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We present a sample- and time-efficient differentially private algorithm for ordinary least squares,
with error that depends linearly on the dimension and is independent of the condition number of
X>X , where X is the design matrix.1 Given covariates X ∈ Rn×d and responses y ∈ Rn, the OLS
estimator is defined as

βols =
(
X>X

)−1
X>y .

Among the many reasons for the popularity of OLS is the fact that it is a statistically and com-
putationally efficient way of solving linear regression. Speaking informally, OLS has low excess
error whenever the number of samples n is as large as the problem dimension d. Crucially, its
statistical performance does not depend on the condition number κ(X>X), the ratio between the
maximum and minimum eigenvalues. Our algorithm has near-optimal accuracy guarantees and, for
modest levels of privacy, introduces less error than the error due to sampling. We provide accuracy
guarantees for any dataset with bounded statistical leverage and bounded residuals.

Given its widespread use in the analysis of personal data, there is a long line of work giving
differentially private algorithms to approximate OLS. However, designing practical and efficient
algorithms for this problem has been a particularly challenging endeavor. Existing algorithms for
DP regression suffer from one of three limitations: poor dimension dependence (e.g., Wang, 2018;
Sheffet, 2019), poor dependence on the condition number κ(X>X) (Varshney et al., 2022), or run
in exponential time (Liu et al., 2022).

Technically, we build on the approach of Brown et al. (2023) for private mean estimation, adding
scaled noise to a carefully designed estimator of the empirical regression vector. Our central contri-
bution is the design and analysis of a nonprivate subroutine that removes high-residual examples in
a stable manner.
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