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Abstract
Cohen and Kontorovich (COLT 2023) initiated the study of what we call here the Binomial Em-
pirical Process: the maximal empirical mean deviation for sequences of binary random variables
(up to rescaling, the empirical mean of each entry of the random sequence is a binomial hence the
naming). They almost fully analyzed the case where the binomials are independent, which corre-
sponds to all random variable entries from the sequence being independent. The remaining gap
was closed by Blanchard and Voráček (ALT 2024). In this work, we study the much more general
and challenging case with correlations. In contradistinction to Gaussian processes, whose behavior
is characterized by the covariance structure, we discover that, at least somewhat surprisingly, for
binomial processes covariance does not even characterize convergence. Although a full characteri-
zation remains out of reach, we take the first steps with nontrivial upper and lower bounds in terms
of covering numbers.
Keywords: empirical process; subgaussian; concentration; high dimension; convergence

1. Introduction

We consider the fundamental problem of estimating the mean of a high-dimensional and poten-
tially infinite-dimensional distribution µ from independent and identically distributed (iid) samples
X(1), . . . , X(n) ∼ µ. More precisely, we aim to characterize the maximum deviation from the em-
pirical mean p̂ := n−1

∑n
i=1X

(i) to the true mean p = EX(1). We mainly focus on distributions
with support on the hypercube, that is, for X = (Xj)j≥1 ∼ µ each entry Xj is a Bernoulli random
variable — as these already capture most of the relevant high-dimensional phenomena. The object
of interest is the expected maximum deviation:

∆n(µ) := E ∥p̂− p∥∞, (1)

and we aim to study the behavior of ∆n(µ) as the number of samples n grows.
Estimating the mean of a distribution µ on Rd from independent draws is among the most

basic problems of statistics. Much of the earlier theory has focused on obtaining efficient esti-
mators m̂n of the true mean m and analyzing the decay of ∥m̂n −m∥2 as a function of sample
size n, dimension d, and various moment assumptions on X (Catoni, 2012; Devroye et al., 2016;
Lugosi and Mendelson, 2019a,b; Cherapanamjeri et al., 2019, 2020; Diakonikolas et al., 2020; Hop-
kins, 2020; Lugosi and Mendelson, 2021; Lee and Valiant, 2022). For d-dimensional distributions
µ on {0, 1}d, the classical Glivenko-Cantelli theorem ensures the convergence of the maximum
deviation ∆n(µ) to 0, which can be quantified by the Dvoretsky-Kiefer-Wolfowitz inequality via
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∆n(µ) ≲
√

ln(d+ 1)/n. This worst-case bound can however be overly pessimistic. In particu-
lar, when the dimension is infinite the bound becomes vacuous: distributions-dependent bounds are
necessary. Inspired by these observations and by Thomas (2018), Cohen and Kontorovich (2023a)
introduced the problem of characterizing the distribution-dependent behavior of the empirical de-
viation ∆n(µ) = E ∥p̂ − p∥∞ for distributions µ ∈ {0, 1}N. The ℓ∞ norm is in some sense the
most interesting of the ℓr norms; indeed, for r <∞, ∆(r)

n := E ∥p̂ − p∥rr decomposes into a sum of
expectations and the condition ∆

(r)
n → 0 reduces to one of convergence of the appropriate series.

The uniform convergence implied by the ∥·∥∞ norm as well as the dependence on the particular
distribution µ led the authors to refer to this problem as local Glivenko-Cantelli.

Cohen and Kontorovich (2023a) obtained an almost complete understanding of the behavior of
∆n(µ) in the case of product measures, that is, for X = (Xj)j≥1 ∼ µ all entries Xj are independent.
In this case, µ is determined entirely by its mean p. To emphasize that these are product measures,
we write ∆n(p) for ∆n(µ). Restricting p ∈ [0, 1]N to the range [0, 12 ] and requiring that pj ↓ 0 as
j →∞ (which incurs no loss of generality, as shown ibid.) they defined the functional

T (p) := sup
j∈N

log(j + 1)

log(1/pj)

and showed that ∆n(p)→ 0 iff T (p) <∞. They also characterized up to constants the asymptotic
convergence of ∆n(p) when T (p) <∞ via the functional

S(p) := sup
j∈N

pj log(j + 1),

establishing that ∆n(p) decays as
√
S(p)/n. Additional finite-sample bounds provided therein

were tightened by Blanchard and Voráček (2024) as follows:

∆n(p) ≍ 1 ∧

√S(p)

n
+ sup

j≥1

log(j + 1)

n log
(
2 + log(j+1)

npj

)
 , if n · sup

j≥1
2jpj > 1, (2)

∆n(p) ≍
1

n
∧
∑
j≥1

pj , otherwise. (3)

In this paper, we tackle the much more challenging case of general distributions µ on {0, 1}N:
entries of X ∼ µ may have arbitrary correlations. While the upper bounds from Eq (2) and (3)
mostly hold up to minor changes (Blanchard and Voráček, 2024), these are in general very loose
since they do not account for possible correlations between entries of X ∼ µ. One can easily find
examples for which these bounds are vacuous but ∆n(µ) still converges to 0 as n grows. Our goal
is to understand for which forms of correlations in µ the quantity ∆n(µ) decays as n grows, and
hence the empirical mean is an accurate estimator of the mean.

Our contributions. The decoupling result in Theorem 1 shows that when the pairwise correlations
are negative, the behavior of ∆n(µ) remains as in the independent case, up to universal constants.
This might lead one to conjecture that the pairwise correlations suffice to characterize the decay of
∆n. Theorem 3 decisively shatters this conjecture, by exhibiting two processes µ, ν with identical
pairwise covariances but for which ∆n(µ) decays to 0 while ∆n(ν) does not. While characterizing
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the measures µ for which ∆n(µ) −→
n→∞

0 remains a challenging open problem, we take nontrivial first
steps in this direction. In particular, we define two metrics and show how covering numbers with
respect to these provide upper and lower bounds on ∆n(µ). More specifically, we give necessary
and sufficient conditions on these covering numbers for ∆n(µ) −→

n→∞
0 to hold and show that among

the covering-number-based bounds, this is essentially the best one can do. Some of the techniques
developed for the results may be of independent interest, including decoupling (Proposition 10),
subgaussian increments (Lemma 18), a recursive argument to extract entries with large deviations
(Theorem 4), and probability distributions with tree structures (Proposition 8).

Terminology and related works. Because we focus on distributions µ on {0, 1}N, the rescaled
empirical mean Y = np̂ is a vector of binomial random variables Yj ∼ Binomial(n, pj). When
the distribution µ is a product measure, Y is exactly the sequence of independent binomials Yj ∼
Binomial(n, pj); however, for general distributions µ, these binomials are correlated. With this
perspective, the empirical deviation of the mean Ȳ := p̂− p = n−1Y − p is a centered, normalized
process, which we refer to as the binomial empirical process. The quantity ∆n(µ) = E supj∈N |Ỹj |
is then simply the expected uniform absolute deviation of the binomial process Y .

A few remarks are in order. First, the binomial empirical process Y does not have an arbitrary
structure since its entries are coupled via the joint distribution µ on {0, 1}N: we have Y = p̂ − p,
where p is the true mean and p̂ is the empirical mean based on n iid copies of µ.

Second, the study of the binomial empirical process differs from that of Bernoulli processes as
studied by Talagrand and others. We refer the reader to Chapter 5 of Talagrand (2014). Briefly, one
defines a sequence of mutually independent symmetric Bernoulli variables εi with P(εi = ±1) =
1/2. To any T ⊂ ℓ2(N) we assign the value

b(T ) = E sup
t∈T

∑
i∈N

tiεi. (4)

The celebrated Bednorz-Latała Theorem (Bednorz and Latała, 2014) characterizes b(T ) up to uni-
versal constants in terms of the combinatorial structure of T involving Gaussian width and ℓ1 di-
ameter. In principle, one may be able to relate the two objects of interest, b(T ) and ∆n(µ), via
some mapping of µ and n to T and vice versa. Despite repeated attempts, we were not successful in
doing this; in fact, we were not able to extract any information from the Bednorz-Latała Theorem
that would shed light on either of the two open problems above.

Notation. The measure-theoretic subtleties of defining distributions on {0, 1}N are addressed in
Cohen and Kontorovich (2023a). If µ is a probability measure on {0, 1}N, we say that µ̃ is its product
version if µ̃ is a product measure on {0, 1}N that agrees with µ on all of the marginals, that is, if
X ∼ µ and X̃ ∼ µ̃, then the entries Xj and X̃j are equal in distribution and the {X̃j : j ∈ N} are
mutually independent. In this case, we say that X̃ is the independent version of X . A probability
measure µ on {0, 1}N induces the metrics ξ and ρ on N as follows. Putting

pi := E
X∼µ

[Xi], rij := E
X∼µ

[XiXj ], i, j ∈ N, (5)

we define

ξ(i, j) := P(Xi ̸= Xj) = pi + pj − 2rij , (6)

ρ(i, j) :=
2√
3
∧
√

2

log 2
ξ(i,j)

, (7)
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where we set ρ(i, j) = 0 whenever ξ(i, j) = 0. It is straightforward to verify that both are metrics;
for the former, we have ξ(i, j) = E |Xi −Xj | and the latter is verified as such in Lemma 19.

For any two quantities a, b ∈ (0,∞), we use the shorthand a ≲ b when there exists a universal
constant C > 0 (independent of any parameters of the problem) such that a ≤ Cb. Likewise, a ≳ b
if b ≲ a and a ≍ b if both a ≲ b and a ≳ b hold. The floor and ceiling functions, ⌊t⌋, ⌈t⌉, map t ∈ R
to its closest integers below and above, respectively; also, s ∨ t := max {s, t}, s ∧ t := min {s, t},
[s]

+
:= 0 ∨ s and [s]− := 0 ∨ (−s). Unspecified constants such as c, c′ may change value from

line to line. We use superscripts to denote distinct random vectors and subscripts to denote indices
within a given vector. Thus, if X(1), , . . . , X(n) are independent copies of X , then X

(i)
j denotes the

jth entry of the ith copy.

2. Main results

Our first result is a decoupling inequality comparing a negatively correlated binomial process to
its independent version. If µ is a probability measure on {0, 1}N and µ̃ its product version as
defined above (the two agree on the marginals and µ̃ is a product measure), then “decoupling from
above”, i.e., ∆n(µ) ≲ ∆n(µ̃), holds without any structural assumptions on µ and the proof is quite
straightforward (Chollete et al., 2023, Proposition 3.1). The other direction is far less trivial and is
clearly not true in general:

Theorem 1 (Decoupling from below) Let µ be a probability measure on {0, 1}N with negatively
correlated coordinates (i.e., X ∼ µ verifies E[XiXj ] ≤ E[Xi]E[Xj ] for i, j ∈ N) and µ̃ its product
version. Then

∆n(µ) ≥
1

4
∆n(µ̃), n ≥ 1.

The proof is given in Section 3. In particular, together with the tight bounds Eq (2) and (3)
from Blanchard and Voráček (2024) for independent Bernoulli sequences, we directly obtain tight
non-asymptotic bounds for negatively correlated Bernoulli sequences.

Corollary 2 Let µ be a probability measure on {0, 1}N with negatively correlated coordinates.
Then, Eq (2) and (3) continue to hold.

In the previous result, only the lower bounds are worsened by a factor 1
4 compared to those for inde-

pendent Bernoulli sequences in Eq (2) and (3). It is worth noting that the upper bounds are exactly
the same as for the independent case—these only require union bounds and Markov’s inequality,
hence also hold for general distributions, as noted in Blanchard and Voráček (2024, Corollary 3).

Based on Corollary 2 as well as Gaussian process theory, one might plausibly conjecture that
the behavior of ∆n(µ) is determined by the covariance structure of X ∼ µ. It is therefore at least
somewhat surprising that this is very much not the case:

Theorem 3 (Covariance does not characterize ∆n) There exist probability measures µ, ν on {0, 1}N
that agree on their covariance matrices,

E
X∼µ

[XiXj ] = E
X∼ν

[XiXj ], i, j ∈ N,

while ∆n(µ) −→
n→∞

0 and ∆n(ν) −→
n→∞

1
2 .
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The proof is given in Section 4. It turns that the two distributions we construct also share the
exact same third-order moments; that is,

E
X∼µ

[XiXjXk] = E
X∼ν

[XiXjXk], i, j, k ∈ N.

In particular, this shows that third-order moments still fail to characterize the convergence of ∆n to
0 (the proof of this claim appears in Appendix A). We conjecture that similar examples could be
constructed to show that for any k ≥ 1, knowledge of the kth order moments does not suffice to
characterize the decay of ∆n.

Although a complete understanding of the behavior of ∆n as a function of µ so far remains out
of reach, we take nontrivial steps in this direction by providing upper and lower bounds in terms of
the covering numbers. To state our bounds, we fix a probability measure µ on {0, 1}N. We define
the metric spaces (N, ξ) and (N, ρ) as in Eq (6) and (7). For ε ∈ (0, 1], we will denote byNξ(ε) and
Nρ(ε) the ε-covering numbers of (N, ξ) and (N, ρ) respectively. We recall that the covering number
N (ϵ) for a metric space (M,d) is the minimum cardinality of a covering set S ⊂ M , that is, such
that for any x ∈ M , there exists y ∈ S with d(x, y) ≤ ϵ. Recall that a subset of a metric space is
totally bounded if its ε-covering numbers are finite for each ε > 0.

We start by showing that total boundedness is a necessary condition for convergence. The proof
is deferred to Appendix B.

Theorem 4 Let µ be a distribution on {0, 1}N be such that (N, ξ) is not totally bounded and let
ε ∈ (0, 1] be such that Nξ(ε) =∞. Then, for all n ≥ 1,

∆n(µ) ≥
ε2

6
.

Hence, if ∆n(µ)→ 0, then (N, ξ) is totally bounded.

The proof uses the following idea: given an ε-separated infinite subset S ⊂ N, that is, one for
which ξ(i, j) = P(xi ̸= Xj) > ε for all i, j ∈ S, we can show that with reasonable probability, the
sequence {Xi : i ∈ S} contains infinitely many realizations of both 0 and 1:

P

{
min

(∑
i∈S

Xi,
∑
i∈S

(1−Xi)

)
=∞

}
≥ ϵ

The proof then constructs a sequence of decreasing (random) infinite sets S(n) ⊂ N for n ≥ 1
such that on the first n iid samples X(1), . . . , X(n), all entries i ∈ S(n) diverged from their mean
significantly: |p̂i−pi| ≳ εpi. These sets can be constructed recursively as follows. Given an infinite
set S(n) ⊂ A, we can still apply the initial result to S(n) because it is still ε-separated and infinite.
Hence, for any j > n, with probability at least ε, the sequence {X(j)

i : i ∈ S(n)} contains infinitely
many realizations of both 0 and 1. Whenever this event occurs for some samples n′ > n (after a
geometric waiting time n′−n ∼ G(ε)), we can either select the entries S(n′) ⊂ S(n) as those with
realization 0, or those with realization 1, whichever induces maximal deviation from the means. In
both cases, S(n′) is still infinite hence we can continue the induction. The deviation on some entry
i ∈ S(n′) is of order pi after a waiting time n′ − n ≈ 1/ε, which corresponds to a ≈ piε deviation
in average; this can be replaced with ≈ ε2 with additional technicalities.

Although the necessary condition in Theorem 4 might at first appear somewhat weak, it turns
out to be essentially the best one can do solely based on covering-number information:
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Proposition 5 Let N : (0, 1] → N be a non-increasing function. Then, there exists a distribution
µ on {0, 1}N and a countable set E such that for any ε ∈ (0, 12 ] \ E, one has Nξ(ε) = N(ε), and

∆n(µ) −→
n→∞

0.

The proof is given in Appendix B. The previous result shows that if µ satisfies the necessary
condition from Theorem 4, one can construct a distribution µ̃ on {0, 1}N whose covering numbers
agree with those of µ (up to a negligible countable set) for which ∆n(µ̃) does converge to zero. Here,
the exceptional set E exactly corresponds to the scales ε on which the covering number function
N(·) is discontinuous: for the constructed distribution µ, the covering numbers are right-continuous,
which may not necessarily be the case for a generic covering number function Nξ(·).

In light of Theorem 4, there is no loss of generality in assuming that all covering numbers
Nξ(ε) (a fortiori for Nρ(ε)) are finite. In this case, we have the following sufficient condition for
the convergence of ∆n(µ) to 0, written in terms of the ξ-covering numbers.

Theorem 6 Let µ be a distribution on {0, 1}N such that

Cµ :=

∫ 1

0
Nξ(ε)dε <∞. (8)

Then, ∆n(µ)→ 0 as n→∞. Further, in that case, for any n ≥ 1,

∆n(µ) ≤ C1 inf
ε∈(0,1]

ε+

√
log(Nξ(ε) + 1)

n
≤ C2

(
1 ∧

√
log(n(1 + Cµ))

n

)
,

for universal constants C1, C2 > 0.

The proof, which we defer to Appendix B, proceeds via a chaining argument. For any ϵ > 0, we
denote by Sξ(ϵ) an ϵ-covering set with minimum cardinatity, that is |Sξ(ϵ)| = Nξ(ϵ). We consider
the directed graph such that a node in Sξ(2−k) (covering set at level 2−k) has as parent its nearest-
neighbor within Sξ(2−k+1). We show that the property Cµ <∞ ensures that with good probability,
starting for any point at level k > k0, the value at the node and its parent coincide exactly. This
overall probability grows as k0 is made larger. Conditional on this good event, it suffices to bound
the deviation of entries in Sξ(2−k) for k ≤ k0, for which convergence is trivial due to the finite
number of points.

We note that the non-asymptotic upper bounds for ∆n(µ) of the previous result are in general not
tight. In particular, under stronger assumptions, we can use tools from Gaussian process theory to
exhibit subgaussian rates of convergence (1/

√
n instead of

√
log n/n) for ∆n(µ). More precisely,

we show that X ∼ µ is a subgaussian process on N with respect to the metric ρ (Lemma 18). Hence,
a direct application of Dudley’s theorem Van Handel (2014, Corollary 5.25) yields the following
result.

Proposition 7 Let µ be a distribution on {0, 1}N such that

Dµ :=

∫ 1

0

√
logNρ(ε)dε <∞.

Then, for any n ≥ 1, we have

∆n(µ) ≤
24Dµ√

n
.
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The proof that X ∼ µ is a subgaussian process (Lemma 18) along with the proof of the above
proposition are deferred to Appendix C.

In light of Theorem 3, the condition from Eq (8) cannot also be a necessary condition for
∆n(µ) −→

n→∞
0, since it only involves pairwise correlations between coordinates of the distribution.

However, we show that this is also essentially the tightest sufficient condition that can be stated
solely in terms of the covering numbers Nξ(·). The proof can be found in Appendix B.

Proposition 8 Let N : (0, 1]→ N be a non-increasing function such that∫ 1/2

0
N(ε)dε =∞.

Then, there exists a distribution µ on {0, 1}N and a countable set E such that for any ε ∈ (0, 12 ]\E,
one has Nξ(ε) = N(ε), and for any n ≥ 1,

∆n(µ) =
1

2
.

Towards characterizing distributions µ for which ∆n(µ) decays to 0, we have the following suf-
ficient condition, which subsumes the condition from Eq (8) and does not involve covering numbers.
The proof is given in Appendix D.

Theorem 9 Let µ be a distribution on {0, 1}N such that (N, ξ) is totally bounded. Suppose that
there exists K ≥ 1 such that for any ε > 0, there exist events (Ek)k∈N and a finite set J ⊂ N with

• P(Ek) ≤ ε, ∀k ∈ N,

• sup
k∈N

log(k + 1)

log 1
P(Ek)

<∞,

• ∀i ∈ N,∃j ∈ J, ∃K ⊂ N, such that |K| ≤ K and {Xi ̸= Xj} ⊂
⋃

k∈K Ek.

Then ∆n(µ) −→
n→∞

0.

While covering numbers Nξ(ε) aim to account for the bad events when pairs of coordinates
differ {Xi ̸= Xj} for i, j ∈ N, the condition from Theorem 9 generalizes this covering number
approach in two distinct ways: (i) Instead of considering the bad events {Xi ̸= Xj} only through
the expectation ξ(i, j) = P(Xi ̸= Xj), the condition allows for positive correlations of these bad
events. Hence, instead of defining balls in the space (N, ξ), we directly define events Ek in the
probability space of µ. (ii) Instead of covering a bad event {Xi ̸= Zj} with a single event Ek (or
ball in the covering number approach), we allow for the event to be covered by several events Ek.
However, the number of covering events Ek for each bad event needs to be bounded (condition
|K| ≤ K).

Both generalizations are important to define the exact characterization for distributions µ such
that ∆n(µ)→ 0. In particular, the necessity of the first generalization (i) is already exemplified by
Theorem 3. In Section D, following the proofs of the latter claims, we provide illustrative exam-
ples of distributions demonstrating the necessity of these generalizations (distributions µ for which
∆n(µ) → 0 and that wouldn’t satisfy the condition of Theorem 9 without such a generalization).
These are meant to guide the intuition in future work towards the full characterization, which we
leave as an open question.
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Open problem. Characterize the distributions µ on {0, 1}N for which ∆n(µ)→ 0 as n→∞. Is
the sufficient condition from Theorem 9 also necessary to have ∆n(µ)→ 0?

Open problem. How can the covering numbersNρ(ε) orNξ(ε) be calculated or bounded explic-
itly in terms of µ?

3. Proof of Theorem 1 (Decoupling from below)

Notation. Throughout this section, whenever X1, X2, . . . is a collection of (one-dimensional) ran-
dom variables, we denote by X̃1, X̃2, . . . its independent version: the X̃is are mutually independent
(and independent of the Xis), and each Xi is equivalent to X̃i in distribution. In this section, we
will provide comparison results of the type Emaxi∈[d]Xi ≳ Emaxi∈[d] X̃i under negative pairwise
correlation conditions on the Xi.

Bernoulli case. We begin with the case where Xi ∼ Bernoulli(pi), i ∈ [d]. Letting Z =
∑d

i=1Xi

and Z̃ =
∑d

i=1 X̃i, we have

Emax
i∈[d]

Xi = P(Z > 0), Emax
i∈[d]

X̃i = P(Z̃ > 0). (9)

Let us recall the notion of pairwise independence: for each i ̸= j ∈ [d], we have E[XiXj ] =

E[Xi]E[Xj ].

Proposition 10 Let Xi, X̃i, Z, Z̃, pi be as in (9) and assume additionally that the Xi are pairwise
independent. Then

P(Z > 0) ≥ 1

2
P(Z̃ > 0).

Proof By the Paley-Zygmund inequality,

P(Z > 0) ≥ (EZ)2

E[Z2]
.

Now EZ =
∑d

i=1 pi, which we assume without loss of generality to be non-zero (otherwise P(Z >
0) = P(Z̃ > 0) = 0), and by pairwise independence,

E[Z2] =
d∑

i=1

pi + 2
∑

1≤i<j≤d

pipj =

d∑
i=1

pi +

(
d∑

i=1

pi

)2

−
d∑

i=1

p2i ≤
d∑

i=1

pi +

(
d∑

i=1

pi

)2

. (10)

Hence,

(EZ)2

E[Z2]
≥

(∑d
i=1 pi

)2
∑d

i=1 pi +
(∑d

i=1 pi

)2 =

∑d
i=1 pi

1 +
∑d

i=1 pi
.

On the other hand, P(Z̃ > 0) is readily computed:

P(Z̃ > 0) = 1−
d∏

i=1

(1− pi).

8
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Therefore, to prove the claim, it suffices to show that

G(p1, . . . , pd) := 2
d∑

i=1

pi −

(
1 +

d∑
i=1

pi

)(
1−

d∏
i=1

(1− pi)

)
≥ 0.

To this end, we write G = S + P + SP − 1, where S =
∑

i pi and P =
∏

i(1 − pi). Now
if S ≥ 1 then obviously G ≥ 0 and we are done. Otherwise, since P ≥ 1 − S trivially holds
(which can be viewed as an application of the union bound), we have G ≥ S(1 − S). In this case,
S < 1 =⇒ G ≥ 0.

Relaxing pairwise independence. An inspection of the proof shows that we do not actually need
E[XiXj ] = pipj , but rather only E[XiXj ] ≤ pipj . This condition is called negative (pairwise)
covariance (Dubhashi and Ranjan, 1998).

Corollary 11 Let Xi, X̃i, Z, Z̃, pi be as in (9) and assume additionally that the Xi satisfy negative
pairwise covariance: E[XiXj ] ≤ pipj for i ̸= j. Then

P(Z > 0) ≥ 1

2
P(Z̃ > 0).

General positive random variables. Now let X1, . . . , Xd be non-negative integrable random
variables and the X̃1, . . . , X̃d are their independent copies: each X̃i is distributed identically to Xi

and the X̃i are mutually independent.

Proposition 12 Let X1, . . . , Xd be non-negative and integrable with independent copies X̃i as
above. If additionally the Xi are pairwise independent, then

Emax
i∈[d]

Xi ≥
1

2
Emax

i∈[d]
X̃i.

Proof For t > 0 and i ∈ [d], put Yi(t) = 1[Xi > t], Ỹi(t) = 1[X̃i > t] and Z(t) =
∑d

i=1 Yi(t),
Z̃(t) =

∑d
i=1 Yi(t). Then

Emax
i∈[d]

Xi =

∫ ∞

0
P
(
max
i∈[d]

Xi > t

)
dt

=

∫ ∞

0
P (Z(t) > 0) dt

≥ 1

2

∫ ∞

0
P
(
Z̃(t) > 0

)
dt

=
1

2

∫ ∞

0
P
(
max
i∈[d]

X̃i > t

)
dt

=
1

2
Emax

i∈[d]
X̃i,

where Proposition 10 was invoked in the inequality step.

9
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Relaxing pairwise independence. As before, the full strength of pairwise independence of the
Xi is not needed. The condition P(Xi > t,Xj > t) ≤ P(Xi > t)P(Xj > t) for all i ̸= j ∈ [d]
and t > 0, called pairwise negative upper orthant dependence (Joag-Dev and Proschan, 1983,
Definition 2.3), would suffice; it is weaker than pairwise independence.

Corollary 13 Let X1, . . . , Xd be non-negative and integrable with independent copies X̃i as
above. If additionally the Xi verify P(Xi > t,Xj > t) ≤ P(Xi > t)P(Xj > t) for all i ̸= j ∈ [d]
and t > 0. Then

Emax
i∈[d]

Xi ≥
1

2
Emax

i∈[d]
X̃i.

Definition 14 (Joag-Dev and Proschan (1983), Definition 2.1) Random variables X1, X2, ..., Xk

are said to be negatively associated (NA) if for every pair of disjoint subsets A1, A2 of {1, 2, ..., k},

Cov [f1(Xi, i ∈ A1), f2(Xj , j ∈ A2)] ≤ 0

whenever f1 and f2 are increasing. NA may also refer to the vector X = (X1, . . . , Xk) or to the
underlying distribution of X . Additionally, NA may denote negative association. If |A1| = |A2| = 1
we say that X is pairwise negatively associated (PNA). Note that the definition is the same if both
f1 and f2 are decreasing.

Theorem 15 (Restatement of Theorem 1) Let µ be a probability measure on {0, 1}N such that
for X ∼ µ, the ith and jth entries of X satisfy E[XiXj ] ≤ E[Xi]E[Xj ]. Let X(1), . . . , X(n) be n
independent copies of X and define Y = n−1

∑n
i=1X

(i)−E[X]. Let Ỹ be the independent version
of Y : each entry Ỹj is equal to Yj in distribution and the (Ỹj)j∈N are mutually independent. Then

E sup
j∈N
|Yj | ≥

1

4
E sup

j∈N

∣∣∣Ỹj∣∣∣ .
Proof The proof consists of three parts. We first show that the condition E[XiXj ] ≤ E[Xi]E[Xj ]
implies that X is pairwise negatively associated. Then, we show that this implies Y is also PNA.
Finally, we invoke Corollary 13 for the vector |Y | and we are done.

For any i, j let pi := E[Xi] and rij := E[XiXj ]. By assumption, rij ≤ pipj . Let f, g be two
real-valued non-decreasing functions, then noting that P(Xi = 1, Xj = 0) = E[Xi − XiXj ] =
pi − rij and similarly, P(Xi = 0, Xj = 1) = pj − rij , we have

E[f(Xi)g(Xj)]− E[f(Xi)]E[g(Xj)]

= rijf(1)g(1) + (pi − rij)f(1)g(0) + (pj − rij)f(0)g(1) + (1− pi − pj + rij)f(0)g(0)

− pipjf(1)g(1)− pi(1− pj)f(1)g(0)− (1− pi)pjf(0)g(1)− (1− pi)(1− pj)f(0)g(0)

= (rij − pjpj)(f(1)g(1)− f(1)g(0)− f(0)g(1) + f(0)g(0))

= (rij − pjpj)(f(1)− f(0))(g(1)− g(0))

≤ 0

for all i, j. This shows that X is PNA. Since any pair (Xi, Xj) is NA, by Joag-Dev and Proschan
(1983, Property P7), the union of independent sets of NA random variables are NA, so

(X
(1)
i , X

(2)
i , . . . , X

(n)
i , X

(1)
j , X

(2)
j , . . . , X

(n)
j )

10



CORRELATED BINOMIAL PROCESS

is also NA. Now, we apply Joag-Dev and Proschan (1983, Property P6): increasing (or decreasing)
functions defined on disjoint subsets of a set of NA random variables are NA, where the increasing
functions are [Yi]+ := f+(X

(1)
i , X

(2)
i , . . . , X

(n)
i ) :=

[
n−1

∑n
k=1X

(k)
i − E[Xi]

]
+

for all i. We

conclude that [Y ]
+
= ([Y1]+ , [Y2]+ , . . . ) is PNA. In the same manner, [Y ]− is also PNA. Moreover,

PNA obviously implies pairwise negative upper orthant dependence. Now,

E sup
i∈N
|Yi| = E sup

i∈N
[Yi]+ + [Yi]−

≥ max

(
E sup

i∈N
[Yi]+ ,E sup

i∈N
[Yi]−

)
≥ 1

2
E sup

i∈N
[Yi]+ +

1

2
E sup

i∈N
[Yi]−

≥ 1

4
E sup

i∈N

[
Ỹi

]
+

+
1

4
E sup

i∈N

[
Ỹi

]
−

≥ 1

4
E sup

i∈N

∣∣∣Ỹi∣∣∣ ,
where the second inequality is due to Corollary 13.

4. Proof of Theorem 3 (Covariance does not characterize ∆n)

In this section, we provide an example of two distributions µ and ν on {0, 1}N that share the same
covariance matrix but for which ∆n(µ)→ 0 and ∆n(ν)→ 1

2 as n→∞.

Construction of the example. We partition N as follows: Sk = {2(k−1)3 < t ≤ 2k
3} for k ≥ 1.

Let (Z1)i≥1
iid∼ Bernoulli(1/2) and (Yk)k≥0

iid∼ Bernoulli(1/2) be iid sequences.
Let γk, δk ∈ (0, 1) be the solutions to{

(1− δk)(2γk − γ2k) = 2−k

γk + δk − γkδk = 2−k.

We can check that γk = 2−k−δk
1−δk

and δk = 1−2−k−1−
√
(1− 2−k−1)2 − 2−k + 2−2k. In particular,

γk ∼ δk ∼ 2−k−1 as k →∞.

• Let (Bk)k≥1 be a sequence of independent random variables with Bk ∼ Bernoulli(2−k). Put

Xµ
t = (1−Bk)Z0 +BkZt, t ∈ Sk, k ≥ 1.

We define µ as the distribution of (Xµ
i )i≥1.

• Let (Ci)i≥1 and (Dk)k≥1 be independent sequences of independent random variables with
Ci ∼ Bernoulli(γk) for i ∈ Sk and Dk ∼ Bernoulli(δk). We let

Xν
t = DkYk + (1−Dk)((1− Ct)Z0 + CtZt), t ∈ Sk, k ≥ 1.

We define ν as the distribution of (Xν
i )i≥1.

11
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We can easily check that these distributions have the same covariance matrix.

Lemma 16 The two distributions µ and ν constructed above satisfy

EX∼µ[XiXj ] = EX∼ν [XiXj ], i, j ∈ N.

The proof is given in Appendix A.
At the high level, both distributions are constructed by block Sk such that within the block, the

random variables are correlated up to a level ≈ 1 − 2−k. In the first distribution µ, the correlation
between variables Xi for i ∈ Sk is made uniform through the decision variable Bk. Hence, to have
convergence of the maximum deviation on Sk it suffices to handle a single decision variable Bk,
which is a Bernoulli with parameter 2−k. Because these parameters are summable, we can control
these variables uniformly for all k sufficiently large.

In the second case for ν, this correlation is made heterogeneous, by introducing decision vari-
ables Ci for each i ∈ Sk. These are independent and by taking |Sk| sufficiently large, one can
enforce rare deviation events to happen with high probability for one of the variables i ∈ Sk.

We formalize these ideas in the rest of this section. For clarity, for any i ≥ 1, we denote by
p̂i(µ) and p̂i(ν) the quantities p̂i for µ and ν respectively. They share the same means pi so we need
not make the distinction here. We also denote with an exponent U (1), U (2), . . . iid samples from any
random variable U .

Expected maximum deviation for µ. Fix k ≥ 1. One has

max
i∈Sk

|p̂i(µ)− pi| ≤

∣∣∣∣∣ 1n
n∑

i=1

Z
(i)
0 −

1

2

∣∣∣∣∣+max
i∈Sk

∣∣∣∣∣p̂i(µ)− 1

n

n∑
i=1

Z
(i)
0

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

Z
(i)
0 −

1

2

∣∣∣∣∣+ 1

n

n∑
i=1

B
(i)
k .

As a result,

E sup
l≥k

max
i∈Sl

|p̂i(µ)− pi| ≤ E

∣∣∣∣∣ 1n
n∑

i=1

Z
(i)
0 −

1

2

∣∣∣∣∣+ E sup
l≥k

1

n

n∑
i=1

B
(i)
l

≤ E

∣∣∣∣∣ 1n
n∑

i=1

Z
(i)
0 −

1

2

∣∣∣∣∣+∑
l≥k

E

[
1

n

n∑
i=1

B
(i)
l

]

= E

∣∣∣∣∣ 1n
n∑

i=1

Z
(i)
0 −

1

2

∣∣∣∣∣+ 2−k+1.

Then,

∆n(µ) ≤
2(k−1)3∑
t=1

E|p̂t(µ)− pt|+ E sup
l≥k

max
i∈Sl

|p̂i(µ)− pi|

≤ (1 + 2(k−1)3)E|p̂1(µ)− p1|+ 2−k+1.

In particular, this shows that lim supn→∞∆n(µ) ≤ 2−k+1. Because this holds for all k ≥ 1, we
obtained ∆n(µ)→ 0 as n→∞.

12
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Expected maximum deviation for ν. Fix n ≥ 1. We have

P(∃i ∈ Sn, ∀j ∈ [n], C
(j)
i = 1, Z

(j)
i = 1) = 1−

(
1−

(γn
2

)n)|Sn|
≥ 1− exp

(
−
(γn
2

)n
|Sn|

)
Denote by En this event. On this event, there exists i ∈ Sn such that

p̂i(ν) =
1

n

n∑
j=1

Xν
i
(j) =

1

n

n∑
i=1

D(j)
n Y (j)

n + 1−D(j)
n .

Then,

∆n(ν) ≥ E
[
1En sup

i∈Sn

|p̂i(ν)− pi|
]

≥ E

1En
∣∣∣∣∣∣ 1n

n∑
j=1

(D(j)
n Y (j)

n + 1−D(j)
n )− 1

2

∣∣∣∣∣∣


≥ E

 1

n

n∑
j=1

(D(j)
n Y (j)

n + 1−D(j)
n )− 1

2

− P(Ecn)

≥ 1

2
− δn

2
− exp

(
−
(γn
2

)n
|Sn|

)
.

We recall that γn ∼ 2−n−1 so that
(γn

2

)n |Sn| → ∞ as n→∞. As a result, we obtain

lim
n→∞

∆n(ν) =
1

2
.
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Appendix A. Second and third-order moments do not characterize ∆n(µ)

We start this section by giving the omitted proof of Lemma 16, which states that the two distributions
constructed for Theorem 3 indeed have the same second-order moments.

Proof of Lemma 16 Both sequences (Xµ
i )i≥1 and (Xν

i )i≥1 are sequences of Bernoullis of param-
eter 1/2 because they are mixtures of Zi and Yk that are independent Bernoulli(1/2). Now for any
i, j ∈ Sk with i ̸= j, one has

E[Xµ
i X

µ
j ] =

1

2
P[Bk = 0] +

1

4
P[Bk = 1] =

1

2
− 1

2k+2
.

Also, for i ∈ Sk and j ∈ Sl with k ̸= l, one has

E[Xµ
i X

µ
j ] =

1

2
P[Bk = Bl = 0] +

1

4
(1− P[Bk = Bl = 0]) =

1

2
− 2−k + 2−l − 2−k−l

4
.

Next, we turn to the sequence (Xν
i )i≥1. For any i, j ∈ Sk with i ̸= j, one has

E[Xν
i X

ν
j ] =

1

2
P[Dk = 1] +

1

2
P[Dk = 0]P[Ci = Cj = 0] +

1

4
P[Dk = 0](1− P[Ci = Cj = 0])

=
1

2
−

(1− δk)(2γk − γ2k)

4
= E[Xµ

i X
µ
j ].

Last, for i ∈ Sk and j ∈ Sl with k ̸= l, one has

E[Xν
i X

ν
j ] =

1

2
P[Dk = Dl = Ci = Cj = 0] +

1

4
(1− P[Dk = Dl = Ci = Cj = 0])

=
1

2
− 1− (1− γk)(1− δk)(1− γl)(1− δl)

4

=
1

2
− 1− (1− 2−k)(1− 2−l)

4
= E[Xµ

i X
µ
j ].

As a result, if µ (resp. ν) denotes the distribution of (Xµ
i )i≥1 (resp. (Xν

i )i≥1), they both share
the same covariance matrix.

Theorem 3 shows that knowledge of the covariance matrix is not sufficient to characterize the
behavior of ∆n(µ) or not. We suspect that this negative result holds more generally, that is, for
any k ≥ 1, the kth order moments are not sufficient to characterize whether ∆n(µ) → 0 or not.
As it turns out, the distributions µ and ν constructed for Theorem 3 also share the same 3rd-order
moments.

Proposition 17 (Third-order moments do not characterize ∆n) There exist probability measures
µ and ν on {0, 1}N that agree on their 3rd-order moments,

E
X∼µ

[XiXjXk] = E
X∼ν

[XiXjXk], i, j, k ∈ N,

while ∆n(µ) −→
n→∞

0 and ∆n(ν) −→
n→∞

1
2 .

Proof We simply check that the two distributions µ and ν from the proof of Theorem 3 also share
the same 3rd-order moments. Let i, j, k ∈ N be three indices. When they are not all distinct,
the desired equation follows from the proof of Theorem 3 because the coordinates Xi are binary.
Without loss of generality, we then suppose that they are distinct. We denote by l(i) the index of
the block corresponding to i, that is, such that i ∈ Sl(i). We define similarly l(j) and l(k).

16
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Case 1. We first treat the simple case when l(i) /∈ {l(j), l(k)}. Then, note that we can write

Xν
i = (1−B′

l(i))Z0 +Bl(i)′Z
′
i,l(i)

where B′
l(i) := Dl(i)+Ci−Dl(i)Ci and Z ′

i,l(i) = 1Dl(i)=1Yl(i)+1Dl(i)=0Zi. Note that B′
l(i) ∼ Bl(i)

since δl(i)+γi− δl(i)γi = 2−l(i). Also, Z ′
i,l(i) ∼ Bernoulli(12), hence Z ′

i,l(i) ∼ Zi. Further, they are
independent, but more importantly, they are independent from all the variables that would be used
to define Xj and Xk, except for Z0. As a result, all that remains to check is that

E[Z0X
µ
i X

µ
j ] = E[Z0X

ν
i X

ν
j ].

We start with the distribution µ. If l(j) ̸= l(k), then,

E[Z0X
µ
i X

µ
j ] =

1

2
P[Bl(j) = Bl(k) = 0] +

1

8
(1− P[Bl(j) = Bl(k) = 0])

=
1

2
− 3

8
(2−l(j) + 2−l(k) − 2−l(j)−l(k)).

On the other hand, if l(j) = l(k), then

E[Z0X
µ
i X

µ
j ] =

1

2
P[Bl(j) = 0] +

1

8
P[Bl(j) = 1] =

1

2
− 3

8
2−l(j).

Next, for ν, if l(j) ̸= l(k), we have

E[Z0X
µ
i X

µ
j ] =

1

2
P[Dl(j) = Cj = Dl(k) = Ck = 0] +

1

8
(1− P[Dl(j) = Cj = Dl(k) = Ck = 0])

=
1

2
− 3

8
(1− (1− γl(j))(1− δl(j))(1− γl(k))(1− δl(k)))

=
1

2
− 3

8
(2−l(j) + 2−l(k) − 2−l(j)−l(k)).

Last, if l(j) = l(k),

E[Z0X
ν
i X

ν
j ] =

1

2
P[Dl(j) = Cj = Ck = 0] +

1

8
P[Dl(j) = 0, Cj = Ck = 1]

+
1

4
E[1Dl(j)=1 + 1Dl(j)=0(1Cj=01Ck=1 + 1Cj=11Ck=0)]

=
1

2
−

4γl(j) + 2δl(j) − 4γl(j)δl(j) − γ2l(j) + γ2l(j)δl(j)

8

=
1

2
−

γl(j) + δl(j) − γl(j)δl(j)

4
−

(1− δl(j))(2γl(j) − γ2l(j))

8
=

1

2
− 3

8
2−l(j).

This concludes the first case.

Case 2. By symmetry, the only remaining case is if l(i) = l(j) = l(k). For simplicity, we then
denote l := l(i). Then,

E[Xµ
i X

µ
j X

µ
k ] =

1

2
P[Bl = 0] +

1

8
P[Bl = 1] =

1

2
− 3

8
2−l.
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On the other hand,

E[Xν
i X

ν
j X

ν
k ] =

1

2
E[1Dl=1 + 1Dl=01Ci=01Cj=01Ck=0] +

3

4
E[1Dl=01Ci=11Cj=01Ck=0]

+
3

8
E[1Dl=01Ci=11Cj=11Ck=0] +

1

8
E[1Dl=01Ci=11Cj=11Ck=1]

=
1

2
−

3(2γl − 2γlδl − γ2l + γ2l δl)

8

=
1

2
−

3(1− δl)(2γl − γ2l )

8
=

1

2
− 3

8
2−l.

This ends the proof that all 3rd-order moments agree for µ and ν.

Appendix B. Bounds on the expected maximum empirical deviation with ξ-covering
numbers

The previous result Theorem 3 shows that having tight characterizations of when ∆n(µ) converges
0, cannot be achieved by focusing solely on pair-wise correlations of the coordinates. Nevertheless,
we are still able to give useful bounds on ∆n(µ) using such information. In this section, we focus
on the metric space (N, ξ) where the metric ξ is defined as in Eq (6) and provide necessary and
sufficient conditions for the decay of the expected maximum empirical deviation ∆n(µ).

We start with proving Theorem 4 which shows that having finite ξ-covering numbers is neces-
sary.

Proof of Theorem 4 Let ε > 0 such that the ε-covering number of (N, ξ) is infinite and let S0 ⊂ N
be an infinite set such that for all i, j ∈ S0, ξ(i, j) = P(Xi ̸= Xj) ≥ ε. Further, there must exist an
interval I = [p− η

2 , p+
η
2 ] of length η > 0 to be fixed later, such that S1 := S0 ∩ {i ∈ N : pi ∈ I}

is also infinite. Since for distinct i, j ∈ S1,

ε ≤ ξ(i, j) ≤ pi + pj ≤ 2pi + η,

necessarily, for any i ∈ S1, one has

pi ≥
ε− η

2
. (11)

By symmetry, we also have

1− pi ≥
ε− η

2
. (12)

We will focus only on the indices in S1, using

∆n(µ) ≥ E sup
i∈S
|p̂i − pi|.

Hence, without loss of generality, we will suppose that S1 = N. In the rest of the proof, we will
use the notations (X

(1)
i )i, (X

(2)
i )i, . . .

iid∼ µ for an iid sequence of samples of µ. Similarly, we
will indicate by an exponent (n) any event corresponding to the sample sequence (X

(n)
i )i. For

convenience, we will also consider a sample sequence (Xi)i ∼ µ.
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Fix an arbitrary infinite subset S ∈ N. We consider the event that (Xi)i∈S contains an infinite
number of 0 and 1,

E(S) :=

{
min

(∑
i∈S

Xi,
∑
i∈S

(1−Xi)

)
=∞

}
.

On E(S)c, the sequence (Xi)i∈S contains either a finite number of 0 or 1. We then denote by X̄(S)
the random variable on {0, 1} equal to the (infinite) majority among the sequence (Xi)i∈S , that is,

X̄(S) = 1E(S)c · 1

[∑
i∈S

(1−Xi) <∞

]
.

As a first step, we will show that P(E(S)) ≥ ε. By Fatou’s lemma, enumerating S = {i1 < i2 <
. . .}, one has

P(E(S)) = P

(
lim sup
j→∞

1[Xij ̸= Xij+1 ] > 0

)

= E

[
lim sup
j→∞

1[Xij ̸= Xij+1 ]

]
≥ lim sup

j→∞
P(Xij ̸= Xij+1) ≥ ε.

Now supposing that P(E(S)) < 1 we define p̄(S) = E[X̄(S) | E(S)c] (otherwise, we can set it to
p̄(S) = p for instance), the expected value of the majority vote on (Xi)i∈S provided that there is
consensus (only a finite number of disagreements).

Case 1. We first consider the case when there exists an infinite subset S ∈ N such that for any
infinite subset S′ ⊂ S, one has P(E(S′)) < 1 and p̄(S) ≤ p. We now prove a lower bound on
∆n(µ) by showing that with good probability there is an index i ∈ S for which p̂i deviates from pi
from below.

To do so, given the iid sequence (X
(1)
i )i, (X

(2)
i )i, . . .

iid∼ µ, let N(S) be the first index n for
which the event E(S) holds. For every n < N(S), there are only a finite number of disagreements
in the sequences (X(n)

i )i∈S , while (X(n)
i )i∈S contains an infinite number of 0. Hence, provided that

N(S) <∞, the set

S(1) = {i ∈ S, ∀n < N(S), X
(n)
i = X̄(n), and X

(N(S))
i = 0}

is infinite. All indices in S(1) share the same values for the samples n ∈ [N(S)]. We denote
that value X

(n)
S(1) for convenience. We can now repeat the construction process with S(1) under the

almost-sure event {N(S) < ∞}: we can define the geometric random variable N(S(1)) which is
the waiting time starting from n = N(S) + 1 for the event E(S(1)) to occur. On the almost sure
event {N(S) <∞}∩{N(S(1)) <∞}, this defines a new set S(2) ⊂ S(1) for which all indices in
S(2) shared the same values for the samples in n ∈ [N(S) + 1, N(S) +N(S(1))], and we denote
by X̄

(n)
S(2) these common values.

As a result of the construction, on an almost sure event F , we obtain a sequence of geomet-
ric random variables (N(S(k)))k≥1 with parameter P(E(S(k))) ≥ ε, together with random sets
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(S(k))k≥1 that are decreasing and all infinite. Intuitively, F =
⋂

k{N(S(k)) < ∞}. For conve-
nience, letting S(0) = S, we denote by Nk = N(S(0)) + . . . +N(S(k)). Under F , we have that
for any Nk−1 < n < Nk,

E[X̄(n)
S(k) | Nl, S(l), l ≤ k] = p̄(S(k)) ≤ p

On the other hand, under F , we have X̄
(Nk)
S(k) = 0 by construction.

Now fix n ≥ 1. We recall that on F , there always exists an index in ∈ N for which (X
(l)
i )l∈[n]

coincides exactly with the sequence X̄(1)
S(0), . . . , X̄

(N0)
S(0) , X̄

(N0+1)
S(1) , . . . , X

(N1)
S(1) , . . . truncated at n sam-

ples. We denote by kn the number of finished periods before sample n, that is, the index k such that
Nk ≤ n < Nk+1. Combining the previous equations gives

E

[
n∑

l=1

X
(l)
in

]
≤ (n− E[kn])p.

We recall that kn corresponds to the maximum number of geometric variables with parameter at
least ε such that the sum is at most n. Hence, kn is dominated by the maximum number of G(ε)
random variables such that the sum is at most n. That is, if (Tk)k≥1

iid∼ G(ε) and we let k̃n be the
index such that

∑k
l=1 Tl ≤ n <

∑k+1
l=1 Tl, we have E[kn] ≤ E[k̃n]. Further, we have that

n < E

k̃n+1∑
k=1

Tk

 = E

∑
k≥1

Tk1k≤k̃n+1


=
∑
k≥1

1

ε
P(k ≤ k̃n + 1)

=
1 + E[k̃n]

ε
.

In the second inequality, we used the Wald observation that knowing whether k ≤ k̃n + 1 only
requires knowing T1, . . . , Tk−1 (this corresponds exactly to the event T1 + . . . + Tk−1 ≤ n). For
small values of n, we can use the following simple bound

E[kn] ≥ P(kn ≥ 1) = P(T1 ≤ n) = 1− (1− ε)n.

This implies that E[kn] ≥ E[k̃n] > (εn − 1) ∨ 1 − (1 − ε)n. We now show that this implies
E[kn] ≳ nε. For n ≥ 2

ε , this already shows E[kn] ≥ εn
2 . Note that the function n 7→ 1 − (1 − ε)n

is concave. Given that its value is 0 for n = 0, this gives for n ≤ 2
ε ,

1− (1− ε)n ≥ nε

2

(
1− (1− ε)2/ε

)
≥ nε

2
(1− e−2) ≥ nε

3
.

This shows that in all cases, we obtained

E[kn] ≥
nε

3
.
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In particular, recalling that pin ∈ [p− η
2 , p+

η
2 ], and combining the previous equations we obtain

∆n(µ) ≥ E
[
p− η

2
− p̂in

]
≥ E[kn]

n
p− η

2

≥ ε

6
(ε− η)− η

2
.

In the last inequality, we used the lower bound on p from Eq (11). We now turn to the second case.

Case 2. We now suppose that for every infinite subset S ⊂ N, there exists an infinite subset
S′ ⊂ S such that either P(E(S′)) = 1 or p̄(S′) ≥ p. We now give a lower bound on ∆n(µ) by
showing that with good probability there is an index i ∈ N for which p̂i deviates from pi by above.

To do so, we construct some decreasing random sets similarly to Case 1. To begin, there exists
an infinite subset S(0) ⊂ N such that either P(E(S(0))) = 1 or p̄(S(0)) ≥ p. As in Case 1, let
N(S(0)) be the number of samples to wait before the event E(S(0)) occurs. As before, on the event
{N(S(0)) <∞}, the set

S̃(1) = {i ∈ S(0),∀n < N(S(0)), X
(n)
i = X̄(n), and X

(N(S(0)))
i = 1}

is infinite. Hence, there exists a subset S(1) ⊂ S̃(1) for which either P(E(S(1))) = 1 or p̄(S(1)) ≥
p. We can now repeat the process starting from S(1). We use the same notations as in Case 1: the
induction constructs under an event F of full probability, some decreasing infinite sets (S(k))k≥1,
as well as their sequence of geometric random variables (N(S(k)))k≥1 with parameter at least ε.
We denote Nk = N(S(0)) + . . . + N(S(k)). Similarly to before, under F , we have that for any
Nk−1 < n < Nk,

E[X̄(n)
S(k) | Nl, S(l), l ≤ k] = p̄(S(k)) ≥ p,

and for any k ≥ 1, by construction X̄
(Nk)
S(k) = 1. Hence, for a fixed number of samples n ≥ 1, there

exists an index in for which until n the values (X l
in
)l∈[n] coincide with that of X̄ . As before, if kn

is the index k for which Nk ≤ n < Nk+1, we obtain

E

[
n∑

l=1

X
(l)
in

]
≥ np+ (1− p)E[kn].

As a result, we obtain

∆n(µ) ≥ E[p̂in − pin ] ≥ E[p̂in − p]− η

2

≥ E[kn]
n

(1− p)− η

2

≥ ε

6
(ε− η)− η

2
.

In the last inequality, we used Eq (12). Combining the two cases and noting that these hold for any
value of η > 0 yields the desired result.

We next show that essentially is the tightest necessary conditions that can be obtained using
only the covering number Nξ(·).
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Proof of Proposition 5 Fix such a non-increasing function N : (0, 1]→ N. We start by constructing
a distribution µ, then we check that it has the same covering numbers as N(·). Last we prove the
desired convergence ∆n(µ) −→

n→∞
0.

Constructing the distribution µ. Since we will only focus on covering numbers for ε ∈ (0, 12 ]
anyways, without loss of generality, we suppose that N(ε) = 1 for ε ∈ (12 , 1]. Note that because N
is non-increasing, it is discontinuous on a countable (potentially finite) number of points (εk)k≥1,
which we ordered by decreasing order, that is 0 < εk+1 < εk ≤ 1

2 for all k ≥ 1. For convenience,
let ε0 = 1

2 . Since N takes values only on integers N, we can also define the sequence (Nk)k≥1

such that Nk is the value taken by N on the interval (εk−1, εk), with the convention N1 = 1 in the
specific case when ε0 = ε1.

Let (Zi)i≥1
iid∼ Bernoulli(12) an iid sequence of Bernoulli random variables and U ∼ U([0, 1])

be an a independent uniform random variable in [0, 1]. We construct a sequence (Xi)i≥1 as follows
for k ≥ 0,

Xi := 1[U > 2ϵk]Z1 + 1[U ≤ 2ϵk]Zi, Nk < i ≤ Nk+1.

For convenience, we denote the event Ek := {U ≤ 2ϵk}. We can directly check that P(Ek) = 2εk
and in particular, X1 = Z1.

Because the events Ek only depend on U which is independent of Z1. In particular, this shows
that Xi ∼ Bernoulli(12) for all i ≥ 1. Also, for i ≥ 2 with Nk < i ≤ Nk+1 for some k ≥ 2, this
implies

ξ(i, 1) = P(Xi ̸= X1) =
P(Ek)
2

= εk.

We next compute distances between any two distinct entries i < j ≥ 2. We let ki, kj ≥ 1 such that
Nki < i ≤ Nki+1 and similarly for j.

ξ(i, j) = P(Xi ̸= Xj) =
P(Eki ∪ Ekj )

2
=

P(Eki)
2

= εki .

In the third equality, we used the fact that the events (Ek)k≥0 are decreasing.

Computing the covering numbers of µ We clearly have Nξ(
1
2) = 1 because ξ(1, i) ≤ 1

2 for all
i ≥ 1. Next, for any fixed ε ∈ (0, 12), let k ≥ 1 such that ε ∈ [εk, εk−1). We first note that the
random variables [Nk] form an ε-cover of (N, ξ). Indeed, for i > Nk, if Nki < i ≤ Nki+1, one has
ki ≥ k so that

ξ(1, i) = εki ≤ εk ≤ ε.

As a result, Nξ(ε) ≤ Nk−1. On the other hand, for any 2 ≤ i,≤ Nk, we observe that for any j ̸= i,
ξ(i, j) ≥ εk−1 > ε. As a result, an ε-cover of (N, ξ) must contain all elements {2, . . . , Nk} which
has Nk − 1 elements. Note that this set does not ε-cover the element 1 since ξ(1, i) ≥ εk−1 > ε for
all i ∈ {2, . . . , Nk}. Hence, the ε-cover must have at least Nk elements. Together with the previous
remark, we obtained

Nξ(ε) = Nk, ε ∈ [εk, εk−1).

As a result, wit E = {εk, k ≥ 1}, for any ε ∈ (0, 12 ] \ E, we obtained Nξ(ε) = N(ε).
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Proving the convergence. We show that ∆n(µ) −→
n→∞

0 by checking that it satisfies the condition
from Theorem 9, proved later in D. The proof of that result is completely separate so that there is
no circular logic. We take K = 1 and for ε > 0, fix k ≥ 1 such that εk ≤ ε/2. We simply take
one event E1 = Ek, and we use the centers J = [Nk]. For any i > Nk, letting ki ≥ k such that
Nki < i ≤ Nki+1, we indeed have

{Xi ̸= X1} ⊂ Eki ⊂ Ek = E1.

This ends the proof of the proposition.

Because of the necessary condition in Theorem 4, there is no loss of generality in assuming
that for any ε > 0, the ε-covering number for (N, ξ) is finite: Nξ(ε) < ∞. On the other hand,
Theorem 6 shows that the condition given in Eq (8), which we restate here for convenience,∫ 1

0
Nξ(ε)dε <∞,

is a sufficient condition for ∆n(µ)→ 0.

Proof of Theorem 6 We first note that this condition is equivalent to
∑

k≥0 2
−kNξ(2

−k) < ∞.
Indeed, Nξ(·) is non-increasing, hence

∑
k≥0

2−k−1Nξ(2
−k) ≤

∫ 1

0
Nξ(ε)dε ≤

∑
k≥1

2−kNξ(2
−k).

To obtain our bounds on ∆n(µ), we will use chaining techniques. First, let Sξ(ε) be an ε-covering of
(N, ξ) with minimal cardinalityNξ(ε). For any k ≥ 1 and i ∈ Sξ(2−k), we denote by î the ξ-nearest
neighbor of i within Sξ(2−k+1). In particular, by definition of Sξ(2−k+1) we have ξ(i, î) ≤ 2−k+1.

Fix ε ∈ (0, 1] and consider (Xi)i≥1 ∼ µ. By hypothesis, there exists kε ≥ log2
1
ε such that∑

k≥kε

2−kNξ(2
−k) ≤ ε.

Then,

P

∃i ∈ ⋃
k≥kε

Sξ(2−k), Xi ̸= Xî

 ≤ E

∣∣∣∣∣∣
i ∈

⋃
k≥kε

Sξ(2−k) : Xi ̸= Xî


∣∣∣∣∣∣


=
∑
k≥kε

∑
i∈Sξ(2−k)

P(Xi ̸= Xî)

≤
∑
k≥kε

2−kNξ(2
−k) ≤ ε.

Hence, if Eε := {∀i ∈
⋃

k≥kε
Sξ(2−k), Xi = Xî}, we have P(Eε) ≥ 1− ε.

For any i ∈ S :=
⋃

k≥0 Sξ(2−k), let k ≥ 0 be such that i ∈ Sξ(2−k) \ Sξ(2−k+1), with the
convention Sξ(2) = ∅. We can then construct the sequence ik = i, ik−1, . . . , i0 such that ip−1 = îp.
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We denote by i(ε) the first element of this list within Sε :=
⋃

k≤kε
Sξ(2−k), that is i(ε) = ikε∧k.

Note that by the triangle inequality,

ξ(i, i(ε)) ≤ ξ(ik, ik−1) + . . .+ ξ(ikε∧k+1, ikε∧k) ≤
∑

k−1≤l≤kε

2−l ≤ 2−kε+1 ≤ 2ε.

Also, under Eε, for any i ∈ S, one has Xi = Xi(ε).
We now focus on indices in i /∈ S and aim to prove an equivalent equation. Fix any k ≥ 0,

we denote by ik the ξ-nearest neighbor of i within Sξ(2−k). Because Sε is finite, we can fix some
element that we denote i(ε) that appears infinitely often in the sequence (ik(ε))k≥0. In particular,
for any k ≥ 0 such that ik(ε) = i(ε), we have

ξ(i, i(ε)) ≤ ξ(i, ik) + ξ(ik, ik(ε)) ≤ 2−k + 2ε.

Because this holds for an infinite number of indices k ≥ 0, this shows that ξ(i, i(ε)) ≤ 2ε. Next,
since P(Xi ̸= Xi(k)) ≤ 2−k for k ≥ 0, which forms a summable sequence, by the Borel-Cantelli
lemma and the union bound, the following event

F := {∀i /∈ S, ∃k̂i ≥ 0,∀k ≥ k̂i, Xi = Xi(k)},

has probability one. As a result, on Eε∩F , the sequence (Xi(k))k≥0 is equal to Xi for k large enough
but also contains an infinite number of times the value Xi(ε). Hence Xi = Xi(ε). In summary, we
obtained

Eε ∩ F ⊂ {∀i ≥ 1, Xi = Xi(ε)},

and for all i ≥ 1, P(Xi ̸= Xi(ε)) = ξ(i, i(ε)) ≤ 2ε.

Now consider iid samples (X
(n)
i )i≥1 ∼ µ for n ≥ 1 and denote by E(n)ε and F (n) the corre-

sponding event. In particular, (1(E(n)ε ∩ F (n)))n≥1 is an iid Bernoulli sequence of parameter P(E).
For any i ≥ 1,

|p̂i − pi| ≤ |p̂i − p̂i(ε)|+ |p̂i(ε) − pi(ε)|+ |pi(ε) − pi|

≤ 1

n

n∑
m=1

1((E(m)
ε ∩ F (m))c) + sup

j∈Sε

|p̂j − pj |+ P(Xi ̸= Xi(ε))

≤ 1

n

n∑
i=1

1((E(m)
ε ∩ F (m))c) + sup

j∈Sε

|p̂j − pj |+ 2ε.

As a result,

∆n(µ) = E sup
i≥1
|p̂i − pi| ≤ (1− P(E)) + E sup

j∈Sε

|p̂j − pj |+ 2ε

≤ E sup
j∈Sε

|p̂j − pj |+ 3ε.

In particular, this gives lim supn→∞∆n(µ) ≤ 3ε because Sε is finite. This holds for any ε, which
ends the proof that ∆n(µ)→ 0 as n→∞.

Additionally, the previous equation holds for any ε, hence

∆n(µ) ≤ inf
ε∈(0,1]

3ε+ E sup
j∈Sε

|p̂[j]− pj |.
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The right-most term can be upper bounded using the upper bound on maximum empirical mean
deviations for general distributions on {0, 1}N from Blanchard and Voráček (2024, Corollary 3).
Precisely, we need to order the elements j ∈ Sε by decreasing order of pj ∧ (1 − pj). The worst
case upper bound is achieved when all these mean probabilities are equal to 1

2 . Hence, Blanchard
and Voráček (2024, Corollary 3) yields

E sup
j∈Sε

|p̂[j]− pj | ≲ 1 ∧

√ log(1 + |Sε|)
n

+
log(1 + |Sε|)

n log
(
2 + 2 log(1+|Sε|)

n

)
 ≍ 1 ∧

√
log(1 + |Sε|)

n
.

Putting the upper bounds together yields the following bound

∆n(µ) ≲ inf
ε∈(0,1]

ε+

√
log(Nξ(ε) + 1)

n
≤ inf

ε∈(0,1]
ε+

√
log(1 + 1

ε

∫ 1
0 Nξ(η)dη)

n

Recalling the notation Cµ :=
∫ 1
0 Nξ(η)dη, and using the value of εµ,n := 1∧

√
log(n(1 + Cµ))/n,

we then obtain ∆n(µ) ≤ 1 if εµ,n = 1, or if εn < 1,

∆n(µ) ≲ εµ,n +

√
log(1 + 1

εµ,n
Cµ)

n
≍
√

log(n(1 + Cµ))

n
.

This ends the proof of the proposition.

We next show that this sufficient condition, Eq (8), is as tight as can be using the covering
numbersNξ(·). We recall that this cannot be a necessary condition in view of Theorem 3—instead,
we show in Proposition 8 that if the covering numbers do not satisfy Eq (8), one can construct
some distribution with (almost) the same covering numbers but for which the expected maximum
deviation does not converge to 0.

Proof of Proposition 8 The proof has three steps, first we define the distribution µ, then we prove
that its covering numbers coincide with N(·), then we show that ∆n(µ)→ 1

2 .

Constructing the distribution µ. Fix the non-increasing function N : (0, 1] → N. We use
similar notations as in the proof of Proposition 5. Since we will only focus on covering numbers for
ε ∈ (0, 12 ] anyways, without loss of generality we suppose that N(ε) = 1 for ε ∈ (12 , 1]. Given such
a function N , we start by constructing an equidistant directed tree (with edge lengths) representing
the function. Note that because N is non-increasing, it is discontinuous on a countable (potentially
finite) number of points (εk)k≥1, which we ordered by decreasing order, that is 0 < εk+1 < εk ≤ 1

2
for all k ≥ 1. For convenience, let ε0 = 1

2 . Since N takes values only on integers N, we can also
define the sequence (Nk)k≥1 such that Nk is the value taken by N on the interval (εk−1, εk), with
the convention N1 = 1 in the specific case when ε0 = ε1.

We construct the tree by recursion, starting for k = 0 with only a root denoted v(0, 1). For con-
text, inner nodes will be denoted v(k, p) where k will correspond to level εk and p will correspond
to the index of the node by order of construction. Now suppose that we have constructed the tree
up to level k ≥ 0 and that we have constructed a total of Nk nodes. At level k + 1, we construct
Nk+1 −Nk new nodes. If for k ∈ [Nk+1 −Nk], we link the node v(k + 1, Nk + l) to some node
v(k′, p′), the length of the edge is set to εk′−εk+1. Deciding of which node to link to the new nodes
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at level k + 1 is done in a specific manner to balance the construction of the overall tree. A formal
construction of the tree is given in the pseudo-code Algorithm 1. Intuitively, the construction of the
tree emulates the construction of a full binary tree: if we had Nk+1 − Nk = 1 for all k ≥ 1, the
output tree would exactly be a binary tree that is constructed layer by layer in order. Because the
jumps Nk+1−Nk may be larger, the tree is instead the binary tree where some edges are collapsed.
To keep at all times a balance in the binary tree, splits are added according to a fractal manner. For
layer r, we split 2r edges which are denoted e(r, s) for s ∈ {0, 1, . . . , 2r − 1}, in the following
order:

Order(0) := (0),

Order(r) := (2i, i ∈ Order(r − 1)) ∪ (2i+ 1, i ∈ Order(r − 1)), r ≥ 1.

For instance, Order(1) = (0, 1), Order(2) = (0, 2, 1, 3), and Order(3) = (0, 4, 2, 6, 1, 5, 3, 7). A
visualization of the trees constructed for two different covering number functions N(·) are given in
Figure 1, one for the simpler case when Nk+1 −Nk = 1 for all k ≥ 1 and one for the general case.

Algorithm 1: Constructing the tree skeleton for the distribution in Proposition 8
Data: (εk)k≥1, (Nk)k≥1

Result: An equidistant skeleton tree T
Initialize T as a root v(0, 1) at level 1

2 with an exiting edge denoted e(0, 0)
k ← 1, n← 1 and m← 1
for r ≥ 0 do

for s ∈ Order(r) do
Split edge e(r, s) in two at level εk. That is:
if the top end node of edge e(r, s) is a node v(k′, n′) with k′ < k then

Create a node v(k, n+ 1) at level εk to end edge e(r, s): e(r, s) has length εk′ − εk
n← n+ 1
Create two edges e(r + 1, 2s), e(r + 1, 2s+ 1) exiting from node v(k, n+ 1)

else
Delete edge e(r, s) and create two edges e(r+1, 2s), e(r+1, 2s+1) exiting from node
v(k′, n′) = v(k, n′)

end
m← m+ 1
if m = Nk+1 then k ← k + 1 ;

end
end

Note that at every level ε ∈ (0, 12 ] \ {εk, k ≥ 1}, the tree has N(ε) edges. Because of the
hypothesis

∫ 1/2
0 N(ε)dε = ∞, we have N(ε) → ∞ as n → ∞ or equivalently Nk → ∞ as

k → ∞ In particular, the tree output by Algorithm 1 has an infinite number of edges. We denote
by L the set of leaves of the tree, which corresponds to sequences of nodes (vi = v(ki, ni))i≥1 that
start from the root v(0, 1), follow edges of the tree, and go down in the tree, that is the sequence
(ki)i≥1 is increasing. We note that because of the breadth-first search procedure to construct the
tree, all leaves l = (vi)i≥1 contain an infinite number of edges—that is, no path ended after a
finite number of edges. The tree naturally induces a distance ρ on leaves L such that two leaves
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Level ε

ε1

ε2

ε4

0

ε0 =
1

2

ε3

ε1

ε2

ε3

0

1

2

ε4

e(0, 0)

e(1, 0)
e(1, 1)v(1, 1)

v(0, 0)

v(2, 2)
v(2, 3)

v(3, 4)
v(3, 5)

v(3, 6) v(3, 7)

ε

Figure 1: Two examples of skeleton trees constructed by Algorithm 1. The entries of the distri-
bution µ for Proposition 8 are associated to leaves (or rather paths) of this infinite tree
so that the distance ξ between leaves coincides with the natural tree metric (up to a con-
stant factor 2). On the left we represent the simpler case when Nk+1 − Nk = 1 for
k ≥ 1, that is, covering numbers N(ε) grow by one at a time as ε → 0. In this case,
the constructed tree is exactly a binary tree, constructed according to the exact ordering
given by Order(l) for l ≥ 1. On the right, we represent a general case when cover-
ing numbers can grow via jumps Nk+1 − Nk ≥ 1. In the specific example, we have
(Ni, i ≤ 7) = (1, 2, 7, 10, 13, 14, 15). Although the tree is not formally a complete bi-
nary tree, the ordering choice balances all subtrees evenly. We represent with dashed
lines, all levels ε which complete a layer of the constructed binary tree.

lu = (v(k
(u)
i , n

(u)
i ))i≥1 for u ∈ {1, 2} have distance

d(l1, l2) := εki , i = max{j : n(1)
j = n

(2)
j }.

Our goal is to use the tree to construct a binary stochastic process (Xl)l∈L on L, for which the
induced metric ξ(l1, l2) = P(Xl1 ̸= Xl2) coincides with d. We start by constructing a distribution

on the inner nodes of the tree recursively. First, let (Un)n≥1
iid∼ U([0, 1]) be a sequence of iid

uniform random variables on [0, 1] and (Zn)n≥1
i.i.d∼ Bernoulli(12) be an independent iid sequence

of Bernoulli random variables. At the root r = v(0, 1), we let Yr = 1[Z1 ≥ 1
2 ]. Next, for any node

v = v(k, n) that has parent v′ = v(k′, n′) (they are linked by an edge and k′ < k), we pose

Yv := 1[Un ≥ ηv]Yv′ + 1[Un < ηv]Zn, ηv :=

√
1− 2εk −

√
1− 2εk′√

1− 2εk
.
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We now define the binary stochastic process on L as follows. For any leaf l = (vi)i≥1,

Xl :=

{
limi→∞ Yvi lim infi→∞ Yvi = lim supi→∞ Yvi ,

0 otherwise.

We can now check that on L introduced by the distribution of (Xl)l∈L coincides with d. For a leaf
l = (vi = v(ki, ni))i≥1, we first show that P(Xl ̸= Yvi) = 1

2(1 −
√

1− 2εki). Indeed, recalling
that the sequence (Zn)n≥1 is iid Bernoulli(12), for any j > i, we can write

Yvj = 1[∀i+ 1 ≤ p ≤ j : Unp ≥ ηvp ]Yvi + 1[∃i+ 1 ≤ p ≤ j : Unp < ηvp ]Aj , (13)

where Aj ∼ Bernoulli(12) is a function of the variables Znp for i+ 1 ≤ p ≤ j. Next, observe that
since for i → ∞, one has ηvi ∼ εki−1

− εki , then
∑

i≥1 ηni < ∞. In particular, the Borel-Cantelli
lemma implies that on an almost sure event El, for sufficiently large index i, one has Uni ≥ ηvi .
Hence, on El the sequence (Yvi)i≥1 is either finite or converges, that is

El ⊂ {Xl = lim
i→∞

Yvi}.

Hence, using Eq (13), we can write with Fl(i) := {∃j ≥ i+ 1, Unj ≥ ηvj},

Xl = 1El
(
1Fl(i)cYvi + 1Fl(i)Bl(i)

)
,

where Bl ∼ Bernoulli(12) is a function of the variables Znj for j ≥ i+ 1. Also, note that

P[Fl(i)] = P[∃j ≥ i+ 1, Unj ≥ ηvj ] = 1−
∏

j≥i+1

(1− ηvp) = 1−
√

1− 2εki ,

where in the last equality, we used a telescoping argument. To summarize, we showed that Xl

coincides with Yvi except on an (independent) event of probability 1 −
√
1− 2εni on which it is

an independent Bernoulli Bl(i). We are now ready to compute the P(Xl1 ̸= Xl2) for two leaves
l1, l2 ∈ L. Let v = v(ki, ni) be the first node for which the paths l1 = (v

(1)
i )i≥1 and l2 = (v

(2)
i )i≥1

differ, that is
i = max{j ≥ 1 : v

(1)
j = v

(2)
j }.

Then, using the previous characterization of Xl1 and Xl2 , we obtain

ξ(l1, l2) = P(Xl1 ̸= Xl2) =
1

2
P (Fl1(i) ∪ Fl2(i))

=
1

2

(
2(1−

√
1− 2εki)− (1−

√
1− 2εki)

2
)

= εki = d(l1, l2).

This ends the proof that ξ can directly be computed as the tree distance (up to a factor 2). As defined
currently, the space of leaves L can potentially be uncountable. Because we need to construct a
distribution on {0, 1}N, we restrict ourselves to a countable subset of leavesQ, one at most for each
inner node. Precisely, to any node v = v(k, n) we associate the leaf l(v) which arrives at v(k, n)
and from there always selects the left-most edge (first added in the FIFO pile) at any intersection.
We then pose Q = {l(v), nodes v}. We recall that there are countably-many nodes, hence Q is
countable. The distribution µ is defined as the distribution of (Xl)l∈Q. We note that because Q is
now countable, the event E :=

⋂
l∈Q El has full probability. Hence with probability one,

∀l = (vi)i≥1 ∈ Q, Xl = lim
i→∞

Yvi .
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Computing the covering numbers of ξ. Let E = {εk, k ≥ 1} and fix ε ∈ (0, 12 ] \ E. By
construction of the skeleton tree, at level ε there are exactly N(ε) edges f1, . . . , fN(ε)). For each of
these edges say fp for p ∈ [N(ε)] if its end nodes are up, vp with up being the parent of vp (that is,
has lower index n and number k as well), we now show that {l(vp), p ∈ [N(ε)} is an ε-covering of
(Q, ξ). Indeed, for l = (wi)i≥1 ∈ Q, one of the nodes on the corresponding leaf path must belong
to {vp, p ∈ [N(ε)}. Hence, for some i ≥ 1 and p ∈ [N(ε)], we have wi = vp := v(kp, np). Then,
we directly have

ξ(l, l(vp)) = d(l, l(vp)) ≤ εkp < ε.

Hence, we obtained Nξ(ε) ≤ N(ε).
We now turn to the lower bound. We will show that to ε-cover the set of leaves {l(vp), p ∈

[N(ε)]} one needs N(ε) elements. Suppose that this is not the case, then we have a leaf l(v) such
that ξ(l(v), l(vp)), ξ(l(v), l(vq)) ≤ ε. In particular, l(v) and l(vp) share the same path until length
ε, hence the path of l(v) contains edge fp. By symmetry, this shows it also contains fp′ which is
impossible because they are at same level (and paths only go “down”). This ends the proof that
Nξ(ε) ≥ N(ε).

In summary, we have that for any ε ∈ (0, 12 ] \ E, Nξ(ε) = N(ε). Additionally, the same
arguments show that for any k ≥ 1, one has Nξ(εk) = Nk−1: we again look at level εk of the
tree. If this cuts edges, we proceed similarly as above. However, it will also be the case that at
this level are nodes v = v(k, n). These are then also included to construct a set of Nk−1 nodes
v1, . . . , vNk−1

at level εk or below. The same proof shows that they εk-cover the space Q, and that
{l(vp), p ∈ [Nk−1]} requires at least Nk−1 elements to be εk-covered. This shows in particular that
Nξ(·) is right-continuous.

Estimating ∆n(µ). In this last step, we show that ∆n(µ) → 1
2 . First, note that by construction

and from the above estimates, for any l ∈ Q, we have Xl ∼ Bernoulli(12) so that pl = E[Xl] =
1
2 .

We recall that the construction of the skeleton tree emulates binary tree that is constructed layer
by layer r. Consider the state of the tree at the very beginning of the construction of the rth layer
for some fixed r ≥ 1. At this point, there are 2r edges e(r, s) for s ∈ {0, 1, . . . , 2r − 1} and we
can consider the corresponding subtrees at each of these edges e(r, s), which correspond to the set
of nodes and edges descendants from e(r, s) (in the case when an edge e was removed and replaced
by two new edges, these new edges are also considered descendants of e), which we will denote
T (r, s). The main interest of the fractal order for the construction of the tree is that starting from
the rth layer and for all next layers, we are adding a single edge to T (r, s) in the order of s ∈ Order)
then the process is repeated indefinitely. As a result, the subtrees T (r, s) for s ∈ {0, . . . , 2r−1} are
always filled equally, up to at most one edge. The property that the trees are filled evenly is crucial
for the proof.

In the rest of the proof, we denote by parent(v) the parent node of any node v. For any fixed
s ∈ {0, . . . , 2r − 1}, we define

A(r, s) :=
∑

v=v(k,n)∈T (r,s)

εk(parent(v)) − εk,

where the parent node of v is written as parent(v) = v(k(parent(v)), n′). Our goal is to show that
the above quantity is infinite. Let kr be the value of the level k at the beginning of the construction of
the rth layer in Algorithm 1. Without loss of generality, we will assume that {εk, k ≥ 1}∩{2−t, t ≥
1} = ∅. If that is not the case, we can replace all terms 2−t with some terms c2−t for some constant
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c ∈ [12 , 1] since there will exist such a constant c for which {εk, k ≥ 1} ∩ {c2−t, t ≥ 1} = ∅. For
any t ≥ tr := ⌈log2 1/εkr⌉, we let M(r, s; t) be the number of edges within T (r, s) at level 2−t.
Then, we can check that

A(r, s) ≥
∑
t≥tr

M(r, s; t)(2−t − 2−t−1) =
1

2

∑
t≥tr

2−tM(r, s; t). (14)

Now we recall that the number of edges in the complete tree T at level 2−t is precisely Nξ(2
−t) =

N(2−t), where we used the result from the previous steps on covering numbers of ξ. As a result,
we have that for t ≥ tr,

2r−1∑
s′=0

M(r, s′; t) = N(2−t).

Now from the above discussion on the evenness of the tree construction, the number of edges at any
level ε ≤ εkr for the subtrees T (r, s) can differ at most by one. Hence, we obtain,

2r(M(r, s; t) + 1) ≥
2r−1∑
s′=0

M(r, s′; t) = N(2−t).

Plugging this into Eq (14) yields

A(r, s) ≥ 1

2r+1

∑
t≥tr

2−tN(2−t)− 2−tr =∞.

The last inequality use the hypothesis
∫ 1/2
0 N(ε)dε = ∞ and the fact that N is non-increasing, so

that this condition is equivalent to
∑

t≥1 2
−tN(2−t) =∞. As a result, this shows that A(r, s) =∞.

Now let vr,s be the top end node of edge e(r, s), which is intuitively the “root” of T (r, s). We
obtained

P(∃v ∈ T (r, s), Yv ̸= Yvr,s) ≥ P(∃v ∈ T (r, s), Yv ̸= Yparent(v))

= 1−
∏

v∈T (r,s)

(1− P(Yv ̸= Yparent(v)))

= 1−
∏

v∈T (r,s)

(
1− ηv

2

)
≥ 1− exp

−1

2

∑
v∈T (r,s)

ηv

 .

Now as the index n of v = v(k, n) grows to infinity, we have ηv ∼ εk(parent(v)) − εk because
εk(parent(v)), εk → 0. The fact that A(r, s) = ∞ then shows that

∑
v∈T (r,s) ηv = ∞. Hence, we

showed that for any r ≥ 1 and s ∈ {0, . . . , 2r − 1},

P(∃v ∈ T (r, s), Yv ̸= Yvr,s) = 1.

We denote by G(r, s) the above event. Hence G =
⋂

r≥1

⋂
0≤s≤2r−1 G(r, s) has probability one.

The main property of G is that on this almost sure event, for any node v of the tree, there exists a
descendant node v′ that disagrees in the sense Yv ̸= Yv′ .

We are now ready to show that ∆n(µ) does not decay to 0 as n→∞. Fix n ≥ 1 and δ > 0. We
will indicate that we consider the ith iid sample of a certain random variable (or event) V with an
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exponent as in V (i). We construct a sequence of nodes (v̂i)i≥0 recursively. We let v̂0 := vδ where
vδ = v(kδ, nδ) is an arbitrary node for which εkδ is sufficiently small such that

n

2

(
1−

√
1− 2εkδ

)
< δ. (15)

Next, for i = 1, we define

v̂i =

{
vδ if G(i) is not satisfied,
v̂ otherwise, and v̂ = argmin{n : v = v(k, n) is a descendant of v̂i−1 s.t. Yv = 1}.

On the almost sure event
⋂

i≥1 G(i), this constructs a sequence of nodes descendants from each other
and such that we have

Y
(i)
v̂i

= 1, i ≥ 1.

Our candidates for variables whose empirical mean deviates highly from the mean 1
2 will be the

leaves l(v̂i) for i ≥ 1. Importantly, having constructed v̂i−1, the construction of v̂i = v(k̂i, n̂i) can
be done completely independently from all the variables U (i)

n , Z
(i)
n where n > n̂i. This is because

we can simply generate the variables Y (i)
v for nodes v with index n ∈ {n̂i−1, n̂i−1+1, . . .} and stop

whenever the conditions Y (i)
v = 1 and v is a descendant of v̂i−1 are met.

We now reason conditionally on
⋂

i≥1 G(i) and (v̂j)j≤i. Note that up to this conditioning, the
variables (v̂j)j>i only depend on the iid samples of the distribution with index j > i. In partic-
ular, for any j ≥ i, this shows that all variables use to define Xl(v̂j) starting from Yv̂i are still all
distributed according to their distribution without conditioning. Precisely, write v̂i = v(k̂i, n̂i).
Conditioned on

⋂
i≥1 G(i) and (v̂j)j≥1, all variables U

(i)
n and Z

(i)
n for n > n̂i and i ≥ 1 are still

all independent and distributed as U([0, 1]) and Bernoulli(12) respectively. In particular, for a fixed
n ≥ 1, conditionally on

⋂
i≥1 G(i) and (v̂j)j≥1, we have(

1

[
X

(i)
l(v̂n)

̸= 1
])

i∈[n]
=
(
1

[
X

(i)
l(v̂n)

̸= Y
(i)
v̂i

])
i∈[n]

∼
⊗
i∈[n]

Bernoulli

(
1

2

(
1−

√
1− 2εk̂i

))
.

As a result,

P

∃i ∈ [n], X
(i)
l(v̂n)

̸= 1 |
⋂
i≥1

G(i), (v̂j)j≥1

 ≤∑
i∈[n]

1

2

(
1−

√
1− 2εk̂i

)
≤ n

2

(
1−

√
1− 2εkδ

)
< δ.

In the last inequality, we used Eq (15). Hence,

∆n(µ) ≥ E

∣∣∣∣p̂l(v̂n) − 1

2

∣∣∣∣ | ⋂
i≥1

G(i)
 ≥ 1

2
P

∀i ∈ [n], X
(i)
l(v̂n)

= 1 |
⋂
i≥1

G(i)
 ≥ 1− δ

2
.

This holds for any δ > 0. Thus, we showed that ∆n(µ) ≥ 1
2 . Also, we clearly have ∥p̂ − 1

2∥∞ ≤
1
2

since the empirical means lie in [0, 1]. This shows that

∆n(µ) =
1

2
, n ≥ 1,
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and ends the proof of the result.

The proof of the previous result introduces a tree structure for the entries of µ. In order to have
as much deviations as possible (so that ∆n(µ) = 1

2 for n ≥ 1, this tree was constructed using a
“wide” full binary tree (see Figure 1). As a remark, we can compare this to the tree generated by
the distribution from Proposition 5. In that result, the goal is instead to construct distributions with
large covering numbers, but that still have ∆n(µ) −→

n→∞
0. As a result, the corresponding tree is as

“thin” as possible, as represented in Figure 2.

Level ε

ε4

ε2

0

ε3

1

2

X1X2 X3X4X5 X6 X7

ε1

Figure 2: Tree corresponding to the distribution µ constructed in Proposition 5. As in Figure 1, the
leaves of the tree represent the entries of the distribution, and the distance ξ coincides
exactly with the natural tree metric (up to a constant factor 2). In this example, the
covering numbers are (Nk, k ≤ 5) = (1, 3, 4, 7, 8).

Appendix C. Upper bound on ∆n(µ) via subgaussian differences

For i, j ∈ N, let us define rij = E[XiXj ]. We claim the following bound on the moment generating
function of the difference of correlated Bernoullis.

Lemma 18

E exp {t[(Xi − pi)− (Xj − pj)} ≤ exp

(
t2

log 2
pi+pj−2rij

)
, t ≥ 0.

Proof Consider the following functions.

f(x) := log
(
(p1 − p12) e

(−p1+p2+1)x + (p2 − p12) e
(−p1+p2−1)x + (−p1 − p2 + 2p12 + 1) e(p2−p1)x

)
,

g(x) :=
x2

log
(

2
p1+p2−2p12

) .
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We would like to show f(x) ≤ g(x) for all p1, p2 ∈ [0, 1], p12 ∈ [0 ∨ p1 + p2 − 1, p1 ∧ p2] and
x ∈ R. Note that, by symmetry, it is enough to consider x ≥ 0.
Re-parametrizing p1 =

1
2(a− b+ 2p12) and p2 =

1
2(a+ b+ 2p12), we have

f(x) := log

(
1

2
e(b−1)x

(
a (ex − 1)2 − be2x + b+ 2ex

))
,

g(x) :=
x2

log
(
2
a

) .
Note that g(0)−f(0) = 0. If we show that ∂

∂x(g−f) = 0 for 1 ≥ a ≥ |b|, x ≥ 0, we are done. First,
we multiply the first derivative by the non-negative log

(
2
a

) (
aw2 − b(w + 1)2 + b+ 2(w + 1)

)
,

and then change variables x := log(w + 1).

H :=

(
∂

∂x
(g − f)

)
log

(
2

a

)(
aw2 − b(w + 1)2 + b+ 2(w + 1)

)
= 2 log(w + 1)

(
w2(a− b)− 2(b− 1)w + 2

)
+ w log

(
2

a

)
(b(b(w + 2) + w)− a(bw + w + 2)),

whose non-negativity we must verify for w ≥ 0.
We now consider two cases, first 0 ≤ w < 3 and then w ≥ 3.

Case 1: 0 ≤ w < 3. It can be shown that the coefficient of log(1 + w) is positive, because it is a
quadratic polynomial in w with positive coefficients, so log(1+w) can be replaced with something
smaller (in that range), such as w

e . After doing that, we have

H ≥ 2e
(
b2 − a

)
log

(
2

a

)
+ 2w2(a− b) + w

(
−e(b+ 1)(a− b) log

(
2

a

)
− 4b+ 4

)
+ 4 =: I,

which is non-negative for w = 0, so we can show that the derivative (multiplied by a non-negative),(
∂

∂w
I

)
e

w
= 4w(a− b) + e(b+ 1)(b− a) log

(
2

a

)
− 4b+ 4,

is non-negative. The above expression is increasing in w, so the worst case is w = 0, in which case
we have

4w(a− b) + e(b+ 1)(b− a) log

(
2

a

)
− 4b+ 4 = −e(b+ 1)(a− b) log

(
2

a

)
− 4b+ 4.

The right-hand side is a quadratic polynomial in b with the coefficient of b2 being positive,
therefore it is convex in b, so every tangent lies below the expression. We use the tangent at the
point where b has the value a, and we get the following linear expression in b.

−ea2 log
(
2

a

)
+ b

(
e(a+ 1) log

(
2

a

)
− 4

)
− ea log

(
2

a

)
+ 4

= b

(
e(a+ 1) log

(
2

a

)
− 4

)
+ e(−a)(a+ 1) log

(
2

a

)
+ 4.
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We now consider the two endpoints of the above line, b = a and b = −a, and show that both
are positive. For b = a the expression is just 4(1 − a) and therefore non-negative. At the second
endpoint, b = −a, the expression has value of

b

(
e(a+ 1) log

(
2

a

)
− 4

)
+ e(−a)(a+ 1) log

(
2

a

)
+ 4 = 2

(
2− ea log

(
2

a

))
(1 + a).

The term (1+ a) is positive, so we are left with
(
2− ea log

(
2
a

))
, which is convex since the second

derivative is e
a and has a minimum at a = 2

e with the value 0. The 0 ≤ w < 3 part is done, we now
move on to the second part, w ≥ 3.

Case 2: w ≥ 3. Recall that we have to show H ≥ 0 for a ≥ |b| , x ≥ 0. H is convex in b, because

∂2

∂b2
H = 2w(w + 2) log

(
2

a

)
≥ 0,

so we can lower bound H by any of its tangent lines. The tangent line of H where b = a is

T (w, a, b) :=w log

(
2

a

)(
−
(
a2(w + 2)

)
+ a(b(w + 4)− w − 2) + bw

)
+ 2 log(w + 1)

(
w2(a− b)− 2(b− 1)w + 2

)
.

Since we have a linear expression in b, we can check the endpoints of b, a and −a, and be done.
Starting with b = a, we have

T (w, a, a) = 2(a− 1)aw log

(
2

a

)
+ 4(−aw + w + 1) log(w + 1).

Observe that a log(2/a) is concave and has a maximum of 2
e . Therefore, we can replace a log(2/a)

with 2
e , divide everything by 4 and get

R(a) := a
(w
e
− w log(w + 1)

)
− w

e
+ w log(w + 1) + log(w + 1).

We now analyze two cases: w
e −w log(w+1) ≤ 0 and w

e −w log(w+1) > 0. If w
e −w log(w+1) ≤ 0

then the worst a is a = 1 , for which, we have, R(1) = log(w + 1), which is non-negative. If
w
e − w log(w + 1) > 0 then the worst a is a = 0 , for that, we have

R(0) = (w + 1) log(w + 1)− w

e

Which is non-negative since it is 0 at w = 0 and the first derivative, ∂
∂wR = (w+1) log(w+1)− w

e ,
is positive. We now have to turn to the other endpoint of b , where it is −a. In that case, we get

T (w, a,−a) = 4(w + 1)(aw + 1) log(w + 1)− 2aw(a(w + 3) + w + 1) log

(
2

a

)
. (16)

We now consider two cases, a ≤ 1/10 and a > 1/10. For a > 1/10, we do as in the other endpoint
of b and bound a log( 2a) by 2/e, divide by 4, and get

T (w, a,−a)/4 ≤ a

(
w(w + 1) log(w + 1)− w(w + 3)

e

)
+

(w + 1)(e log(w + 1)− w)

e
.
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Split to two cases, w(w+1) log(w+1)− w(w+3)
e is non-negative or negative. If it is negative, then

the worst where a = 1, in which case the above expression becomes(
w(w + 1) log(w + 1)− w(w + 3)

e

)
+

(w + 1)(e log(w + 1)− w)

e

= (w + 1)2 log(w + 1)− 2w(w + 2)

e
.

The above is non-negative because w ≥ 3 it is positive for w = 3 and its derivative,
(w+1)(2e log(w+1)+e−4)

e , is also positive for w ≥ 3.
If w(w + 1) log(w + 1) − w(w+3)

e is positive, then the worse is a = 1
10 . Plugging it into eq. (16)

results in

T (w, 1/10,−1/10) = e
(
w2 + 11w + 10

)
log(w + 1)− w(11w + 13),

which is again positive since it is positive for w = 3 and the first derivative is positive. Finally, we
are left with the a ≤ 1/10 case. Lastly, we need to prove

T (w, a,−a) = 4(w + 1)(aw + 1) log(w + 1)− 2aw(a(w + 3) + w + 1) log

(
2

a

)
≥ 0

for 0 ≤ a ≤ 1/10 and w ≥ 3. We do this first by showing that (1) T (3, a,−a) > 0 and (2)
∂
∂wT (w, a,−a)

∣∣
w=3

> 0 for the appropriate range. Then, proving (3) ∂2

∂w2T (w, a,−a) ≥ 0 for the
appropriate range completes the proof. First, taking care of T (3, a,−a), we have

T (3, a,−a) = 3
(
−5a2 + (−7a− 5)a− 3a

)
log

(
2

a

)
+ 2(−6(−a− 1) + 18a+ 2) log(4)

= 4

(
4(a log(64) + log(4))− 3a(3a+ 2) log

(
2

a

))
,

which has the following positive second derivative,

∂2

∂a2
T (3, a,−a) = 4

(
−3a

(
3a+ 2

a2
− 6

a

)
− 6

(
3 log

(
2

a

)
− 3a+ 2

a

))
= 12

(
2

a
− 6 log

(
2

a

)
+ 9

)
.

This second derivative is positive because it is decreasing by the fact ∂3

∂a3
T (3, a,−a) = 24(3a−1)

a2
<

0 and the minimum of ∂2

∂a2
T (3, a,−a) at a ∈ [0, 1/10],

∂2

∂a2
T (3, a,−a)

∣∣∣∣
a=1/10

= 12(29− 6 log(20)) ≈ 132.307,

is positive. Knowing that ∂2

∂a2
T (3, a,−a) is convex, we lower bound it by its tangent line at a =

0.095,

a

(
1371

50
+ 16 log(64)− 771

25
log

(
400

19

))
+16 log(4)+

57
(
57 log

(
400
19

)
− 457

)
10000

≈ 20.566−0.008a.
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This tangent line is decreasing and is positive at a ∈ [0, 1/10]. Therefore, ∂2

∂a2
T (3, a,−a) is positive

at a ∈ [0, 1/10].
Next, we analyze

∂

∂w
T (w, a,−a)

∣∣∣∣
w=3

= 2

(
2a(3 + 7 log(4))− a(9a+ 7) log

(
2

a

)
+ 2 + log(16)

)
,

which has a positive second derivative, 2(18a−7)
a2

, and thus we can use a tangent line at point a =
0.025 as follows. We have,

∂

∂w
T (w, a,−a)

∣∣∣∣
w=3

≥ 1

800
(2911 + 6436 log(2) + 9 log(5))− 1

20
a(−529 + 72 log(2) + 298 log(5))

≈ 9.23323− 0.0259547a,

which is positive for a ∈ [0, 1/10].
Third and last, we show that ∂2

∂w2T (w, a,−a) ≥ 0. We have that

∂2

∂w2
T (w, a,−a) =

12aw − 4(a+ 1)a(w + 1) log
(
2
a

)
+ 8a(w + 1) log(w + 1) + 8a+ 4

w + 1

=:
U(w)

w + 1
,

thus it is sufficient to prove U(w) > 0. This is done by finding the critical point, proving that it is
the minimum point, and then showing that U is positive at that point. To locate the minimum point,
we solve

U ′(w) = 8a log(w + 1) + 20a− 4(a+ 1)a log

(
2

a

)
= 0

for w and get
w0 = e

1
2(a log(

2
a)+log( 2

a)−5) − 1.

This is indeed the minimum point because

U ′′(w) =
8a

w + 1
> 0

for our ranges of w, a (unless a = 0 but then U(w) > 0 immediately). To show that U(w0) > 0,
we first compute

U(w0) =8a+ 12a
(
e

1
2(a log(

2
a)+log( 2

a)−5) − 1
)
− 4(a+ 1)ae

1
2(a log(

2
a)+log( 2

a)−5) log

(
2

a

)
+ 8ae

1
2(a log(

2
a)+log( 2

a)−5) log
(
e

1
2(a log(

2
a)+log( 2

a)−5)
)
+ 4

=
3 2

a+5
2

(
1
a

)a−1
2 − 4e5/2a− 2

a+5
2 (a+ 1)

(
1
a

)a−1
2 log

(
2
a

)
e5/2

+
1
22

a+7
2

(
1
a

)a−1
2
(
(a+ 1) log

(
2
a

)
− 5
)
+ 4e5/2

e5/2

= −
2

a+7
2

(
1
a

)a−1
2

e5/2
− 4a+ 4,
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and additionally

∂

∂a
U(w0) = −

2
a+7
2

−1
(
1
a

)a−1
2 log(2)

e5/2
−

2
a+7
2

(
1
a

)a−1
2
(
1
2 log

(
1
a

)
− a−1

2a

)
e5/2

− 4

= −
4
(
2

a+1
2

(
1
a

)a+1
2 (a(log(2)− 1) + 1) + 2

a+1
2

(
1
a

)a−1
2 log

(
1
a

)
+ e5/2

)
e5/2

,

and note that the latter expression is negative for a ∈ [0, 1/10]. Thus, U(w0) is decreasing in a and
at the minimum point has a value of

U(w0)|a=1/10 =
18

5
− 8 10

√
2

59/20e5/2
≈ 3.25887 > 0.

The proof is complete.

Lemma 19 The function ρ : N2 → R+ defined in (7) satisfies the metric axioms.

Proof Let f(x) := 2√
3
∧
√

2
log 2

x

where f(0) = 0 such that we have ρ = f ◦ξ. It is known that non-

negative, non-decreasing, concave functions with f−1(0) = {0} are metric-preserving (see, e.g.,
Kaplansky, 2001, p. 70). It is easy to see that f is satisfies f−1(0) = {0}, and is non-decreasing.
To see that f is concave, observe that

∂2

∂x2

√
2

log
(
2
x

) =
√
2


3

(
1

log( 2
x)

)5/2

4x2
−

(
1

log( 2
x)

)3/2

2x2



=

(
3− 2 log

(
2
x

))(
1

log( 2
x)

)5/2

2
√
2x2

is negative for 0 < x < 2
e3/2

, which is where
√

2
log( 2

x)
≤ 2√

3
. Since the minimum of concave

functions is concave, we are done.

Recall the notation Nρ(ε) for the ε-covering number of (N, ρ). Because (Xi)i≥1 is a subgaus-
sian process on (N, ρ), Dudley’s theorem directly gives upper bounds on ∆n(µ).

Proof of Proposition 7. Theorem 18 shows that the vector p̂ − p is sub-Gaussian with respect to
the metric ρ√

n
. As a result, Dudley’s theorem (Van Handel (2014, Corollary 5.25)) shows that

∆n(µ) = E sup
i∈N
|p̂i − pi| ≤ 24

∫ ∞

0

√
logNρ(ε

√
n)dε =

24√
n

∫ ∞

0

√
logNρ(ε)dε.

In the last equality, we noted that for any ε ≥ 1, one has Nξ(ε) = 1. This ends the proof.

As a remark, we can check that the proposed condition
∫ 1
0

√
Nρ(ε)dε <∞ in Proposition 7 is

stronger than the sufficient condition
∫ 1
0 Nξ(ε)dε < ∞ from Theorem 6. Indeed, suppose that one
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has
∫ 1
0

√
Nρ(ε)dε < ∞, then in particular, ε

√
logNρ(ε) −→

ε→0+
0. This implies that for any c > 0,

we have
e−

c
ε2Nρ(ε) −→

ε→0+
0.

Also, for ε ∈ (0, 2√
3
], we have

Nρ(ε) = Nξ

(
2e−

2
ε2

)
.

As a result, this shows that for any c > 0, we have

εcNξ(ε) −→
ε→0

0.

The above bound for any c < 1 already shows that
∫ 1
0 Nξ(ε)dε <∞.

Appendix D. On the exact conditions for the convergence ∆n(µ) −→
n→∞

0

In this section, we provide sufficient conditions for the convergence of the expected maximum
deviation ∆n and identify some key challenges for the general characterization.

We start by proving Theorem 9. This gives a sufficient condition for the decay of ∆n to 0 that
is a significantly weaker condition than the condition Eq (8) from Theorem 6. To the best of our
knowledge, we are not aware of any distribution that would not satisfy it, but would still exhibit the
convergent behavior for ∆n. For the sake of exposition, we recall the condition from Theorem 9 for
distributions µ on {0, 1}N:

Sufficient Condition (SC) The metric space (N, ξ) is totally bounded and there exists K ≥ 1
such that for any ε > 0, there exist events (Ek)k∈N and a finite set J ⊂ N with

• P(Ek) ≤ ε, ∀k ∈ N,

• sup
k∈N

log(k + 1)

log 1
P(Ek)

<∞,

• ∀i ∈ N,∃j ∈ J, ∃K ⊂ N, such that |K| ≤ K and {Xi ̸= Xj} ⊂
⋃

k∈K Ek.

Then ∆n(µ) −→
n→∞

0.

Proof of Theorem 9 Fix ε > 0 and consider the events (Ek)k∈N as provided by the condition. Fix
n ≥ 1. Mirroring the notation for p̂, we define q̂ (resp. û) as the empirical probability vector for the
variable (1[Ek])k∈N (resp. (Xj)j∈J ). That is, if we denote by an exponent (n) different samples
from these random variables, we pose

q̂k =
1

n

n∑
i=1

1[E
(i)
k ], ûj =

1

n

n∑
i=1

X
(i)
j .

From Cohen and Kontorovich (2023b); Blanchard and Voráček (2024), we know that since

T (E) := sup
k∈N

log(k + 1)

log 1
P(Ek)

<∞,
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letting qk = P(Ek) ≤ ε, one has
E∥q̂ − q∥∞ −→

n→∞
0. (17)

Next, for any i ∈ N, let Ki ⊂ N and ji ∈ [J ] be the set of indices indices such that {Xi ̸= Zji} ⊂⋃
k∈Ki

Ek. Then, with uj = E[Zj ] for j ∈ [J ], we have

|p̂i − pi| ≤ |p̂i − ûji |+ |ûji − uji |+ |uji − pi|

≤ 1

n

n∑
l=1

1[X
(l)
i ̸= X

(l)
ji
] + |ûji − uji |+ P(Xi ̸= Xji)

≤ 1

n

n∑
l=1

∑
k∈Ki

1[E
(l)
k ] + ∥û − u∥∞ +

∑
k∈Ki

P(Ek)

≤
∑
k∈Ki

(q̂k + ε) + ∥û − u∥∞.

Next, for any k ∈ Ki,

q̂k ≤ qk + |q̂k − qk| ≤ P(Ek) + ∥q̂ − q∥∞ ≤ ε+ ∥q̂ − q∥∞.

Putting the two previous inequalities together yields

∥p̂− p∥∞ ≤ (2ε+ ∥q̂ − q∥∞)K + ∥û − u∥∞.

Because J is finite, E∥û − u∥∞ → 0. Together with Eq (17), this gives

lim sup
n→∞

∆n(µ) ≤ 2Kε.

This holds for any ε > 0, hence we obtained the desired result ∆n(µ)→ 0 as n→∞.

An inspection of the proof shows that one does not need the random variables (Xj)j∈J used as
“centers” to belong to the set of entries {Xi, i ≥ 1}. In fact, the proof holds if we put no restriction
on these centers. This yields the following result.

Corollary 20 Let µ be a distribution on {0, 1}N such that (N, ξ) is totally bounded. Suppose that
there exists K ≥ 1 such that for any ε > 0, there exist events (Ek)k∈N, and a finite sequence of
random variables (Zj)j∈[J ] (defined on the same probability space as µ) with

• P(Ek) ≤ ε, ∀k ∈ N,

• sup
k∈N

log(k + 1)

log 1
P(Ek)

<∞,

• ∀i ∈ N,∃j ∈ J, ∃K ⊂ N, such that |K| ≤ K and {Xi ̸= Zj} ⊂
⋃

k∈K Ek.

Then ∆n(µ) −→
n→∞

0.

While this condition seems more general than the condition (SC), they turn out to be equivalent.
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Proposition 21 The condition (SC) is equivalent to the condition from Corollary 20.

Proof It suffices to show that if µ satisfies the condition from Corollary 20, then it also satisfies
(SC). Fix such a distribution. We will use all the notations of the condition and we now aim to find
adequate parameters to satisfy (SC). We will use K̃ := K + 1. Fix ε > 0. Because µ satisfies the
condition in Corollary 20 for ϵ̃ = ϵ

K , there exists events (Ek)k∈N and random variables (Zj)j∈[J ]
satisfying the conditions for ϵ̃. We also fix for i ≥ 1, an element ji ∈ J and set Ki ⊂ N such that

{Xi ̸= Zji} ⊂
⋃
k∈Ki

Ek. (18)

Fix j ∈ [J ]. First suppose that

P(Zj ̸= Xi) > ϵ, i ≥ 1.

Then, we can check that ji ̸= j, because

P(Xi ̸= Zji) ≤ P

 ⋃
k∈Ki

Ek

 ≤ ∑
k∈Ki

P(Ek) ≤ Kε̃ = ε.

As a result, the variable Zj is simply not needed and we can delete it from the set of centers
(Zj)j∈[J ]. We can therefore suppose without loss of generality that for all j ∈ [J ], there is some
i(j) ≥ 1, for which

P(Xi(j) ̸= Zj) ≤ ε.

We then define the event Fj := {Xi(j) ̸= Zj} for all j ∈ [J ] and add all these to the sequence of
covering events (Ek)k≥1 by defining

Ẽj :=

{
Fj j ≤ J

Ej−J j > J.

The first condition for (SC) is satisfied by construction of the events Fj for j ∈ [J ] because P(Fj) =
P(Xi(j) ̸= Zj) ≤ ε. Next, we only added a finite number of events to the sequence, hence the second
property is still valid. Last, for i ≥ 1, because Eq (18) holds, we have

{Xi ̸= Xi(ji)} ⊂ {Xi ̸= Zji} ∪ {Xi(ji) ̸= Zji} ⊂ Fj ∪
⋃
k∈Ki

Ek =
⋃

k∈{ji}∪{k+J,k∈Ki}

Ẽk

This ends the proof that µ satisfies condition (SC), which gives the desired result.

The proposed condition (SC) essentially asks that “bad events” {Xi ̸= Xj} can be adequately
covered by some sequence of events (Ek)k∈N. As discussed in Section 2, this significantly general-
izes the condition

∫ 1
0 Nξ(ε)dε <∞ along two directions.
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D.1. Generalization (i)

We showed in Theorem 3 and Proposition 17 that 2nd and 3rd order moment information on the
distribution µ is not enough to have a necessary and sufficient characterization. The condition
(SC) instead covers deviations via events in the probability space of µ directly, which allows for
correlations with an arbitrarily large number of coordinates.

For instance, we can check how the condition (SC) distinguishes between the two distributions
µ and ν from Theorem 3. For ν, because the variables Ct are independent even within each block
t ∈ Sk for some fixed k ≥ 1, there is no convenient choice of covering events Ek. On the other
hand, for µ, one can directly choose the bad events Ek := {Bk = 1}:

{Xµ
t ̸= Z0} ⊂ {Bk = 1} = Ek, t ∈ Sk, k ≥ 1.

We can therefore cover the deviations of all entries Xµ
t for t ∈ Sk using a single event Ek with

small probability P(Ek) = 2−k. However, for any t ̸= t′ ∈ Sk, one has

ξ(t, t′) = P(Xµ
t ̸= Xµ

t′) =
P(Ek)

2
.

Hence, contrary to (SC), the covering number approach severely suffers from the size of the block
|Sk| (so would any approach that looks at a fixed number of entries at once).

D.2. Generalization (ii)

The condition (SC) allows to cover the bad event {Xi ̸= Zj} potentially with several events Ek (at
most K), which departs from standard coverings for which one aims to directly cover the probability
P(Xi ̸= Xj). The alternative condition would be written as follows.

Tentative Condition 1 (TC1) The metric space (N, ξ) is totally bounded and for any ε > 0, there
exist events (Ek)k∈N and a finite set J ⊂ N with

• P(Ek) ≤ ε, ∀k ∈ N,

• sup
k∈N

log(k + 1)

log 1
P(Ek)

<∞,

• ∀i ∈ N,∃j ∈ J, ∃k ∈ N, {Xi ̸= Xj} ⊂ Ek.

While this is still sufficient by Theorem 9, we can show that it is not necessary.

Proposition 22 ((TC1) is not necessary) There exists a probability measure µ on {0, 1}N that
does not satisfy condition (TC1) but ∆n(µ) −→

n→∞
0.

Proof Let (Yk)k
iid∼ Bernoulli(1/2) and independent random variables Ak such that Ak ∼ Bernoulli(1/

√
k).

Put
Xk = (1−Ak)Y0 +AkYk, k ≥ 1.

We then define the distributions µ such that (Xk)k≥1 ∼ µ.
We first show that ∆n(µ) → 0 as n → ∞ by checking that it satisfies the condition from

Corollary 20. Intuitively, the random variables become closer and closer to Y0, hence we can choose
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Z1 := Y0. Fix ε > 0 and let kε ≥ 1/ε2. We can then pose J = 1+kε and Zj = Xj−1 for 2 ≤ j ≤ J .
For the other variables, we can simply pose Ek := {Xk+kε ̸= Y0} for k ≥ 1. For the covering sets,
we can simply pose Kk = {1} for k ≤ kε and Kk = {k − kε} for k > kε. We can check that
these parameters satisfy the condition from Corollary 20 in a straightforward manner. For k ≥ 1,
P(Ek) = P(Xk+kε ̸= Y0) = 1√

k+kε
≤ ε. Next, because these probabilities decay as 1√

kε+k
, the

second condition in (SC) is satisfied. Last, for i ≤ kε we have {Xi ̸= Zi+1} = {Xi ̸= Xi} = ∅ ⊂
E1, and for i > kε, {Xi ̸= Z1} = {Xi ̸= Y0} = Ei−kε . This ends the proof that the condition from
Corollary 20 is satisfied and as a result,

∆n(µ) −→
n→∞

0.

Next, suppose by contradiction that (TC1) is satisfied. We use this property for ε = 1
4 , using the

same notations as in the condition. For i ≥ 1, we also denote ji ∈ J and ki ∈ N elements such that
{Xi ̸= Xji} ⊂ Eki . Because J is finite, we denote jmax = max{j, j ∈ J}. Then, for any i ≥ 4,
we have

P(Xi ̸= Xji) =
1

2

(
1√
i
+

1√
ji
− 1√

iji

)
≥ 1

2

(
1√
ji
− 1√

4ji

)
=

1

4
√
ji
≥ 1

4
√
jmax

.

Next, the second condition of (TC1) implies in particular that there exists kmax such that

P(Ek) <
1

4K
√
jmax

, k ≥ kmax.

Now recall that for i ≥ 4, one has P(Xi ̸= Xji) ≤ P(Eki). Combining the two last equations shows
that for any i ≥ 4, we have ki < kmax. Recalling that ji can only take |J | values, this implies that
there is some couple (j, k) ∈ J × [kmax − 1] for which the set

S(j, k) := {4 ≤ i ≤ (4kmax|J |)2 + 3, (ji, ki) = (j, k)},

has at least 16kmax|J | elements. Next, note that⋃
i∈S(j,k)

{Xi ̸= Xj} ⊂ Ek.

Hence, taking the probabilities yields

1− P(Ek) ≤ P

 ⋂
i∈S(j,k)

{Xi = Xj}

 ≤ P(Xj ̸= Y0) + P

 ⋂
i∈S(j,k)

{Xi = Y0}


≤ 1

2
√
j
+

∏
i∈S(j,k)

(
1− 1

2
√
i

)

≤ 1

2
+ exp

− ∑
i∈S(j,k)

1

2
√
i

 .

Now we compute ∑
i∈S(j,k)

1

2
√
i
≥ 16kmax|J |

2
√

(4kmax|J |)2 + 3
≥ 3

2
.
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Together with the previous equation, this implies

P(Ek) ≥
1

2
− e−3/2 >

1

4
= ε.

This contradicts the first property of condition (TC1), which proves that µ does not satisfy this
condition and ends the proof.

In the previous example, one of the main reasons why the condition (TC1) is not satisfied is that
there is no adequate finite choice of “centers” (Xj)j≥1—the random variable Y0 is missing from the
sequence {Xj , j ≥ 1}, while it would be a natural candidate to be used as the center. A possible
tentative to fix this issue would be to allow the centers to be general random variables, in the spirit
of the condition proposed in Corollary 20. This yields the following condition.

Tentative Condition 2 (TC2) The metric space (N, ξ) is totally bounded and for any ε > 0, there
exist events (Ek)k∈N and a finite set of random variables (Zj)j∈[J ] (defined on the same probability
space as µ) with

• P(Ek) ≤ ε, ∀k ∈ N,

• sup
k∈N

log(k + 1)

log 1
P(Ek)

<∞,

• ∀i ∈ N,∃j ∈ [J ], ∃k ∈ N, {Xi ̸= Zj} ⊂ Ek.

By Corollary 20 and Theorem 9, this is still a sufficient condition, which fortunately also en-
compasses the example provided in the previous result, Proposition 22. However, even with this fix,
being able to cover bad events {Xi ̸= Zj} with multiple events Ek is still necessary.

Proposition 23 ((TC2) is not necessary) There exists a probability measure µ on {0, 1}N that
does not satisfy condition (TC2) but ∆n(µ) −→

n→∞
0.

Proof We partition N into N =
⋃

l≥1 Il, where Il = {2l−1 ≤ i < 2l} for l ≥ 1. We consider binary
random variables Yi, Ai, Bi for i ≥ 1, together independent and such that Yi ∼ Bernoulli(1/2),
and Ai, Bi ∼ Bernoulli(1/

√
i), for all i ≥ 1. For l ≥ 1 and any i ∈ Il, put

Xi = (1−Al)(1−Bi)Y0 + (Al +Bi −AlBi)Yi.

We then define µ as the distribution of (Xi)i≥1. We first show that ∆n(µ) −→
n→∞

0 by proving that
µ satisfies the sufficient condition from Corollary 20. Here, we use K = 2. Fix ε > 0 and let
i0 = ⌈ 1

ε2
⌉ and iε = 2i0 . We then define the events (Ek)k≥1 as the sequence ({Ai0 = 1}, {Bi0 =

1}, {Ai0+1 = 1}, {Bi0+1 = 1}, . . .). Because of the polynomial decay of P(Ai = 1) = P(Bi =
1) = 1√

i
, we can check easily that the events (Ek)k≥1 satisfy the first two conditions from Corol-

lary 20. Last, we consider J = iε+1 centers Y0 and (Xi)i≤iε . The third condition from Corollary 20
is trivially satisfied for i ≤ iε, since {Xi ̸= Xi} = ∅. And for i > iε, letting l ≥ 1 such that i ∈ Il,
since iε = 2i0 , we have l ≥ i0. In particular, the events {Al = 1} and {Bi = 1} belong to the
sequence (Ek)k≥1. We can conclude by noting that

{Xi ̸= Y0} ⊂ {Al = 1} ∪ {Bi = 1}.
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This ends the proof that ∆n(µ) −→
n→∞

0.
We now show that µ does not satisfy (TC2). We suppose by contradiction that it does and use

the property for ε = 1
2 . We use the notations of the condition and for any i ≥ 1, we denote by

ji ∈ [J ] and ki ∈ N elements such that {Xi ̸= Zji} ⊂ Eki . Because of the second property, there
exists C > 0 such that

P(Ek) ≤
1

k1/C
, l ≥ 1. (19)

Next, we recall that the sequence (ji)i≥1 only takes values in [J ]. As a result, for any l ≥ |J | + 1
there exists some index j(l) such that

|{i ∈ Il : ji = j(l)}| ≥ |Il|
|J |

=
2l−1

|J |
.

We denote this set A(l) = {i ∈ Il : ji = j(l)}. Suppose for now that for some i ∈ A(l), we have

P(Xi ̸= Zj(l)) ≤
3

8
√
l
.

Then, for any i′ ∈ A(l) \ {i}, one has

P(Xi′ ̸= Zj(l)) ≥ P(Xi′ ̸= Xi)− P(Xi ̸= Zj(l)) ≥
3

4
P(Al = 1)− 3

8
√
l
=

3

8
√
l
.

As a result, in all cases, there is a set B(l) ⊂ A(l) of cardinality |B(l)| = |A(l)|−1 ≥ 2l−1/|J |−1
and for which

P(Eki) ≥ P(Xi ̸= Zji) = P(Xi ̸= Zj(l)) ≥
3

8
√
l
.

By Eq (19), this implies that for all i ∈ B(l), one has ki ≤ (8l)C/2. As a result, there exists k(l) for
which

|{i ∈ Il : (ji, ki) = (j(l), k(l))}| ≥ |B(l)|
(8l)C/2

≥ 2l−1 − |J |
(8l)C/2|J |

.

We denote this set by C(l) := {i ∈ Il : (ji, ki) = (j(l), k(l))}. In particular, we obtained that for
l ≥ (|J |+ 2) ∧ log2(8(8l)

C/2|J |),

|C(l)| ≥ 2l

4(8l)C/2|J |
≥ 2.

We now use similar arguments to that of Proposition 22. Fix some element i(l) ∈ C(l). We have

1− P(Ek(l)) ≤ P

 ⋂
i∈C(l)

{Xi = Zj(l)}


≤ P(Xi(l) ̸= Y0) + P

 ⋂
i∈C(l)

{Xi = Y0}


=

1

2

(
1√
i(l)

+
1√
l
− 1√

li(l)

)
+
∏

i∈C(i)

(
1− 1

2
√
i
− 1

2
√
l
+

1

2
√
il

)

≤ 1

2

(
1

2(l−1)/2
+

1√
l

)
+ exp

(
−|C(l)|

2
√
l

)
.
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For l sufficiently large, this gives 1−P(Ek(l)) ≤ 1
4 , which contradicts the hypothesis P(Ek) ≤ ε =

1
2 for all k ≥ 1. Hence µ does not satisfy (TC2), which ends the proof.

45


	Introduction
	Main results
	Proof of Theorem 1 (Decoupling from below)
	Proof of Theorem 3 (Covariance does not characterize n)
	Second and third-order moments do not characterize n()
	Bounds on the expected maximum empirical deviation with -covering numbers
	Upper bound on n() via subgaussian differences
	On the exact conditions for the convergence n()-3mun0
	Generalization (i)
	Generalization (ii)


