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Abstract
We study the problem of learning a binary classifier on the vertices of a graph. In particular, we
consider classifiers given by monophonic halfspaces, partitions of the vertices that are convex in
a certain abstract sense. Monophonic halfspaces, and related notions such as geodesic halfspaces,
have recently attracted interest, and several connections have been drawn between their properties
(e.g., their VC dimension) and the structure of the underlying graph G. We prove several novel
results for learning monophonic halfspaces in the supervised, online, and active settings. Our main
result is that a monophonic halfspace can be learned with near-optimal passive sample complexity
in time polynomial in n = |V (G)|. This requires us to devise a polynomial-time algorithm for
consistent hypothesis checking, based on several structural insights on monophonic halfspaces and
on a reduction to 2-satisfiability. We prove similar results for the online and active settings. We
also show that the concept class can be enumerated with delay poly(n), and that empirical risk
minimization can be performed in time 2ω(G) poly(n) where ω(G) is the clique number of G.
These results answer open questions from the literature (González et al., 2020), and show a contrast
with geodesic halfspaces, for which some of the said problems are NP-hard (Seiffarth et al., 2023).
Keywords: graph convexity, online learning, active learning, polynomial time

1. Introduction

We study the problem of binary classification of the vertices of a graph. With the advent of social
networks and the use of graph-based techniques in machine learning, this problem has received con-
siderable attention in all the most common learning settings, including supervised learning (Han-
neke, 2006; Pelckmans et al., 2007), active learning (Afshani et al., 2007; Guillory and Bilmes,
2009; Cesa-Bianchi et al., 2010; Dasarathy et al., 2015), and online learning (Herbster et al., 2005;
Cesa-Bianchi et al., 2013; Herbster et al., 2015). Most results obtained so far rely on the homophily
principle, that is, they assume that adjacent vertices tend to belong to the same class. We take a
different perspective on this problem and assume that the ground truth classes are monophonic half-
spaces, a notion related to linear separability and convexity in Euclidean spaces. In this way, we
hope to exploit the intuition and technical machinery behind classes of convex concepts, which are
often at the heart of machine learning models (e.g., think of intervals, halfspaces, or polytopes).

Let us spend a few words to introduce the notion of graph convexity. In Rd, a set C is convex
if for all x, y ∈ C the connecting segment I(x, y) lies in C. One can port this intuition to graphs in
the following way. Given two vertices x and y in a graph G, one defines the interval I(x, y). For
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instance, I(x, y) can be the set of all nodes z ∈ V (G) that lie on some shortest path between x and
y, that is, such that d(x, y) = d(x, z)+d(z, y) where d : V ×V → N is the shortest-path distance in
G. In this way I(x, y) becomes the graph analogue of a segment in Rd. This yields the well-known
notion of geodesic convexity: a set C ⊆ V is geodesically convex if the induced subgraph G[C] is
connected and I(x, y) ⊆ C for all x, y ∈ C, and is a geodesic halfspace if V \ C is geodesically
convex too. Thus, C is the graph analogue of a halfspace in Rd. Interestingly, several bounds that
hold for halfspaces in Rd continue to hold: for example, the VC dimension of geodesic halfspaces
is bounded by their Radon number. One can therefore port several learning-theoretical results to the
realm of graphs.

Starting from decade-old classic results, in recent years there has been a revived interest in
the study of graph halfspaces and their learning properties (Duchet and Meyniel, 1983; Chepoi,
1986, 1994; Farber and Jamison, 1986; Pelayo, 2013; Thiessen and Gärtner, 2021; Bressan et al.,
2021; Chalopin et al., 2022c,a; Seiffarth et al., 2023). Most works, however, give purely existential
bounds on the invariants (the Radon number, the Helly number, the VC dimension, etc.) and study
the connection with properties of the graph (maximum degree, clique number, etc.). Little is known,
instead, about the existence of efficient algorithms for learning a halfspace in the most common su-
pervised learning settings. Note that the existence of efficient algorithms is not obvious: already
for the class of geodesic halfspaces described above, even just deciding if there exists a hypothesis
consistent with a given labeled sample of vertices is NP-hard (Seiffarth et al., 2023). In this work
we study efficient learning algorithms for another variant of abstract graph halfspaces, called mono-
phonic halfspaces, which are defined through what is called minimal convexity or induced-path
convexity (Farber and Jamison, 1986; Duchet, 1988).

Let us introduce some notation. Given two distinct vertices x, y ∈ V , the monophonic interval
I(x, y) between x and y is the set of all vertices that lie on some induced path between x and y.
A set C ⊆ V is monophonically convex (m-convex) if G[C] is connected and I(x, y) ⊆ C for all
x, y ∈ C. A set H ⊆ V is a monophonic halfspace (m-halfspace) if both H and H = V \ H
are m-convex. For instance, if G is a tree, then the connected components left by deleting an
edge are m-halfspaces; if G is a clique, then any subset is a m-halfspace, see Figure 1 for another
example. In real-world networks, communities and clusters often tend to be geodesically convex,
e.g., in gene similarity networks (Zhou et al., 2002), protein-protein interaction networks (Li et al.,
2013), community detection benchmark datasets (Thiessen and Gärtner, 2021), and collaboration
networks (Šubelj et al., 2019). In the latter and many other cases, the set of monophonic and
geodesic convexity actually coincides (Malvestuto et al., 2012).

Monophonic halfspaces are among the most studied graph halfspaces (Bandelt, 1989; Changat
et al., 2005; Dourado et al., 2010), second only to geodesic halfspaces. Nonetheless, only a couple
of facts are known; for instance, a connection between the Radon number of m-convex sets and the
clique number ω(G), or that computing a k-partition of V into m-convex subsets is hard for k ≥ 3
(González et al., 2020). The present work fills this gap by providing several concrete results.

Our Contributions

For a graph G = (V,E), let n = |V | and m = |E|, and let HMP = HMP(G) denote the concept
class consisting of all m-halfspaces of G.

1. In the realizable PAC setting, we give an algorithm that with probability 1 − δ learns a mono-
phonic halfspace with accuracy ε by using O

(
ε−1 (ω(G) log(1/ε) + log(1/δ))

)
labeled samples
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and poly(n) time. The heart of this result is a polynomial-time consistency checker, i.e., an algo-
rithm that in time poly(n) finds a m-halfspace H ∈ HMP consistent with a given labeled subset
of vertices, if one exists. This polytime consistency checker is nontrivial; it requires us to exploit
heavily the structure of monophonic halfspaces, and to devise a polynomial-time reduction to
2-satisfiability by carefully constructing boolean formulas that express constraints on G.

2. In the agnostic PAC setting, we give an algorithm that with probability 1−δ learns a monophonic
halfspace with accuracy ε by using O

(
ε−2 (ω(G) + log(1/δ))

)
samples and |HMP| poly(n) ≤

2ω(G) poly(n) time. To this end we list HMP in time |HMP|poly(n) using the polynomial-time
checker above; then, we prove that |HMP| ≤ 4m 2ω(G)

ω(G) +2 by a careful analysis of a second listing
algorithm tailored to the purpose.

3. In the realizable active setting, we give an algorithm that learns H ∈ HMP(G) in time poly(n)
using O(ω(G) + log diam(G) + h(G)) queries, where diam(G) and h(G) are respectively the
diameter and the “monophonic hull number” of G. We leave open the problem of obtaining a
similar result for agnostic active learning.

4. In the realizable online setting, we give an algorithm that learns H ∈ HMP(G) in time poly(n)
by making O(ω(G) log n) mistakes. We obtain this algorithm by showing a decomposition of
m-halfspaces into a small disjunction of simpler concepts, and applying the Winnow algorithm.
We give a similar result for the agnostic online setting. Additionally we achieve an improved
mistake bound O(ω(G) + log(n/ω(G)) using Halving and a runtime of 2ω(G) poly(n).

5. As a byproduct of the results above, we resolve the open case k = 2 of the partitioning problem
of González et al. (2020), which showed that for k ≥ 3 it is NP-hard to decide whether the vertex
set V of a graph G admits a k-partition V1, . . . , Vk where each Vi is monophonically convex. We
also prove that |HMP| ≤ 2ω(G) poly(n), significantly improving on the only previously known
and trivial bound |HMP| = O(nd), where d = O(ω(G)) is the VC dimension of HMP.

From a technical point of view, we rely on several technical results on the structure of m-halfspaces,
including characterizations of their cutsets and efficient computation of so-called “shadows”. It
should be noted that ours are among the few constructive results on the efficiency of learning ab-
stract halfspaces (or convex concepts) in graphs. Our work belongs to a line of research on graph
hypothesis spaces, their learning properties, and fixed-parameter learnability (Chepoi et al., 2007,
2021; Chalopin et al., 2022b; Le and Wulff-Nilsen, 2024; Brand et al., 2023). Note that our runtime
bounds for agnostic PAC learning and Halving are indeed polynomial for any family of graphs with
bounded ω(G). This is for example the case for triangle-free graphs or planar graphs and a much
weaker condition than more commonly used parameters such as treewidth (Thiessen and Gärtner,
2021) and maximum clique-minor size (Duchet and Meyniel, 1983; Chalopin et al., 2022b; Le and
Wulff-Nilsen, 2024) to achieve polynomial runtime or bounds on the VC dimension.

Organization of the manuscript. Section 2 reviews related work. Sections 4-6 discuss our main
results, their significance, and their technical ingredients. Section 7 presents structural properties of
monophonic halfspaces that are needed by our algorithms. Section 8 presents our polynomial-time
consistency checker, and Section 9 presents our empirical risk minimization (ERM) algorithm. All
missing details and proofs can be found in the appendix.
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2. Further Related Work

The complexity of consistency checking for monophonic halfspaces was unknown. González et al.
(2020) show that deciding whether V can be partitioned into k ≥ 3 nonempty m-convex sets is NP-
hard. They leave open the case k = 2, i.e., deciding if there is a nontrivial m-halfspace of G, or in
other words whether HMP(G) ̸= ∅. Our polynomial-time consistency checker proves that the case
k = 2 is in polynomial time: for every pair {u, v} ∈

(
V
2

)
use the checker to verify whether there is a

halfspace that separates u from v. This result was recently independently achieved by Elaroussi et al.
(2024) and Chepoi (2024). This result should be contrasted with consistency checking in geodesic
halfspaces, which is known to be NP-hard (Seiffarth et al., 2023). As monophonic halfspaces are a
sub-family of geodesic halfspaces, our result can be seen as pushing the boundary of tractability of
halfspace separation problems on graphs, see also Chepoi (2024) and Elaroussi et al. (2024).

Empirical risk minimization can be reduced to listing the concept class HMP(G). Duchet (1988)
observes that, if H is m-convex, then the vertices of H that are adjacent to H form a clique. There-
fore one can list HMP(G) by listing all pairs of cliques of G and checking if the edges between them
form a cut of G, for a running time of n2ω(G) poly(n). A better bound can be achieved if one is given
a polynomial-time consistency checker: in that case, by a folklore algorithm one can list HMP(G)
in time |HMP(G)| poly(n). Our work gives both a polynomial-time consistency checker and a tight
bound on |HMP(G)|; neither one was known before. In particular, bounds on |HMP(G)| given by
standard VC-dimension arguments suffer an exponential dependence on the cutsize c (i.e., the num-
ber of edges) of the halfspace (Kleinberg, 2004). In our case c can be as large as Θ(ω(G)2), which
yields |HMP| ≤ nO(ω(G)2). This is significantly beaten by our novel bound |HMP| ≤ 4m 2ω(G)

ω(G) + 2.
Glantz and Meyerhenke (2017) give polynomial time algorithms for enumerating geodesic halfs-
paces of bipartite and planar graphs, but do not have results for general graphs. By contrast, we can
enumerate all m-halfspaces in optimal time |HMP| poly(n) up to polynomial factors.

For active learning, Thiessen and Gärtner (2021) give lower and upper bounds, but for geodesic
halfspaces. Their algorithm requires computing the geodesic hull number, which is APX-hard and
without constant-approximation algorithms; our algorithm runs in polynomial time. Bressan et al.
(2021) also studied active learning on graphs under a geodesic convexity assumption. They achieved
polynomial time however with additional assumptions on the convex sets, such as margin. For
online learning, Thiessen and Gärtner (2022) give again results for geodesic halfspaces. Their
algorithms, however, are computationally inefficient and/or loose in terms of mistakes. We instead
rewrite monophonic halfspaces as a union of a small number of m-shadows, which enables an
algorithm (Winnow) that is both computationally efficient and near-optimal in terms of mistakes.

3. Preliminaries

Let G = (V,E) be a simple undirected graph and let n = |V | and m = |E|. Without loss of
generality we assume G is connected.1 For any v ∈ V let N(v) = {u ∈ V | {u, v} ∈ E}. The
cutset induced by X ⊆ V is δ(X) = {{u, v} ∈ E |u ∈ X, v /∈ X}. For an edge {u, v} ∈ δ(X) we
may write uv ∈ δ(X) to specify that u ∈ X . The border of X is Γ(X) = {u |uv ∈ δ(X)}, the set
of vertices of X with a neighbour in V \X . We denote by G or ¬G the complement (V,

(
V
2

)
\ E)

of G. We let ω(G) and α(G) be respectively the clique number and the independence number of

1. If G is not connected then it has no m-halfspace, unless it consists of precisely two connected components, which are
then the only two halfspaces.
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G, and ω̃(G) = max{ω(G), 3}. For any X ⊆ V we denote by G[X] the subgraph of G induced by
X . If P is a path in G, any edge in E(G) \ E(P ) is called a chord; a path is induced if and only
if it has no chords. Any shortest path is an induced path. We denote by diamg(G) the diameter of
G, and by diamm(G) the maximum number of edges in any induced path. If a, b ∈ V and X ⊆ V ,
then X is an (a, b)-separator if in G every path between a and b intersects X . An algorithm is FPT
(fixed-parameter tractable) with respect to some parameter k (in our case k = ω(G)) if its runtime
is bounded by f(k) poly(n) for some computable function f .

Figure 1: A toy graph G whose vertex set V is partitioned into a monophonic halfspace H (in blue)
and its complement H̄ (in orange). The diamond-shaped vertices form the borders Γ(H)
and Γ(H̄), see below. Both G[Γ(H)] and G[Γ(H̄)] are cliques, see Lemma 16.

Let V be a set and C ⊆ 2V . The set system (V, C) is a convexity space if (i) ∅, V ∈ C and (ii)
(
⋂

C∈C′ C) ∈ C for every C′ ⊆ C.2 A set C ⊆ V is said to be convex if C ∈ C. Convexity spaces
abstract standard Euclidean convexity (see, e.g., van de Vel (1993)). The convex hull of A ⊆ V is
conv(A) =

⋂
C∈C:A⊆C C ∈ C. The hull number of (V, C) is the size of the smallest A such that

conv(A) = V . A set R ⊆ V is Radon-independent if conv(R′)∩conv(R\R′) = ∅ for all R′ ⊆ R.
The Radon number of (V, C) is the size of its largest Radon-independent set. Many convexity spaces
are defined by intervals. A map I : V × V → 2V is an interval map if (i) u, v ∈ I(u, v) and (ii)
I(u, v) = I(v, u) for all u, v ∈ V . An example is the geodesic interval of a metric space (V, d)
defined by Id(u, v) = {z ∈ V | d(u, z) + d(z, v) = d(u, v)}. Any interval map I defines a
convexity space (V, C) where C ∈ C if and only if I(u, v) ⊆ C for all u, v ∈ C. A graph convexity
space for G = (V,E) is any convexity space (V, C) where G[C] is connected for all C ∈ C (Pelayo,
2013). We denote by r(G) the Radon number and by h(G) the hull number of (V, C).

For any distinct u, v ∈ V the monophonic interval (m-interval) I(u, v) between u and v is the
set of all vertices that lie on some induced path between u and v; while I(u, u) = ∅ for all u ∈ V .
A set X ⊆ V is monophonically convex (m-convex) if I(u, v) ⊆ X for all u, v ∈ X . A set X ⊆ V
is a monophonic halfspace (m-halfspace), if both X and its complement X = V \X are m-convex.
We denote by HMP(G) the set of all m-halfspaces of G. The monophonic shadow (m-shadow) of u
with respect to v is the set u/v = {z ∈ V : u ∈ I(z, v)}. It is known that computing I is NP-hard in
general (Dourado et al., 2010); as I(u, v) = {z ∈ V : u ∈ z/v}, computing m-shadows is NP-hard,
too. Note that if X ⊆ V is m-convex and vu ∈ δ(X) then u/v ⊆ X . The monophonic convex hull
(m-hull) of X ⊆ V , denoted conv(X), is the smallest m-convex set X ′ such that X ⊆ X ′ ⊆ V . It
is known that one can compute conv(X) in time poly(n) for any given X (Dourado et al., 2010).
To discuss some tightness results of our achieved bounds we rely on so-called separation axioms,
which determine the separability of vertices by halfspaces.

Definition 1 (van de Vel (1993)) A convexity space (X, C) is:

2. When V is not finite one needs additional constraints, see van de Vel (1993); clearly this is not our case.
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• S1 if and only if each singleton x ∈ X is convex.
• S2 if and only if each pair of distinct elements x, y ∈ X is halfspace separable.
• S3 if and only if each convex set C ∈ C and elements x ∈ X \ C are halfspace separable.
• S4 if and only if any two disjoint convex sets are halfspace separable.

By slightly abusing notation, we write Si for the family of graphs whose m-convexity space is Si

(for i = 1, . . . , 4). All graphs are in S1, and S2 ⊋ S3 ⊋ S4. The graph families S2, S3, and S4 are
exactly characterized (Jamison-Waldner, 1981; Bandelt, 1989), see also Chepoi (1994, 2024).

4. Supervised Learning

We study the standard PAC (probably approximately correct) setting with a given finite instance
space V and a known hypothesis space H ⊆ 2V . In our case H = HMP(G) is defined implicitly
by the input graph G. A labeled sample is a pair (S, y) where S ⊆ V is a finite (multi)set of
vertices and y : S → {0, 1} is a binary labeling of the sample. We say that it is possible to (ε, δ)-
PAC learn (V,HMP) if we can provide an m-halfspace H = H(S, y) that has error bounded by ε
with probability at least 1 − δ, for any ε, δ ∈ (0, 1), under some unknown joint distribution over
vertices and their labels. The aim of PAC learning is to guarantee this property with the smallest
sample complexity possible. Note that, while standard PAC learning formulations typically measure
the running time as a function of the sample size (see, e.g., Valiant (1984); Shalev-Shwartz and
Ben-David (2014)), we measure running time as a function of n. Note that a dependence on n is
unavoidable: even just to check whether two vertices u, v ∈ V are separated by some H ∈ HMP(G),
one needs to distinguish between G being a path or a cycle, which takes time Ω(n). We are in the
realizable setting if for any given sample (S, y) there exists a H ∈ HMP such that for all s ∈ S it
holds that y(s) = 1 if and only if s ∈ H . Our main result for realizable PAC learning is:

Theorem 2 (Realizable PAC is poly-time) There exists an algorithm that, for any ε, δ ∈ (0, 1),
can (ε, δ)-PAC learn (V,HMP) in the realizable setting using O

(
ω(G) log(1/ε)+log(1/δ)

ε

)
labeled sam-

ples and time poly(n).

The bound on the sample complexity of our algorithm follows by a bound on the VC dimension
of HMP in terms of ω(G) (Proposition 4), coupled with standard PAC learning bounds (Blumer
et al., 1989). The bound is near-optimal save possibly for the log(1/ε) factor (see below). The
bound on the running time is instead given by Theorem 5 (see below) which provides a polynomial-
time algorithm for computing an m-halfspace consistent with a given realizable sample. Similarly
to the realizable case, we obtain the following result for agnostic PAC learning:

Theorem 3 (Agnostic PAC is FPT) There exists an algorithm that, for any ε, δ ∈ (0, 1), can
(ε, δ)-PAC learn (V,HMP) in the agnostic setting using O

(
ω(G)+log(1/δ)

ε2

)
labeled samples and

time |HMP| poly(n) ≤ 2ω(G) poly(n).

Similarly to the realizable case, the sample complexity bound follows by coupling VC dimen-
sion bounds with standard PAC bounds, and is near-optimal. The result follows by using the ERM
from Corollary 10, which uses the version space enumeration of Theorem 8 (see below).

To prove that the sample complexity bounds of Theorem 2 and Theorem 3 are near-optimal, it
suffices to note that the VC dimension of HMP is ω(G) for clique graphs. We prove that this is true
for all S4 graphs (see Section 3), and essentially optimal. Let ω̃(G) = max{ω(G), 3}. Then:
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Proposition 4 If G ∈ S4 then VC(HMP(G)) ≥ ω(G). Moreover, VC(HMP(G)) ≤ ω̃(G) for all G.

4.1. Polynomial-Time Consistency Checking and Version Space Enumeration

The algorithms of Theorem 2 and Theorem 3 rely on the standard empirical risk minimization
(ERM) approach: given a labeled sample (S, y), we find a hypothesis H ∈ HMP that has minimal
disagreement with (S, y). This, we need efficient algorithms for ERM. In the realizable case, where
(S, y) is realizable, we need an algorithm to find a hypothesis consistent with the sample. Formally,
an m-halfspace H ∈ HMP is consistent with a given labeled sample (S, y) if y−1(0) ⊆ H and
y−1(1) ⊆ H . Our main technical contribution is MH-CHECK, an algorithm that gives:

Theorem 5 (Consistency check is in polynomial time) Let G = (V,E) and (S, y) a labeled
sample. Then, MH-CHECK(G, (S, y)) (Algorithm 1) runs in time poly(n) and returns an H ∈
HMP(G) consistent with (S, y), or reports that no such H exists.

We note that Elaroussi et al. (2024) and Chepoi (2024) independently obtained an analogous
result recently using different techniques.

The intuition behind MH-CHECK is to guess an edge in the cut of H , and then construct a set of
constraints that reduces the search space to precisely those subsets H ⊆ V that are m-halfspaces and
that are consistent with (S, y). It turns out that, by carefully choosing those constraints, one actually
obtains in time poly(n) an instance of 2-satisfiability, which in turn is solvable in time poly(n).
Choosing the constraints requires defining several specific subsets of vertices, as well as proving
several structural results on m-halfspaces and their cutsets. Another computational ingredient is
showing that computing m-shadows over edges is easy, although hard in general.

Lemma 6 Let {z, v} ∈ E. Then, z/v = {x ∈ V | N(v) \ {z} is not a (z, x)-separator in G}. As
a consequence one can compute z/v in time poly(n).

As an immediate byproduct of Theorem 5 we answer an open problem of González et al. (2020),
who proved that deciding if V admits a proper k-partition into m-convex sets is NP-hard for k ≥ 3.

Corollary 7 In time poly(n) one can decide if V admits a proper 2-partition into m-convex sets
in G (that is, if there exists H ∈ HMP such that ∅ ⊊ H ⊊ V ).

A detailed description of MH-CHECK and a sketch of the proof of Theorem 5 are given in Section 8.
Using MH-CHECK, we obtain an algorithm for ERM. For a given labeled sample (S, y), the version
space VS((S, y),HMP) consists of all H ∈ HMP consistent with (S, y). Thus, one can find an
empirical risk minimizer for (S, y) by just listing VS = VS((S, y),HMP) and picking a m-halfspace
with minimum disagreement. We say that an algorithm lists VS with delay t if it spends time at
most t to output the next element of VS. A listing algorithm is considered to be efficient if it has
polynomial delay, that is, t = poly(n); this also implies that VS is listed in total time |VS |poly(n).
Using MH-CHECK and a folklore technique, we prove that such an algorithm exists.

Theorem 8 (Listing the version space with polynomial delay) There exists an algorithm MH-LIST

that, given a graph G and a labeled sample (S, y), lists VS = VS(S,HMP) with delay poly(n) and
total time |VS |poly(n).

As a last ingredient for our ERM bounds, we bound the size of HMP(G). To this end we de-
velop another listing algorithm, Algorithm 3, which by a careful analysis yields the following upper
bound. Further details on how we accomplish this are deferred to Section 9.
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Theorem 9 |HMP(G)| ≤ 4m2ω(G)

ω(G) + 2 for all graphs G.

Together this yields the fact that ERM is FPT for m-halfspaces.

Corollary 10 (ERM is FPT) Given G = (V,E) and a labeled sample (S, y), one can compute
HERM ∈ argminH∈HMP

1
|S|

∑
s∈S 1{y(s) ̸= 1s∈H} in time |HMP| poly(n) ≤ 2ω(G) poly(n).

5. Active Learning

In the active learning setting, the algorithm is given a graph G = (V,E), and nature selects a
concept H ∈ HMP(G). The algorithm can query any vertex x ∈ V for its label 1x∈H . The goal of
the algorithm is to output H by making as few queries as possible. This problem is a special case of
realizable transductive active learning on a graph (Afshani et al., 2007; Guillory and Bilmes, 2009;
Cesa-Bianchi et al., 2010; Dasarathy et al., 2015), and can be seen as a variant of query learning
(Angluin, 1988; Hegedűs, 1995) with an additional fixed graph given where vertices correspond
to the instance space. Now let H ⊆ 2V be a concept class. The query complexity of (V,H) is
the maximum number of queries an optimal algorithm makes over H ∈ H. More precisely, for
any algorithm A and any H ∈ H, let qc(A,H) denote the number of queries A make on G when
nature chooses H . The query complexity of A on H is qc(A,H) = maxH∈H qc(A,H). The query
complexity of H is qc(H) = minA qc(A,H). Our main result is stated as follows.

Theorem 11 (Poly-time active learning) It is possible to actively learn (V,HMP) in time poly(n)
with query complexity O (h(G) + log diamg(G) + ω(G)).

The full proof of Theorem 11 is given in Appendix E; here we provide some intuition. First, we
compute a minimum monophonic hull set in polynomial time relying on Dourado et al. (2010). If
any cut-edge {u, v} exists we can then find it with O(log diamg(V )) queries. Using some structural
results (Lemma 17 and Lemma 19, see Section 7) we can infer the remaining halfspace by querying
at most ω(G) from the set △uv = N(u) ∪ N(v) ∪ {u, v}. The required m-shadows can be com-
puted efficiently by Lemma 6. Theorem 11 should be contrasted with the active learning algorithm
provided by Thiessen and Gärtner (2021) for geodesic halfspaces; that algorithm does not guarantee
polynomial running time, as it requires solving the minimum geodesic hull set problem, which is
APX-hard.

Along the previously mentioned separation axioms from Definition 1 we achieve increasingly
tighter lower bounds on the query complexity, eventually matching our algorithmic upper bound
from Theorem 11 for all S4 graphs, the strongest separability assumption.

Theorem 12 Let G be a graph. The following holds for the query complexity qc(HMP(G)):

• if G ∈ S2, then qc(HMP(G)) ≥ Ω(log diamm(G)),
• if G ∈ S3, then qc(HMP(G)) ≥ Ω(log diamm(G) + h(G)), and
• if G ∈ S4, then qc(HMP(G)) ≥ Ω(log diamm(G) + h(G) + ω(G)).

6. Online Learning

The classical (realizable) online learning problem of Littlestone (1988) can be modelled as an iter-
ative game between a learner and the environment over a finite number T of rounds. The instance
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space V and a hypothesis space H ⊆ 2V is known and fixed. First, the environment chooses a
hypothesis H from a hypothesis space H. Then, in each round t = 1, . . . , T :

1. the environment chooses a point vt ∈ V ,
2. the learner predicts the label ŷt ∈ {0, 1} of vt,
3. the environment reveals the true label yt = 1vt∈H ,
4. the learner made a mistake if ŷt ̸= yt.

The goal of the learner is to minimize the total number of mistakes. More precisely let A be an
algorithm for this online learning problem. Then, let M(A,H) for H ∈ H denote the worst-case
number of mistakes A would make on any sequence labeled by H over T rounds. The mistake
bound of A on H is thus defined as M(A,H) = maxH∈HM(A,H). We are interested in the
optimal mistake bound M(H) = minAM(A,H), also known as the Littlestone dimension of H.
This setting can be extended to the agnostic/non-realizable case, see Ben-David et al. (2009).

The node classification (or node labeling) variant of this problem is well studied (Herbster et al.,
2005; Cesa-Bianchi et al., 2013; Herbster et al., 2015). As in the active learning variant, the main
parameter is the (potentially effective resistance weighted) cutsize, linearly determining the mistake
bounds. In this section, we mainly study the variant of the above realizable online learning problem
over our hypothesis class HMP.

Theorem 13 (Poly-time online learning) Realizable online learning of monophonic halfspaces
is possible in time poly(n) with a mistake bound of O(ω(G) log n). It is also possible in time
|HMP|poly(n) ≤ 2ω(G) poly(n) with a mistake bound of O

(
ω(G) + log n

w(G)

)
.

The first mistake bound is achieved by the Winnow algorithm (Littlestone, 1988) and relies on a
novel representation of m-halfspaces as a sparse disjunction of m-shadows (Lemma 18). The second
mistake bound is achieved by the Halving algorithm (Barzdin, 1972; Littlestone, 1988), together
with our version space listing algorithm (Theorem 8) and our upper bound on |HMP| (Theorem 9).
In Appendix F.3 we additionally discuss agnostic online learning of m-halfspaces relying again
on our decomposition by Lemma 18 and known results for Winnow (Blum, 1996). We achieve
the following mistake bound efficiently almost matching standard expert-based techniques (Cesa-
Bianchi et al., 1997; Ben-David et al., 2009), which typically require O(|HMP|) time per round.

Theorem 14 A mistake bound O
(
ω(G)(M∗ + log n)

)
for agnostic online learning over HMP(G)

is possible in time poly(n), where M∗ is the mininum number of mistakes of any m-halfspace.

Lower bounds. The achieved mistake bounds are near-optimal by the following result, whose
proof is in Appendix F.2.

Proposition 15 For any S4 graph G, it holds that M(HMP(G)) ≥ ω(G).

7. Structural Lemmas regarding Monophonic Halfspaces

This section provides some structural results on monophonic halfspaces used by our algorithms.
Loosely speaking, the main message is that monophonic halfspaces can be expressed as unions of
a small number of “simpler” sets, whose labels can be inferred from a small number of labeled
vertices. First, however, we give a basic result about the border of the cut.

9



BRESSAN ESPOSITO THIESSEN

Lemma 16 H ∈ HMP(G) if and only if G[Γ(H)] and G[Γ(H)] are cliques.

The statement follows by Duchet (1988, Proposition 4.2) applied to both H and H; a self-
contained proof can be found in Appendix A. Figure 1 shows an example. For an edge uv ∈ E
let △uv = (N(u) ∩ N(v)) ∪ {u, v}. Our first result shows that every halfspace H ∈ HMP can be
expressed as the union of m-shadows over H ∩△uv, for every uv ∈ δ(H).

Lemma 17 Let H ∈ HMP(G), let uv ∈ δ(H), and let △uv = (N(u) ∩N(v)) ∪ {u, v}. Then, H
consists precisely of those vertices whose label can be inferred from u, v, and a vertex in H ∩△uv.
Formally:

H =
⋃

z∈H∩△uv

z/v .

Note that Lemma 17 does not yet give a sparse representation, in the sense that it does not bound
the number of m-shadows |H ∩ △uv| used to obtain H . Combining Lemma 17 with Lemma 16,
however, we can prove that H can be expressed as the union of at most ω(G) such m-shadows.

Lemma 18 Let H ∈ HMP(G). Then, there exists a subset C ⊆ δ(H) with |C| ≤ ω(G) such that

H =
⋃

{z,v}∈C

z/v .

Lemma 18 will be crucial to enable efficient online learning using Winnow. We shall also note the
following fact, used by our bounds on |HMP| and by our polynomial-time active learning algorithm.

Lemma 19 Let H ∈ HMP and uv be a cut-edge of H . Then, the number Nuv of connected
components in ¬G[△uv] satisfies Nuv ≤ ω(G).

8. A Polynomial-Time Consistency Checker

This section describes our main technical contribution: MH-CHECK (Algorithm 1), an algorithm to
find an m-halfspace consistent with a given a labeled sample if one exists. We show that such an
algorithm runs in polynomial time; this proves Theorem 5, which we restate for convenience.

Theorem 5 (Consistency check is in polynomial time) Let G = (V,E) and (S, y) a labeled sam-
ple. Then, MH-CHECK(G, (S, y)) (Algorithm 1) runs in time poly(n) and returns an H ∈ HMP(G)
consistent with (S, y), or reports that no such H exists.

Let us illustrate the idea behind MH-CHECK. Let (S, y) be the labeled sample, and suppose a
halfspace H consistent with (S, y) exists. For every uv ∈ E, we guess that uv in is the cut δ(H),
and we compute the set △uv = (N(u) ∩ N(v)) ∪ {u, v}. By exploiting the results of Section 7,
we know that from △uv ∩H one can infer the rest of H . Unfortunately, there seems to be no easy
way of learning △uv ∩ H , apart from exhaustively guessing all subsets of △uv. Thus, we need
a more sophisticate strategy. We use the results of Section 7, as well as the closure properties of
monophonic halfspaces, to construct a set of constraints on the space of all possible subsets H ⊆ V .
The hope is that those constraints identify precisely the subsets H ⊆ V that satisfy H ∈ HMP(G)
and are consistent with (S, y).

10
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Formally, we will perform a reduction to 2-SAT. For every orientation uv of every edge of G,
we construct in time poly(|V |) a 2-SAT formula φuv whose literals are in the form “x ∈ H” or
“x /∈ H”, where x ∈ V . Any H ⊆ V yields an evaluation of φuv in the obvious way. We can
prove that the solutions to φuv are precisely the m-halfspaces H ∈ HMP(G) such that uv ∈ δ(H).
Constructing the 2-SAT formula φuv in polynomial time is the challenging part of the algorithm.
Once we have computed φuv, it is straightforward to extend it to a 2-SAT formula φuv(S, y) that is
satisfied precisely by the solutions to φuv that are consistent with (S, y):

φuv(S, y) = φuv ∧
∧

x∈y−1(0)

(x /∈ H) ∧
∧

x∈y−1(1)

(x ∈ H) . (1)

Algorithm 1 gives the pseudocode of MH-CHECK. The rest of this section describes the construc-
tion of φuv and sketches the proof of Theorem 5. All missing details can be found in Appendix B.

Algorithm 1: MH-CHECK

Input: G = (V,E), and a labeled sample (S, y)
Output: H ∈ HMP(G) consistent with (S, y), or failure if no such H exists
for uv ∈ E do

compute the constraints given in Appendix B, and their conjunction φuv

compute φuv(S, y) as given by Equation (1)
compute a solution H to φuv(S, y) and return it, if one exists

end
return “H does not exist”

Constructing φuv. To construct φuv, we start by computing the following subsets:

• △−
uv = N(u) ∩N(v). Note that u, v /∈ △−

uv.
• □uv = {x ∈ V : x appears in a 4-cycle having uv as an edge}. Note that u, v ∈ □uv.
• A = □uv \ △−

uv = {x ∈ □uv : d(x, u) ̸= d(x, v)}.
• Au = {x ∈ A : d(x, u) < d(x, v)}.
• Av = {x ∈ A : d(x, u) > d(x, v)} = A \Au.
• T = G \ E(G[□uv ∪△−

uv]).

Note that all those sets are computable in time poly(|V |).

A set of constraints. As said, φuv is a conjunction of several constraints (i.e., 2-SAT formulas).
Each constraint is based on some of the sets defined above. We describe some of those constraints
to convey the idea. The complete list is given in Appendix B, where the full proof of Theorem 5
checks that all of them are satisfied if and only if H ∈ HMP(G).

The first constraint we present here, given by the formula φconv, ensures that Au and Av are
closed under monophonic convex hulls:

φconv =
∧

x∈conv(Au)

(x ∈ H) ∧
∧

x∈conv(Av)

(x /∈ H) . (2)

11
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Note that, as computing monophonic convex hulls in an n-vertex graph takes time poly(n) (Dourado
et al., 2010), we can then compute φconv in time poly(n), too.

The next constraint, φ△−
uv

, ensures that G[△−
uv ∩H] ⊆ G[Γ(H)] and G[△−

uv ∩H] ⊆ G[Γ(H)]
are both cliques, as required by Lemma 16. In fact it ensures a slightly stronger condition: that the
edge complement of G[△−

uv] is a bipartite graph where adjacent vertices have opposite labels under
H , as imposed by Lemma 22:

φ△−
uv

=
∧

{x,y}∈E(¬G[△−
uv ])

(x ∈ H ∨ y ∈ H) ∧ (x /∈ H ∨ y /∈ H) . (3)

Denote by cc(T ) the set of connected components of T . It is not hard to prove that every
Ti ∈ cc(T ) is either the m-shadow z/v or in the m-shadow z/u for some z ∈ △uv. Therefore,
either Ti ⊆ H or Ti ⊆ H . This is captured by the next constraint:

φT =
∧

Ti∈cc(T )

∧
x,y∈V (Ti)

(x ∈ H ∨ y /∈ H) ∧ (x /∈ H ∨ y ∈ H) . (4)

Finally, we compute constraints ensuring that there is no induced path starting from Au or
conv(Au) that violates monophonic convexity. To compute them, we first need to define what
follows: for X,Y ⊆ V and k ∈ {3, 4} denote by Πk(X,Z) the set of all induced paths on k
vertices that connect X to Y . We report only one of such constraints them as an example:

φu,3 =
∧

π=(x,y,z)

π∈Π3(Au,△−
uv)

(y ∈ H ∨ z /∈ H) . (5)

It is easy to see that φ△−
uv

, φT , and φu,3 can be computed in time poly(n), too.

9. Bounding the Number of Monophonic Halfspaces

This section describes an algorithm to enumerate all m-halfspaces in FPT time and, through an
additional charging argument, a near-tight bound on |HMP(G)|. The first intuition behind our algo-
rithm comes from Lemma 16, as follows. First, we guess each edge uv of G as a cut edge of some
H ∈ HMP. Starting from the endpoints u, v, we then try to find the vertices in U = Γ(H) ∪ Γ(H).
Since by Lemma 16 both G[Γ(H)] and G[Γ(H)] are cliques, then |U | ≤ 2ω(G). At that point we
exhaustively guess the partition of U into Γ(H) and Γ(H), and we check if that partition is indeed
an m-halfspace. This would result in a total running time of 22ω(G) poly(n) per edge and, therefore,
in total.

Unfortunately, this idea does not work straight away. The reason is that there is no efficient way
to find all of U . However, by Lemma 17, we can show that this approach still works if instead of U
we look at the set △uv = (N(u) ∩N(v)) ∪ {u, v}. Thus, the idea is to compute △uv, iterate over
all possible labelings of it, and for each such labeling use Lemma 17 to infer H and check whether
H is a halfspace. This still does not yield the desired bound, as △uv could be much larger than
ω(G); in fact we could have |△uv| = Ω(n) even though ω(G) = O(1). Thus, we first check if △uv

is a subset of U , which can be done by just testing if ¬G[△uv] is bipartite. If this is the case, then
we already know |△uv| ≤ 2ω(G). By a careful analysis of ¬G[△uv] we can then show that we
need only to test certain labelings of △uv, whose number can be bounded by roughly 2ω(G). The
pseudocode of MH-FPT-LIST is given in Appendix C, together with the proof of:
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Theorem 20 MH-FPT-LIST(G) lists HMP(G) in time 2ω(G) poly(n).

The proof of Theorem 20 immediately implies |HMP(G)| ≤ 2ω(G)2m. However, starting from the
analysis of MH-FPT-LIST, and using a charging argument that takes into account that an edge uv can
appear in the cut δ(H) of many m-halfspaces, we can prove the improved bound stated in Theorem 9
(see Appendix C.1 for the complete proof).
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Maximilian Thiessen and Thomas Gärtner. Online learning of convex sets on graphs. In ECMLP-
KDD, 2022.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Marcel L. J. van de Vel. Theory of convex structures, volume 50 of North-Holland Mathematical
Library. North Holland, 1993.

Vladimir Vapnik and Alexey Ya. Chervonenkis. Theory of pattern recognition. Nauka, Moscow,
1974.

Xianghong Zhou, Ming-Chih J Kao, and Wing Hung Wong. Transitive functional annotation by
shortest-path analysis of gene expression data. Proceedings of the National Academy of Sciences,
99(20):12783–12788, 2002.

16



EFFICIENT ALGORITHMS FOR LEARNING MONOPHONIC HALFSPACES IN GRAPHS

Appendix A. Proofs of Auxiliary Lemmas

In this section, we provide the proofs of some structural properties that are stated in the main body,
and are crucial in proving the main results of this work. We restate each lemma for convenience.

Lemma 17 Let H ∈ HMP(G), let uv ∈ δ(H), and let △uv = (N(u) ∩ N(v)) ∪ {u, v}. Then, H
consists precisely of those vertices whose label can be inferred from u, v, and a vertex in H ∩△uv.
Formally:

H =
⋃

z∈H∩△uv

z/v .

Proof of Lemma 17. We first show that
⋃

z∈H∩△uv
z/v ⊆ H . This follows from the fact that for

z ∈ H and v ∈ H it holds z/v ⊆ H , as H is a monophonic halfspace.
For the other direction, we have to show that for all x ∈ H there exists a z ∈ H ∩ △uv such

that x ∈ z/v. If x ∈ u/v we are done. Also, x /∈ v/u, as v/u ⊆ H . Hence, we can assume
that x /∈ u/v ∪ v/u. Take an induced path πu from u to x and an induced path πv from v to x.
Denote the closest vertex to u where πu and πv meet as z (z = x is possible). Let Cuvz denote
the cycle given by the subpaths going from u and v to z and the edge {u, v}. Assume that Cuvz

is not an induced cycle. Then there is a chord ab in Cuvz going from πu to πv (or vice versa) and
we could modify πu (respectively πv) to meet πv already in b. We can iterate this process until we
are left with an induced cycle Cuvz . Assume that Cuvz consists of at least 5 vertices. Then either
u, v ∈ V (Cuvz) ⊆ H or u, v ∈ V (Cuvz) ⊆ H a contradiction to u ∈ H and v ∈ H . Also, Cuvz

cannot consist of exactly 4 vertices as in this case x ∈ u/v∪ v/u. Thus, Cuvz is an induced triangle
and z ∈ (N(u) ∩N(v)) \ {u, v}. By construction z is along an induced path from u to x and from
v to x and hence x ∈ z/v as required.

Lemma 6 Let {z, v} ∈ E. Then, z/v = {x ∈ V | N(v) \ {z} is not a (z, x)-separator in G}. As
a consequence one can compute z/v in time poly(n).

Proof of Lemma 6. Let L = N(v) \ {z} and S = {x ∈ V | L is not a (z, x)-separator}. It
is straightforward that S can be computed in polynomial time, hence we only need to show that
z/v = S.

Suppose first that x ∈ S. By definition of S there exists a path π between x and z such that
V (π) ∩ L = ∅. Thus v is not adjacent to V (π), and this holds obviously for any subpath π′ of π.
Take in particular an induced subpath π′ of π between x and z, and observe that extending it to v
yields an induced path between x and v that contains z. Hence x ∈ z/v.

Suppose now that x ∈ z/v. By definition of z/v there exists an induced path π between x and
v that contains z. Clearly π does not contain any y ∈ N(v) \ {z, v}, and thus its prefix π′ between
x and z does not contain any y ∈ N(v) \ {z} = L. It follows that L is not a (z, x)-separator.

Lemma 16 H ∈ HMP(G) if and only if G[Γ(H)] and G[Γ(H)] are cliques.

Proof of Lemma 16. Let H ∈ HMP(G). Suppose {x, x′} /∈ E for some distinct x, x′ ∈ Γ(H).
Choose y ∈ N(x) \ H and y′ ∈ N(x′) \ H that have smallest distance in G[H]. (Note that
N(x)\H ⊆ H and N(y′)\H ⊆ H , hence y, y′ exist). Let π be a shortest path between y and y′ in
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G[H]. Observe that the concatenation of x, π, x′ is an induced path between x and x′ that intersects
H . This contradicts H ∈ HMP(G). We conclude that {x, x′} ∈ E for all distinct x, x′ ∈ Γ(H),
hence G[Γ(H)] is a clique. The same holds with H in place of H .

Now let H ⊆ V and suppose G[Γ(H)] and G[Γ(H)] are cliques; we show that both H and
H are monophonically convex. Suppose for contradiction that an induced path between distinct
x, x′ ∈ H intersects H . Without loss of generality we may assume x, x′ are the endpoints of the
path, and thus by definition in Γ(H) by definition. This implies {x, x′} ∈ E, contradicting the fact
that the path is induced. The same holds with H in place of H .

Lemma 19 Let H ∈ HMP and uv be a cut-edge of H . Then, the number Nuv of connected compo-
nents in ¬G[△uv] satisfies Nuv ≤ ω(G).

Proof of Lemma 19. Observe that Nuv ≤ α(¬G[△uv]) = ω(G[△uv]) ≤ ω(G).

Appendix B. Missing Details for Section 8

B.1. Full list of constraints for φuv

φ△−
uv

=
∧

{x,y}∈E(¬G[△−
uv ])

(x ∈ H ∨ y ∈ H) ∧ (x /∈ H ∨ y /∈ H) (6)

φconv =
∧

x∈conv(Au)

(x ∈ H) ∧
∧

x∈conv(Av)

(x /∈ H) (7)

φT =
∧

Ti∈cc(T )

∧
x,y∈V (Ti)

(x ∈ H ∨ y /∈ H) ∧ (x /∈ H ∨ y ∈ H) (8)

φu,3 =
∧

π=(x,y,z)

π∈Π3(Au,△−
uv)

(y ∈ H ∨ z /∈ H) , φv,3 =
∧

π=(x,y,z)

π∈Π3(Av ,△−
uv)

(y /∈ H ∨ z ∈ H) (9)

φu,4 =
∧

π=(x,w,y,z)

π∈Π4(Au,△−
uv)

(y ∈ H ∨ z /∈ H) , φv,4 =
∧

π=(x,w,y,z)

π∈Π4(Av ,△−
uv)

(y /∈ H ∨ z ∈ H) (10)

φAu =
∧

{x,y}∈E
x∈conv(Au)

∧
z∈△−

uv\N(x)

(y ∈ H ∨ z /∈ H) , φAv =
∧

{x,y}∈E
x∈conv(Av)

∧
z∈△−

uv\N(x)

(y /∈ H ∨ z ∈ H)

(11)

B.2. Proof of Theorem 5

Before proving Theorem 5 we need another technical lemma.

Lemma 21 Let H ∈ HMP(G) and uv ∈ δ(H). Then, (i) Au ⊆ H and Av ⊆ H , and (ii) Ti ⊆ H
or Ti ⊆ H , for all Ti ∈ cc(T ).
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Proof (i) Let x ∈ Au and suppose by contradiction x /∈ H . In particular x ̸= u, so d(x, u) ≥ 1.
Now (x, u, v) is an induced path with endpoints in H containing a vertex of H , contradicting H ∈
HMP(G). A symmetric argument applies to Av.

(ii) First, let us prove that Γ(H)∪ Γ(H) ⊆ □uv ∪△−
uv. Let x ∈ Γ(H). If x = u then x ∈ □uv,

so we may assume x ∈ Γ(H)\{u}, which by Lemma 16 implies x ∈ N(u). Consider then any edge
xy ∈ δ(H). If y = v then u ∈ △−

uv. If instead y ̸= v, then y ∈ N(v) by Lemma 16; so (u, x, y, v)
is a 4-cycle, and x, y ∈ □uv.We conclude that Γ(H) ∪ Γ(H) ⊆ □uv ∪ △−

uv. This implies that
T is an edge-subgraph of R = G \ E(G[Γ(H) ∪ Γ(H)]). Therefore, every connected component
Ti ∈ cc(T ) is entirely contained in some connected component Ri ∈ cc(R). Thus, it is sufficient
to prove the claim for Ri. Suppose for contradiction that Ri intersects both H and H . Since Ri is
connected there is an edge {x, y} ∈ E(Ri) with x ∈ H and y ∈ H , so {x, y} ∈ E(Ri) ∩ δ(H).
But δ(H) ⊆ E(G[Γ(H) ∪ Γ(H)]) and thus E(R) ∩ δ(H) = ∅, a contradiction.

Theorem 5 (Consistency check is in polynomial time) Let G = (V,E) and (S, y) a labeled sam-
ple. Then, MH-CHECK(G, (S, y)) (Algorithm 1) runs in time poly(n) and returns an H ∈ HMP(G)
consistent with (S, y), or reports that no such H exists.

Proof of Theorem 5. First of all, note that φuv is a 2-SAT instance, and that it can be computed in
polynomial time (see above). The same is then obviously true for φuv(S−, S+), too. It remains to
prove that H ∈ HMP(G) consistent with (S−, S+) exists if and only if φuv(S−, S+) is satisfied for
some uv ∈ E. We prove the two directions separately.

Forward direction. Suppose H ∈ HMP(G) is consistent with (S−, S+). We check (7)–(11) and
show H satisfies φuv for every uv ∈ δ(H). This implies that H satisfies φuv(S−, S+) for every
uv ∈ δ(H) and, thus, for some uv ∈ E.

• φconv. First, Au ⊆ H and Av ⊆ H by Lemma 21. Since H is closed under conv this implies
conv(Au) ⊆ H and conv(Av) ⊆ H , too.

• φ△−
uv

. Note that △−
uv ⊆ Γ(H) ∪ Γ(H) and apply Lemma 22.

• φT . Apply Lemma 21.

• φu,3 and φv,3. Suppose by contradiction y /∈ H and z ∈ H . Since (x, y, z) is induced, this
violates the convexity of H . Thus, φu,3 is satisfied. A symmetric argument applies to φv,3.

• φu,4. The arguments are similar to those for φu,3 and φv,3.

• φAu and φAv . Suppose the formula fails, so there exists {x, y} ∈ E with x ∈ conv(Au) and
y /∈ H , as well as z ∈ △−

uv \ N(x) with z ∈ H . As x ∈ H, y /∈ H , and {x, y} ∈ E, then
{x, y} ∈ δ(H). As z ∈ H, v /∈ H , and z ∈ △−

uv, then z ∈ δ(H), too. But then by Lemma 16
we have {x, y} ∈ E, a contradiction. A symmetric argument applies to φAv .

Backward direction. Suppose H ⊆ V satisfies φuv(S−, S+) for some uv ∈ E. This implies that
H satisfies φuv, which in turn implies uv ∈ δ(H) by the constraints of (7). We now show that H ∈
HMP(G). Suppose indeed by contradiction H /∈ HMP(G). Note how this implies conv(H) ̸= H
or conv(H) ̸= H . Without loss of generality we assume conv(H) ̸= H . Therefore there exists an
induced path P = G[{x1, . . . , xk}] in G such that x1, xk ∈ H and xi ∈ H for all i = 2, . . . , k − 1.
We will use the path P to prove a contradiction.

19



BRESSAN ESPOSITO THIESSEN

First, since φT is satisfied, then {x1, x2} ∈ E(G[□uv ∪△−
uv]) = E(G[A∪△−

uv]). By the same
argument {xk−1, xk} ∈ E(G[A∪△−

uv]). Moreover, since φconv is satisfied then {x1, xk}∩Av = ∅
and {x2, xk−1} ∩Au = ∅; hence, x1, xk ∈ Au ∪△−

uv and x2, xk−1 ∈ Av ∪△−
uv.

Now, if x1, xk ∈ Au, then V (P ) ⊆ H since φconv is satisfied; hence |{x1, xk} ∩ Au| ≤ 1. If
instead x1, xk ∈ △−

uv, then since φ△−
uv

is satisfied {x1, xk} /∈ E(¬G[△−
uv]), implying the absurd

{x1, xk} ∈ E(G); hence |{x1, xk} ∩ △−
uv| ≤ 1. We conclude that precisely one of x1, xk is in Au

and the other one in △−
uv. Without loss of generality say x1 ∈ Au and xk ∈ △−

uv. Then k ≥ 5, for
otherwise π = P would falsify φu,3 or φu,4. As k ≥ 5 and P is induced we deduce x2, xk−1 are
distinct and {x1, xk−1}, {x2, xk−1} /∈ E.

Next we show that x2 ∈ △−
uv and xk−1 ∈ Av. Suppose by contradiction x2 ∈ Av. Letting

x, y = x1, x2 and z = xk, then, φAu fails. Thus x2 ∈ △−
uv. Now suppose by contradiction

xk−1 ∈ △−
uv. Then {x2, xk−1} ∈ E(¬G[△−

uv]), and since φ△−
uv

is satisfied then x2 ∈ H or
xk−1 ∈ H , a contradiction. Thus xk−1 ∈ Av. Now let x, y = xk−1, xk and z = x2. Then φAv fails.
We conclude that P does not exist. Hence H = conv(H), and H ∈ HMP(G).

B.3. Proof of Theorem 8

Theorem 8 (Listing the version space with polynomial delay) There exists an algorithm MH-LIST

that, given a graph G and a labeled sample (S, y), lists VS = VS(S,HMP) with delay poly(n) and
total time |VS |poly(n).

The pseudocode of MH-LIST is given in Algorithm 2. It is straightforward to see that the algo-
rithm constructs a binary search tree whose leaves are precisely the elements of the version space
VS((S, y),HMP(G)), which are the only ones that are output. Moreover, by Theorem 5 MH-LIST

spends time poly for every node in the search tree. The claim of Theorem 8 follows.

Algorithm 2: MH-LIST

Input: (S, y), G = (V,E)
Output: the version space VS((S, y),HMP(G))
let H+ = y−1(1) and H− = y−1(0)
if H+ ∪H− = V then

print H+ and return
pick any x ∈ V \ (H+ ∪H−)
if MH-CHECK(G,H+ ∪ {x}, H−) then MH-LIST(G,H+ ∪ {x}, H−)
if MH-CHECK(G,H+, H− ∪ {x}) then MH-LIST(G,H+, H− ∪ {x})

Appendix C. MH-FPT-LIST, and a proof of Theorem 20

Before proving the theorem we need one auxiliary lemma.

Lemma 22 Let H ∈ HMP(G) and let F = ¬G[Γ(H) ∪ Γ(H)]. Then, every connected component
F̂ of F is bipartite with sides V (F̂ ) ∩H and V (F̂ ) ∩H .
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Algorithm 3: MH-FPT-LIST

Input: G = (V,E)
Output: HMP(G)
let B = ∅
print ∅, V
for {u, v} ∈ E do

let △uv = (N(u) ∩N(v)) ∪ {u, v}
if ¬G[△uv] is bipartite then

let R ⊆ △uv contain one vertex xC from each connected component C of ¬G[△uv]
let S = ∅
for each subset U ⊆ R do

for each connected component C of ¬G[△uv] do
if xC ∈ U then S = S ∪ C(xC) else S = S ∪ V (C) \ C(xC)

end
let X =

⋃
z∈S z/v

if X and V \X are m-convex and Γ(X) ∩B = ∅ then print X
end
B = B ∪ {{u, v}}

end
end

Proof The first claims follows immediately from Lemma 16. For the second claim observe that if
{x, y} ∈ E(F ) then {x, y} /∈ E(G) and thus, again by Lemma 16, {x, y} ̸⊆ H and {x, y} ̸⊆ H;
therefore, precisely one of x and y is in H .

Proof of Theorem 20. For the correctness, the condition at line 3 ensures MH-FPT-LIST lists only
elements of HMP(G); thus we need just to prove that every H ∈ HMP(G) is listed exactly once. Let
{u, v} be the first edge of δ(H) considered at line 3 (recall that we assume G to be connected, hence
such an edge exists). Note that every x ∈ N(u) ∩N(v) is incident with an edge in δ(H) (the other
endpoint being u if x ∈ H and v if x ∈ H), and the same holds obviously for x ∈ {u, v}. Therefore
△uv ⊆ Γ(H) ∪ Γ(H). Lemma 22 then implies ¬G[△uv] is bipartite, so the condition at line 3
holds. Next, consider the loop at line 3. Clearly, at some iteration U = R ∩H . At that point, again
by Lemma 22 the loop at line 3 ensures S = △uv ∩H . By Lemma 17, then, X =

⋃
z∈S z/v = H .

The condition at line 3 is then satisfied, thus H is printed; moreover in every subsequent iteration
of the loop of line 3 {u, v} ∈ B and thus H will not be printed.

For the running time, note that the loop at line 3 is executed only if ¬G[△uv] is bipartite, in
which case the loop performs 2Nuv iterations where Nuv is the number of connected components of
¬G[△uv]. By Lemma 19 Nuv ≤ ω(G). Hence the loop at line 3 makes at most 2ω(G) iterations. To
conclude the proof note that every other step performed by MH-FPT-LIST (including computing X ,
see Lemma 6) takes time poly(n).

C.1. Proof of Theorem 9

Theorem 9 |HMP(G)| ≤ 4m2ω(G)

ω(G) + 2 for all graphs G.
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Proof For any e ∈ E, let HMP(e) = {H ∈ HMP(G) | e ∈ δ(H)}. Recall that each x ∈ Γ(H)∪Γ(H)
is incident with some edge in δ(H) by definition, and therefore

|δ(H)| ≥ max{|Γ(H)|, |Γ(H)|} ≥ |Γ(H) ∪ Γ(H)|
2

. (12)

Moreover, for any e ∈ E let ω(e) = ω(G[△uv]) where e = {u, v}, see Algorithm 3 and the proof
of Theorem 20. Note that, since ω(G[△uv]) ≥ |△uv |

2 , then

2ω(e)

|△uv|
=

2ω(G[△uv ])

|△uv|
≤ 21+ω(G[△uv ])

ω(G[△uv])
≤ 21+ω(G)

ω(G)
, (13)

where the last inequality follows by monotonicity of 2x/x for x ≥ 2 and since ω(G[△uv]) ≥ 2 as
{u, v} ⊆ △uv. We then obtain (not counting the two trivial halfspaces ∅, V ):

|HMP(G)| − 2 =
∑

H∈HMP(G)

∑
e∈δ(H)

1

|δ(H)|
(14)

=
∑
e∈E

∑
H∈HMP(e)

1

|δ(H)|
by rearranging terms (15)

≤
∑
e∈E

∑
H∈HMP(e)

2

|Γ(H) ∪ Γ(H)|
by (12) (16)

≤
∑
e∈E

|HMP(e)|
2

|△e|
as △e ⊆ Γ(H) ∪ Γ(H) (17)

≤
∑
e∈E

2ω(e)
2

|△e|
see proof of Theorem 20 (18)

≤
∑
e∈E

22+ω(G)

ω(G)
by (13) (19)

= 4m
2ω(G)

ω(G)
. (20)

The proof is complete.

Appendix D. Supervised Learning

We study the standard PAC (probably approximately correct) setting with a given finite instance
space V and a known hypothesis space H ⊆ 2V . In our case H = HMP(G) is defined implicitly
by the input graph G given to the algorithm. The standard approach to PAC learning is to return a
hypothesis, a m-halfspace in our case, that is as close as possible to being consistent with the given
labeled sample (S, y). In particular, we say that it is possible to (ε, δ)-PAC learn (V,HMP) if we can
provide a m-halfspace H = H(S, y) that has error bounded by ε with probability at least 1− δ, for
any ε, δ ∈ (0, 1), under some unknown joint distribution over vertices and their labels. The aim of
PAC learning is to guarantee this property with the smallest sample complexity possible.
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While standard PAC learning formulations typically measure the running time as a function
of the sample size (see, e.g., Valiant (1984); Shalev-Shwartz and Ben-David (2014)), we measure
running time as a function of n. Note that a dependence on n is unavoidable: even just to check
whether two vertices u, v ∈ V are separated by some H ∈ HMP(G), one needs to distinguish
between G being a path or a cycle, which takes time Ω(n).

We start with a bound on the VC dimension of HMP(G), thus determining learnability in the
supervised setting. We write VC(V,H), or simply VC(H), for the VC dimension of the hypothesis
space H ⊆ 2V .

Proposition 4 If G ∈ S4 then VC(HMP(G)) ≥ ω(G). Moreover, VC(HMP(G)) ≤ ω̃(G) for all G.

Proof We first provide a proof for the upper bound by showing that the chain of inequalities
VC(V,HMP(G)) ≤ r(G) ≤ ω̃(G) holds. The first inequality holds for halfspaces in arbitrary
convexity spaces, as any set shattered by halfspaces must be Radon independent (Moran and Yehu-
dayoff, 2020). The second inequality is a classic result in monophonic graph convexity theory
(Duchet, 1988). Now, we show that the lower bound holds too. Indeed, if G ∈ S4 then every clique
in G is shattered by HMP(G), since (i) it is Radon independent, and (ii) any of its partitions can be
extended to a halfspace (Thiessen and Gärtner, 2021). Hence, VC(V,HMP(G)) ≥ ω(G).

We now move on to the study of the sample complexity for PAC learning (V,HMP) in both the
realizable and the agnostic settings.

Realizable case. Since we are in the realizable setting, we know there exists some m-halfspace
H∗ ∈ HMP(G) that is consistent with (S, y). While it is known that computing m-convex p-
partitions of a graph for p ≥ 3 is NP-hard (González et al., 2020), the complexity of computing
m-halfspaces (p = 2) is not known. A first step towards closing this gap is to use our listing al-
gorithm to obtain an FPT algorithm for this problem. We go beyond that and fully close this gap
by providing, in Theorem 5, a polynomial-time algorithm relying on a non-trivial reduction to the
2-SAT problem.

By standard PAC results (Blumer et al., 1989) we obtain the following near-optimal sample
complexity bound, save possibly for the log(1/ε) factor.

Theorem 2 (Realizable PAC is poly-time) There exists an algorithm that, for any ε, δ ∈ (0, 1),
can (ε, δ)-PAC learn (V,HMP) in the realizable setting using O

(
ω(G) log(1/ε)+log(1/δ)

ε

)
labeled sam-

ples and time poly(n).

Proof Blumer et al. (1989) give a sample complexity of O
(
VC(V,HMP) log(1/ε)+log(1/δ)

ε

)
and the

stated bound follows from the fact that VC(V,HMP) ≤ ω̃(G) (Proposition 4). The runtime follows
by Theorem 5.

Agnostic case. In the agnostic case we are given a sample (S, y) that is not necessarily realizable;
that is, there may be no H∗ ∈ HMP(G) that is consistent with (S, y). The classic goal is to compute
an ERM (empirical risk minimizer), i.e., some HERM ∈ HMP that minimizes the empirical risk
L(H, (S, y)) = 1

|S|
∑

s∈S 1{y(s) ̸= 1s∈H} over all H ∈ HMP. As a further corollary of our results
above we obtain:
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Corollary 10 (ERM is FPT) Given G = (V,E) and a labeled sample (S, y), one can compute
HERM ∈ argminH∈HMP

1
|S|

∑
s∈S 1{y(s) ̸= 1s∈H} in time |HMP| poly(n) ≤ 2ω(G) poly(n).

Proof We list all m-halfspaces using MH-LIST and return any of the listed m-halfspaces that mini-
mizes the number of mistakes on S.

Similarly to the realizable case, we get the following agnostic PAC bound.

Theorem 3 (Agnostic PAC is FPT) There exists an algorithm that, for any ε, δ ∈ (0, 1), can
(ε, δ)-PAC learn (V,HMP) in the agnostic setting using O

(
ω(G)+log(1/δ)

ε2

)
labeled samples and

time |HMP| poly(n) ≤ 2ω(G) poly(n).

Proof It is well known that an ERM yields the optimal agnostic sample complexity of the order
O
(
VC(V,HMP)+log(1/δ)

ε2

)
(Vapnik and Chervonenkis, 1974; Talagrand, 1994). The sample com-

plexity follows by VC(V,HMP) ≤ ω̃(G) (Proposition 4). We can compute an ERM in time
|HMP|poly(n) ≤ 2ω(G) poly(n) by Corollary 10.

Appendix E. Active Learning

This section presents an efficient algorithm for the problem of actively learning monophonic halfs-
paces, defined as follows. The algorithm is given a graph G = (V,E), and nature selects a concept
H ∈ HMP(G). The algorithm can query any vertex x ∈ V for its label 1x∈H . The goal of the
algorithm is to output H by making as few queries as possible. This problem is a special case of
realizable transductive active learning on a graph (Afshani et al., 2007; Guillory and Bilmes, 2009;
Cesa-Bianchi et al., 2010; Dasarathy et al., 2015), and can be seen as a variant of query learning
(Angluin, 1988; Hegedűs, 1995) with an additional fixed graph given where vertices correspond to
the instance space. Now let H ⊆ 2V be a concept class. The query complexity of (V,H) is the
maximum number of queries an optimal algorithm makes over H ∈ H. More precisely, for any
algorithm A and any H ∈ H, let qc(A,H) denote the number of queries A make on G when na-
ture chooses H . The query complexity of A on H is qc(A,H) = maxH∈H qc(A,H). The query
complexity of H is qc(H) = minA qc(A,H).

Relying on Lemma 17 we get the main result in this section: a polynomial-time algorithm
achieving a graph-dependent near-optimal query complexity.

Theorem 11 (Poly-time active learning) It is possible to actively learn (V,HMP) in time poly(n)
with query complexity O (h(G) + log diamg(G) + ω(G)).

Proof of Theorem 11. We compute a minimum monophonic hull set S of size h(G) in polynomial
time using the algorithm of Dourado et al. (2010). We query all vertices of S. If they have all the
same label, all vertices in the graph have the same label, by the definition of hull sets. Otherwise,
we take two vertices with different labels and find a shortest path, which is induced, in particular,
between them. As each label class corresponds to a halfspace, the path has exactly one cut edge
e = {u, v}. We identify e using O(log diamg(G)) queries through binary search on the path. Using
the labels of u and v we can determine the labels of u/v (same as u) and v/u (same as v). We
compute these sets efficiently using Lemma 6. We only have to query one vertex in each connected
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component of ¬G[∆uv], which are at most ω(G) by Lemma 19. By Lemma 17 the labels of the
remaining vertices can be determined through the m-shadows of vertices in ∆uv and u or v.

Along the previously mentioned separation axioms from Definition 1 we achieve increasingly
tighter lower bounds on the query complexity, eventually matching our algorithmic upper bound
from Theorem 11 for all S4 graphs, the strongest separability assumption.

Theorem 12 Let G be a graph. The following holds for the query complexity qc(HMP(G)):

• if G ∈ S2, then qc(HMP(G)) ≥ Ω(log diamm(G)),
• if G ∈ S3, then qc(HMP(G)) ≥ Ω(log diamm(G) + h(G)), and
• if G ∈ S4, then qc(HMP(G)) ≥ Ω(log diamm(G) + h(G) + ω(G)).

Proof of Theorem 12. For S2 graphs note that any edge on a fixed induced path P can be a cut
edge of a m-halfspace. Locating this cut edge takes Ω(log |V (P )|) queries in the worst case. For S3

graphs take any minimum hull set S (of size h(G)). Having queried only a proper subset S′ ⊊ S,
the algorithm cannot decide between the halfspace V and a halfspace separating conv(S′) and some
s ∈ S \ S′. Note that by minimality of S, the vertex s /∈ conv(S′). For S4 graphs any clique can
be shattered by halfspaces. Hence, we fix a clique of maximum size and force the learner to query
it completely.

Appendix F. Online Learning

In this section, we devise near-optimal efficient algorithms for the problem of online learning of
monophonic halfspaces. The classical realizable online learning problem of Littlestone (1988)
(while the agnostic/unrealizable setting has been studied by, e.g., Ben-David et al. (2009)) can
be modelled as an iterative game between our learner and the environment over a finite number T
of rounds. The instance space V and a hypothesis space H ⊆ 2V is known and fixed. First, the
environment chooses a hypothesis h from a hypothesis space H. Then, in each round t = 1, . . . , T :

1. the environment chooses a point vt ∈ V ,
2. the learner predicts the label ŷt ∈ {0, 1} of vt,
3. the environment reveals the true label yt = 1vt∈h,
4. the learner made a mistake if ŷt ̸= yt.

The goal of the learner is to minimize the total number of mistakes. More precisely let A be an
algorithm for this online learning problem. Then, let M(A, h) for h ∈ H denote the worst-case
number of mistakes A would make on any sequence labeled by h. The mistake bound of A on H is
thus defined as M(A,H) = maxh∈HM(A, h) and we are interested in the optimal mistake bound
M(H) = minAM(A,H), also known as the Littlestone dimension of H.

The node classification (or node labeling) variant of this problem is well studied (Herbster et al.,
2005; Cesa-Bianchi et al., 2013; Herbster et al., 2015). As in the active learning variant the main
parameter is the (potentially effective resistance weighted) cutsize, linearly determining the mistake
bounds. In this section, we mainly study the variant of the above realizable online learning problem
over our hypothesis class HMP.

We prove the main result in this section (Theorem 13) below, discussing the strategy using
Halving and Winnow individually.
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F.1. Halving over Monophonic Halfspaces

The Halving algorithm is a classical algorithm for online binary classification over a finite hypothe-
sis class, used by Littlestone (1988) for providing mistake bounds, which implements an “iterative
halving” procedure. The main idea behind Halving is to maintain a set of hypotheses from the orig-
inal class H that are consistent with the labels observed so far; these consistent hypotheses form
the so called version space. The version space of Halving begins with the entire class H and it
gradually shrinks while guaranteeing that the target hypothesis fixed by the environment belongs to
the version space (by consistency). The prediction of Halving at each round consists of a majority
vote for the current point over the entire version space.

Our realizable online learning problem perfectly fits the requirements for running Halving, espe-
cially considering the fact that we can construct the nontrivial hypothesis class HMP(G) by running
MH-FPT-LIST (Algorithm 3). Therefore, we can derive the following guarantees as a consequence
of well-known results on Halving (e.g., Littlestone (1988, Theorem 1)).

Proposition 23 Halving applied to (V,HMP(G)) achieves a mistake bound of O
(
ω(G)+log n

w(G)

)
and can be run in time 2ω(G) poly(n) per round.

A straightforward implementation of Halving requires the enumeration of the version space in each
round. By Theorem 9, we know that |HMP| ≤ 4m2ω(G)

ω(G) + 2 and that this inequality can be almost
tight. Hence, if we run Halving by enumerating the version space we cannot hope for a better
runtime. Halving’s mistake bound is given by the fact that it corresponds to O(log |HMP|).

F.2. Winnow over Monophonic Halfspaces

The main downside of running the Halving algorithm is its running time. In general we cannot
hope to improve upon it unless we can manage to further restrict the initial size of the hypothesis
class. Nonetheless, if the target hypothesis can be represented as a sparse disjunction, the Winnow
algorithm (Littlestone, 1988) can achieve a similar mistake bound as Halving without the need to
enumerate the version space. A similar usage of Winnow for online node classification problems
was discussed by Gentile et al. (2013).

Proposition 24 (Littlestone (1988)) Winnow achieves a mistake bound of O(k log d) in O(poly(kd))
time to online learn monotone k-literal disjunctions on d variables.

By leveraging on this property of the Winnow algorithm, we can show the following result.

Theorem 25 Online learning of monophonic halfspaces is possible in time poly(n) with a mistake
bound of O(ω(G) log n).

Proof Let E = {{u1, v1}, . . . , {um, vm}} and S = (u1/v1, . . . , um/vm, v1/u1, . . . , vm/um).
Each Si = ui/vi can be computed in polynomial time by computing the distance matrix once (all
pairs shortest path). We represent each vertex v ∈ V as a binary vector ϕ(v) ∈ {0, 1}2m (where, we
recall, m = |E(G)|) such that ϕ(v)i = 1{v∈Si}. Using Lemma 18, we know that any monophonic
halfspace can be represented as the union of at most k ≤ ω(G) sets in the sequence S. Hence, any
monophonic halfspace can be represented as a disjunction

ϕ(·)i1 ∨ · · · ∨ ϕ(·)ik (21)
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of at most k ≤ ω(G) of the 2m variables in ϕ(·). Thus, we can run Winnow on ϕ(V ) = {ϕ(v) |
v ∈ V } and achieve a mistake bound of O(ω(G) log n) where we note that log(2m) = O(log n).
As each step of Winnow takes time O(m) = O(n2), the overall runtime is dominated by the
construction of ϕ(V ).

Winnow nearly achieves the mistake bound as Halving in Theorem 23 (worse by only a logarithmic
factor), yet in polynomial time without the need to enumerate the version space. The achieved
mistakes is near-optimal. In particular we have the following simple result.

Proposition 15 For any S4 graph G, it holds that M(HMP(G)) ≥ ω(G).

Proof of Proposition 15. For S4 graphs ω(G) ≤ VC(V,HMP(G)) by Proposition 4, which is a
lower bound on the optimal number of mistakes (Littlestone, 1988).

F.3. Agnostic Online Learning

Compared to the realizable setting studied so far, in the agnostic case we have no guarantee that there
exists a hypothesis H ∈ HMP that makes no mistakes with respect to the true labels. In other words,
the true labels revealed by the environment during the online learning process can be determined
according to any (fixed) arbitrary f ∈ 2V . Even though we now cannot show generally good mistake
bounds as the ones in the realizable setting, we can at least provide guarantees on the performance
with respect to the best fixed hypothesis, i.e., H∗ ∈ argminH∈HMP(G)M(H, f). Indeed, if we let
M∗ = M(H∗, f) be the minimum number of mistakes achieved by some hypothesis in HMP(G),
we can design algorithms A whose mistake bound M(A, f) is a function of M∗. We can show, in
particular, that M(A, f) − M∗ can be upper bounded to provide guarantees for online learning in
the agnostic case.3

In order to achieve such guarantees, though, we can easily incur in large running times if we
adopt one of the common strategies for agnostic online learning. For example, adopting a learning-
with-expert-advice algorithm A such as Hedge (Cesa-Bianchi et al., 1997)—also see, e.g., Cesa-
Bianchi and Lugosi (2006, Chapter 2)—where the experts are the hypotheses HMP(G) listed by
MH-FPT-LIST, would provide an expected mistake bound of

E[M(A, f)] = M∗ +O
(√

T log |HMP(G)|
)
= M∗ +O

(√
T
(
ω(G) + log

m

ω(G)

))
(22)

for any f ∈ 2V , without prior knowledge on ω(G) or M∗. Moreover, one could provide an improved
guarantee with a finer tuning for the learning rate (Ben-David et al., 2009) of A to further show that

E[M(A, f)] ≤ M∗ +
√
2M∗ ln |HMP(G)|+ ln |HMP(G)| (23)

= M∗ +O
(√

M∗
(
ω(G) + log

m

ω(G)

)
+ ω(G) + log

m

ω(G)

)
, (24)

which can similarly be achieved by lifting prior knowledge on M∗ via a doubling trick. However,
approaches that implement learning with expert advice in a straightforward way would require to

3. Note that M(A, f)−M∗, or better E[M(A, f)]−M∗ if A is randomized, takes the name of (expected) regret.
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maintain weights over all |HMP(G)| ≤ 4m2ω(G)

ω(G) +2 hypotheses, thus incurring in O(2ω(G) poly(n))
running time per round.

If we instead run the Winnow algorithm over the same task, it is possible to achieve similar
rates (only loosing a factor of roughly ω(G)) for the mistake bound while keeping computational
efficiency even in the agnostic case. As shown by Blum (1996), Winnow has the following mistake
bound in the agnostic case.

Proposition 26 (Blum (1996, Theorem 6)) For any sequence of examples consistent with any f ∈
2[n] and any r-literal disjunction h over n variables, the number of mistakes made by Winnow is
O
(
r(M(h, f) + log n)

)
.

This immediately implies Theorem 14 for agnostic online learning with HMP(G).
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