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Abstract
In order to circumvent statistical and computational hardness results in sequential decision-making, recent work
has considered smoothed online learning, where the distribution of data at each time is assumed to have bounded
likeliehood ratio with respect to a base measure when conditioned on the history. While previous works have demon-
strated the benefits of smoothness, they have either assumed that the base measure is known to the learner or have
presented computationally inefficient algorithms applying only in special cases. This work investigates the more gen-
eral setting where the base measure is unknown to the learner, focusing in particular on the performance of Empirical
Risk Minimization (ERM) with square loss when the data are well-specified and smooth. We show that in this set-
ting, ERM is able to achieve sublinear error whenever a class is learnable with iid data; in particular, ERM achieves
error scaling as Õ(

√
comp(F) · T ), where comp(F) is the statistical complexity of learning F with iid data. In so

doing, we prove a novel norm comparison bound for smoothed data that comprises the first sharp norm comparison
for dependent data applying to arbitrary, nonlinear function classes. We complement these results with a lower bound
indicating that our analysis of ERM is essentially tight, establishing a separation in the performance of ERM between
smoothed and iid data.
Keywords: Online Learning, Smoothed Data, Empirical Risk Minimization, Small Ball Method

1. Introduction

A natural approach to statistical learning is Empirical Risk Minimization (ERM), which, given a function class,
returns a hypothesis minimizing the empirical loss on collected data. When the data are independent and identically
distributed (iid), strong guarantees for the performance of ERM are known, and it is statistically optimal in certain
cases (Birgé and Massart, 1993; Yang and Barron, 1999; Kur, 2023). Unfortunately, many learning applications
require weaker assumptions on the data generation process than independence. For this reason, there has been
interest in online learning (see e.g. (Cesa-Bianchi and Lugosi, 2006)), a setting where data points Xt arrive one at a
time and the learner must predict Ŷt before observing Yt, with the goal of minimizing the regret with respect to the
best hypothesis in hindsight in some class of hypotheses F after T rounds; critically, in this setting, no assumptions
are made on the data. Due to this generality, however, there are many simple settings where statistical (Littlestone,
1988; Ben-David et al., 2009) or computational (Hazan and Koren, 2016) lower bounds preclude learning.

To address these shortcomings, recent work has considered the setting of smoothed online learning (Rakhlin
et al., 2011; Haghtalab et al., 2020, 2022b,a; Block et al., 2022; Bhatt et al., 2023; Block et al., 2023a,b; Block and
Simchowitz, 2022; Block and Polyanskiy, 2023), where the existence of some base measure µ is posited with the
property that, for some parameter σ governing the difficulty of the data, the law of Xt conditioned on the history has
density bounded by σ−1 with respect to µ. In this paper, we consider the performance of ERM when the data are
smooth and well-specified, i.e., there exists some f⋆ ∈ F such that E [Yt|Xt] = f⋆(Xt) for all t. In addition to being
an interesting regime in its own right, the ability to learn well-specified data has immediate application to contextual
and structured bandits (Foster and Rakhlin, 2020; Foster et al., 2021b). We show that, in contradistinction to the
worst-case data regime where even simple function classes such as thresholds on the unit interval are not learnable
(Ben-David et al., 2009), ERM is capable of learning whenever the covariates are smooth and the outcomes are
well-specified.
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In more detail, we show that when the data (Xt, Yt) are σ-smooth, E[Yt|Xt] = f⋆(Xt), and f̂t is the ERM on
the data collected up to time t− 1, then

E

[
T∑
t=1

(
f̂t(Xt)− f⋆(Xt)

)2]
≲ polylog(T ) ·

√
comp(F) · T · σ−1. (1)

The proof of (1) rests on three main ingredients. The first is a decoupling inequality that allows us to control the
error of ERM on the observed data sequence Xt by the error of ERM on a conditionally independent (tangent) data
sequence X ′

t:

E

[
T∑
t=1

(
f̂t(Xt)− f⋆(Xt)

)2]
≲ polylog(T ) ·

√√√√T

σ
· E

[
T∑
t=1

1

t
·
t−1∑
s=1

(
f̂t(X ′

s)− f⋆(X ′
s)
)2]

. (2)

Such an inequality as above is useful because, in contradistinction to the iid setting, the distribution of the point on
which the ERM f̂t is being evaluated can be quite different from the distribution of the data Xt; (2) replaces this
distribution shift with error on the independent sequence X ′

t. The second ingredient is a novel uniform deviation
result that implies sharp control of the population norm by the empirical norm uniformly over a bounded function
class G : X → [0, 1] whenever the data are smooth:

E

[
sup
g∈G

T∑
t=1

g(X ′
t)− 2 · g(Xt)

]
≲ comp(G) · log

(
T

σ

)
. (3)

In the well-studied setting of iid data (Bousquet, 2002; Mendelson, 2015; Rakhlin et al., 2017; Mendelson, 2021),
analogues of (3) allow us to pass from fixed- to random-design regression, controlling∥∥∥f̂ − f⋆

∥∥∥2
L2(P )

≲
∥∥∥f̂ − f⋆

∥∥∥2
n
+ δ2n

for some small δn > 0, where X1, . . . , Xn ∼ P are iid and ∥·∥n is the L2 norm on the empirical measure. Thus,
our approach can be viewed as a generalization of this technique to smoothed data. In particular, (3) allows the right
hand side of (2) to be replaced with the error of ERM on the actual data sequence Xt; we conclude by applying a
symmetrization technique motivated by the Will’s functional (Mourtada, 2023) to control error of f̂t on the X1:t−1.

We note that, as the horizon T tends to infinity, the average error of ERM in (1) vanishes whenever a function
class is learnable with iid data. On the other hand, were the data truly iid, we would expect the cumulative error to
grow as O(log(T )) as opposed to the polynomial growth above. Surprisingly, we find that our analysis is essentially
tight, meaning that for a VC class, ERM must suffer error Ω(

√
vc(F) · T ) in the smoothed setting, even under the

stronger assumption of realizability, presenting a significant gap between smoothed and iid data.
Previous work has established that the difficulty of learning under smoothed data with potentially adversarial

labels Yt matches that of iid data, i.e., there exist algorithms whose regret scales like Õ
(√

comp(F) · T · log(1/σ)
)

(Haghtalab et al., 2022b; Block et al., 2022), where comp(F) is the statistical complexity of F (such as vc(F) or
Rademacher complexity). Furthermore, past work has introduced algorithms that are efficient with respect to calls
to a black-box ERM oracle and attain regret scaling as Õ

(√
comp(F) · T · σ−1/4

)
(Haghtalab et al., 2022a; Block

et al., 2022)1. For both of these results, however, the base measure µ is assumed to be known to the learner in the
sense that the learner may efficiently sample from µ. While this access to µ is reasonable in many cases (see Block
et al. (2023b,a) and references therein), it is desirable to develop algorithms that do not require any knowledge of the
base measure2. As ERM itself does not depend on µ, our work comprises the first example of an (oracle-)efficient
algorithm for learning with smoothed data when the base measure is unknown.

We now summarize the main contributions of our paper.

1. The polynomial separation in σ between inefficient and efficient algorithms is provably necessary for proper algorithms. For improper
algorithms, this remains an interesting open question.

2. As first observed in Block et al. (2022) and generalized in Wu et al. (2023), when the base measure µ is unknown, logarithmic dependence
on σ is impossible, even for computationally inefficient algorithms.
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1. In Theorem 8, we show that ERM is capable of learning whenever the data are smoothed and well-specified,
further justifying its application even in the absence of the strong assumption of iid data. In the course of the
argument, we state and prove Lemma 11, which is a deterministic self-bounding result that may see wider use
in the future.

2. In Theorem 10, we prove a novel norm comparison result for smoothed data comprising the first sharp norm
comparison for dependent data applying to arbitrary, nonlinear function classes.

3. In Theorem 16, we demonstrate that our analysis of ERM with smoothed data is tight in the sense that ERM
must suffer error Ω(

√
vc(F) · T ) in the smoothed setting, even under the stronger assumption of realizability,

presenting a significant gap between smoothed and iid data.

Finally, in Appendix G, we present Theorem 29, which is a stronger norm comparison result that can be proved
under a natural anti-concentration condition. In particular, we demonstrate that under this condition, the population
norm according to any smooothed distribution can be bounded in expectation by the empirical norm on smoothed
data.

2. Notation and Preliminaries

In this section we formalize the problem of smoothed online learning with an unknown base measure as well as intro-
duce the prerequisite notions of function class complexity and assorted analytic constructions that we use throughout
the paper.

2.1. Problem Formulation and Smoothness

To begin, we define the central condition of our work, smoothness.

Definition 1 Let X be a set and µ ∈ ∆(X ) be a probability distribution over X . We say that a measure p ∈ ∆(X )

is σ-smooth with respect to µ if
∥∥∥ dpdµ∥∥∥∞ ≤ σ−1, where ∥·∥∞ is the essential supremum. Given a sequence of data

X1, . . . , XT ∈ X adapted to a filtration (Ht)t≥0, we say that the data are σ-smooth with respect to µ if for all
t ∈ [T ], the law of Xt|Ht−1 ∼ pt and pt are σ-smooth with respect to µ almost surely.

We remark that the requirement that the Radon-Nikodim derivative is bounded can be substantially relaxed to an
assumption that p lies in an f -divergence ball around µ (Block and Polyanskiy, 2023); for the sake of simplicity, we
consider only the original definition of smoothness.

In this work, we are concerned with the problem of online supervised learning with square loss. In particular,
we let F : X → [−1, 1] be a function class and suppose that at each time t, the learner chooses an estimator f̂t ∈ F
before seeing an Xt ∈ X and Yt ∈ R. In particular, we are interested in the well-specified setting, which we now
define.

Definition 2 Let (X1, Y1), . . . , (XT , YT ) ∈ X × R be a sequence of data adapted to a filtration (Ht)t≥0. We say
that the data are well-specified with respect to a function class F if there exists a function f⋆ ∈ F , measurable
with respect to H0 such that for all t ∈ [T ], E [Yt|Ht−1, Xt] = f⋆(Xt). Furthermore, we say that the data are
subGaussian if Yt = f⋆(Xt) + ηt where ηt|Ht−1 is a mean-zero subGaussian random variable with variance proxy
ν2.

The goal of the learner is to predict f⋆ as well as possible, i.e. to minimize the estimation error:

ErrT =
T∑
t=1

(f̂t(Xt)− f⋆(Xt))
2.

We remark that in general online learning, where no assumption of well-specification is made, it is often more
common to study regret

∑T
t=1(f̂t(Xt) − Yt)

2 − inff∈F
∑T

t=1(f(Xt) − Yt)
2. While regret is a formally stronger
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guarantee than the estimation error, the latter is a more natural notion in the well-specified case and is sufficient for
applications such as contextual bandits (Foster and Rakhlin, 2020; Foster et al., 2021a) and reinforcement learning
(Foster et al., 2021b, 2023). In the special case of realizable data, where Yt = f⋆(Xt) for all t ∈ [T ], the notions
coincide and thus control of error lead to control of regret. In particular, when F is binary valued and the data are
realizable, the cumulative error is precisely the number of mistakes the learner makes over the course of T rounds.

A natural algorithm to handle well-specified data is Empirical Risk Minimization (ERM), where at time t, the
learner chooses

f̂t ∈ argmin
f∈F

t−1∑
s=1

(f(Xs)− Ys)
2 , (4)

the minimizer of the empirical error on the data seen thus far. While for many function classes the act of finding
f̂t can be computationally intractable, motivated by empirical heuristics (Goodfellow et al., 2016), it is standard in
much of online learning to treat the ERM as an oracle that the learner can call efficiently (Kalai and Vempala, 2005;
Hazan and Koren, 2016; Block et al., 2022; Haghtalab et al., 2022a), as it ensures that the computational difficulty
of online learning is not significantly worse than that of offline learning.

2.2. Measures of Complexity of a Function Class

Our error bounds are stated in terms of notions of complexity of the function class F . In the course of the paper, we
primarily consider the Will’s functional of F (Mourtada, 2023):

Definition 3 Let F : X → R be a function class, fix Z1, . . . , Zm ∈ X , and let ξ1, . . . , xm be independent standard
Gaussian random variables. Define the Will’s functional of F on Z1, . . . , Zm to be

Wm(F) = Eξ

[
exp

(
sup
f∈F

m∑
i=1

ξi · f(Zi)−
1

2
· f(Zi)2

)]
,

where Eξ [·] denotes expectation with respect to the ξi’s, and the dependence on the Zi is implicit.

Comparisons between the Will’s functional and other standard notions of complexity like Rademacher complex-
ity and covering numbers are well-understood (Mourtada, 2023) and we detail some of these connections in Ap-
pendix A; of particular note is the fact that logWm(F) = o(m) is necessary and sufficient to ensure statistical
learnability with polynomially many samples when the data are iid. A more standard measure of function class
complexity is the Rademacher complexity:

Definition 4 Let F : X → [−1, 1] denote a function class, µ ∈ ∆(X ) a measure, and Z1, . . . , Zm ∼ µ be
independent samples from µ. We define the Rademacher complexity of F to be

Rm(F) = E

[
sup
f∈F

m∑
i=1

εi · f(Zi)

]
,

where the εi are independent Rademacher random variables.

The Rademacher complexity characterizes the difficulty of distribution-free statistical learning when data are iid
and its connections to other standard notions of complexity like the VC dimension (Vapnik, 1999) are well-known
(Van Handel, 2014; Wainwright, 2019). In particular, Mourtada (2023, Proposition 3.2) implies3 that logWm(F) ≲
Rm(F) log(m) for all m ∈ N. It is often convenient to instantiate our bounds in the parametric setting for the sake
of concreteness. Thus, we also consider the notion of VC dimension:

Definition 5 Let F : X → {±1} be a function class. We say that F shatters points x1, . . . , xd ∈ X F if for all
ε1:d ∈ {±1}d, there is some fε ∈ F such that fε(xi) = εi for all i ∈ [d]. We define the VC dimension of F , denoted
by vc(F) to be the maximal d such that there exist points x1, . . . , xd ∈ X shattered by F .

We note that logWm(F) ≲ vc(F) · log(m) for all m ∈ N and if F is finite, then logWm(F) ≲ log(|F|) (cf.
Appendix A).

3. Technically this result uses the related notion of Gaussian complexity as an upper bound; however, Gaussian complexity is well-known
to upper bound Rademacher complexity up to a logarithmic factor (Van Handel, 2014).
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2.3. Additional Prerequisites

A common technique in our analysis is the following coupling lemma, proved in Haghtalab et al. (2022b) for discrete
X and Block et al. (2022) in general.

Lemma 6 LetX1, . . . , XT be σ-smooth with respect to µ. Then for all k ∈ N, there exists a coupling ofX1, . . . , XT

with random variables {Zt,j |t ∈ [T ], j ∈ [k]} such that the Zt,j ∼ µ are independent and there is an event E with
probability at least 1− Te−σk on which it holds that Xt ∈ {Zt,j |j ∈ [k]} for all t ∈ [T ].

This lemma amounts to the key difference between smooth and worst-case data and is one of the reasons that sample
acess to the base measure µ is a central technique in earlier work on smoothed online learning (Block et al., 2022;
Haghtalab et al., 2022a). We use this result purely for analysis as we do not assume that µ is known to the learner.

Finally, an essential feature of our analysis is a decoupling inequality that disentangles the dependence of the ft
on the data Xt. To this end, we define the following notion of a tangent sequence (De la Pena and Giné, 1999):

Definition 7 Let Xt ∈ X denote a sequence of random variables adapted to a filtration (Ht)t≥0. We say that a
sequence X ′

1, . . . , X
′
T ∈ X is a tangent sequence if for all t ∈ [T ], Xt and X ′

t are independent and identically
distributed conditioned on Ht−1.

Tangent sequences are in general useful for decoupling arguments and have been used to prove sequential uniform
laws of large numbers (Rakhlin et al., 2015) among many other applications.

Notation. We denote by [T ] the set {1, . . . , T}. We reserve P and E to signify probability and expectation when
the measure is clear from context. We let ∆(X ) denote the space of distributions on a set X and for a measure
µ ∈ ∆(X ), we let ∥·∥µ denote the L2(µ) norm, i.e. ∥f∥µ =

√
EZ∼µ[f(Z)2]; in particular, for t ∈ [T ], we let

∥·∥t denote the empirical norm on the data X1, . . . , Xt. We use O(·) notation to hide universal constants and Õ(·)
notation to hide polylogarithmic factors.

3. Main Results

The main result of this paper is the following bound on the performance of f̂t:

Theorem 8 Let F : X → [−1, 1] be a function class. Suppose that (Xt, Yt)t∈[T ] is a sequence of well-specified
data such that the Xt are σ-smooth with respect to some measure µ and suppose that the Yt are conditionally
ν2-subGaussian for some ν ≥ 0. Suppose the learner chooses f̂t as in (4). Then4,

E [ErrT ] ≤
2 log

(
T
σ

)
σ

+ 20 log2
(
T

σ

)
·
√
T

σ
(1 + ν)

(
1 + logEµ

[
W2T log(T )/σ(256 · F)

])
. (5)

While Theorem 8 applies to arbitrarily complex, even nonparametric function classes, the clearest instantiation of
the result is for parametric function classes where logWm(F) = O (d · log(m)) for fixed d > 0 and all m, for
example when vc(F) ≤ d. In this case, we see that the performance of f̂t is controlled by Õ

(√
d · T/σ

)
. While

the
√
T rate is a far cry from the O(log(T )) error guarantees possible when the data are independent, we will see in

Section 5 that such logarithmic rates are not in general possible to achieve by ERM with smoothed data.
As another example, we oberve that whenever logWT (F) = o(T/polylog(T )), the upper bound (5) is also

o(T ). Due to the fact that sublinear growth in logWm(F) characterizes learnability in the fixed-design setting
(Mourtada, 2023), we see that Theorem 8 is essentially qualitatively tight, in the sense that it implies that f̂t yields
vanishing error whenever the function class F is statistically learnable with polynomial rates. In the special case
where the data are realizable, error and the more typical notion of regret coincide and thus Theorem 8 implies a
mistake bound. In particular, for binary-valued F , we obtain a nontrivial mistake bound for smoothed data simply
by playing ERM, which stands in marked contrast to the case of adversarial data.

4. Note that the lack of a quadratic dependence on ν does not imply a lack of homogeneity, because the scale of the problem is set by the
uniform bound on F .

5



BLOCK RAKHLIN SHETTY

Remark 9 One immediate application of Theorem 8 is to contextual bandits (Lattimore and Szepesvári, 2020),
which is a common partial information setting in sequential decision making. In this regime, the learner receives
contextsXt one at a time before choosing an actionAt ∈ [K] and observing the reward Yt depending on the context
and action chosen. Critically, the learner does not observe the counterfactual rewards for actions not chosen. It is
often assumed that the average reward function E [Yt|Xt, At] = f⋆(Xt, At) for some f⋆ ∈ F (Foster and Rakhlin,
2020; Foster et al., 2021a; Foster and Krishnamurthy, 2021) and the goal of the learner is to minimize the regret
with respect to the policy induced by f⋆. By applying the reduction of Foster and Rakhlin (2020), we see immediately
that if the contexts are smooth, then running Foster and Rakhlin (2020, Algorithm 1) with f̂t from (4) yields a no-
regret guarantee for contextual bandits, whenever the function class F is statistically learnable. For example, if F is
parametric in the sense that logWT (F) ≲ d · log(T ), the resulting regret is Õ

(
σ−1/2K3/2d1/4T 3/4

)
, which is the

first nontrivial regret bound for an oracle-efficient algorithm for contextual bandits when the contexts are smooth
with respect to an unknown base measure.

We sketch the proof of Theorem 8 in some detail in the subsequent section, but we highlight one key step here,
which may be of independent interest. In particular, we provide a sharp norm comparison result for smoothed data,
comparing the ‘population norm’ of a function on a tangent sequence to the ‘empirical norm’ of the function on the
actual data. This result is the following:

Theorem 10 Let F : X → [−1, 1] be a bounded function class and letX1, . . . , XT be a sequence of data σ-smooth
with respect to some base measure µ ∈ ∆(X ). Then it holds for any c > 0 that

E

[
sup
f∈F

T∑
t=1

f2(X ′
t)− (1 + 2c) · f2(Xt)

]
≤
√
π

2
· (1 + c)2

c
· logEµ

[
W2T log(T )/σ

(
4c

1 + c
· F
)]

+ 4(1 + c),

where X ′
t is a tangent sequence and Wt is the Will’s functional conditioned on data independently sampled from µ,

defined in Definition 3.

The benefit of Theorem 10 in comparison to a more standard uniform deviations approach is that it allows for sharper
dependence on the horizon by allowing a small constant factor in front of the empirical norm. Such a tradeoff is
common in norm comparison results for iid data (Bousquet, 2002; Mendelson, 2015, 2021) and for linear functions
of dependent data (Simchowitz et al., 2018; Tu et al., 2022; Ziemann and Tu, 2022), but Theorem 10 is the first
example for dependent data and arbitrary function classes in the literature.

To understand the power of the new norm comparison, consider the previously known approach using uniform
deviations. Indeed, by combining Rakhlin et al. (2011, Theorem 3) with Block et al. (2022, Lemma 17) it is
immediate that

E

[
sup
f∈F

T∑
t=1

f2(X ′
t)− f2(Xt)

]
≲ RT log(T )/σ(F2). (6)

For the sake of completeness, we prove this result as Lemma 26 in Appendix F. The problem with applying uni-
form deviations is that even in the case where F is finite, the best bound that (6) can hope to yield scales like
Õ(
√
log(|F|) · T ); this is because Rm(F2) is not meaningfully smaller than Rm(F). Letting p̃T = 1

T

∑T
t=1 pt, we

see that (6) then implies that for any f ∈ F depending arbitrarily on the data X1, . . . , XT , we have the bound

E
[
∥f∥2p̃T

]
≲ E

[
∥f∥2T

]
+

√
log(|F|)

T
.

On the other hand, taking c to be some small constant, Theorem 10 yields a bound

E
[
∥f∥2p̃T

]
≲ E

[
∥f∥2T

]
+

log(|F|)
T

,

which is a significant improvement. We emphasize that by Mourtada (2023, Proposition 3.2), the logarithm of the
Will’s functional is never more than a logarithmic factor larger than the Rademacher complexity, and so Theorem 10
always yields at least as strong control as (6) up to a logarithmic factor.
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4. Analysis Techniques

While we defer a detailed proof of Theorems 8 and 10 to Appendices C and D respectively, we here sketch the
main idea of the proofs. In contradistinction to analyzing ERM with iid data, where it suffices to prove a uniform
deviation bound to relate predictions on independent test samples to those on training data, for smoothed data there
is a distribution shift problem where even the distribution on which f̂t is being evaluated (that of the next point pt)
may not match the distributions of the training data X1, . . . , Xt−1. Thus the first step in the proof of Theorem 8 is to
apply a decoupling result, which leverages smoothness of the data to remove this distribution shift. Unfortunately,
upon applying this decoupling, we are left with controlling the performance of ERM on a tangent sequence. It is here
that we apply Theorem 10 to bound this error by the performance of ERM on the actual data sequence X1, . . . , XT .
Finally, we will apply a subtle symmetrization argument to conclude the proof. We begin this section by presenting
a more detailed sketch of the preceding summarized argument. We then sketch the proof of Theorem 10.

4.1. Proof Sketch of Theorem 8

As described above, the proof of Theorem 8 can be broken into three steps: decoupling, norm comparison, and
symmetrization. The first step is to remove the distribution shift with the following decoupling inequality:

E

[
T∑
t=1

(
f̂t(Xt)− f⋆(Xt)

)2]
≲

polylog(T )

σ
·

√√√√T · E

[
T∑
t=1

1

t
·
t−1∑
s=1

(ft(X ′
s)− f⋆(X ′

s))
2

]
. (7)

The second step is to apply Theorem 10 and reduce the problem to bounding E
[∥∥∥f̂t − f⋆

∥∥∥2
t−1

]
. The final step is to

show that

E
[∥∥∥f̂t − f⋆

∥∥∥2
t−1

]
≲ polylog(T ) · logWT log(T )/σ(F). (8)

Combining (7), Theorem 10, and (8) then yields the desired result. We now expand on the first and third steps of the
proof and defer discussion of the proof of Theorem 10 to the sequel.

Decoupling. We begin with the following intermediate result applying to deterministic sequences of bounded real
numbers, which we use to prove our decoupling.

Lemma 11 Let (at)t∈N denote a sequence of real numbers such that a0 = δ for some δ > 0 and 0 ≤ at ≤ 1 for all
t > 0. For K > 0 and t ∈ N, let

Bt(a,K) =

{
s < t

∣∣∣∣as ≥ K

s
·
∑
u<s

au

}
.

Then for any ε ∈ (0, 1), it holds that |BT (a,K)| ≤ max (2 log(T/δ), εT ) for all K ≥ 2 log(T/δ)
ε .

Essentially, the lemma bounds the number of ‘surprises’ a bounded, nonnegative sequence can have, where a ‘sur-
prise’ is a time where an element is significantly larger than the empirical average of the sequence up to that point.
We observe that Lemma 11 gives more fine-grained control than the more standard so-called “elliptic potential”
results such as Xie et al. (2022, Lemma 4); indeed, whereas these results control the average size of a ‘surprise,’ they
yield no control on their number. On the other hand, Xie et al. (2022, Lemma 4) follows readily from Lemma 11.
While we defer a proof of Lemma 11 to Appendix B, we remark that the proof follows by modifying the sequence
(at) to a new sequence (bt) such that |BT (b,K)| ≥ |BT (a,K)| and the new sequence (bt) posesses a particular
structure amenable to analysis.

The relevance of Lemma 11 is that it allows us to decouple the estimates f̂t from the data Xt by applying the
result to the sequence of at = σ · dptdµ (Z) for Z ∼ µ, where Xt|Ht−1 ∼ pt. In particular, we have the following
direct corollary:
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Lemma 12 Let (Xt) ⊂ X be a sequence of random variables and let gt : X → [0, 1] be a sequence of random
functions adapted to a filtration (Ht)t≥0 such that gt is Ht−1-measurable andXt|(Ht−1, gt) is σ-smooth with respect
to some measure µ. Let X ′

s be a tangent sequence as in Definition 7. Then it holds that

E

[
T∑
t=1

gt(Xt)

]
≤ 2 log(T/σ)

σ
+ log

(
2T

σ

)
·

√√√√T

σ
· E

[
T∑
t=1

1

t
·
t−1∑
s=1

gt(X ′
s)

]
. (9)

Lemma 12 is proved by balancing ε in the application of Lemma 11. In the special case that σ = 1, however, we
see that at = 1 for all t and thus |BT (a,K)| = 0 for all K > 1 and so no balance is needed. In this case we
obtain that the left hand side of (9) is bounded byO

(
log(T ) + E

[∑T
t=1 gt(X

′
t)
])

, which is optimal up to constants

and the additional logarithmic term, because if Xt are iid, then E[gt(Xt)] = E[gt(X ′
t)] for all t. Thus we see that

our approach to analyzing ERM when specialized to iid data recovers the standard rates up to logarithmic terms and
constants. We further note that a similar result could be achieved through applying the techniques of Xie et al. (2022),
although the proof of an analogous statement in that work is significantly more involved. We apply Lemma 12 by
letting gt = (f̂t − f⋆)2, which yields (7).

Symmetrization. The final step in the proof of Theorem 8, and the only one which requires f̂t to be the ERM as
opposed to an arbitrary member of F depending on X1, . . . , Xt−1, is to apply a symmetrization argument to control
the estimation error of f̂t on the data sequence X1, . . . , Xt−1. We emphasize here that standard symmetrization
arguments do not directly apply due to the dependence between the noise ηt and the data Xt. Instead, we apply a
more subtle symmetrization argument, which takes advantage of the coupling argument of Lemma 6. In particular,
we have the following result:

Lemma 13 Suppose that F : X → [−1, 1] is a function class, µ ∈ ∆(X ), and X1, . . . , XT are σ-smooth with
respect to µ. Suppose further that Yt are well-specified and ν2-subGaussian with respect to F . Let f̂T be ERM on
F with respect to the data. For any k ∈ N, it holds that

E
[∥∥∥f̂T − f⋆

∥∥∥2
T−1

]
≤ 64

T
ν ·
√

log (T ) ·
(
logEZt,j

[
Wk(T−1) (256(F − f⋆))

]
+ Te−σk

)
,

Proof [Proof sketch.]
The full proof of Lemma 13 is in Section C.2 but we provide a sketch here. By applying elementary computation,

we obtain that

E
[
(T − 1) ·

∥∥∥f̂T − f⋆
∥∥∥2
T−1

]
≤ E

[
sup
f∈F

8 ·
T−1∑
t=1

ηt · (f(Xt)− f⋆(Xt))−
1

2
· (f(Xt)− f⋆(Xt))

2

]
. (10)

We then apply the coupling argument from Lemma 6 to separate the right hand side of (10) into a high probability
event E where Xt ∈ {Zt,j} for Zt,j ∼ µ independent and the low probability complement. On the high probability
event, we then symmetrize, observe that the η can be dropped by passing to their worst-case absolute value, and
apply Jensen’s inequality to upper bound the right hand side of (10) by

1

λ
logE

[
exp

(
I[E ] · λ · sup

f∈F
8 ·

T−1∑
t=1

ξt · (f(Xt)− f⋆(Xt))−
1

2
· (f(Xt)− f⋆(Xt))

2

)]
+

1

T
,

where the ξt are independent standard Gaussians and λ is a carefully chosen constant. Finally, we conclude the proof
by using the coupling as well as the monotonicity of the Will’s functional proved in Lemma 28 to replace the Xt

with Zt,j .

Remark 14 We emphasize that passing to the Will’s functional before applying the coupling is essential. Indeed,
the key fact that we use about the Will’s functional is thatWm(F) ≤Wm+1(F) for allm, which allows us to replace
Xt (which has a complicated dependence on ξ1, . . . , ξt−1) with the independent Zt,j . This monotonicity property
does not hold for the right hand side of (10) and so we cannot directly apply the coupling to it.
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Lemma 13 says that if the data are smooth and the labels are well-specified, then the expected performance
of the ERM f̂t on the historical data X1, . . . , XT is controlled by the Will’s functional, which is, in turn, well-
behaved when F is a simple class. Combining Lemma 13 with the preceding argument then concludes the proof of
Theorem 8.

4.2. Proof Sketch of Theorem 10

While we defer a detailed proof to Appendix D, we provide a brief sketch here. The proof proceeds by adapting
the tree of probabilities construction from Rakhlin et al. (2011) in order to apply symmetrization, and then using a
variation of the coupling result, Lemma 6 along with Jensen’s inequality to pass to the Will’s functional on iid data.
In more detail, we first observe, as in the proof of Liang et al. (2015, Lemma 18), that

E

[
sup
f∈F

T∑
t=1

f(X ′
t)
2 − (1 + 2c) · f(Xt)

2

]
= E

[
sup
f∈F

T∑
t=1

(1 + c)(f(X ′
t)
2 − f(Xt)

2)− cf(X ′
t)
2 − cf(Xt)

2

]
.

(11)

and note that the first term in the right hand side is anti-symmetric in (Xt, X
′
t) while the second term is symmetric.

We then introduce the tree of probabilities construction from Rakhlin et al. (2011) and construct a measure ρ on a
X -valued complete binary trees x such that the right hand side of (11) is upper bounded by

2(1 + c) · Ex∼ρ

[
sup
f∈F

T∑
t=1

ξtf
2(xt(ξ))−

c

1 + c
f4(xt(ξ))

]
, (12)

where xt(ε) ∼ pt is σ-smooth. We then apply a variant (Lemma 25) of the coupling result Lemma 6 above to
introduce an event E with high probability at least 1 − Te−σk such that xt(ε) ∈ {Zt,j |j ∈ [k]} for all t. As in
Remark 14, we cannot directly apply the coupling as (12) is not necessarily monotone in T . Instead, we apply a
similar technique as was done in the proof of Lemma 13 and upper bound (12) by

2(1 + c)

(
1

λ
logE

[
exp

(
I[E ]λ · sup

f∈F

T∑
t=1

ξtf
2(xt(ξ))−

c

1 + c
f4(xt(ξ))

)]
+ T 2e−σk

)
.

Now we may apply the same monotonicity result, Lemma 28 as in that previous proof to pass to independent data
and observe that the resulting expression is just the Will’s functional applied to the function class F2. The proof
concludes by noting that if F is uniformly bounded, then f 7→ f2 is uniformly Lipschitz and the Will’s functional
satisfies contraction with respect to Lipschitz functions (Mourtada, 2023, Theorem 4.1).

Remark 15 Note that the term subtracted from (12) contains f4 instead of f2; the fact that this is an upper bound
on the same expression with f2 being subtracted is immediate from the boundedness of F , but the quartic power
is key here in order to pass to the Will’s functional. The analogous result for iid data, Liang et al. (2015, Lemma
18) does not require this technique because one can apply a contraction argument that is not available in the more
general, smoothed data regime.

5. Lower Bound for ERM

As we have seen above, for parametric classes ERM is able to achieve Õ
(
σ−1

√
dT
)

error whenever the data
are smooth and well-specified. While this results in an asymptotically no-regret guarantee, the rate is far from
the O(d · log(T )) error that is known to be achievable when σ = 1 and the data are independent and identically
distributed (Wainwright, 2019). In this section we demonstrate the surprising fact that ERM is unable to obtain these
so-called ‘fast rates’ when the data are merely smooth as opposed to iid. We emphasize that we do not rule out
the possibility of oracle-efficient algorithms achieving these fast rates, but simply demonstrate that the most natural
algorithm for learning with smoothed data is not competitive, even in the realizable setting. This is the content of
the following result.
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Theorem 16 For any d ∈ N there exists a function class F with vc(F) = d such that for any 0 < σ < 1 and any
horizon T , there is a σ-smooth adversary realizable with respect to F such that if Ŷt = f̂t(Xt) is always chosen
such that f̂t is an ERM in (4), then

E [ErrT ] ≥
1

2
·

√
d · T · 1− σ1/d

σ1/d
.

Note that in the special case of σ = 1, when the data are iid, Theorem 16 is vacuous, as expected. On the other
hand, for σ ≪ 1, we see that ERM can never hope to do better than Ω(

√
dT ), which is significantly worse than the

logarithmic-in-T guarantees from statistical learning. The proof of Theorem 16 is deferred to Appendix E, but we
sketch the construction in the d = 1 case here.
Proof [Proof sketch] We consider X = [0, 1] the unit interval and F the class of thresholds, with an adversary that
samples Xt ∼ pt, where pt = Unif([jε, jε + σ]), j is the number of mistakes made up to time t − 1, and ε > 0 is
a tuning parameter; we let the Yt = 0 for all t, making the data realizable with respect to F . The key observation is
that we may choose the ERM to predict 1 as frequently as posible conditioned on fitting all of the data thus far. Thus,
whenever Mt = maxs≤tXs increases, this choice of ERM will always predict incorrectly. In this way the adversary
can only force (1− σ)/ε mistakes until the unit interval is fully covered, and each mistake happens with probablity
ε/σ at each time step t. In expectation, then, the number of mistakes made is at least min(ε/σT, (1 − σ)/ε).
Balancing ε yields the desired result for d = 1; the d > 1 case is then just a tensorized version of this construciton.

Combining Theorem 16 with Theorem 8 we see our analysis of ERM is tight in its dependence on complexity
and horizon, i.e., ERM achieves Θ̃(

√
vc(F) · T ) error whenever the data are smooth for σ < 1. We leave the

interesting question of whether other oracle-efficient algorithms can achieve improved error in this setting as an
interesting direction for future research.

6. Related Work

In this section, we briefly survey some related work and place our results in the context of recent literature on oracle
efficiency in smoothed online learning and norm comparison bounds for population and empirical norms.

Smoothed Online Learning. Given the statistical and computational intractibility of learning with adversarial
data, many recent works have investigated the difficulty of online learning with beyond-worst-case assumptions.
In particular, Rakhlin et al. (2011) presented a general framework for online learning against adversaries that are
somehow constrained in each round and characterized the minimax regret through a quantity called the distribution-
dependent sequential Rademacher complexity. Following this work, Haghtalab et al. (2022b) considered the smooth
setting and demonstrated that minimax regret of classification can be greatly improved when the data are smooth
with respect to a known base measure; these results were later extended to regression in Block et al. (2022) and
to more general notions of smoothness in Block and Polyanskiy (2023). More recently, smoothed online learning
has been applied to a variety of settings including sequential probability assignment (Bhatt et al., 2023), learning in
auctions (Durvasula et al., 2023; Cesa-Bianchi et al., 2023), and robotics (Block et al., 2023a,b). The case where
the base measure is unknown has seen relatively less attention, with Block et al. (2022) observing that guarantees
for smoothed online learning with an unknown base measure are necessarily worse than those where µ is known
and Wu et al. (2023) providing statistical bounds in a particular special case. We emphasize that in all of the above
works, the focus has been on general Lipschitz losses, with the squared loss being treated as a special case. While
this suffices for qualitative results with bounded function classes, it is well-known that the additional curvature of
the square loss admits faster statistical rates with both iid (Birgé and Massart, 1993; Bousquet, 2002; Liang et al.,
2015) and adversarial data (Rakhlin and Sridharan, 2014). Our work demonstrates that, unlike the case of iid data,
ERM itself is unable to achieve these faster rates in the smoothed setting.

Beyond the setting of full-information online learning, Xie et al. (2022) analyzed the role of smoothness (termed
coverability) in online reinforcement learning. In that work, the authors proved a decoupling result similar to and
motivating our Lemma 12, which forms the starting point of our analysis. While Xie et al. (2022) go on to apply

10
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this decoupling result to prove guarantees for a computationally inefficient algorithm in RL, we instead focus on its
implications to efficient algorithms for online learning.

Oracle Efficiency in Online Learning. A major problem in the study of computational efficiency in online learn-
ing is the provable hardness of many optimization tasks, which are strictly easier than online learning. Motivated by
efficient algorithms in combinatorial optimization and the empirical success of optimization heuristics in function
classes of interest (Goodfellow et al., 2016), many works have assumed access to an optimization oracle that is
efficiently able to minimize an empirical loss function on data over a function class (Kalai and Vempala, 2005), with
Hazan and Koren (2016) demonstrating the limits thereof. In the context of smoothed online learning, several works
have circumvented the computational lower bounds of Hazan and Koren (2016) with oracle-efficient algorithms ap-
plying in variations on the smoothed setting (Block et al., 2022; Haghtalab et al., 2022a; Block and Simchowitz,
2022; Block et al., 2023a; Block and Polyanskiy, 2023; Block et al., 2023b). To our knowledge, our work is the first
to analyze an oracle-efficient algorithm (in fact, ERM itself) for the smoothed online setting when the base measure
is unknown.

Population and Empirical Norm Comparisons. It has long been important in nonparametric statistics and learn-
ing theory to understand comparisons between empirical and population norms that hold uniformly over function
classes (Bousquet, 2002). Of particular note is the ‘small-ball method’ of Koltchinskii and Mendelson (2015);
Mendelson (2015, 2021), that introduces an approach to such comparisons relying on anti-concentration that holds
for independent data in great generality. In the case of sequential data, much less is known, with most all work
focusing on norm comparison results holding for linear function classes (Abbasi-Yadkori et al., 2011; Simchowitz
et al., 2018; Ziemann and Tu, 2022; Tu et al., 2022). In this work, we provide the first sharp norm comparison result
for general, nonlinear function classes that holds whenever the data are smooth and a certain small-ball condition
is satisfied. Most relevant to our work is the approach of Liang et al. (2015), which introduces offset Rademacher
complexity as a tighter form of control for sharp norm comparison. While we take inspiration from this approach, a
direct application of these techniques does not work due to the lack of monotonicity of this measure and our resulting
inability to apply the coupling. Instead, we control the relaxed complexity notion fo the Will’s functional, which
was extensively explored in Mourtada (2023).
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Appendix A. Background on the Will’s Functional

The Will’s functional is a fundamental quantity originally associated to convex bodies in Rm (Wills, 1973; Hadwiger,
1975). More recently, Mourtada (2023) extended the definition of the Will’s functional to arbitrary subsets of
A ⊂ Rm by taking advantage of a Gaussian representation due to Vitale (1996). In that paper, Mourtada (2023)
proves a number of fundamental results about this complexity measure, including contraction and sharp connections
with other standard notions. In this section, we provide a brief overview of the Will’s functional’s connections
to other notions of complexity in learning theory; we defer to the excellent Mourtada (2023) for a more detailed
treatment. We recall from Definition 3 that

Wm(F) = Eξ

[
exp

(
sup
f∈F

m∑
i=1

ξif(Zi)−
1

2
· f2(Zi)

)]
,

where ξi are independent standard Gaussians. One fundamental property is the invariance under translation:
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Proposition 17 (Proposition 3.1.5 in Mourtada (2023)) Let F be a function class ι : Rm → Rm be an affine
isometry in that ι is affine and preserves the Euclidean norm. Then,

Wm(ι(F)) =Wm(F).

A particular case of the above is when ι is a translation, in which case Proposition 17 implies translation invariance.
Another fundamental property is the contraction of the Will’s functional under composition with Lipschitz functions:

Proposition 18 (Theorem 4.1 from Mourtada (2023)) If ι : R → R is a contraction, in that ι is 1-Lipschitz, then
Wm(ι ◦ F) ≤Wm(F).

In particular Proposition 18 implies monotonicity of the Will’s functional, which is a key difference from the related
notion of offset Rademacher complexity introduced by Liang et al. (2015). While in our proofs, we require a slightly
stronger version of this monotonicity (Lemma 28), this property of the Will’s functional is what motivates its utility
in applying the coupling.

We now recall several results relating the Will’s functional to other standard notions of complexity. The first
demonstrates that Wm(F) is not much larger than the Rademacher complexity:

Proposition 19 (Proposition 3.2 from Mourtada (2023)) For any class F , m ∈ N, and dataset Z1, . . . , Zm, re-
calling Rm(F) from Definition 4, it holds that

logWm(F) ≲
√
log(m) ·Rm(F).

Proof By Mourtada (2023, Proposition 3.2), it holds that

logWm(F) ≤ Eξ

[
sup
f∈F

m∑
i=1

ξif(Zi)

]
,

where the uppper bound is the Gaussian complexity. It is well known that the Gaussian complexity is upper bounded
by the Rademacher complexity up to a factor logarithmic inm (Van Handel, 2014; Wainwright, 2019), and the result
follows immediately.

While Rm(F) presents an upper bound for the Will’s functional, it is not in general tight. Instead, a lower bound
can be found in the offset Rademacher complexity.

Proposition 20 Recall from Liang et al. (2015) that for a function class F and data Z1, . . . , Zm, the offset
Rademacher complexity is defined as

Roff
m (F) = Eε

[
sup
f∈F

m∑
i=1

εif(Zi)− cf2(Zi)

]
,

where εi are independent Rademacher random variables and c > 0. Then it holds for any m that Roff
m (F) ≲

(2c)−1 · logWm(2cF).

Proof Letting ξi denote independent standard gaussians, we compute by Jensen’s inequality for any λ > 0,

Roff
m (F) = Eε

[
sup
f∈F

m∑
i=1

εif(Zi)− cf2(Zi)

]

= Eε

[
sup
f∈F

m∑
i=1

εi ·
E[|ξi|]
E[|ξi|]

f(Zi)− cf2(Zi)

]

≤
√
π

2
· Eξ

[
sup
f∈F

m∑
i=1

ξif(Zi)− cf2(Zi)

]

≤
√
π

2
· 1
λ
· logEξ

[
exp

(
sup
f∈F

m∑
i=1

λξif(Zi)− λcf2(Zi)

)]
.
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Setting λ = 2c, we see that

Roff
m (F) ≤

√
π

2
· 1

2c
logWm (2c · F) .

The result follows immediately.

Combining Propositions 19 and 20 yields the fact that sublinearity in m of the Will’s functional characterizes learn-
ability of a class F with polynomially many samples.

Finally, we recall the relationship between the Will’s funcitonal and the covering number, which we now define.

Definition 21 Let F : X → [−1, 1] be a function class and let ∥·∥ denote a norm on F . For any scale δ > 0, we
say that a set f1, . . . , fm of functions is a δ-cover of F with respect to ∥·∥ if for all f ∈ F , there exists i ∈ [m] such
that ∥f − fi∥ ≤ δ. We define the covering number of F with respect to ∥·∥ to be the minimal size of a δ-cover of F
with respect to ∥·∥ and denote it by N (F , δ, ∥·∥).

The covering numbers of many standard function classes are known and this complexity notion and its relationship
to Rademacher complexity is well-understood in the context of statistical learning theory (Van Handel, 2014; Wain-
wright, 2019). In particular, if vc(F) ≤ d, then logN (F , δ) ≲ d log

(
1
δ

)
as δ ↓ 0 (Dudley, 1978; Mendelson and

Vershynin, 2003). The following fundamental result relates this notion to the Will’s functional:

Proposition 22 (Theorem 4.2 from Mourtada (2023)) Let F be a covering number and define for r > 0,

Rm(F , r) = sup
f0∈F

Rm (F ∩Br(f0)) ,

where Br(f0) is the ball of radius r around f0. Then it holds that

inf
r>0

{Rm(F , r) + logN (F , r)} ≲ logWm(F) ≲
√
log(m) · inf

r>0
{Rm(F , r) + logN (F , r)} .

It follows immediately that if F is finite, then logWm(F) ≲ log(|F|) and if F is a VC class, then logWm(F) ≲
d · log(m).

Appendix B. Proof of Lemma 11

In this section, we prove Lemma 11. The proof proceeds by modifying the sequence (at) to a new sequence (bt)
such that |BT (b,K)| ≥ |BT (a,K)| and the new sequence (bt) posesses a particularly easy to analyze structure.

We first note that it suffices to consider small K.

Lemma 23 Let (at) be a sequence as in Lemma 11. If K > T
δ , then BT (a,K) = ∅.

Proof Suppose that BT (a,K) ̸= ∅ and let t1 be the minimal element of BT (a,K), whose existence is implied by
the nonempty assumption. Note that

1 ≥ at1 ≥ Kδ

t1
≥ Kδ

T
,

where the first inequality follows by construction and the second follows by the fact that at ≥ 0 and the definition
of BT (a,K). Rearranging concludes the proof.

We are now ready to prove the lemma.
Proof [Proof of Lemma 11] Fix ε > 0 and observe that because |BT (a,K)| is decreasing as K increases, it suffices
to prove the claim for K = 2 log(T/δ)

ε . To do this, let (at) be a fixed sequence as in the statement of the lemma
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and fix K ≤ T . Let BT (a,K) = {t1, . . . , ti}, i.e., t1, . . . , ti are the set of ‘surprises’ where at is much larger than
expected. We define a new sequence (bt) such that b0 = δ, bt1 = at1 , and for t > 0,

bt =

{
0 t ̸∈ BT (a,K)
K
t ·
∑

s<t bs t ∈ BT (a,K) \ {t1}
.

We prove in Lemma 24 below that that 0 ≤ bt ≤ at ≤ 1 for all t ∈ [T ] and that |BT (b,K)| ≥ |BT (a,K)|. Thus it
suffices to prove the main claim for (bt) instead of (at).

To prove the claim for (bt), we compute:

btj =
K

tj
·
∑
s<tj

bs

=
K

tj
·

∑
s∈Btj (b,K)

bs

=
K

tj
·

 ∑
s∈Btj−1 (a,K)

bs + btj−1


=
K

tj
·
(
tj−1

K
· btj−1 + btj−1

)
=
K + tj−1

tj
· btj−1 .

Thus it holds that

1 ≥ ati ≥ bti = δ · K
ti

·
i−1∏
j=1

(
1 +

K

tj−1

)
.

Taking logarithms of both sides and rearranging, we see that

log

(
ti
Kδ

)
≥

i−1∑
j=1

log

(
1 +

K

tj−1

)
≥

T∑
s=T−i

log

(
1 +

K

s

)
≥ i · log

(
1 +

K

T

)
,

where the second inequality follows by the fact that the tj are distinct and all at most T . Now we note that as K ≥ 1
and ti ≤ T , it holds that

i · log
(
1 +

K

T

)
≤ log

(
ti
Kδ

)
≤ log

(
T

δ

)
. (13)

We now divide the proof into two cases. First, suppose that ε ≥ 2 log(T/δ)
T anad so K ≤ T . Observing that

log

(
1 +

K

T

)
≥

K
T

1 + K
T

,

we see that by (13),

i ≤ log

(
T

δ

)
·
1 + K

T
K
T

=
T · log(T/δ)

K

(
1 +

K

T

)
.

Plugging in K = 2 log(T )
ε and noting that K ≤ T implies 1 + K

T ≤ 2 shows that in this case i ≤ εT . Moreover, we
see that in this case

εT ≥ 2 log

(
T

δ

)
,
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and so the statement holds.
For the second case, suppose that ε < 2 log(T/δ)

T . Then we observe that K > T and so plugging this into (13)
shows that

i log (2) ≤ i log

(
1 +

K

T

)
≤ log

(
T

δ

)
.

Thus, i ≤ 2 log(T/δ) in this case. For such ε we see that

εT ≤ 2 log(T/δ)

and so the result holds.

We now prove the previously deferred result above.

Lemma 24 Let (at) be a sequence as in Lemma 11, K > 0 fixed, and

BT (a,K) = {t1, . . . , ti} ⊂ [T ].

Let b0 = a0 = δ, bt1 = at1 , and, for t > 0, let

bt =

{
0 t ̸∈ BT (a,K)
K
t ·
∑

s<t bs t ∈ BT (a,K) \ {t1}
.

Then |BT (b,K)| ≥ |BT (b,K)|. Furthermore, for all t ∈ [T ], it holds that bt ≤ at ≤ 1.

Proof To see the first point, observe that by construction, BT (b,K) ⊇ BT (a,K) and so this claim follows imme-
diately. To see the second point, we first note that for t ̸∈ BT (a,K), we have bt = 0 ≤ at. For t ∈ BT (a,K), we
induct on j ∈ [i]. Indeed it is clear that bt1 = at1 and so the claim holds. Suppose that btk ≤ atk for k < j ∈ [i].
Then we observe that

btj =
K

tj
·
∑
s<tj

bs =
K

tj
·
∑
k<j

btk ≤ K

tj
·
∑
k<j

atk ≤ K

tj
·
∑
s<tj

as ≤ atj ,

where the first two equalities follow by construction, the first inequality follows by the inductive hypothesis, the
second inequality follows by the fact that at ≥ 0 and the final inequality follows by the fact that tj ∈ BT (a,K).
Thus bt ≤ at ≤ 1 for all t ∈ [T ].

Appendix C. Proof of Theorem 8

In this appendix we provide the complete proof of Theorem 8. As described in Section 3 the proof is split into three
parts. In this appendix, we begin by proving the decoupling inequality in Lemma 12 and then proceed to prove
Lemma 13 before finally concluding the proof of the main result. Although we use Theorem 10 in the conclusion of
the proof of Theorem 8, we defer its proof to Appendix D.

C.1. Proof of Lemma 12

Let the gt be as in the statement of the lemma, pt denote the law of Xt conditioned on the σ-algebra generated by
(Ht−1, gt), and p̃t = 1

t ·
∑t−1

s=1
dps
dµ . We compute

E

[
T∑
t=1

gt(Xt)

]
= E

[
T∑
t=1

E [gt(Xt)|gt,Ht−1]

]

= E

[
T∑
t=1

E
[
dpt
dµ

(Z)gt(Z)|gt,Ht−1

]]

= EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)

]
,
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where the Z are independent of the X1, . . . , XT and the gt are measurable with respect to Ht−1. Let a0(Z) =
δ for some δ > 0, let at(Z) = σ · dptdµ (Z) be a random sequence for t > 0, and observe that by Lemma 11,
|BT (a(Z),K)| ≤ εT deterministically whenever K ≥ 2 log(T/δ)/ε. Thus, we see for some fixed K large enough,

EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)

]
= EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)I [t ∈ BT (a(Z),K)]

]

+ EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)I [t ̸∈ BT (a(Z),K)]

]

≤ 1

σ
EZ

[
T∑
t=1

I [t ∈ BT (a(Z),K)]

]
+ EZEgt

[
T∑
t=1

Kp̃t(Z)gt(Z) +
Kδ

σt

]

≤ max (εT, 2 log(T/δ))

σ
+
Kδ log(T )

σ
+K · Egt

[
T∑
t=1

1

t
·
t−1∑
s=1

gt(X
′
s)

]
. (14)

Setting δ = σ and K = 2 log(T/σ)/ε, and

ε = log

(
T

σ

)
·

√√√√σ

T
· Egt

[
T∑
t=1

1

t
·
t−1∑
s=1

gt(X ′
s)

]

then concludes the proof.

We remark that as mentioned earlier, in the case that σ = 1, the at(Z) = 1 uniformly over Z and thus
BT (a(Z),K) = ∅ for all K > 1. In particular, this allows us to take K a constant and ε ↓ 0 in (14) and re-
cover the expected E

[∑T
t=1 gt(Xt)

]
≲ E

[∑T
t=1 gt(X

′
t)
]

whenever the Xt are iid

C.2. Proof of Lemma 13

For the sake of simplicity, we drop the subscript from the notation for the ERM in this proof. We begin by observing
that because f⋆ ∈ F , it holds by construction that

0 ≤ ∥f⋆ − Y ∥2T−1 −
∥∥∥f̂ − Y

∥∥∥2
T−1

.

Expanding the squares and rearranging then tells us that

0 ≤ 2 ·
〈
Y − f⋆, f̂ − f⋆

〉
T−1

−
∥∥∥f̂ − f⋆

∥∥∥2
T−1

,

where ⟨·, ·⟩T−1 denotes the L2 inner product with respect to the empirical measure on X1, . . . , XT−1. Rearranging
and observing that Y − f⋆ = η then tells us that

1

2
·
∥∥∥f̂ − f⋆

∥∥∥2
T−1

≤ 2 ·
〈
η, f̂ − f⋆

〉
T−1

− 1

2
·
∥∥∥f̂ − f⋆

∥∥∥2
T−1

and so ∥∥∥f̂ − f⋆
∥∥∥2
T−1

≤ 4 ·
〈
η, f̂ − f⋆

〉
T−1

−
∥∥∥f̂ − f⋆

∥∥∥2
T−1
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Letting G = F − f⋆, we see that

E
[∥∥∥f̂ − f⋆

∥∥∥2
T−1

]
≤ E

[
sup
g∈G

4 · ⟨η, g⟩T−1 − ∥g∥2T−1

]

≤ E

[
sup
g∈G

4 ·
〈
η − η′, g

〉
T−1

− ∥g∥2T−1

]

= E

[
sup
g∈G

4 ·
〈
ε ·
∣∣η − η′

∣∣ , g〉
T−1

− ∥g∥2T−1

]

≤ E

[
sup
g∈G

8 · ⟨ε · |η| , g⟩T−1 − ∥g∥2T−1

]

where ε is a vector of independent standard Rademacher random variables, and the second inequality follows from
Jensens’ and the fact that the η are conditionally mean zero. The final inequality above follows by the triangle

inequality. Now, by Lemma 27, we see that with probability at least 1 − δ, it holds that |ηt| ≤ 2ν ·
√

log
(
T
δ

)
.

Observing that convex functions are extremized on the boundaries of convex sets, we see that

E

[
sup
g∈G

8 · ⟨ε · |η| , g⟩T−1 − ∥g∥2T−1

]
≤ 2ν ·

√
log

(
T

δ

)
· E

[
sup
g∈G

8 · ⟨ε, g⟩T−1 − ∥g∥2T−1

]
+ 8Tδ.

We now continue by controlling the expectation above. Letting ξ denote a vector of independent standard normal
random variables, we see that

E

[
sup
g∈G

8 · ⟨ε, g⟩T−1 − ∥g∥2T−1

]
≤ E

[
sup
g∈G

8 · ⟨ξ, g⟩T−1 − ∥g∥2T−1

]
,

again by Jensens’ inequality and the fact that the sign and magnitude of a standard Gaussian are independent. Now,
let E denote the high probability event from Lemma 6 and observe that

E

[
sup
g∈G

8 · ⟨ξ, g⟩T−1 − ∥g∥2T−1

]
= E

[
I[E ] · sup

g∈G
8 · ⟨ξ, g⟩T−1 − ∥g∥2T−1

]
+ E

[
I[Ec] · sup

g∈G
8 · ⟨ξ, g⟩T−1 − ∥g∥2T−1

]

≤ E

[
I[E ] · sup

g∈G
8 · ⟨ξ, g⟩T−1 − ∥g∥2T−1

]
+ 16T · e−σk,

where the inequality follows from the bound on P(Ec) from Lemma 6 along with the independence of ξ from E and
the fact that F is uniformly bounded. By Jensen’s inequality, it holds for any λ > 0 that

(T − 1)·E

[
I[E ] · sup

g∈G
8 · ⟨ξ, g⟩T−1 − ∥g∥2t−1

]

≤ 1

λ
· logE

[
I[E ] · exp

(
λ · sup

g∈G
8(T − 1) · ⟨ξ, ·g⟩T−1 − (T − 1) · ∥g∥2T−1

)]
.

21



BLOCK RAKHLIN SHETTY

Observing that λ ≥ 1
32 , we see that by Lemma 28, it holds that

1

λ
· logE

[
I[E ] · exp

(
λ · sup

g∈G
8(T − 1) · ⟨ξ, ·g⟩T−1 − (T − 1) · ∥g∥2T−1

)]

≤ 1

λ
· logE

I[E ] · exp
λ · sup

g∈G
8 ·

T−1∑
s=1

k∑
j=1

ξs,j · g(Zs,j)− g(Zs,j)
2


≤ 1

λ
· logE

· exp
λ · sup

g∈G
8 ·

T−1∑
s=1

k∑
j=1

ξs,j · g(Zs,j)− g(Zs,j)
2

 .
Setting λ = 1

32 , now, and dividing by T − 1, we see that

E

[
I[E ] · sup

g∈G
8 · ⟨ε, g⟩T−1 − ∥g∥2T−1

]
≤ 32

T − 1
· logEZs,j

[
Wk(T−1) (256 · G)

]
.

The result follows immediately.

C.3. Concluding the Proof

Applying Lemma 12 with gt = (f̂t − f⋆)2, we see that

E

[
T∑
t=1

(ft(Xt)− f⋆(Xt))
2

]
≤ 2

log(T/σ)

σ
+ log

(
T

σ

)
·

√√√√2T

σ
· E

[
T∑
t=1

1

t
·
t−1∑
s=1

(
f̂t(X ′

s)− f⋆(X ′
s)
)2]

= 2
log(T/σ)

σ
+ log

(
T

σ

)
·

√√√√2T

σ
·
T∑
t=1

1

t
· E

[
·
t−1∑
s=1

(
f̂t(X ′

s)− f⋆(X ′
s)
)2]

. (15)

We now compute for each t ∈ [T ],

1

t
· E

[
t−1∑
s=1

(
f̂t(X

′
s)− f⋆(X ′

s)
)2]

≤ 2 · E

[
t−1∑
s=1

(
f̂t(Xs)− f⋆(Xs)

)2]

+
1

t
· E

[
sup
f∈F

t−1∑
s=1

(
f(X ′

s)− f⋆(X ′
s)
)2 − 2 ·

t−1∑
s=1

(f(Xs)− f⋆(Xs))
2

]

≤ 2 · E
[∥∥∥f̂t − f⋆

∥∥∥2
t−1

]
+

1

t
·
√
π

2
· 9
2
· logEµ

[
W2(t−1) log(t−1)/σ (4 · (F − f⋆))

]
+

6

t

≤ 2 · E
[∥∥∥f̂t − f⋆

∥∥∥2
t−1

]
+

9

t
· logEµ

[
W2T log(T )/σ(4 · F)

]
+

6

t
,

where the first inequality follows because f̂t ∈ F , the second inequality is Theorem 10, and the final inequality
follows because Wm(F) is monotone in m and invariant under translation. By Lemma 13, we have that

E
[∥∥∥f̂t − f⋆

∥∥∥2
t−1

]
≤ 64

t
· ν ·

√
log(T )

(
logEµ

[
W2T log(T )/σ (256 · F)

]
+

1

t

)
.
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Combining this with the previous display implies that

1

t
· E

[
t−1∑
s=1

(
f̂t(X

′
s)− f⋆(X ′

s)
)2]

≤ 150(1 + ν)

t
·
√
log(T )

(
1 + logEµ

[
W2T log(T )/σ(256 · F)

])
and thus

T∑
t=1

1

t
· E

[
t−1∑
s=1

(
f̂t(X

′
s)− f⋆(X ′

s)
)2]

≤ 150(1 + ν) log3/2(T )
(
1 + logEµ

[
W2T log(T )/σ(256 · F)

])
.

Plugging this into (15) concludes the proof.

Appendix D. Proof of Theorem 10

This appendix is devoted ot the proof of the sharp norm comparison result, Theorem 10. We begin by rearranging
the sum to observe that

E

[
sup
f∈F

T∑
t=1

f(X ′
t)− (1 + 2c) · f(Xt)

2

]
= E

[
sup
f∈F

T∑
t=1

(1 + c)(f(X ′
t)
2 − f(Xt)

2)− cf(X ′
t)
2 − cf(Xt)

2

]
. (16)

We now take inspiration from Rakhlin et al. (2011) and consider the following tree of probabilities construction.
For t ∈ [T ], let pt(·|x1, . . . , xt−1) be the distribution of Xt conditioned on the history that Xs = xs for s < t. For
x, x′ ∈ X and ε ∈ {±1}, define the selector function

χ(x, x′, ε) =

{
x ε = −1

x′ ε = 1
(17)

and write χt(ε) for the t-th selector when xt, x′t are clear from context. We form the following tree of probabil-
ities ρ, where we associate for each path ε ∈ {±1}T , the measure ρt(ε1:t−1) on pairs (Xt, X

′
t) conditional on

(X1:t−1, X
′
1:t−1) such that

ρt(ε1:t−1)((X1, X
′
1), . . . , (Xt−1, X

′
t−1)) = (pt(·|χ1(ε1), . . . , χt−1(εt−1)), pt(·|χ1(ε1), . . . , χt−1(εt−1))). (18)

In words, ρt on a fixed path ε is a conditional measure that samples (Xt, X
′
t) inependently from pt conditioned on an

ε-dependent history. In this way, if we let ρ = (ρ1, . . . , ρT ), we have a measure on two coupled X -valued complete
binary trees of depth T . For more exposition on such trees of probabilities, we refer the reader to Rakhlin et al.
(2011, §3).

Continuing in the proof, we now write for simplicity for all 1 ≤ s ≤ s′ ≤ T ,

Ss:s′(f) =
s′∑
t=s

f(Xt)
2 and S′

s:s′(f) =
s′∑
t=s

f(X ′
t)
2.

Writing out the expectations in the right hand side of (16), we observe that it is equal to

EX1,X′
1∼p1EX2,X′

2∼p2(·|X1) · · ·EXT ,X
′
T∼pT (·|X1:T−1)

[
sup
f∈F

(1 + c)(S′
1:T (f)− S1:T (f))− c(S′

1:T (f) + S1:T (f))

]
.

We now observe that if we switch the role of X1 and X ′
1, then we have by symmetry that the above expectation is

equal to

EX′
1,X1∼p1EX2,X′

2∼p2(·|X′
1)
· · · (19)

· · ·EXT ,X
′
T∼pT (·|X′

1,X2:T )

[
sup
f∈F

(1 + c)(−(f2(X ′
1)− f2(X1)) + S′

2:T (f)− S2:T (f))− c(S′
1:T (f) + S1:T (f))

]
,
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where we emphasize that the subtracted term is symmetric with respect to exchanging Xt for X ′
t as opposed to

antisymmetric. In particular, if we define

χ(x, x′, ε) =

{
x′ ε = −1

x ε = 1
,

the opposite of the χ in (17) and we use a similar abbreviation χt(ε) for the t-th selector, then we may continue in
the same way as (19) and observe that for any ε1:T ∈ {±1}T , that the expectation in the right hand side of (16) is
equal to

EX1,X′
1∼p1EX2,X′

2∼p2(·|χ1(ε1)) · · ·

· · ·EXT ,X
′
T∼pT (·|χ1(ε1),...,χT−1(εT−1))

[
sup
f∈F

T∑
t=1

εt(1 + c)
(
f2(χt(ε))− f2(χt(ε))

)
− c

(
f2(χt(ε)) + f2(χt(ε))

)]
.

Because this equality holds true for all choices of signs ε, we may take an expectation over the distribution that is
uniform on the signs and observe that the preceding display is equal to

EX1,X′
1∼p1Eε1EX2,X′

2∼p2(·|χ1(ε1))Eε2 · · ·

· · ·EXT ,X
′
T∼pT (·|χ1(ε1),...χT−1(εT−1))EεT

[
sup
f∈F

T∑
t=1

εt(1 + c)
(
f2(χt(ε))− f2(χt(ε))

)
− c

(
f2(χt(ε)) + f2(χt(ε))

)]

= E(x,x′)∼ρEε

[
sup
f∈F

T∑
t=1

(1 + c)εt
(
f2(xt(ε))− f2(x′

t(ε))
)
− c

(
f2(xt(ε)) + f2(x′

t(ε))
)]
,

where the ρ is from (18), which forms a measure on coupled X -valued complete binary trees of depth T . Now we
may split the supremum in two and use the symmetry of the Rademacher distribution to conclude that

E(x,x′)∼ρEε

[
sup
f∈F

T∑
t=1

(1 + c)εt
(
f2(xt(ε))− f2(x′

t(ε))
)
− c

(
f2(xt(ε)) + f2(x′

t(ε))
)]

≤ E(x,x′)∼ρEε

[
sup
f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]

+ E(x,x′)∼ρEε

[
sup
f∈F

T∑
t=1

−(1 + c)εtf
2(x′

t(ε))− cf2(x′
t(ε))

]

≤ 2 · E(x,x′)∼ρEε

[
sup
f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]
. (20)

Above, the first inequality follows by Jensens’ and the second follows by symmetry. More precisely, for the second
inequality, we observe that

E

[
sup
f∈F

T∑
t=1

−(1 + c)εtf
2(x′

t(ε))− cf2(x′
t(ε))

]
= E

[
sup
f∈F

T∑
t=1

(1 + c)εtf
2(x′

t(−ε))− cf2(x′
t(−ε))

]

= E

[
sup
f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]
,

with the second equality following because χ(−εt) = χ(εt), the Rademacher distribution is symmetric, and
x′
t(ε),xt(ε) are identically distributed.

We now proceed to bound the right hand side of (20). Noting that xt(ε) is σ-smooth with respect to µ conditioned
on the history for all t ∈ [T ], we may apply Lemma 25 and observe that for fixed k, there is some event E under
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which we may sample Zt,j , Z ′
t,j ∼ µ independent for 1 ≤ j ≤ k and it holds that xt(ε) ∈ {Zt,j |j ∈ [k]} for all

t ∈ [T ] and similarly for Zt,j′ and x′
t(ε); furthermore P (Ec) ≤ 2Te−σk. Thus we observe that under this coupling

Π,

2·E(x,x′)∼ρEε

[
sup
f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]

= 2 · E(x,x′),Zt,j ,ε∼Π

[
I[E ] · sup

f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]

+ 2 · E(x,x′),Zt,j ,ε∼Π

[
I[Ec] · sup

f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]

≤ 2 · E(x,x′),Zt,j ,ε∼Π

[
I[E ] · sup

f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]
+ 4(1 + c)T 2e−σk.

Letting ξt be a standard Gaussian, we may apply Jensen’s inequality to conclude that

E(x,x′),Zt,j ,ε∼Π

[
I[E ] · sup

f∈F

T∑
t=1

(1 + c)εtf
2(xt(ε))− cf2(xt(ε))

]

= E(x,x′),Zt,j ,ε∼Π

[
I[E ] · sup

f∈F

T∑
t=1

(1 + c)εt
E [|ξt|]
E [|ξt|]

f2(xt(ε))− cf2(xt(ε))

]

≤
√
π

2
· E(x,x′),Zt,j ,ξ∼Π′

[
I[E ] · sup

f∈F

T∑
t=1

(1 + c)ξtf
2(xt(ξ))− cf2(xt(ξ))

]
,

where Π′ is the coupling Π, but replacing εt with ξt = εt · |ξ′t| for ξ′t independent standard Gaussians. Above, we we
used the fact that a Gaussian’s norm and sign are independent and we abused notation by letting xt(ξ) = xt(sign(ξ)).
Combining the results thus far and observing that f4(x) ≤ f2(x) for all x ∈ X , we have shown that for any k ∈ N
and c > 0,

E(x,x′),Zt,j ,ξ∼Π′

[
sup
f∈F

T∑
t=1

f(X ′
t)− (1 + 2c) · f(Xt)

2

]

≤
√
2π · (1 + c) · E(x,x′),Zt,j ,ξ∼Π′

[
I[E ] · sup

f∈F

T∑
t=1

ξtf
2(xt(ξ))−

c

1 + c
f4(xt(ξ))

]
+ 4T 2 · e−σk.

To conclude the proof, we apply Jensen’s inequality and observe that for any λ > 0, it holds that

E(x,x′),Zt,j ,ξ∼Π′

[
I[E ] · sup

f∈F

T∑
t=1

ξtf
2(xt(ξ))−

c

1 + c
f4(xt(ξ))

]

≤ 1

λ
· logE(x,x′),Zt,j ,ξ∼Π′

[
exp

(
I[E ] · sup

f∈F

T∑
t=1

ξtλf
2(xt(ξ))−

cλ

1 + c
f4(xt(ξ))

)]
.
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Setting λ = 2c
1+c and applying Lemma 28 then implies that

1

λ
· logE(x,x′),Zt,j ,ξ∼Π′

[
exp

(
I[E ] · sup

f∈F

T∑
t=1

ξtλf
2(xt(ξ))−

cλ

1 + c
f4(xt(ξ))

)]

≤ 1 + c

2c
· logE(x,x′),Zt,j ,ξ∼Π′

exp
sup
f∈F

T∑
t=1

k∑
j=1

ξt,j

(√
2c

1 + c
· f(Zt,j)

)2

− 1

2
·

(√
2c

1 + c
f(Zt,j)

)4


=
1 + c

2c
· logEZt,j∼µEξ

exp
sup
f∈F

T∑
t=1

k∑
j=1

ξt,j

(√
2c

1 + c
· f(Zt,j)

)2

− 1

2
·

(√
2c

1 + c
f(Zt,j)

)4


=
1 + c

2c
· logEZt,j∼µWkT

(
2c

1 + c
· F2

)
,

where WkT is the Will’s functional defined in Definition 3. We now note that because F is uniformly bounded, it
holds that f 7→ f2 is 2-Lipschitz and we may apply Mourtada (2023, Theorem 4.1) to yield that WkT

(
2c
1+c · F

2
)
≤

WkT

(
4c
1+c · F

)
. Putting everything together yields

E

[
sup
f∈F

T∑
t=1

f2(X ′
t)− (1 + 2c) · f2(Xt)

]
≤
√
π

2
· (1 + c)2

c
· logEZt,j∼µWkT

(
2c

1 + c
· F2

)
+ 4(1 + c)T 2e−σk.

Setting k = 2 log(T )/σ concludes the proof.

Finally, we state the form of the coupling result (Lemma 6) that we require in the above proof.

Lemma 25 (Lemma 24 from Block et al. (2022)) Let pt(·|x1:t−1) denote the conditional distribution of Xt given
the history and let ρ be the measure on the pair (x,x′) of X -labelled-complete binary trees defined in (18). If pt is
σ-smooth with respect to µ for all t ∈ [T ], then for all k ∈ N, there exists a coupling Π among ε1:T , (x,x′), and{
Zt,j , Z

′
t,j |t ∈ [T ], j ∈ [k]

}
such that the following properties hold:

1. The ε1:T are independent Rademacher random variables.

2. The Zt,j , Z ′
t,j ∼ µ are independent samples from µ.

3. The (x,x′) ∼ ρ.

4. ε1:T is independent of
{
Zt,j , Zt,j′

}
.

5. There is an event E with probability at least 1 − 2Te−σk such that on E , xt(ε) ∈ {Zt,j |j ∈ [k]} and x′
t(ε) ∈

{Zt,j |j ∈ [k]} for all t ∈ [T ].

Appendix E. Proof of Theorem 16

In this appendix, we prove the lower bound of Theorem 16. Fix d ∈ N and let X = [0, 1]d ⊂ Rd. We let

F =
{
x 7→ min (I[xi ≥ θi]) |θi ∈ [0, 1]d

}
be the class of d-dimensional axis-aligned thresholds. It is classical that vc(F) = 2d (Van Handel, 2014; Mohri
et al., 2018) and thus Rm(F) ≲

√
dm for all m. Let f⋆ = 0 and define the ERM as follows. Given a data set of

(X1, Y1), . . . , (Xt, Yt), let

F(X1:t,Y1:t) =

{
f ∈ F| ∥f(X)− Y ∥t = min

f ′∈F

∥∥f ′(X)− Y
∥∥
t

}
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be the set of minimizers of the empirical risk. Note that this set is always nonempty due to the compactness of F
and the continuity of the norm. For each t, and each coordinate i, we will let θt,i = infθ∈F(X1:t−1,Y1:t−1)

θi denote
the minimal threshold in the i-th coordinate that still minimizes the empirical risk. We let the data be realizable and
thus Yt = 0 for all t ∈ [T ]. We claim that for any ε > 0 there exists an adversary forcing the above defined ERM to
get

E [RegT ] ≥
1

2
·min

(
1− σ1/d

ε
· d, εT

σ1/d

)
.

We construct the adversary as follows. We introduce the sequence of stopping times τi,j for i ∈ [d] and j ∈ N as
follows. Let τ1,0 = 0 and for i, j > 0, let

τi,j = inf

{
t > 0|max

s≤t
Xs,i ≥ 1− σ1/d + (j − 1)ε

}
.

For i > 1, let τi,0 = τi−1,⌊(1−σ1/d)/ε⌋. In words, τi,j is the first time that the i-th coordinate of the data exceeds
1−σ1/d+(j−1)ε and τi,0 is the first time that the (i−1)st coordinate has exceeded 1−ε. For any t, let τ(t) = τit,jt ,
where it = argmaxi∈[d] τi,0 ≤ t and jt = argmaxj∈N τit,j ≤ t.

We now define the distributions of theXt. Let pj be a distribution on [0, 1] such that pj = Unif
([
jε, σ1/d + jε

])
for j ≤ 1−σ1/d

ε . Finally, we let

Pt =

it−1−1⊗
i=1

p0

⊗ pjt−1 ⊗

 d⊗
i=it−1+1

p0

 .

In words, if Xt ∼ Pt, then the coordinates of Xt are independent and distributed uniformly in [0, σ1/d] except for
the it−1-th coordinate, which is distributed uniformly in [jt−1ε, jt−1ε+ σ1/d]. We reiterate that Yt = 0 uniformly.

We observe that Pt is σ-smooth with respect to Unif
(
[0, 1]d

)
; indeed, for any t, it holds that Pt is uniform on a

body of volume σ contained in [0, 1]d. Thus it suffices to show that the expected number of times that f̂t(Xt) = 1
is large. Observe that by construction of the ERM, it holds that f̂t(Xt) = 1 if and only if at least one coordinate of
Xt is strictly larger than the previous largest observed data point in that coordinate, i.e., if there exists some i ∈ [d]
such that Xt,i > maxs<tXs,i. By construction of Pt, then, it holds that

E [RegT ] = E

[
T∑
t=1

max
i∈[d]

I
[
Xt,i > max

s<t
Xs,i

]]
≥ E

[
T∑
t=1

I[τ(t) ̸= τ(t− 1)]

]
.

We now observe that as long as τ(t− 1) < τd,⌊(1−σ1/d)/ε⌋, it holds by construction that

P(τ(t) ̸= τ(t− 1)|τ(t− 1)) =

{
ε

σ1/d it−1 ≤ d or jt−1 <
1−σ1/d

ε

0 otherwise.

Thus by by the tower law of conditional expectation, it holds that

E

[
T∑
t=1

I[τ(t) ̸= τ(t− 1)]

]
=

εT

σ1/d
· P
(
τ(T ) < τd,⌊(1−σ1/d)/ε⌋

)
+ d ·

⌊
1− σ1/d

ε

⌋
· P
(
τ(T ) = τd,⌊(1−σ1/d)/ε⌋

)
≥ 1

2
min

(
1− σ1/d

ε
· d, εT

σ1/d

)
.

Taking a maximum over ε concludes the proof.
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Appendix F. Miscellaneous Lemmata

Lemma 26 Let F : X → [−1, 1] be a function class and Xt a sequence of σ-smoothed data with respect to µ.
Then for any k ∈ N, it holds that

E

[
sup
f∈F

T∑
t=1

f(Xt)− f(X ′
t)

]
≤ 2RkT (F) + 2T 2e−σk.

Proof By Rakhlin et al. (2011, Theorem 3), it holds that

E

[
sup
f∈F

T∑
t=1

f(Xt)− f(X ′
t)

]
≤ 2 · sup

ρ
Eρ

[
sup
f∈F

T∑
t=1

εtf(Xt(ε))

]
,

where Xt(ε) is a path of a X -valued binary tree distributed according to ρ, as defined in Rakhlin et al. (2011). By
Block et al. (2022, Lemma 17), however, it holds that for any k ∈ N,

sup
ρ

Eρ

[
sup
f∈F

T∑
t=1

εtf(Xt(ε))

]
≤ RkT (F) + T 2e−σk.

The result follows immediately.

Lemma 27 (Lemma 5.2 in Van Handel (2014)) Let η1, . . . , ηT denote a collection of possibly dependent random
variables such that all ηt are ν2-subGaussian. Then for any δ > 0, it holds with probability at least 1− δ that

max
t∈[T ]

|ηt| ≤ ν ·

√
2 log

(
2T

δ

)
.

Lemma 28 Suppose that Ψ, ψ : G → R are two functionals and B, λ > 0 are two constants such that λ ≥ 2
B2 . Let

E be an event independent of ξ ∼ N (0, 1). Then it holds that

E

[
I[E ] · exp

(
sup
g∈G

Ψ(g)

)]
≤ E

[
I[E ] · exp

(
sup
g∈G

Ψ(g) +Bλξψ(g)− λψ2(g)

)]

Proof Note that

Eξ
[
eBλξψ(g)−λψ

2(g)|E
]
= e

(
B2λ2

2
−λ

)
ψ2(g) ≥ 1,

where the equality follows from the independence of E and ξ as well as the Gaussianity of the latter and the inequality
follows from the assumption on λ. The result follows immediately.

Appendix G. Stronger Norm Comparison Using the Small Ball Method

We showed in Theorem 10 that whenever a function class F is bounded and the data X1, . . . , XT are smooth, a
sharp norm comparison holds, i.e.,

E

[
sup
f∈F

∥f∥2p̃T − (1 + c) ∥f∥2T

]
≲

comp(F) log
(
T
σ

)
T

, (21)

where p̃T = 1
T

∑T
t=1 pt and pt is the law of Xt. In this appendix, we show that under a certain anti-concentration

condition, a stronger norm comparison holds. In particular, by definition of smoothness, if pt is smooth with respect
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to µ then for all functions f , it holds that ∥f∥2T ≲ ∥f∥2µ. In general, the reverse inequality does not hold, however,
as witnessed by pt having support on some strict subset of X and f being the indicator of the complement. We show
that under a ‘small-ball’ type condition, the reverse inequality does hold and, in fact, the norm ∥·∥2p̃T in (21) can
be replaced by ∥·∥2ν for any smooth measure ν. This result amounts to a smoothed-data analogue of the celebrated
small-ball argument of Koltchinskii and Mendelson (2015); Mendelson (2015). We begin by stating the main result
of this section.

Theorem 29 Suppose that F : X → R is a function class, µ ∈ ∆(X ) and Xt ∼ pt are σ-smooth with respect to µ
for t ∈ [T ]. Suppose further that there are constants 1 > c, c′ > 0 such that

sup
f∈F

µ

(
|f(Z)| <

√
2c

σ
· ∥f∥µ

)
≤ σ(1− c′). (22)

Let N (F , ε) denote the covering number of F with respect to ∥·∥µ and suppose that for some constant C > 0,

T ≥ C
σ · log

∣∣∣N (
F , σ2δ̃2cc′

C

)∣∣∣ · log3 ( C

σδ̃cc′

)
. Then for any measure ν that is σ-smooth with respect to µ, it holds

for all δ̃ > 0 that

E

[
sup
f∈F

∥f∥2ν −
2

cc′
· ∥f∥2T

]
≤ δ̃2 +

∣∣∣∣∣N
(
F , σ2cc′δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
−(c′

√
T )2

72

)
+

2

T
. (23)

As an example, if F is parametric in the sense that N (F , ε) ≲ ε−d for some d (e.g. when vc(F) ≤ d), Theorem 29
implies that the decoupled ‘population’ norm of any data-dependent f̂ can be bounded in expectation by a multiple
of the empirical norm, up to a Õ

(
T−1

)
term, as long as T = Ω̃

(
dσ−1 log

(
1
σ

))
. In contradistinction, applying

Lemma 26 directly only allows control up to an additive Õ
(
T−1/2

)
error, which results in much weaker bounds.

By the above reasoning, Theorem 29 is a major improvement over uniform deviations style bounds, but one might
naturally wonder how limiting (22) is as an assumption. Note that the small-ball condition reflects the interaction
between the measure µ and the function class F , and is motivated by that in Mendelson (2015). Unlike in that earlier
work, however, simple hypercontractivity arguments coupled with the lemma of Paley-Zygmund do not suffice to
ensure (22) due to the fact that the small ball probability must be much smaller (certainly bounded by O(σ)) than
is required in the standard small-ball argument. Two cases where (22) does hold, however, may illuminate the
generality of Theorem 29. First, if F : X → {±1, 0} is a class of differences of binary-valued functions, and
γ = inff∈F µ (f(Z) = 0)5, then as long as σ = Ω(γ), it is immediate that (22) holds with c = σ

4 and c′ = Ω(1).
Second, if X ⊂ Rd, µ has bounded density with respect to the Lebesgue measure and F satisfies the condition
that f(Z) has bounded density with respect to Lebesgue, as is common if f is continuous (Rudin et al., 1976), then
taking c = Θ(σ) and c′ = Ω(1) suffices to ensure (22). We remark that an extension of this example is implied by
the trajectory small-ball condition of Tu et al. (2022), which was used to prove similar norm comparison guarantees
for linear classes. In Tu et al. (2022, Section 4.1) the authors provide many examples of data sequences satisfying
this condition. Thus, Theorem 29 can be seen as a nonlinear generalization of the linear norm comparison results
for sequential data found in earlier work (Simchowitz et al., 2018; Tu et al., 2022).

In both of the above cases, we note that the pre-factor 2/(cc′) in front of the expected empirical norm contains
a polynomial dependence on σ−1 which is otherwise absent from (23); we observe that this dependence is generic.

Indeed, because f is assumed bounded, if c ≫ σ, then, deterministically, |f(Z)| ≲ 1 ≪
√

2c
σ · ∥f∥µ for all

∥f∥µ ≳
√
σ. Thus, in any nontrivial application, the prefactor in (23) should be understood to scale polynomially in

σ−1.
Finally, we remark that Theorem 29 intuitively captures a ‘reverse inequality’ for smoothed data under the

small-ball condition (22). Indeed, smoothness of a measure p implies that for any f , we may bound ∥f∥p ≲ ∥f∥µ,
uniformly over functions f . Because Theorem 29 applies to arbitrary smooth measures, the conclusion yields the

5. If F = G − G, then γ is the minimal probability that any two functions agree and thus γ > 0 amounts to a gap condition on G that
intuitively characterizes the instance-dependent difficulty of identifying a given g ∈ G from data.
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reverse inequality, suggesting that ∥f∥µ ≲ ∥f∥T as long as F is not too complicated. This reverse bound is a
consequence of the fact that (22) is stronger than standard small ball assumptions in that the small ball probability
must tend toward zero with σ as opposed to remaining constant, which suffices in the easier, iid setting (Koltchinskii
and Mendelson, 2015; Mendelson, 2015).

G.1. Proof of Theorem 29

We now prove Theorem 29. The proof begins by applying an argument similar to Mendelson (2015), which applies
to independent data. This argument uses the small ball assumption (22) to reduce the proof to controlling the uniform
deviations of a function class related to F in high probability. We accomplish this high probability control through
a discretization argument and reliance on the smoothness of the data.

Fix f ∈ F and let ν be σ-smooth with respect to µ. Fix δ̃ > 0 and compute pointwise for c, c′ as in (22),

∥f∥2ν ≤ δ̃2 + ∥f∥2ν · I
[
∥f∥2ν ≥ δ̃2

]
≤ δ̃2 + ∥f∥2ν · I

 inf
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
≥ c′

2


+ ∥f∥2ν · I

 inf
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
<
c′

2

 .
For the second term above, we note that

∥f∥2ν · I

 inf
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
≥ c′

2

 ≤ 2

cc′
· ∥f∥2T .

Rearranging and taking expectations, we see that

E

[
sup
f∈F

∥f∥2ν −
2

cc′
· ∥f∥2T

]
≤ δ̃2 + P

 inf
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
<
c′

2

 .

Thus we must bound the final term above. To do this, we compute

inf
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
≥ inf

f∈F
∥f∥ν≥δ̃

T∑
t=1

Pt−1

(
|f(Xt)| ≥ 2

√
c · ∥f∥ν

)
(24)

− sup
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

Pt−1

(
|f(Xt)| ≥ 2

√
c · ∥f∥ν

)
− I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
.

By Lemma 30, and the assumption that (22) applies, it holds that for any t,

inf
f∈F

∥f∥ν≥δ̃

Pt−1

(
|f(Xt)| ≥ 2

√
c · ∥f∥ν

)
≥ c′

and so the first term in (24) is at least c′. Thus we focus on bounding the second term in (24). To do this, define the
function

ϕc(u) =


0 |u| ≤

√
c

u/
√
c− 1

√
c ≤ |u| ≤ 2

√
c

1 |u| ≥ 2
√
c
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and observe that

sup
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

Pt−1

(
|f(Xt)| ≥ 2

√
c · ∥f∥ν

)
− I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]

≤ sup
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

Et−1

[
ϕc

(
f(Xt)

∥f∥ν

)]
− ϕc

(
f(Xt)

∥f∥ν

)
. (25)

In order to bound this last expression with high probability6, we will apply Lemma 31 to the function class

G
δ̃
=

{
ϕc

(
f

∥f∥ν

) ∣∣∣∣f ∈ F and ∥f∥ν ≥ δ̃

}
. (26)

Observing that G
δ̃

is bounded, we may apply Lemma 31 to see that

P

(
sup
g∈G

δ̃

1

T
·
T∑
t=1

Et−1[g(Xt)]− g(Xt) > v

)
≤
∣∣N (G

δ̃
, ε)
∣∣ · exp(−Tv2

18

)
+ Te−σk + δ,

as long as σk ≥ 1 and

v ≥ 6kε+ 6 ·

√
k

T

(
log

(
N (G, ε)

δ

))
.

Taking

δ =
1

T
, k =

3 log(T )

σ
, ε =

c′

24k
, and v =

c′

2
,

we see that whenever

T

log2(T ) · logN
(
G, σc′

72 log(T )

) ≥ 576

σ
,

it holds that

P

(
sup
g∈G

δ̃

1

T
·
T∑
t=1

Et−1[g(Xt)]− g(Xt) >
c′

2

)
≤
∣∣∣∣N (

G
δ̃
,

σc′

72 log(T )

)∣∣∣∣ · exp
(
−(

√
Tc′)2

72

)
+

2

T

By Lemma 32, then, it holds that

P

(
sup
g∈G

δ̃

1

T
·
T∑
t=1

Et−1[g(Xt)]− g(Xt) >
c′

2

)
≤

∣∣∣∣∣N
(
F , σ2cc′δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
−(

√
Tc′)2

72

)
+

2

T
.

Thus,

P

 sup
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

P
(
|f(Xt)| ≥ 2

√
c · ∥f∥ν

)
− I
[
|f(Xt)| ≥

√
c · ∥f∥ν

]
>
c′

2


≤

∣∣∣∣∣N
(
F , σ2cc′δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
−(

√
Tc′)2

72

)
+

2

T
.

6. In Mendelson (2015), the conclusion of the proof is simpler, as concentration and contraction can directly be applied to (25). Unfortu-
nately, neither concentration nor contraction directly apply in the smoothed data setting, requiring alternative techniques.
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Plugging this into (24), we see that

P

 inf
f∈F

∥f∥ν≥δ̃

1

T
·
T∑
t=1

I
[
|f(Xt)| ≤

√
c · ∥f∥ν

]
≤ c′

2

 ≤

∣∣∣∣∣N
(
F , σ2cc′δ̃2

576 log(T )

)∣∣∣∣∣ · exp
(
−(c′

√
T )2

72

)
+

2

T
.

The result follows.

G.2. Auxiliary Lemmata

In this section we prove a number of auxiliary results that are used in the proof of Theorem 29. We begin with a
lemma that ensures that (22) implies a small-ball like condition for all smooth measures.

Lemma 30 Suppose that F : X → [−1, 1] is a function class and µ ∈ ∆(X ). Suppose that (22) holds for c, c′ > 0.
Then it holds for any ν, p ∈ ∆(X ) such that p and ν are σ-smooth with respect to µ that

inf
f∈F

ν
(
|f(Z)| ≥ 2

√
c · ∥f∥p

)
≥ c′.

Proof Note that by definition of the Radon-Nikodym derivative, it holds that ∥f∥p ≤ σ−1/2 · ∥f∥µ. Thus we may
compute that

ν
(
|f(Z)| < 2

√
c · ∥f∥p

)
≤ 1

σ
· µ
(
|f(Z)| < 2

√
c

σ
· ∥f∥µ

)
≤ 1

σ
σ(1− c′) = 1− c′,

where the second inequality follows by the definition of smoothness and the last inequality follows by (22). The
result follows.

We now prove a uniform deviations result akin to Lemma 26 below, except that it holds in high probability instead
of in expectation. For this to work, we modify the notion of complexity to covering number from Rademacher
complexity.

Lemma 31 Let G : X → [−1, 1] be a function class, µ ∈ ∆(X ) a measure, and suppose that X1, . . . , XT are
σ-smooth with respect to µ. Fix k ∈ N and suppose that N (G, ε) denote the covering number of G at scale ε with
respect to ∥·∥ = ∥·∥µ. Suppose that k, σ, ε > 0 such that kσ ≥ 1 and

v > 6kε+ 6 ·

√
k

T

(
log

(
N (G, ε)

δ

))
.

Then it holds that

P

(
sup
g∈G

1

T

T∑
t=1

Et−1[g(Xt)]− g(XT ) > v

)
≤ |N (G, ε)| · exp

(
−Tv

2

18

)
+ Te−σk + δ.

Proof We prove this result by discretizing to the cover and then applying a standard concentration bound to bounded
martingale difference sequences. To do this, let π : G → N (G, ε) denote projection onto the cover. Then by a union
bound, we see that for any v > 0,

P

(
sup
g∈G

1

T
·
T∑
t=1

Et−1[g(Xt)]− g(XT ) > v

)
≤ P

(
max

g∈N (G,ε)

1

T
·
T∑
t=1

Et−1[g(Xt)]− g(XT ) >
v

3

)

+ P

(
sup
g∈G

1

T
·
T∑
t=1

|Et−1[g(Xt)]− Et−1[π(g(Xt))]| >
v

3

)

+ P

(
sup
g∈G

1

T
·
T∑
t=1

|g(Xt)− π(g(Xt))| >
v

3

)
.
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For the first term, note that by Azumas’s inequaltiy (Azuma, 1967), it holds for any fixed g ∈ G that

P

(
T∑
t=1

Et−1 [g(Xt)]− g(Xt) > u

)
≤ exp

(
− u2

2T

)
.

Thus by a union bound, it holds that

P

(
max

g∈N (G,ε)

1

T
·
T∑
t=1

Et−1[g(Xt)]− g(XT ) >
v

3

)
≤ |N (G, ε)| · exp

(
−Tv

2

18

)
.

For the second term, we see that by smoothness, for all t,

|Et−1[g(Xt)]− Et−1[π(g(Xt))]| ≤ σ−1/2 · ∥g − π(g)∥µ ≤ ε√
σ
.

Thus the second term vanishes as long as v ≥ 3ε/
√
σ.

Finally, for the third term, let E denote the event from Lemma 6 and observe that

P

(
sup
g∈G

1

T
·
T∑
T=1

|g(Xt)− π ◦ g(Xt)| >
v

3

)
= P

({
sup
g∈G

1

T
·
T∑
t=1

|g(Xt)− π ◦ g(Xt)| >
v

3

}
∩ E

)

+ P

({
sup
g∈G

1

T
·
T∑
t=1

|g(Xt)− π ◦ g(Xt)| >
v

3

}
∩ Ec

)

≤ P

sup
g∈G

1

T
·
T∑
t=1

k∑
j=1

|g(Zt,j)− π ◦ g(Zt,j)| >
v

3


+ Te−σk

≤ P

sup
g∈G

1

kT
·
T∑
t=1

k∑
j=1

|g(Zt,j)− π ◦ g(Zt,j)| >
v

3k

+ Te−σk.

Noting now that the Zt,j are independent and identically distributed, and applying standard high probability uniform
concentration (e.g., Wainwright (2019, Theorem 4.10)), we have that with probability at least 1− δ,

sup
g∈G

1

kT
·
T∑
t=1

k∑
j=1

|g(Zt,j)− π ◦ g(Zt,j)| ≤ ε+ 2 · RkT (G)
kT

+ 2 ·

√
log
(
1
δ

)
kT

≤ 2ε+ 2 ·

√
log (N (G, ε)) + log

(
1
δ

)
kT

,

where the second inequality follows by standard bounds on Rademacher complexity by covering numbers (e.g.
Van Handel (2014, Corollary 5.25)). Thus, as long as

v > 6kε+ 6 ·

√
k

T

(
log

(
N (G, ε)

δ

))
,

the third term is bounded by δ. The result follows.

Finally, we prove a result akin to contraction, showing that if G
δ̃

is as in (26), then the covering number of G
δ̃

is
upper bounded by the covering number of F .
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Lemma 32 Let F : X → [−1, 1] be a function class with ∥·∥ν and ∥·∥kT as in Definition 21. For δ̃ > 0, let G
δ̃

be
as in (26). Let N (F , ε) denote the covering number of F at scale ε with respect to ∥·∥µ. Then for any 1 ≥ c, δ̃ > 0,
it holds that

N
(
G
δ̃
, ε
)
≤ N

(
F , cσδ̃

2

8
· ε

)
.

Proof We compute for any X ∈ X , and any f, f ′ ∈ F ,∣∣∣∣f(X)

∥f∥ν
− f ′(X)

∥f ′∥ν

∣∣∣∣ ≤ |f(X)− f ′(X)|
∥f∥ν

+
∣∣f ′(X)

∣∣ · ∣∣∣∣ 1

∥f∥ν
− 1

∥f ′∥ν

∣∣∣∣
≤ |f(X)− f ′(X)|

∥f∥ν
+

∥f − f ′∥ν
∥f∥ν · ∥f ′∥ν

,

where the second inequality follows by the boundedness of F and the triangle inequality. If ∥f∥ν ≥ δ̃, then, we
have that ∣∣∣∣f(X)

∥f∥ν
− f ′(X)

∥f ′∥ν

∣∣∣∣ ≤ 1

δ̃
·
∣∣f(X)− f ′(X)

∣∣+ 1

δ̃2
·
∥∥f − f ′

∥∥
ν
.

Noting that ϕc is 1
c -Lipschitz, we see that∥∥∥∥ϕc( f

∥f∥ν

)
− ϕc

(
f ′

∥f ′∥ν

)∥∥∥∥
µ

≤ 1

c
·
(
1

δ̃
·
∥∥f − f ′

∥∥
µ
+

1

δ̃2
·
∥∥f − f ′

∥∥
ν

)
≤ 2

cσδ̃2
·
∥∥f − f ′

∥∥
µ
,

where we used the fact that δ̃ ≤ 1. The result follows immediately.
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