes equivalent to

B(H)| < & (ogd)|V(H)|(1 ~ 04(1))

This clearly holds since /| E(H)| < 2|V (H)| for any graph H and \/|E(H)| < (log d)®/®.

. 3(logd)|V (H)|
1.2) N that 2 <
Case 1.2) Now, suppose that 2 < ¢ < 10(|E(H)| + log d)
3(log d)|V (H)|

10(|E(H)| + logd)
of d. Thus, we assume that |V (H)| > 6. This, combined with i <

. In particular, this case is non-trivial

if and only if 2 < , which implies that |V (H)| > 6 for large enough values

3(log d)|V (H)|
10(|E(H)| + logd)
(2i\)[VIE)I=19i B < g=i=IV(H)I/2 for large enough values of d. One concludes from the second
bound in Lemma 31 that

implies

2D (1= (1= A)) FDIEEN 35 (K )y (K) -+ (K
< Il (9;3)VDI-1 (31)
< g-iIvEl/2,
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Case 1.3) % <i< %. In particular, such ¢ exist if and only if |E(H)| >

13logd/110 = Q(log d). We assume that |E(H)| = Q(logd) in the rest of this case. We will use
Lemma 16 which we restate in a slightly different form for convenience.

Lemma 33 Lett > 2,0 < b < i be integers and a > 0 be a real number. Then,
i 1 o
P[z; V(K;)| < ab} < S P (b(logz) + a2ilog |E(H)| + |E(H)\b>.
=

Proof Note that

1y <|E<H>r><|E<H>|a2 )

P([V(K1)| < a < P||E(K))| < a?] < ST

It follows that

P[imm < ab|
j=1

< P[H]l < Jg < ... < Ji—p St |V(K]u)‘ <aVue€ [Z — b]]

i—b
Y. JIPIVK,.)I<d

1<i1,52,mdi—p <t u=1

_ (i (1E@\ (33)
—\i—b oIE(H)|

2¢|El(H>| B (H)| 2

IN

IN

IA

SAE)] P (b(logz) +ia”log |E(H)| + b|E(H)\),

which finishes the proof. n

We will apply the claim with the choices

[V (H)|Y%(log d)*/2
31/2

[V (H)|logd
[E(H))]

a= (loglogd)™ and b= { (log logd)lJ.

The condition b < 7 holds for large enough d since |[E(H)| = Q(log d) and % <.
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Now, we can write

2R (1 = (1= A FODIEEON 3y (K i (K) - -w<Ki>|}

< 2PUDIB (1 — (1= n)) ORI s (K r\zyv )| < ab] x

[Zyv 3 < ab]+

i 2\E(H)|iE[(1 — (1 = \)HEEIEIEE] (K ) (K K;)| ‘Z [V(K;)| > ab| x GY

[Zyv \>ab}

) 1
< AN excp (b(logz’) +ia%log |E(H)| + b|E(H)|) (2i0)/VDI-1

+ 2\E(H)|i(2)\)i+ab/2,
where we used the second bound from Lemma 31 in the case 23:1 |[V(K;)| < ab and the first
bound in the case 23-:1 |V(K;)| > ab. We now analyze the two terms separately.

Case 1.3.1) We show that
exp (b(logi) +ia2log |B(H)| + b|E(H)y)(2¢A)|V<H>|*1 < ¢-imIVE)I/2,
This is equivalent to
b(log i) +ia®log |E(H)|+b|E(H)|+ (i+ |V (H)|/2)logd < (|[V(H)|—1)(logd—O(loglog d)).

We compare as follows:

1. b(logi) + b|E(H)| < 2b|E(H)| = 2|V(H)|logd/(loglogd) < ([V(H)| — 1)(logd —
O(loglogd))/41 for all large enough d. We used the fact that ¢ < |V(H)| < |E(H)| and
V(H)| 2 |[EH)'? = wa(1).

2. ia’log |E(H)| = ‘V(H)‘((llzggcllggng(H)D < OV(H)'*UUOild*OUOglogd)) for all large enough
d, where we used the fact that | E(H)| < (log d)®/*, so log |E(H)| = O(loglog d).

3. (i+|V(H)|/2)logd < 33(|]V(H)| — 1)(10gd O(loglog d))/41 for all large enough d as
i <11V (H)/41 and |V(H)| > /|E(H)| = Q(/Iogd) = wy(1).

Altogether, this implies that

N . 35
b(log 2)+m2 log |E(H)|+b|E(H)|+(i+|V(H)|/2) logd < H(\V(H)\—l)(log d—O(loglogd)),
which is enough.
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Case 1.3.2) We show that

Bounding 2/EHli < elE(H)li and using ab

ol BN (g \yi+ab/2 < g=i=IV(IDI/2,

_ WVD[P2(logd)’/?
N il/2|B(H)|

(loglog d)~2, the inequality be-

comes

logd(i + |V(H)|/2) + |E(H)]i

|V (H)*?(log d)*/?
it/2|E(H)

+i(logd — O(loglog d)) <=

O(iloglogd) + (logd)|V(H)|/2 + |E(H)|i

|V (H)[*? (log d)*|
2i'/2|E(H)

< (logd — O(loglogd)) (loglog d) ™2

< (logd — O(loglog d)) (loglog d) >

We now handle the terms separately.

1. O(iloglogd) < 1(logd — O(loglog d)) |V(}21i)1|j2/|2£(°§i)3/2 (loglog d)~2. For large enough d,

it is enough to show that
8i3/2|E(H)|(loglog d)* < (logd)>/?|V (H)[*/*.

This clearly holds as |E(H)| < (logd)>*,i < 11|V (H)|/41.

. (logd)|V(H)|/2 < 1(logd — O(loglog d)) |V(I2{Z.)1|Z‘2}g(ol_g[§l|)3/2 (loglog d) 2. Again, for large

enough d, it is enough to show that
4(log d)|V (H)|i'?|E(H)|(loglog d)* < |V (H)[*/?(log d)*/*.

Again, this holds as i'/2 < |V(H)|'/? and |E(H)| < (logd)®/*.

. |[E(H)|i < $(logd — O(loglogd)) |V(Z?S§g?§’)ﬂ)3/2| (loglog d)~2. For large enough d, it is

sufficient to show that
8|E(H)|*i**(loglog d)* < (logd)**|V (H)|*/?.

Again, this holds as |V (H)| > 3i, |[E(H)| < (logd)®/*/(loglog d).’

B.3.3. PROOF OF LEMMA 15 FOR LARGE VALUES OF i.

Suppose that d > ¢ > 11|V (H)|/41. The main idea behind proving Lemma 15 in that case is to
bound each term Err(A, \) and then sum over the 2/”(#)| subgraphs of H.

Claim 34 If|E(A)| < (logd)®*/(loglogd), then |Err(A, \)| < d—3+0a(1),

9. This is the only place in the proof where we need | E(H)| < (log d)®/* rather than | E(H)| < (log d)?. Improving
Lemma 33 would, potentially, improve the result for polynomials of degree up to (log d)>~¢ for any constant € > 0.
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Proof We first prove the statement in the case when |V (A)| < |E(A)|. Note that [¢p(K)| < A3
when |V (K)| < 3 and [1(K)| < 2 x AVUI/2+1 otherwise by Lemma 14.

Er(AN) = > (DFElpE) < Y ()

E(K)CE(A) B(K)CE(A)

— Z A3 2\ Z AVED/2 4 9y AV )2
K: |V(K)|<3 (log d)>/7>|V (K)|>3 [V (A)[2|V(K)[>(log d)>/7

(35)

We analyse the three sums separately. The constant 5/7 is chosen arbitrarily in (5/8, 1).

Case 1) |V(K)| < 3. There are O(|V(A)|?>) = O((log d)'®/*) subgraphs of A on at most three
vertices. Thus,

> X =0((ogd)"*/H(10gd/d)*) = douh),
K: |V (K)|<3

Case 2) (logd)®7 > |V(K)| > 3. When |V(K)| = t, one can choose V(K) in (|V(tA)|) ways

and, once V' (K) is chosen, choose F(A) in 2(2) ways at most. This leads to

921 3 AV (A2
(log )%/ 7|V (K)|>3

WY <|V(tA)|>2(;)/\t/2 56

(log d)5/7>t>3

<2 Y (€2|V(A)2et/\>t/2

2
(log d)5/7>t>3

Each value 2|V (A)[22!\/t? is bounded by

5/7

62((10g d)5/4)2€(logd) A= O((logd)5/2 % do(l) « (logd) % d—l) _ d_1+0d(1),

where we used the fact that 5/7 < 1. As each exponent ¢/2 is at least 2, the sum is bounded by

2X(log d)*/7 x (d~1eaMy2 = \g2toa(l) — g=3+oa(l),

Case 3) ] A)| > |V( )| > (logd)®/7. Note that when |V (K)| = ¢, one can choose V (K)

in ( ) (logd ) ways and, once V(K) is chosen, choose F(A) in Z(logd P ((;)) <
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t
(log d)°/4( () ) ways at most (as A and, thus, K has at most (log d)*/* edges). This leads to

(log d)5/4
3 V2
(log d)>/4>|V (K)|>(log d)>/7

= e d)5/4 Z 5/7 <(10g f>5/4> <(log(%l))5/4> N

(log d)3/4>t>(log d)

5/4 e(log d)5/4 t €t2 (1Ogd)5/4 '
< (logd)® 3 ( : ) (( ) Al 37
(log d)5/4>1>(log )3/

2 lO d 5/4—t
= (ogdy?/teloee™ > (Y g
(log d)5/4>t>(log d)5/7 (log d)

< (log d)>/4ellogd)’* > (log d)?/4)le5)
(log d)>/4>t>(log d)/7

5/4

()\thZ)t/2.

Now, consider the expression (log d)®/*e (18 /1 ((log d)®/4)(log )1 (Ae?t?)/2. Tt can be rewritten
as

exp (O(log log d) + ((log d)®/* + 1) log((log d)*/*) + t(logt + 1) + (¢/2) log /\)
= exp (O((log d)**loglog d) — Q((log dlog d5/7))

= exp < — Q(log d1+5/7)>,

since 5/4 < 14 5/7. Since each of the O((log d)*/*) summands is of order exp(—Q(log d'?/7)),
the sum is clearly of order exp(—Q(log d'?/7)) = O(d~3).

Combining the two cases, we obtain that for graphs A satisfying |V(A)| < |E(A)|,
|Err(A, \)| < d=3+°4() a5 desired.

Now, suppose that |V (A)| > |E(A)|. If A is acyclic, by Lemma 14 |Err(A,\)| = 0 as ¢(K) =
0 for all K C H as subgraphs are also acyclic. If A is not acyclic, then, it can be partitioned into
two vertex-disjoint graphs A = A; U Ao, where A; satisfies |V (A;1)| < |E(A;)| and A, is acyclic.
As in the proof of Lemma 24, this implies that

|Err(A, A)| = EGRGG(nT1,Unif.09°  ,1-) [WA(G)} — (1= ))EA

= EGNRGG(n,Tl,Unif,o;{“—,\) |:VVA1 (G)} EGNRGG(n,Tl,Unif,o;g;—,\) |:WA2(G):|

= (EGNRGG(n,’Jl‘l,Unif,afi/\,l_)\) [WAQ(G)] —(1- )\)\E(Az)l>)><
X EGRGG(n,T!,Unif,00° | 1) |:WA1(G):| (39)

+ <EG~RGG(n,']1‘1,Unif,af‘i/\,l—A) |:WA1(G)i| —(1- /\)|E(A1)|> (1— X))

= Err(A2, N EGrGG(n,T1,Unif 090 | 1) |:WA2(G):| + Err(Ag, M) (1 — )P
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Since A is acyclic, Err(Aa, A) = 0, so thee first term vanishes. Thus,
Err(A,\)] = [Err(Ag, A)(1 — N)/EADN < |Err(Ag, \)| = d3FealD),

Since the graph H has at most 2P| subgraphs, the left-hand side in Lemma 15 can be
bounded as

‘ 3 (— 1) BEDIEIEA (1 3 IBEI-EDODER(A, A)’

ACH

<y ‘(_1)|E<H>\—|E(A>|<1 _ AJUBEDIZIEADER( A, N
ACH

< ol E(H)| g—i(3+0a(1))

(40)

(&
|B(H)] g-i(3+oa(1)) < 1 <(10gd) )lV(H)I/Q‘

To prove Lemma 15, it is enough to show that e < [ay X J

This would follow from
[E(H)| - 3(1 — 04(1))ilogd < —i(logd +2) — (log d)|V (H)|/2

or, equivalently,
|E(H)| + 2i + (logd)|V(H)|/2 < 2ilogd.

We analyse each of the terms separately:

1. |E(H)| < 2i(logd)/(log d)3/® for large enough i. Indeed, this follows since

B(H)| < V/[VHE)P x 1/ (log d)5/*/(log log d)
= |V(H)|(logd)*® x (loglog d)~/? < 2i(log d)/(log d)*/®.

The last inequality holds for all large enough d since ¢ > 11|V (H)|/41.
2. i < 2i(logd)/(2logd).
3. (logd)|V(H)|/2 < 2i(logd) x 4+ since i > 11|V (H)|/41.

Altogether, this gives

1 1 41
\E(H)| + 2i + (log d)|V (H)|/2 < 2ilog d( + —) < 2ilogd

(log d)3/8 T3 logd 44
for large enough d. With this, the case for large ¢ is also completed and so is the proof of Theorem 3.
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B.4. Comparison of Signed and Unsigned Weights

We end with a brief comparison of our bounds on signed and unsigned weights. In particular, it
demonstrates why the signed weight bounds are much more subtle and require a more sophisticated
argument.

Example 2 Consider any connected graph H with girth m much smaller than its number of vertices
(note that an overwhelming fraction of the connected graphs have girth of constant size). Then, by
Theorem 3 and Lemma 28 for G ~ RGG(n, T?, Unif, .0, D)

@l 70| = e (PO

> @<pE(H>| (l’o'y';g@‘l)> V(HW) > [Blswa (@)

In particular, this shows that the much more elementary bound obtained by plugging Lemma 28 into

BSWa(@)] = | Y (-p) PO ED B, () - pPO)]
ACE(H)
< 3 | B @) - P
ACE(H)

is wildly suboptimal. Thus, a more refined perturbative analysis as in Section 3 is needed.

Appendix C. Inference and Estimation with Low-Degree Polynomials in L,

We now present the proofs of Theorems 5, 6 and 7. The arguments are standard applications of
Theorem 3 and Corollary 27.

C.1. Detection Upper Bounds: Theorem 5

Observe that K,, has ©(n?) subgraphs isomorphic to C3 and ©(n*) subgraphs isomorphic to Cy.
From Corollary 27, we conclude that

EGRGG(n,T4,Unif,05,p) [Sch (G)} O(n?p®/d?),

A4 4,0 S
EGRGG(n,T,Unif,0,p) |:SCC4(G)1| =0O(n"p*/d%).

Clearly, Ex.c(np) [SCC3 (K)} = Ex~G(nyp) [SC@(K)} = 0. We now need to compute the
respective variances as in Definition 22.

Triangles. With respect to both the G(n, p) and RGG(n, T¢, Unif, o,°,p) distributions, one can
expand the variance as follows (e.g. Liu and Récz (2023a)). Denote by A(i, j, k) the labelled
triangle on vertices ¢, j, k. Then, taking into account the different possible overlap patterns of two

39



BANGACHEV BRESLER

triangles, '”
Var[SC¢, (H)]
= O(n%) x Var[SWa (1 2,3 (H)]
+0(n') x Cov[SW A1 2,3 (H), SWA 12,4y (H)] (42)
+0(n°) x Cov[SW a1 2,3)(H), SWa (14,5 (H)]
+0(n°) x Cov[SWA (1 2,3) (H), SWa 4 5,6) (H)]J.

The product of any two signed weights of subgraphs can be naturally decomposed as a (weighted)
sum of signed weights of subgraphs. Thus, we can bound the above expression via Theorem 3 and
Corollary 27. We take this approach in Section C.4.1 to show the following.

Varg. g(n,p) [SCe, (K)] = @(n3p3), and
Var g raG(n,14,Unif,o3 ) [9Ccs (G)] = O (n’p?) + O(n*p° /d?).

This is enough to complete part 2 of Theorem 5. According to Definition 22, one can distinguish
between G(n, p) and RGG(n, T¢, Unif, 0,°,p) with high probability using the signed triangle test if
and only if

EGNRGGch3 (G) ‘ =w <\/VarKNG(n7p) [SC03 (K)] + Vargrce [SC03 (G)]) .

Using (41) and (43), this holds if and only if d = 6((np)3/4).

3)
,3)

(43)

4-Cycles. Similarly, in the case of 4-cycles, one obtains

Var[SCc, (H)] = ©(n") x Var[SWr; 23 4) (H)]

+6(n°) x (CoVISWr1 554 (H), SWis 2,35 (FD)])+

+ +Cov[SWiy1,2,3,4)(H), SWry(1 2.4 5) (H)]>

+0(n%) x (CoVISWr123.4) (H), SWrs(1 25.6) ()] + CovISWiy1 2,5.0) (H), SWy 5,2.6) (H)
)

+ Cov[SW1 2,34y (H), SWry(1 5, 36) H)])

+6(n") x Cov[SWr1,2.3.4)(H), SWiy1 5,6,7) (H)]
+0(n®) x Cov[SWry1 2,34 (H), SWryg 6.7,8) (H)]-
(44)
Similarly, we show in Section C.4.2, that
Varg.cm.n[SCc, (K)] = ©(np*) and,
K~G(np)[SCo, (K)] = ©(n"p”) @5)

Varg. rGG(n,T4,Unif o3 ) [9Ccu (G)] = O(n'p*) + O(n®p®/d* + nSp" /d*).
Again,

EGNRGGsCC4(G)‘ =w (\/VarKNG(n,p) [SCC4 (K)] + Varg-rcc [SCC4(G)]>
holds if and only if d = 6(np).

10. Abusing notation, we write SW 4 (1 2,3y (H) for the signed weight of the triangle on labelled vertices 1, 2, 3. Similarly,
SWD(1,2,374) (H) stands for the signed weight of a 4-cycle on labelled vertices 1, 2, 3, 4.

40



Lo, RANDOM GEOMETRIC GRAPHS

C.2. Dimesnion Estimation Upper Bounds: Theorem 7

Low degree polynomial statistics are used in the literature not only for testing, but also for estimation
(see, for example, Schramm and Wein (2022)). We illustrate with the concrete example of using
signed cycles for estimating the dimension of RGG(n, T¢, Unif, o p) as in (P2).

Suppose that 1 is a small odd number. The expected signed count of m-cycles is'! is

(mz_l)! (Z) X (pm(dx"/u - ™)+ O(pmdQ)\Z’”))

by Corollary 27. Therefore, one can estimate A from the number of signed m-cycles. Under a
sufficiently strong concentration of the number of signed m-cycles, this could allow one to estimate
d as A ~ (log1l/p)/d. Similarly, one can perform this for small even numbers. We define the
success of a low-degree polynomial test for estimating a parameter (in our case, the dimension) in
analogy to Definition 22.

Definition 35 (Success of Polynomial Statistics for Exact Estimation) Given is a family of ran-
dom graph distributions (Dg)pe 4 over n vertices indexed by a parameter 0 taking values in A. Let
f(+) be a polynomial in the edges of an n-vertex graph. For each 0 € A, let My = Eg..p,[f(G)].
We say that polynomial f(-) succeeds with high probability on exactly recovering 0 if the fol-
lowing property holds. There exists some collection of values {Vg} pc.4 Such that the intervals
{[Me — Vo, My + V@],@ € A} are disjoint and V9 = w(Varg~p, [f(G)]l/z) for each 0. If,
on the other hand, no such intervals exist, we say that the polynomial f fails in the task of exact
estimation.

The interpretation of this definition is simple. Suppose that the true parameter is #’. Then, by Cheby-
shev’s, inequality with high probability over G ~ Dy, it is the case that f(G) € [Mel — Vg, Mo+
Vg |. If the intervals are disjoint, this is the unique interval of the form [Mg — Vy, My + Vy] with
this property and, thus, one can find ¢’. It must be noted that this is the implicit definition used in
Bubeck et al. (2014); Friedrich et al. (2023b) for estimating the dimension of random geometric
graph models.

To apply this definition to (P2), we use the variance bounds (43) and (45) and the following
simple estimate of A, deferred to Section C.4.3

Lemma 36 Suppose that d = w(log 1/p). Then,
logl/p 1 [logl/p\? log1/p\*
00 _ 7 _ 1/d: g p_, gLl/p gl/D
A 1—p 7 2( p > —i—O((d ,
_ logl/p 1[logl/p\* log1/p\*
0 )\ — 1/d 1 — gLyp 1 gL/p gLl/p
N/ =AC) =p 1 p +2( y > —i—O((d :

We are now ready to evaluate the intervals in which the signed triangle and 4-cycle statistics
succeed with high probability in the exact dimension recovery tasks.

11. The factor (m;)! (;;) is the number of undirected m-cycle subgraphs of K.

41



BANGACHEV BRESLER

Triangles. Using Corollary 27 and Lemma 36, the expected signed count of three cycles in di-
mension d is

n A 3
MG = B re6(n,14,Unif.oz ) [SCo3 (G)] = <3>P3 X <d<H> + O(d2x\6)>

n log1/p)® 3  (logl/p)* log(1/p)®
:(3)p3x (( sl/p)’ , 3, og 1y +O( sl1/o) ))

In particular, this means that
C: C
'/\/Id3 B Md—&g—l = EGNRGG(n,Td,Unif,J;?O7p) [SCCB (G)] - EGNRGG(n,Td+1,Unif,Jg°7p) [SCC’3 (G)]

_ (Zj) <@<<1og<;3/p>3>> . O((log%/p)‘*)))

= O(n’p’(log 1/p)* /d?).
(46)

In particular, ngl < /\/153 when d = w(log 1/p). Therefore, numbers V; with the desired prop-
erty from Definition 35 exist if and only if for all d € [w(log 1/p), M],

Cs Cs
M? = Mgiy

=w <\/VarGNRGG(n,Td,Unif,Ugo,p) [SCC% (G)] + ‘/varGwRGG(TL,T“H‘l,Unif,ag<J D) [SCC?, (G)]> :

Using (43) and (46), this is equivalent to

n*p(log 1/p)*/d* = &(v/nPp® + nTpP[).

One can easily check that this is satisfied if and only if d = 6((np)'/?).

4-Cycles. 1In the exact same way we conclude from Corollary 27 and Lemma 36'2
MG = EGRGG(n,T4,Unif,05 p) [SCe, (G)]
n logl/p)® 3 log 1/p)* log 1/p)* log 1/p)®
:3( >p4<¢(3)< /) 3 Qos1/p)t _ (ogl/p)t ) (log1/p)

4 d? 2 d3 d3 d*

i (D p4 @ log /)", < <logdl4/p>5>> |

Thus, 0 < M$* — MS%, = ©(n'p*(log 1/p)®/d*). Finally, by (45), the condition
MG MG,

=w <\/VE"rGNRGG(n,Td,Unif,Ugo,p) [SCC4(G)] + VarGNRGG(n,Td""l,Unif,a'go,p) [SCC4(G)])

12. Also, from Lemma 14 we recall ¢(3) = 2/3, even though the exact value of ¢(3) is irrelevant as long as it is
non-zero.
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is equivalent to

ntp*(log1/p)®/d® = d)(\/n4p4 + ndpb/d2 + n6p7/d3).

One can easily check that this is satisfied if and only if d = 6((np)?/3).

C.3. Detection Lower Bounds: Theorem 6

The proof follows a standard procedure for bounding ADVQS D> €.g in Hopkins (2018).

Suppose that n-lte < p < 1/2 and d > np for some absolute constant e. In particular, this
means that d > n and d > p_5 for some absolute constant § > 0.

Let D = (logd)®*/(loglogd) = ©(logn/loglogn). Consider the orthonormal basis of
G(n, p) given by the polynomials pz(-) == SWg(-)/(p(1 — p))FUHDI/2 for all subgraphs H of
K,,. From Section A.2, we know that to show statistical indistinguishability with respect to degree
D polynomials, we simply need to prove the inequality

ADVZ), —1:= Z EGRGG(n,T4,Unif,05 p) [pu(G)]? = o(1).
H - 1<|E(H)|<D

We prove this as follows. First, note that if H has a vertex of degree 1, then Egrcc[pu(G)] =0
as in Lemma 24. Thus, we can assume that there is no such vertex and, so, 3 < |V(H)| < |E(H)|.
Using Theorem 3, we obtain the following inequality. In it, we use the standard trick of considering
two cases depending on the number of vertices in Fourier coefficients (e.g. Hopkins (2018)).

> Eg~rac|pr(G))?
H : 3<|E(H)|<D

— 1 2
R H: 3§§(H)|§D (p(1 — p))lEE) E[SWg(G)]

1 B ¢ gV H)
p ((logd)“ /d)
H: 3§§(H)|SD (p(1 - p))‘E(HN

> (2p) Pl ((log d)© /)l ()]
H : 3<|B(H)|<D

- > (20)" ) ((l0g &)° fd) ¥ (D!
H :3<|E(H)|, |V(H)|<D?/3

+ > (2p)" " (log &) /)" 1.
H :3<|E(H)|<D, |V(H)|>D2/3

IN

(47)

IN

We used the fact that 1—p > 1/2 and |V (H)| < |E(H)|. Now, we consider the two sums separately.
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Case 1) [V(H)| < D*3. When |V (H)| = t, there are () ways to choose V (H) and then, once
V(H) is chosen, at most 2(2) ways to choose F/(H). This gives

> (2p)V I ((log d)© /d)lV
H 3 0<|B(H)|, |V (H)|<D¥/3
D2/3

<3 (") @p)28) ((log )€ /)"
Z; (t> p g

D2/3 " c t
np2*(log d)
< - =2 7
<2 ( y

t=3
< D3 (np2(10g d)5/6 (lOg d)C) t
; t=3 d

Clearly, if d = max ((np)1+0"(1)), wn(l)), one has

7 = o(1).

(”P2“°gd>5/6 (log d>c>

Thus, there is exponential decay in the sum and it is of order o(1).

Case 2) [V(H)| > D*3. When |V (H)| = t, there are () ways to choose V (H) and then, once
V(H) is chosen, at most
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ways to choose F/(H). This gives

> (2p)" ) ((1og d)© /)l ()
H: |E(H)|SD, ‘V(H)|>D2/3

< éﬁ”)t (}): (Q) (log ) /d)!

<2 3 e () (5)" (5

o) O\t
(2p)tnt<(t2)D/t)t((l gd) )

INA
w ~~
s L

t=D2/3 d
<9 & <2pnt2D/t(log d)c)t
- d

t 3

p2D'/? (log d)®

IN
ro

e Lps L

(=)

<2pn60((log log d)(log d)5/12) (log d)C’)t
P .

IN
DO

i
~
N
S~
w

Again, under the same conditions d = max {(np)'+°2(V)),w, (1)}, the expression is of order o(1).

C.4. Omitted Technical Details
C.4.1. PROOF OF (43)

Recall (42). We begin by calculating the variance for Erd6s-Rényi . Note that whenever (i, j, k) #
(7,7, k"), there exists some edge in only one of the two triangles A(i, 7, k), A(¢', 5/, k'). Without
loss of generality this is (7). Then, Ex g(np) [SWA(i,5,5) (K)SWa i j7 1y (K)] = 0 as the product
SW A (i,j,k) (K)SW A (37 v 17y (K) contains the factor K(;;y — p which is independent of everything
else. Similarly, Exg(np)[SW A (i,j,k) () Ex~G(np) [SWA (s 57,1 (K)] = 0. Thus,

VarKNG(n,p) [SWC?, (K)] = @(n?,) X VarKNG(n,p) [SCC3 (K)]
We now use the following fact:
For any indicator I, the equality (I — p)?> = (I — p)(1 — 2p) + (p — p?) holds. (48)
We deduce VarKNG(n,p) [SCCB (K)] = EKNG(n,p) [SCC‘S (K)Q] = @(n?,) x (p - p2)3 = @(n?,p?,)_
Now, we proceed to bounding Varg rGe(n,1¢,Unif o p) [SW¢y, (G)]. The idea is to split each
term EqrGG[SW A (ij,k) (G)SW (i j 1) (G)] into a (weighted) sum of signed counts with respect

to RGG(n, T?, Unif, 0,°,p) via (48) and then apply Theorem 3.

45



BANGACHEV BRESLER

1) Varg rec[SWa,2,3)(G)] = EG~RG~G[SWA(172,3)(G)2] — Egr6c[SWa(1,2,3)(G)]. By
Corollary 27, Eg~reG[SWa(1,2,3)(G)]? = ©(p®/d*) = o(p*). On the other hand,
Ec~rcc[SWA(123)(G)’] = Egrracl(G2)-p) (G 23)—p)* (Giz)—p)°l-

Using (48), this is equal to (p — p?)* + (1 — 2p)*Eg~rec[SWa(1,2,3)(G)] and some terms with
only one or two factors of the form G;; — p. By Lemma 24, those terms vanish as they form a graph
with a leaf. Thus, the result is of order ©(p?) + O((1 — 2p)?p3/d?) = O(p?).

2) Cov[SWn(1,2)(G), SWa (1,24 (G)] = E[SWa(123(G)SWa(12,4)(G)] — O(p°/d*) by
Corollary 27. However, using (48),
Ec~Rrc6[SWAa(1,2,3)(G)SWA(1,2.4)(G)]
= (p — P*)Ec~rccl(G3) — P)(Gas) — p)(G14) — p)(G24) — )]
+ (1 = 2p)Eg~rcc[(Gi2) — P)(Gas) — ) (Gaz) — P)(G(1a) — P)(G(21) — P)]-
Both summands correspond to the signed weights of graphs on at most 4 vertices. By Theorem 3,
the last expression is of order O(p x p*/d?) = O(p°/d?).

3) In the cases of Cov[SW (1 2,3)(H),SWA (1,45 (H)], Cov[SW A (1,2 3)(H), SWa (4,5,6)(H)]],
the two graphs A(i, 7, k) and A(4', 7', k") share at most one vertex, so their (signed) weights are
independent by Lemma 24 and the covariance is zero.

Combining those estimates via (42), the variance is of order ©(n3p?) + O(n4p5 /d?).

C.4.2. PROOF OF (45)
The estimate for Erd6s-Rényi holds in the same way as in the proof of (43). We now estimate each
of the terms in (44) for G ~ RGG(n, T?, Unif, o,°,p).
1) Asin the case fro triangles, we estimate
VargreG[SWi1,2,34)(G)]
= Ec~rcc[(G2) — p)*(Gs) — p)*(Gzay — p)*(Gasy — )*] — O(p°/d")
=(p—p")" + (1 - 2p)*Ea~rec[(Gi2) — )(Gas) — p)(Gza) — P)(Gag) — )] + O(p°/d*)
= (p—p")'+ (1 -2p)*0(p*"/d?) + 6(p*/d") = O(p").
2) Similarly, using (48)
Covarae[SWr1,2,3.4)(G), SWr1,2,3.5)(G)]
= EGNRGG[(G(m) - P)Z(G(zzs) - P)Q(G(34) —p)X
X (G(14) - p)(G(35) —P)(G(ls) -p)l - é(ps/d4)
=(p— p2)2EG~RGG[(G(34) - p)(G(m) - P)(G(35) - P)(G(ls) —p)]
+2(p— p*)(1 — 2p)Eg~recl(G2s) — P)(G e — P)(Ga) — P)(Gss) — p)(Gis) — p)]
+ (1 - 2p)°Eg~recl(Gi2) — P)(G23) — P)(Gza) — P)(G(1a) — P)(G35) — P) X
X (G(ls) -p)l - é(]?g/d4)
= O(p°/d?) + O(p° /d°?) + O(p° /d*) — ©(p® /d*) = O° /).

In the second to last line, we used Theorem 3 for each for the corresponding graphs.
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3)

Covgrraa[SWr1,2,3.4)(G), SWr(1,2.4,5)(G)]
= Eg~raec[(Gi2) — p)* (G(23 — )Gy —p
X (Gaay — p)(G p)(G p) G 25) — p)] — O(p°/d")
=(p —pZ)EGNRGG[(G(z?,) - )(G(34) - p)(G(14) —p)(Gs) — P)(Gs) — P)(G2s) — p)]
+ (1 = 2p)Eg~rcc[(G12) — P)(G(23) — P)(Gz4) — P)(G(14) — D)) ¥
X (G@s) — ) (Gs) — p)(Gas) — p)]
O(p®/d")
= O(p"/d**) + 0" /d*) = ©(p°/d*) = O(p" /d**) = O(p° /d?).
4

Covarea[SWo1,2,3.4)(G), SWr,2,5,6) (G)]
= Ec~rcc[(Ga) — p)? (G(23 = P)(Ga) = P)(Gag) —p))x
x (Gs) —p)(G )(G —p)] —O(p*/d")
=(p- p2)EG~RGG[(G(23) - )(G( 34) — )(G(14) - p)(G(25) *P)(G(ma) - p)(G(Gl) —p)]
+ (1 = 2p)Eg~rcc[(Gi2) — P)(G(23) — P)(Gz4) — P)(G(14) — P)(G(25) — P)) X
X (Gs6) —p)(G(m) —p)] - 6(°/d")
=O(p"/d®) + O(p"/d*) — ©(p°/d*) = O(p" /d®) = O(p" /d*)
5)

Cova~reG[SWr(1,2,3,.4)(G), SWry1 5,2,6) (G)]
= Ec~rc6[(Gz) — P)(G23) — P)(G3a) — P)(G(1a) — P)) X
X (Gas) — ) (Gs2) — P)(Gz6) — P)(Ge1) — p)]
(p*/d")
= 0(p*/d*) + O(p°/d") = O(p®/d®) = O(p"/d*)
6)

Cova~reG[SWr(1,2,34)(G), SWr(15,3,6) (G)]
= Ec~rc6l(Gz) — P)(G23) — P)(G3a) — P)(G1a) — P)) X
X (Gs) — P)(Gs3) — P)(Gze) — P)(Ger) — )]
O(p®/d*)
= 0(*/d*) + ©(p*/d*) = O(* /d*) = O (" /d*)
7) For Cov[SWr1,2,3,4)(H), SWry1 56,7 (H)], Cov[SWry1 2,3 4)(H), SWry5.6.7,8) (H)]],
the two graphs (4, j, k, £) and CI(¢', j', k', £') share at most one vertex, so their (signed) weights

are independent by Lemma 24 and the covariance is zero. }
Combining those estimates via (44), the variance is of order ©(n*p*) +O(n°pS /d% +nSp7 /d?).
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C.4.3. PROOF OF LEMMA 36
We know that \>° satisfies (1 — /\go)d = p. Thus,

0 __ 1/d __ _
A=1-p fd—1— exp(logp/d) =1 — exp(—(log1/p)/d).

By the usual Taylor series expansion, exp(—z) = 1 —z + 22 /2 + O(x®) when 2 = o(1). Similarly,
A0 /(1= A°) = p~1/? — 1 and we argue in the same way.

Appendix D. Statistical Indistinguishability in the L., Model: Theorem 4

In this section, we prove Theorem 4. Recall condition (A). Suppose further that d = w(n(logn)?).
As in Section 3, 77° = 1 — X\>°, where A\>° = log(l/p)( 1+ o(1)). We will write o, \, 7 instead of

0,0y Ay, T, for brev1ty We can view a(x y) as a single argument function of x — y.

Expanding one of the terms in (12), we obtain

k k—t
k 1-2 1-2 E ¢
sl 50 %) | 2l ) -2 (O (=) S
p(1—p) 1-p = p'(1—p)
We will prove the following bound on the moments of ¢ * o.

Lemma37 For all t > 1,t = o(l/A) = o(d/(logd)?), it holds that
E[(0 x 0)!] = p*(1 + ©(d\3t?)). Also, E[o * o] = p.

D.1. Proof of Theorem 4 given Lemma 37

i =il
k oo
-2 (1) (=)
S () () o (z(’z><1 (e
_ : t i
= o (M e DS () (D))

t=2
=1+ d\O(kp+ Ep*) =1+06(d” 2kp+d 2k2p?
Going back to (12),
n—1 ")/(X) k n—1
logE|(1+ —24— ]: lo E[1+C:) d%kp + d2k? 2]
kzzo g [( p(l—p)) Z g (d~%kp )

S(:)(d ka+d 2p22k> (d pn? +d2p? 3),

where we used the fact that t < k& < n = o(d/log d). The last expression is of order o(1) whenever
p>1/n,d> n3/ 2p with which the poof follows.
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D.2. Proof of Lemma 37

First, note that

ox0(x) =Eglo(g)o(x—g)] =E

d
[T tlgile < 1= N1z — gile <1
=1

d
H [ lgile <1 - ]]1[|50i—9i|0§1—)\]}.

Now, as is easy to see from Figures 3 and 4,

f(@) =Py uniellgle <1 = Az —gle <1-A = {

Figure 3: In the case when z is far from the origin (i.e.,
not within distance 2)\), the antipodal arcs of length 2\ of
0 and x (colored in red) do not intersect. Thus, g should
be anywhere outside of the two segments of total length
A\ to satisfy [glc <1 — A |lx —gle <1—A.

1—2\ when|z|c > 2,

1—X—|z|c/2 when|z|c < 2A.
(49)

A0 Xy

Figure 4: In the case when z is close to the origin (i.e.,
within distance 2)), the antipodal arcs of length 2\ of
0 and z (colored in red) intersect. Thus, g should be
anywhere outside of the intersection of the two segments
of total length 2\ + |z|c to satisfy |g|lc < 1 — A, |z —
gle <1—A.

d
Thus, 0 * o(x) = H f(z;). It follows that
i=1
d
El( +o(x))] = E[([] f(@))"] = Elf(z)’
=1
1 d 20
- (/0 f@)) - ((1-2» (1—2)\) /O (1-\—s/2) ds)
. (1 _ A)t—i—l t+1 d
:((1_%)“7L2 (t—l—l )
— <t+21(1 . )\)t+1 + i_’_i(l o 2)\)t+1>
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A simple calculation shows that the last expression is p?!(1 + ©(d\3t?)). We expand the brackets
on the left-hand side as follows.

2 i, t—1 iy
m(l—A)+1+m(1_2)\)+1_
t+1 ta1 1 i i
;( i )M(Q(—A) +(t—1)(-2)\)") =
2 2 2t(t — 1) L1\ 2(=A) + (= 1)(=2))
1—2t)\+<2>)\2—<3>)\3+6)\3+§< ; )( P )

We claim that the last expression equals (1 — \)?* + %)\3(1 + o(1)). This is equivalent to
proving that

(YA (o) o
=4

1

We split the sum into two parts, ¢ > 4 log % and ¢ < 4log %

Case 1) Large values of i. We have

£ (e )

7

]~

1\ /2(=N)! —1)(=2)) 2 ;
| ey
? t+1 ?
i>4log §
<2 3 (B = 0(BA)1ER) = O(AY) = o(A*12),
i>4log +
where we used the fact that A\t = o(1).
Case 2) Small values of .. We bound the coefficient in front of (—\)* as follows.
t+1\24+2'(t-1) (2t
7 t+1 1
-1 —2) (i +2) (20— 1) +2) — 262t — 1)(2t —2) - (2t — i + 1)
B il
2 -1t —-2)---(t—1+2)
N il + (52)
202t —2)(2t —4)--- (2t —2i +4)(2t —2) —2t(2t — 1)(2t — 2) --- (2t — i + 1)
1!
=0t
22t -1)(2t—-2)--- (2t —i+ 1)

|22t —2)(2t —4) - (2t — 20+ 4)(24 — 2)
il (* 2t(2t — 1)(2t —2) -~ (2t —i 4 1) )
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Now, observe that

26(2t = 2)(2t —4) - (26 — 20 +4)(2t —2) _ (Zt— 2

2t(2t — 1)(2t —2) -+ (2t —i + 1) 2 ) = (1—i/t) > 1—d/t,

where we used that 4 < ¢ <t and Bernoulli’s inequality. Furthermore,
2t(2t — 2)(2t —4)--- (2t — 2i + 4)(2t — 2) _ 2t—2ﬁ 2t — 27
2t(2t —1)(2t —2) -~ (2t —i + 1) C2t—14lop 51

< 1.

Hence, the desired sum is of order O(¢*~1) — O ( (2?’. i ZQ) = O(t'~1). It follows that the sum in the
small ¢ case is bounded by

where again we used tA = o(1).
Altogether, using that (1 — 2X)! > 1 — 2X\t = (1),

Bl(o+o(g))] = ((1 - " + 02X

_ ((1 N1+ @(mi”))d
= (1= XN)2"1 4+ 6(t2x\3))?
= (1 + O(dt*)?)),

where again we used that t = o(A™1), dt?A3 = o(1) and (1 — )¢ = p by definition.

Appendix E. Statistical Indistinguishability in the L, Model: Theorem 9

Here, we prove Theorem 9. We first give the proof in the case ¢ = o(d/ log d) and then explain the
necessary changes in the case ¢ = §2(d/log d). The latter is technically much simpler and does not
use any ideas which do not appear in the case ¢ = o(d/ log d).

E.1. The Proof for Small ¢

Further Notation. Throughout, we fix ¢ > 1, = o(dlog'd) and consider
RGG(n, T4, Unif, of jor 1 /2). For simplicity of notation, we denote 7/, simply by 7 and o /o bY
o. Note that o, when viewed as a single argument function, can be equivalently defined as the indi-
cator'of B Lq(Td)’T(O), where By, (WLT(X) is the L, ball of radius 7 on T centered at x. Under this
notation,
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Proof Strategy. Our main goal will be to prove that

k k
Egunirre) [[7(8)1F] VR < Cﬁ- (53)

for an absolute constant C'. This is sufficient to conclude Theorem 9 for the following reason. Using
(12) and the fact Eg_yni¢(rey[7(8)] = 0,

KL(RGG(n, T%, Unif, o, 1/2)[|G(n,1/2)) < D" 108 (Egumrn[(1 + 47(8))"])

(54)

n k
4eC
We used the fact that dg = w(n?) to conclude that there is exponential decay in Z ( \e/(gz) .
q
k=2
In light of Lemma 21, to prove (53), it is enough to show the following two statements:
1. Small Marginal Increments: ||D;y| oo = O(ﬁ) for all i.

2. Small Marginal Variances: |Var;[y]|/co = O(d%q) for all ¢.
Due to symmetry, it is enough to prove the statements for d = ¢. In deriving those two quantities,
we will need the following anticoncentration result.

Anticoncentration of random L -distances. In Section I, we prove Corollary 8 and derive the
following bound by specializing to X; = U/, where U; ~ Unif([0, 1]).

d-1
Lemma 38 For any interval [a, b], P [Z Ul € |a, b]} <exp(—Q(d/q)) + (b —a) x v/¢/d.
i=1

A simple integration, in turn, gives the following statement.
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Lemma 39 Suppose that Uy, Us, ..., Uj_1 Lig Unif([0,1]) and q = o(d/logd). Let F' be the

CDF on?:_ll Ul Then, for ({) := F(1) — F (79— (%) = F([r9 — (%,79]), we have

/Olqp(z)de:o(\/ldfg and /Olw(f)%w:o(;). (55)

E.1.1. MARGINAL INCREMENTS

For any fixed g_,

Day(g-a) =supy(g-a:81') inf (g-a.87)
d

g4

= sup By, (14)- (8-, 81" ) N By, (1a).,(0)]
=¥

—inf | By, r4) 7 (8-a,84") N By, (r0) - (0)] (56)
d

= | By, (14)+(8-4,0) N Br, (1) - (0)| = | B, (ra)(8-a,1) N By, (14 - (0)]
< |Br, (1), (8—d: O\Br, (14) - (8—d, 1)
= By, (r4),+(0O\By, (14),-(0_q, 1)].

Now, observe that a point (h1, ha, ..., hg) is in By, (ray - (0)\By, (r4)(0—q4,1) if and only if

d—1 d—1
D ohlE <79 —hgll  and > |hilE > 79— |1 = hall = 77— (1 = |hgle)”.
=1 =1

Clearly, one needs to have |hg|c € [0,1/2] for this event to occur. Since each |h;|c is uniformly
distributed on [0, 1], we conclude that the probability of this event is

1/2 d—1
/ Plrt— (1-07< S Wit < 79— 0| de
0 i=1
1 d—1 (57)
< P|r1-0i< hi|L < 19|de¢
/ > Il ]

-/ (- 0, eyt = /;WW —¢ <¢1q*d> |

E.1.2. MARGINAL VARIANCES

For the second moment, we will first rewrite . By definition,

1 |:Z S BLq(Td),T(g):| dz
(0)
(58)
dz.

d
ﬂ[Z\gi—zir% <7
=1
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Now, fix g_ 4 and denote

k(u) = /B

Vary unisst) [£(U)] is exactly Varg[y(g-q)]- By definition,

d—1
1 [Z l9i — zil& + Ju— z4|¢ < Tq:| dz.
)

Lq(rdy,~(0 i1

M d—1
Evunirenw(U)] = Bu | [ 1" lgi — zlf + U — zl% < 7)d
L BLq(Td),T(O) =1

M d—1

_Ey / 113" Jgi — 2ol + VIS < 7]da
BLq(nrd),T(O) i=1

= E[p(V)],

where p is defined by the last equation, i.e.,

o) = [
B
On the other hand,

Evunifsh [°(U)]

d—1

1 [Z \9i — 2| & + [v]E < Tq:| dz.
(0)

Lq(Td),7 i=1

d—1
1 [Z lgi — 21L&+ U — 2} < Tq:| dz!
i=1

d—1
H[Z |9i = 2| + U = 22|E < T"]dz2]
)

Lq(Td),r i=1
d—1
:EU / ]1[Z|gz—zzl|qc+|‘/|(é<7—q}dz1
BLq(wrd),T(O) i=1
d—1
</ ﬂ[Z\gi—z3|z+rv+z3—zzr%s#]df]
BLq(Td>,T(0) i=1

= Evr[p(V)p(V + R)],
where V = U — 2} ~ Unif(S') and R ~ z} — 22 and V, R are independent. It follows that
Var(x] = Ev.zlp(V)p(V + R)] — E[p(V)]*. (59)

Since p : St — [0, 1] is clearly Lo-integrable, we can write its Fourier series. Furthermore, as
p(v) = p(—v) and p is real, we can write

p(v) = (0) + 3 2(k) cos(mhv).

In particular, we have Ey _ynie(st)[p(V')] = p(0) and, using the convolution formula,
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By,zlo(V)p(V + R)] = 5(0)> + 3 25(k)*Erlcos(wkR)]. ©0)
E>1

Putting all of this together, we have

Varg[y(g-d)] ZQp )*Er[cos(TkR)] (Z 2p(k ) x sup Eg[cos(mkR)]
k>1 k>1 k=1

= Vary oy [p(V)]  sup Bileos(wh )]

(61)

We will now bound the variance of p and the cosine expectations separately. That is, we will show

1 1
Vary unissty[p(V)] = O <> and sup Eg[cos(mkR)| = O(),
d k>1 qd

which is enough.

1) Variance of p.

Var[p] < Ey [(P(O) - P(V))Q]

-1
=Ey (/ H[ZIgi—zil"chq]dz—
BLq(Td),T(O) =1
d—1 2
-1 [Z gi — zil& +VIE < Tq}dz> ]
i=1

d—1 2
=Ey (/ ]I{Z\gi—zi]‘ée[Tq,Tq—|V|(é]}dz> ]
L BLqmrd),T(O) i=1
I d—1 2
<Ey (/ 1[2\% —zilg €[ttt ~ |V|qc]}dz> ]
T LD

Since the integral is over the entire torus, the variables {|g; — zi|c ?;11 are iid uniformly distributed
over [0, 1], just like V. Therefore, the last expression equals

1
1
/ F([r7—¢9,79))%d¢ = O <d> , (62)
0
where we used Lemma 39.
2) Cosine Expectation. We need to find
supEg[cos(mkR)], R~ z}— 22 (63)

k>1
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where z}, 22 are independent copies of the last coordinate of a uniformly random point in
B, (1a),r (0). First, we will make a few simple observations abound the density of R. Let the density
of z} be v(x). Note that

v(z) o< F(r9—|z|)

since (21, 22, - - ., 24-1,%) € Bp,_(74)+(0) if and only if

d—1

D o lall <79 —af,

i=1
but |z1|c, |22]c, - - -, |za—1|c are iid Unif(]0, 1]) variables. In particular, this has the following im-
plications:

1. |z|c — v(z) is positive and decreasing.
2. viseven,ie. v(z) = v(—x).
Now, R ~ z}l — zfl ~ zé + zﬁ. Thus, if u is the distribution of R, clearly 4 = v * v. In particular:

1. piseven, ie. u(y) = pu(—y),

: : (64)
2. |lylec — wp(y) is decreasing.

The first fact is trivial. The second fact for y € [0, 1] can be shown as follows. First, note that
V(z) < 0forx € [0,1] as |z|c — v(x) is decreasing and v/(z) = —1/(—x) since x is even.
Now,

1
W) = xv)(y) = (/ *0)(y) = / @ly — oo
0

- /01 V(z)w(y — z)de + / Vi(z)v(y — x)dz

-1

1 1

:/0 V(as)u(y—x)dx—i-/o vV (—x)v(y + z)dx
1

= /0 V(z)(v(y — z) — v(y + z))dz.

We know that v/(x) < 0 for z € [0, 1]. On the other hand v(y — z) > v(y + =) holds because
|z|c — v(z) is decreasing and |y — z|¢ < |y + z|c whenever z,y € [0, 1]. To show the last part,
note that [y — z|c € {y — z,x — y}, and |y + z|¢c € {y + z,2 — y — «}. However,

l. y—z,x —y <y + x whenever z,y > 0.

2. y—z,x —y <2 —y—xwhenever z,y < 1.
We split the rest of the proof into two claims.

Claim 40 sup,, Egcos(tkR)] < 2TV <R, Unif([—1, 1})).
Proof Let (R, U) be an optimal coupling of a Unif([—1, 1]) random variable U with R. Then,

E[cos(mkR)] =E[cos(mkR) — cos(mkU)] = E {]I[U # R](cos(TkR) — COS(?T/fU)):|
(65)
<[ cos(wkR) — cos(rkU) oo X E [IL[U £ R]} <oTV (R, Unif([~1, 1])).
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|
Claim 41 TV(R, Unif ([~ 1, 1])) = 0(1/dg).
Proof We use properties of the aforementioned density p. Let U ~ Unif([—1, 1]).
TV(R,U) = sup <P[U € A]-P[R € A])
! (66)

= sglp/A <; - M(U)>dy < |A] x <; - igfu(y)> < (; - ir;fu(y))

Our last step will be to show that infy, yi(y) = $—O <dlq> . As we know, v(z) « F(r1—|z|},) =
F(r?) = ¢(|zle) = C = ¢(|z]c), where

O:F(ﬂ):P[%Uﬁgrﬂ ZP[zd:Ufgrq} >

i=1 =1

N

Thus,

1 1
uly) = ()(y) / F(r1—[]2) F (10— [y—a|%)d = / (C— (2|0 (C—(Jy—z|))de.

-1 -1
Now, we will find the normalizing constant in o .

2

k=2 [ [ (= vtirien© — vl - slendsas =2( [ ©vilopa)

_ 2(20 - /_11w(\x|c)dx>2 _ 2(402 _ 40/_11w(|x\c)d:v+ </_11¢(\:U|C)dx>2) 67)

1 1
— 2 _ —
=8C 80/11/1(|x]c)d:1:+0<dq>7
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where we used Theorem 39. Note that K = ©(1) since C' > 1/2 and fil Y(|jz|o)dr = O(y /%) =
o(1) by Theorem 39. However, we know that inf,, 1(y) = p(1) by (64), so

1
n(1) = [ (€= 0llale))(C = (11 = alc))da

_ ;(402 _ 20(/11 O(|z|c)d + /11 Y(|1 — x|C)dx>

+ [ wlelorts x [ w1 - aicyae)
> ;(402 - 20(/_11 Y(|z]c)dr + /_11 Y1 - 1»’|C)d$>>

_ ;((402 _ac /_11 1[1(|x]c)d:c>
_me-ofd) o)
dq)’

K 2

with which the desired bound on the cosine expectation follows. |

E.2. The Proof for Large g

When ¢ = Q(d/logd), we will follow a similar strategy as in the proof for the case of ¢ =
o(d/log d). Namely, our goal will be to prove that for any integer k,

EgNUnif(Td)[W(gNk]l/k < C(logd) (68)

cr
7

for some absolute constant C'. Following the same steps as in (54), this will be enough to conclude
the second part of Theorem 9. Again, we will use the Bernstein-McDiarmid approach to bounding
the moments of of . Our goal, this time, is to show the following.

1. Small Marginal Increments: || D;7| 0o = O(é) for all i.

2. Small Marginal Variances: ||Var;[v]||co = O(d—ls) for all .
We use the following anticoncentration results instead of Lemma 39. The rest of the proof is exactly
the same.
Lemma 42 Suppose that Uy,Us, ..., Uz_1 R Unif([0,1]) and q = Q(d/logd). Let F be the
CDF OfZg;l Ul Then, for y({) = F(79) — F(17 — (1) = F([r7 — (,79]), we have

/01 Y(0)dl = O (Cli) and /01 Y(0)%dl = O (;) . (69)

The proof of Lemma 42 is substantially different (and much simpler) than the proof of Lemma 39.
As we will need one of the ingredients in the next section as well, we present it in full detail here.
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Lemma 43 Suppose that Uy, Us, ..., Uy_1 are iid Unif ([0, 1]) random variables and q > 1. Then,
for any interval |a, b],

d—1
p [Z U9 € o, b@ < paD/a _ gd-D/a.
i=1

Proof The main idea is to reduce the computation to a computation for ¢ = oo. Let W =
max(Uy,...,Ug—1) and V1, Vo, ..., Vi_o L Unif([0, 1]) be independent of W. Then, Z?;ll U!
has the same distribution as W7 x (1 + Z?;f qu). This follows simply by conditioning on the

maximal value w of Uy, Us,...,Ug_1. Denote T' =1+ Z?;f qu and observe that T" > 1 a.s. This
implies that

P[iiUiq € [a,b]} —P[Wq xT e [a,b]] < stgll)P[Wq Xt € [a,b]]

_ supP[(j)l/q <W< (Zt))l/q}

t>1

Now, since W is the maximum of d — 1 iid Unif([0, 1]) random variables, P[W < z] = 29! for
b b, d=1 d—1
any x € [0, 1]. Thus, P[(i)l/q <W < (t)l/Q] — (E) 7 _ (%) ¢ < pd-D/a _ a(d_l)/q,
where we used ¢ > 1. ]
Now, we are ready to prove Lemma 42.
Proof [Proof of Lemma 42] Suppose that ¢ > d/(C" log d) for some absolute constant C’. We begin
by proving the following two simple statements:
1. 7 > 1 — 1/d. Recall that 7 is defined as the radius of a 1/2 volume ball in (T¢, L,). Let

Uy, Us, ..., Uqbeiid Unif([0, 1]) random variables. So,1/2 = P[r > ||(Uy, Ua, ..., Uqg)|lq]-
However,

P[1-1/d > |(U1,Us,...,Ud)llq]
<P[1-1/d>||(U1,Us,...,Us)|lec] = (1 = 1/d)* < 1/e < 1/2,

which means that 7 > 1 — 1/d.

2. 71 < C"(log d) for some constant C”’ depending solely on C”. Observe that each variable U}/
has expectation 1/(q + 1), variance lass than E[Uf 7' =1/(2¢ + 1) and is bounded between
0 and 1. Thus, by Lemma 20,

P [zd: UL >t +d/(q+ 1)] < exp ( — min {©(£2/(d/q)), @(t)}).
j=1

In particular, this means that setting t = C” x max(1,d/q) < C" x C’ x (logd) for large enough
C", we obtain a tail bound less than 1/2. Thus, 77 < C” log d for some C”.
Now, we go back to proving Lemma 42. We begin with the first inequality.
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1 1 d—1
/ Y(0)dl = / P|:7’q — <Y U < Tq] dr
0 0

i=1

- 1_(10gdd)3P|:Tq—€q<dle~dl<Tq:|d€+/l P|:Tq—€q<diU-d1<Tq:|d€
0 =t 1 oe® =t

< P|:7'q _ (1 B (logd)3>q < %Udl < Tq] n (10gd)3.

= ) =&t s d

q
All that is left to do is bound P |:Tq — <1 — (10gdd)3) < Zf’:—ll Uid_1 < Tq:| . Using Lemma 43,

3\ ¢ d—1
P [Tq = <1 - (lo‘zd) ) <M Uuit< Tq]

=1

(d-1)/
< (ra)lab/e (Tq - <1 - (logcld)3>q> q 7o
(d—1)/q
—(lo 3 d\?
_ (Tq)(d—l)/q % [1 _ (1 _ (1(1gd)/> > ]

Since 7 > 1 — 1/d, it is the case that M <1 - (logd)®/(2d). Thus,

(W)q < <1—(log d)3/(2d)>q < exp (—(logd)3q/(2d)) < exp (—@((log d)2)>-

It follows that

(1 i <W>q> (d-1)/q . <1 e ( (g d)2)>> (d-1)/q
> (1 — exp < - @((1ogd)2)>>0/(logd) =1—exp < — @((logd)2)>.

Therefore,

(Tq)(d—l)/q % [1 _ (1 _ (1_(1()ng)3/d>q> (d1)/q]

< (C"(log )= exp ( — O((1ogd?) ) = exp (  OX(108)) = o(1/a).
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With this, the proof of the first inequality is completed. The second inequality follows directly as

1 1 d—1 2
/ Y(0)2dl = / P [Tq —01<y UF < Tq] dr
0 0

=1

1 d—1 1
< / P [Tq —01<y UF < Tq] dt = / Y(0)de.

Appendix F. Entropic Upper Bound in the L, Model: Theorem 10

Theorem 44 (c-Net Argument) There exists some constant C' with the following property. Con-
sider a random geometric graph RGG(n, ), D, o,p) over the metric space (2, i), where 1/n <
p <1/2and o(x,y) = 1[u(x,y) < 7] for some 1. Suppose, further, that (2, ) has a finite c-net
N (g) which satisfies the following property. Px yi‘iN‘d‘D['u(x’ y) € [1 —2e,7+2¢]] = o(n2). If

IN(g)| < exp (Cnp log l/p), then
TV(RGG(n, 0, D, 0,p), G(n,p)) —1—o(1).

Proof First, we will show that there exists a graph distribution Q on support of size at most [N ()|™
such that
TV(RGG(n, 0, D, 0,p), Q) — o(1).

Let 7 be the projection map form 2 to A/ (g). Let D’ be the distribution over N(¢) defined by 7o D.
Let p’ = P iy [1(x,y) < 7]. We will show that @ = RGG(n, N (¢), D', 0,p’) satisfies the
desired propérty. Here, we think of NV (¢) as a metric space with the induced metric .

First, Q has support of size at most |N(¢)|™ as the n latent vectors in N (&) uniquely determine
the corresponding geometric graph.

Second, we will form a coupling between RGG(n, 2, D, o, p) and RGG(n, N (¢),D’,0,p’) as
follows. For latent vectors x!, x2,...x" € Q, let ggq(x!,x2,...,x") be the corresponding graph

according to RGG(n, 2, D, 0, p) and gg (. (m(x1), m(x?),...,m(x")) be the corresponding graph
according RGG(n, N (¢),D’,0,p). By definition, when we take x!,x?, ... x" L D, it is the
case that
gea(r(x)), 7(x2), ..., 7(x")) ~ RGG(n, 2, D, 0, p) and,
gg/\/'(a)(’]T(Xl),’ﬂ'(Xz), oo, m(x™) ~ RGG(n,N (), D, 0,p).
All that is left to show is that with probability 1 —o(1) over x',x2, ..., x" Rk D, it is the case that
ggQ(ﬂ-<X1)7 W(XQ)v s 77T(Xn)) = B8N (e) (W(X1)7 7T(X2), s 77T(Xn))'

Observe that whenever ggq,(m(x!), 7(x?),...,m(x")) # B8N (c) (m(x1), 7(x2),...,7(x")),
there exist some i, j such that

[ 1) < 7] # 2t o) < 7.
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However, by triangle inequality,
) = (), )| < )+ o ) < 22

In particular, this means that u(x?,x7) € [T — 2¢, 7 + 2¢]. As this happens with probability o(n~2)
for a fixed pair i, j, the union bound implies that this happens with probability o(1) for some i, j,

which finishes the proof that TV(RGG(n, 0, D,o,p), Q) = 0o(1). Thus, it is enough to show that
TV(Q, G(n, p)) =1 — o(1) under the given conditions. This follows immediately from [N ()| <
exp (C’np log1/ p> as shown in (Bangachev and Bresler, 2023, Theorem 7.5). |

Theorem 10 now immediately follows from the following proposition.

Theorem 45 Consider any q € [1,+00) U {0}, d > n®,p > n~'T¢. For ¢ = exp(—(lognd)*),

there  exists an  emet of (T4 L,) of size exp(©(d)).  Furthermore,
P yi.kd.,ﬂ,d["x —vylq € 7 — 26,71 +2¢] <n73.

Proof First, we will show the existence of a small € net. Let £k = [d/e| be an integer and consider
the set N' = {i/k € T' : 0 < i < 2k —1}¢ C T% This is a set of size (2k)% = exp(6(d)).
Furthermore, it is a e-net for any L, geometry for the following reason. Take x € T¢ and let
u = (u1/k,u2/k,...,uq/k) be the projection of x to N. Then, for any ¢ € [1, +00) U {00},

d
I =l < lx—uly = 3 foy —ui/k| < d/k <.
j=1

Now, we need to show that for each ¢, P_ yi'i'd'Td[HX —¥llq € [} — 2,7 + 2¢] < n~3 holds.

This is equivalent to showing that for Uy, Us, ..., Uy i Unif([0, 1]), it is the case that

P [H(Ul, Us,...,Ua)llq € [t] —2e,7] + 25]} < n~3 or equivalently
d
P|SoUf €l - 2200 rf + 2291 <o
j=1
As in the proof of Lemma 42, clearly (1) > 1 — (log1/p)/d > 1/2. Furthermore, note that

(11)? < das ||(U1,Us,...,Uy)||d < da.s. Now, we consider two cases:

Case 1) When ¢ = o(d/(logd)). Note that
(th+2e)1 — (1] +2e)T = (1)1 ((1 +2¢/78) — (1~ 25/75’)‘7).

Using that ¢ = o(d/ log d) = o(1/¢), (14)? < d, 77 > 1/2, the last expression is of order O(dge) =
o(n=3). By Lemma 38, P |:Z;'l:1 U € [(75 — 20)9, (7 + 25)(1]} = o(n=3), as desired.
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Case 2) When ¢ = 2(d/logd). Using Lemma 43,

d d/q d/q
P [Z Ul € [(t8 —2e)9, (1 + 25)‘1]] < <(rg + 25)‘1) — ((Tg — 25)q>

d/Q<<1—|-25/7-q> <1—25/7‘1‘}>d>

< "7 x O(de) = exp(O((log d)*)) x exp(—(log(nd))*) < n~>.

Appendix G. Signed Counts in L, Geometries
Our only rigorous progress towards signed subgraph tests in L, geometries is the following.

Theorem 46 The signed 4-cycle test cannot distinguish between Hy : G(n,1/2) and
: RGG(n, T?, Unif, 01/2, 1/2) in the following regimes:
]. When q = o(d/log d) and dq = w(n?).
2. When q = Q(d/logd) and d = &(n).

Proof The signed 4-cycle count corresponds to the second moment of ~ :

1/21/2) [SW¢, (G)]
= Eg~rec[(Gi12 — 1/2)(Gas — 1/2)(Gsq4 — 1/2)(Ga1 — 1/2)]

- Egl7g2,g3,g4i'ifvd‘Unif(Td) {(U(gl —g2) —1/2)(o(g2 — g3) — 1/2) x

% (o83 — 81) = 1/2) (o (g1 — £1) — 1/2)]
=B, iy [(a(zl) —1/2) (o(h — z1) — 1/2) (0(22) — 1/2) (o(h — 75) — 1 /2)]
= E[(o xo(h) — 1/4)2} ,

as desired. We used the substitution z; = g1 — 82,22 = g1 — 84, h = g1 — g3. Recalling (53) and
(68), we conclude that the signed count is of order O(1/dgq) in the regime ¢ = o(d/logd)) and of
order O(1/d?) in the regime ¢ = €(d/log d). However, K,, has ©(n*) subgraphs isomorphic to
Cy and Varg.g(n,1/2)[SCc, (H)] = O(n*) by (45). Therefore, a necessary condition for detection
via the signed 4-cycle test is n*Egrcc[SWe, (G)] = w(vnd). [ |

EG~RGG(n T4,Unif,o

We believe that 1/dq and 1/d? are the correct (up to log factors) orders of the signed 4-cycle
count in the two regimes. Note that when ¢ = oo, the signed 4-cycle count is indeed ©(d~?) by
Corollary 27. Similarly, in Ly geometry (admittedly over a different latent space such as {£1}¢,
but again with a hard threshold connection with density 1/2), the signed 4-cycle count is ©(1/d)
(follows directly from (Bangachev and Bresler, 2023, Observation 2.12)). As this is the correct
behaviour at both ends, we believe that it is also correct for all ¢, which leads to the following
conjecture.
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Conjecture 47 The signed four-cycle test distinguishes w. h. p. between Hy : G(n,1/2) and
H; : RGG(n, T?, Unif, 0‘11/2, 1/2) under (A) in the following regimes:
1. When q = o(d/logd) and dq = 5(n?).

2. When q = Q(d/logd) and d = 6(n).

Similarly, we conjecture the performance of the signed-triangle statistic by extrapolating from
behaviour at ¢ = 2 and ¢ = oo

Conjecture 48 The signed triangle test distinguishes w. h. p. between Hy : G(n,1/2) and
H; : RGG(n, T, Unif, 01/2, 1/2) under (A) in the following regimes:

1. When q = o(d/logd) and dg*® = 6(n?).

2. When q = Q(d/logd) and d = 6(n>/*).
These conjectures can be summarized with the following diagram.

Statistical and computational detection
Orin L, for p=1/2,g=nY,d=nk.

2.5
2.0
>~1.5 I
1.0
0.5

0.0

B

Figure 5: Visualizing Theorems 9 and 46 and Conjectures 47 and 48. I + I11 is the conjectured region in which the
signed triangle test solves (P1) for RGG(n, T¢, Unif, of 201 /2) with high probability. Region I + I is the conjectured
region in which the signed four-cycle test succeeds with high probability. In IV it is information theoretically impossible
to solve (P1) with high probability. The last region is potentially suboptimal. Interestingly, if these conjectures are
correct, the signed 4-cycle statistic is always at least as good as the entropic upper bound Theorem 10 but this is not the
case for the signed 3-cycle statistic.

A Fourier-based Approach to Signed Cycle Counts. We end with a Fourier-based approach
to computing the signed cycle counts for RGG(n, T?, Unif, o, p) (which extends to any random
algebraic graph over T¢ or a discrete torus ).

We begin with some brief refresher on Fourier analysis over T?. Recall that we defined T% as
a product of d circles of circumference 2, or, equivalently, T = R?/ ~, where x ~ y if and
only if x — y € 2Z%. Similarly to the Boolean case, we will use the fact that any Lo-integrable
function f : T — R can be uniquely written as f(x) = Y. cza f(v) exp(im(v,x)). We make
the following simple well-known observation. If f satisfies f(x) = f(—x) for all x, then each
coefficient f(v) is real and, furthermore, f(v) = f(—v). Indeed, this follows by uniqueness as

Zf( )exp(—im(v,x)) = f(=x%) = f(¥) Zf v) exp(im(v, X))
Z p(—im(v,x)).
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Finally, recall that f(O) = fﬂfl f(x)dx. Now, o}l is clearly Lo-integrable. Thus, for any signed
k-cycle weight,

EGR6G(n,T¢,Unif 0% p) |:SWCk (G)}

k
= g i Ui [H(U(gi ~ 8iv1) ~ p)]

i=1

- : H Z 8—(v) eXp(iﬂ'<V, gi — gi+1>)dg1dg2 SEEE <4

k (71)
= Z /(Td)k (v1)o(vy) -+ o(vg) exp(—im Z<Vi’ g — Zit1))

i=1
k
= Y[ aa) s expl-in D (g vi - vio)
V1,va, e VL ELNO (T9) i=1
= > W
veZ4\0
where the last line follows from the simple observation that if v; # v;_; for some 7, the integral

vanishes. It must be noted, however, that even if one manages to compute a signed cycle count,
there still remains the obstacle of computing its variance.

Appendix H. Random Algebraic Graphs Over the Hypercube: Theorem 12
H.1. Preliminaries

We begin with some preliminaries on Boolean Fourier analysis. Any function f : {£1}¢ — R

~

can be written uniquely as f(x) = > gc(q f(S)ws(x), where wg(x) = [[;cq i is the Walsh
polynomial O’Donnell (2014). The influence Inf;|f] of variable i is defined as

Infi[f] = FS)? = Exetmr(any | (/) — Fx*)2/4], (72)

icS
where x®* is x with the i-th coordinate flipped. We denote ﬁ[ f] as the vector in R%O with 4'th
coordinate equal to Inf;[f]. In particular, ﬁ[ flli = 3% Inf;[f] = Inf[f], which is the

total influence, and ||Inf[f]|l.c = MaxInf[f], which is the max influence. Also, | Inf[f]||3 =
S, Inf?[f], which is the quantity of interest in Theorem 12.

H.2. The Proof of Theorem 12

Throughout, we make the following assumption, without which the statement of Theorem 12 is
trivial (as it gives an upper bound of a total variation by a number larger than 1).

n|[Tnfo]||>

pi-p Y "
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Write o in the standard Fourier basis as 0(g) = p + > gcgc(q 0(S)ws(g), where G(0) =
E[o] = p. Then, y(g) = 0 * 0(g) — p*> = > 0cscldl 7(S)?ws(g). In particular, this means that for
any i € [d],and h_; € {£1}971 we have

Y@®)lg =h_, = Y () ws(h_y) + g Y _5(S) ws (53 (h_y).
iZS ies
It follows that

Diy(h_;) =2 5(5) ws g3 (h_i) <2 5(S)? = 2Inf;[0]

€S €S

2 2
and Var;[y(h_;)] = (ZZES G(S)Qws\{i}(h_i)> < <Zi€5 3(5)2) = Inf?[o]. Therefore,
by Lemma 21,

d
vl < c(ﬁa Zlnfg[a] +k X Maxlnf[a]> — C(VE x |[Tnf[o]||2 + k x |Inf[o]]|s.)

This implies
Il < (2C)* VA" [Tnf o] 5 + (2C)* % Tnf o] %,

Plugging this into (12) and using Eg[v(g)] = 0, we obtain the following bound. The computa-
tion is analogous to (54).

p(1 —p)

KL(RAG(n, {1}",0,p)[G(n, ) SHlOg (EgKH = ﬂ)
(5 ()

nY _E[4"]
: " <k> pF(1 —p)*

n Inf[o]||}
o e el

n Inf[o]||.
g et

We now handle the two sums separately. We will use the inequality (}) < (ne/k)".

Sum depending on s norm.

k
Z( ) op Vi) uﬁ Ilnf{o]]5 Snz<2e0nuﬁ[anb> | o

k>2 p) k>2 \/Ep(l - p)

66



Lo, RANDOM GEOMETRIC GRAPHS

We will show exponential decay in the summands. That is, for all £ > 2,

2eCulinflo]ls)" _ ,  2eCnlinfio]ly | "
Vip(l—p) ) — \VE+1p(1-p)

This is equivalent to vk +1 > C’ nHﬁ[U])HQ for some absolute constant C’. The latter inequality
clearly holds for all £ > 2 by (73). Since there is exponential decay, the term for £ = 2 is dominant
and, thus, the entire expression is of order O [ ™ ”IT%[;)QHQ

Sum depending on L, norm. Using the same reasoning, the expression can be bounded by

2eCn|Taf (o] "
”§:< p(1-p) )' 7

k>2

nllTnflo]|le _

Again, whenever o (—p)

by (73) as ||ﬁ ||OO < ||ﬁ ||l2- Thus, the term for k& = 2 is dominant, so the L, contribution

n? | Inflo])2,
p*(1-p)?

o(1), we have exponential decay. This, however, clearly is the case

is bounded by O . Combining with the Lo contribution, the statement follows as

— —
[Inf(o]]2, < |[Inflo]]3.

H.3. Comparison of Theorem 12 with Bangachev and Bresler (2023)

In Bangachev and Bresler (2023), the authors prove the following theorem in the same setup.

Theorem 49 (Bangachev and Bresler (2023)) Consider a dimension d € N, connection
o : {£1}¢ — [0, 1] with expectation p, and absolute constant m € N. There exists a constant K,
depending only on m, but not on o, d, n, p, with the following property. Suppose that n € N is such

that nK,, < d.For1 <i<d,let B; = max{\E(S)\( )1/2 |S| = z} Denote also

If the following conditions additionally hold

2

. Cm m+1
d> K, xn x (p(l—p)) ,

e d>K,, Xxnx fora112<u<m
(1p

B2 2
p(f “)uforall2<u<m

°dZKm><n><(
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then

2
TV RAG(n,{il}d,p,a)llG(n,p))

3 "B & BY 2 d
gKmxnx< —* 4+ B, Cn —|—D2><exp(—) )

p%(1 — p)? —d o e d dm+l 2en

We make several remarks on the comparison between those two theorems along several lines.

» Simplicity. Theorem 12 is much easier to apply than Theorem 49 and its proof is substantially
shorter and less involved. In addition, it gives a bound based on influences which are a much
more standard quantity in Boolean analysis than the values B;, C,;,, D in Theorem 49.

* Applicability. Furthermore, Theorem 12 can be applied in setting when d = o(n) as opposed
to Theorem 49. Thus, for example in Bangachev and Bresler (2023) prove the first part of
Corollary 13 only when d = Q(n), thatis r = O(y/n).

* Sharpness. Still, in many cases Theorem 49 is much stronger. For example, consider the dou-
ble threshold connection o(g) = 1[| 2%, gi| > xa], Where x4 is chosen so that E[o] = 1/2.

Then, Theorem 49 implies that TV(RAG(n, {£1}4,5,1/2), G(n, 1/2)) = o(1) whenever

d = w(n3/ 2) (Bangachev and Bresler, 2023, Corollary 4.10). However, Theorem 12 only
implies this for d = w(n?). The reason Theorem 12 is much weaker in this setting is that the
expression Z?Zl Inf?[o] puts a much larger weight on levels close to d. Indeed, note that
for S C [d], the Fourier coefficient (S) contributes to |:S| of the terms Inf?[s], but it only

4
d B, from Theorem 49.

contributes once to the expression ) i ; .

Appendix I. Anticoncentration of Convolutions and the Proof of Lemma 39

Suppose that X is a real-valued random variable with density which is absolutely continuous with
respect to the Lebesgue density on R. Denote by M (X) € R4 U {+o0} the maximum value of the
density of X. We will use the following fact from Bobkov and Chistyakov (2014).13

Theorem 50 Suppose that Y1,Ys, ..., Y, are independent real random variables with densities
absolutely continuous with respect to the Lebesgue measure. Then,

d
1
MM+ Ya+ o +Ya) > - > M73(Yy).
i=1

In particular, when Y7, Ya, ..., Yy are iid, this implies that M (Y} + Yo + -+ - + Yy) < \/gM(Yl).
As already mentioned in Section E, in the setup of Lemma 39, M (U?) = 400 when ¢ > 1 and,
thus, we need to generalize Theorem 50.

Lemma 51 Suppose that X is a real-valued random variable with the following property. There
exists another random variable Y such that
1. TV(X,Y)=1—-p€]0,1),and
2. The density of Y is absolutely continuous with respect to the Lebesgue measure on R and
M(Y)=m < 0.

13. The result in Bobkov and Chistyakov (2014) is more general and holds for random variables taking values in any R“.
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Let d be an integer and let X1, Xo, ..., X4 be independent copies of X. Then, there exists a random
variable Z4 on R such that

1. TV(X1 + Xo+ -+ Xy, Zy) < exp(—dp/8), and

2. The density of Zg is absolutely continuous with respect to the Lebesgue measure on R and
M(Zg) </2e \/T;Td
Proof We first introduce two notational conventions.

If (D;)7_, are probability distributions and p € RZ, is a vector with weights with sum to 1, we
define the mixture 3", p;D; as follows. First, one takes B € [n] such that P[B = i] = p,. Then,
one draws Z ~ Dp independently from 5.

If D, F are real-valued probability distributions, denote by D * F the distribution of Yp + Yr,
where Yp, Y7 are independent and Yp ~ D, Yr ~ F.

We will use the following trivial identity.

<ZP¢Di> * (Z C_Ij]:j> = Z piq; D; * F.
=1 =

1<i<n,1<j<m

Now, we go back to Lemma 51. Consider such a random variable X and let Y be its correspond-
ing random variable from the statement of the lemma. Consider an optimal coupling (X', Y”) of X
and Y such that X’ = Y with probability p. Denote by D the distribution of X'| X’ # Y” and by
D_ the distribution of X’| X’ = Y”, which is the same as the distribution of Y'| X’ = Y”. Since Y’
is absolutely continuous with respect to the Lebesgue measure, so is Y| X’ = Y. Furthermore, the
maximum value of the density of D_ is at most mp~' as m is the maximum value of the density of
Yand P[X' =Y'] =p.

In particular, note that the distribution D of X is the mixture (1 — p)D» + pD—, where D— is
absolutely continuous with respect to the Lebesgue measure and its density is bounded by mp~".

Therefore, the distribution of X7 + X5 + - - - + X is the mixture

d
2 <Z>pk(1 = p) (Do) x (D) R
k=0
> @pk(l — ) HDo) T x (D)) 76)
k<dp/2
s <Z>pk(1_p)dk(p)*’“*(D;ﬁ)*(d"f).
k>dp/2

We now show the following two facts. First, the weight on summands k£ < dp/2 is at most
exp(—dp/8), which means that X; + Xo + --- + X is exp(—dp/8)-close to the mixture
D k> dp)2 (Z)pk(l — p)@=*(D_)** % (D4)*@=*). On the other hand, the latter mixture is absolutely

m

Vp3d

continuous with respect to the Lebesgue measure and has density bounded by v/2e

. We begin
with the first part.

d
Lemma 52 Z <k>pk(1 —p)TF < exp(—dp/8).
k<dp/2
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Proof This is a trivial application of Chernoff bounds. Let Vi, V5, ..., V; be iid Bern(p) random
variables. Then,

> (Z)p’“(l —p)F =

k<dp/2

d
> Vi<dp(1-1/2)

i=1

< exp(—dp/8).

Lemma 53 For each k > dp, M<(D )k (D;,g) ) \ﬁ

Proof Note that the density of D_ is at most mp—!

immediately obtain
2e
D)k < el < [26 -1
D < em <\

This is enough since M((D:)*k * (D¢)*(d_k)> < M((D=)*") <

as discussed. Therefore, by Theorem 50, we

\/7

Now let D be an arbitrary random variable on R with maximal density at most v/2e \ﬁ Consider
Z distributed according to

2o [ X (Pra-pt)oes B ()a-pt ot s e,

k>dp/2 k<dp/2
Lemma 52 implies TV (X1 + X2 + -+ -+ X4, Z) < exp(—dp/8). Lemma 53 implies that M (Z) <
m
26\/%. |

An immediate corollary of Lemma 51 is Lemma 8 which we use to prove Lemma 39.
Proof [Proof of Lemma 8] Let @ = {x > 0 : f(x) < m}. Clearly, [, f(2)dx = p. Let Y be the
real-valued random variable with density f(z) for z € §2 and density equal to m on [—(1—p)/m, 0].
Then, the density of Y is bounded by m and TV(Y, X) = 1 — p (as the two densities agree on 2
which has measure p). Now, we simply find the random variable Z; given by Lemma 51 and observe
that for an optimal coupling of Z;, X; + X2 + - - - + X4, we have

P[X1+X2+"'+Xd€ [a,b]]
<P[Xi1+Xo+ -+ Xa # Za) + P[Zy € [a,b]] < exp(—dp/8) + M(Z)(b - a),

from which the claim follows. [ |

Proof [Proof of Lemma 38] We apply Corollary 8 as follows. Consider the random variable U9,
where U ~ Unif([0, 1]). The CDF ¢(x) of U4 for x € [0, 1] is

¢(x) = P[U? < z] = P[U < 2] = /9,
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Thus, the density h(z) of U? is h(z) = (z'/9) = %xl/qfl]l[x € (0,1]]. Now, observe that
h(z) < %(1/2)1/‘1_1 < % for x € [1/2,1] and also

p=PlUT€[1/2,1]] =1 -P[UT<1/2] =1~ (1/2)"/71 > 21q~

Thus, applying Corollary 8 with m = %(1 J2)Va1 < %, p = 2*1(1 gives the result. [ |

Proof [Proof of Lemma 39] Using Lemma 38,

Y(l) =P [U{I + U+ +Ul el 17— Kq]] < exp(—Q(d/q)) + O <\/g€q> )

Using that d/q = w(log d) and integrating over [0, 1], we conclude

/01 $(0)dl = exp(—Q(d/q)) + O (\/g/ol ew)

— exp(—Q(d/q)) + O < qld) ~0 < q1d> .

/01 YE(0)dl = /01 <exp(—Q(d/q)) +0 (\/g€q>>2d€

— Olexp(—Q(d/q))) + O <§ /01 e%zz) ~0 (;) .

Similarly,
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